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A brief history of deep neural networks (DNN)

Neural Network History

Expectations
or media hype

4
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[Deng & Yu 14]
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Deep Learning

With massive
amounts of
computational power,
machines can now
recognize cbjects and
translate speech in
real time. Artificial
intelligence is finally
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of online
communications and
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genomic revolution.
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Doubling the
efficiency of a solar
cell would completely
change the
economics of
renewable energy.

Collecting and
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from simple cell
phones can provide
surprising insights into
how people move
about and behave —
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circuit breaker could

im?Ian_t for people more useful if you Nanotechnology just and even help us finally make highly
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term memory loss. N out of your pocket. . possible. . spread of diseases. . grids practical. .
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Ehe New Nork Cimes

Scientists See Promise in Deep-Learning Programs
John Markoff November 23, 2012

RiCk Rashid in Tianjin, China, October, 25, 2012

Geoff Hinton

The universal translator on “Star A voice recognition program translated a speech given by Richard F. Rashid,
Trek” comes true... Microsoft's top scientist, into Chinese.

| :
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<code/conference>

Microsoft’s Skype “Star Trek” By fnafried
Language Translator Takes on a EE

ARTICLES
Tower of Babel

May 27, 2014, 5:48 PM PDT

0000 -

Analysts say the translation feature could have wide ranaing applications
Remember the universal translator on Star Trek? The gadget that let Kirk and Spock talk

to aliens?

B Microsoft Research




Impact of deep learning in speech technology
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"Early” DNNSs are difficult to train

« “Shallow” NN improves acoustic modeling in early 90's

» But the benefits were not sufficient to challenge GMMs

» Lack of hardware and algorithms to train DNN

« Scalability problem, i.e., training NN with many hidden layers on large amounts of data
« Non-convex optimization with a lot of local optima
- Vanishing/exploding gradient problem [emie—

» Forward prop: repeated multiplication of s(z) /

- Back prop: repeated multiplication of s'(z) /

B Microsoft Research



Breakthroughs after 2006

« Computational power due to the use of GPU ana
large-scale CPU clusters

» Better learning algorithms and different nonlinearities

 SGD allows the training to jump out of local optima due to the
noisy gradients estimated from a small batch of samples.

« SGD s effective for parallelizing over many machines with an
asynchronous mode

» Tricks: Dropout, Rectified Linear Units (ReLUs)

 Use deep belief net (DBN) for initialization — Layer-
wise pre-training [Hinton+ 06]

B Microsoft Research E r//@ 2015



DNN: (Fully-Connected) Deep Neural Networks

Hinton, Deng, Yu, et al., DNN for AM in speech recognition, IEEE SPM, 2012

DEM-DMNN
REM DBM T wa=0
ABM - Wa : Wa Wy
[
GREM :WE WE E WET
Copy
[
| Wy Wy
First train a stack of N models each of Then compose them Then add outputs
which has one hidden layer. Each model into a single Deep Belief and train the DNN
in the stack treats the hidden variables  Network. with backprop.

of the previous model as data.

B Microsoft Research r//< I H
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After no improvement for 10+ years by the
research community...

MSR reduced error from ~23% to <13%
(and under 7% for Rick Rashid’s S2S demo)!
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CD-DNN-HMM

Dahl, Yu, Deng, and Acero, “Context-Dependent Pre-
trained Deep Neural Networks for Large Vocabulary
Speech Recognition,” IEEE Trans. ASLP, Jan. 2012

Seide, Li, and Yu, “Conversational Speech
Transcription using Context-Dependent Deep Neural
Networks,” INTERSPEECH 2011.

Progress of spontaneous speech recognition

100%
90%
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50%

40%

Word Error Rate

o little progress for 10+ yrs

20%

10% MSR \ Rashid

Demo
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The focus of this tutorial

* |s not on speech or image,

» But on text processing and understanding tasks
« Statistical machine translation
e Information retrieval
« Image captioning
« Question answering
* EtC.

T — /T



A query classification problem

» Given a search query g, e.g., "denver sushi downtown”

* |dentify its domain ¢ e.q,,
« Restaurant
 Hotel
- Nightlife
- Flight
» etc.
» SO that a search engine can tailor the interface and
result to provide a richer personalized user experience

B Microsoft Research 17 r//<|\_|'_| 2015




A single neuron modadel

» For each domain ¢, build a binary classifier
- Input: represent a query g as a vector of features x = [xy, ... x,,]"
« Output: y = P(1]q,c)
« g Is labeled c isP(1]q,c) > 0.5

* Input feature vector, e.g., a bag of words vector
« Regards words as atomic symbols: denver, sushi, downtown
- Each word is represented as a one-hot vector: [0, ..., 0,1,0, ..., 0]*
» Bag of words vector = sum of one-hot vectors

- We may use other features, such as n-grams, phrases, (hidden)
topics

B Microsoft Research r//@ 2015




A single neuron modadel

Output: P(1]q,c)

1
Y= G(Z) a 1+exp(—2)

Input features x —

2 ®.

- w: weight vector to be learned
» z: weighted sum of input features
» ¢ the logistic function 03/

» Turn a score to a probability

 non-linear activation function, essential in D
DNN models 6 -4 2

B Microsoft Research r//@ 2015



Model training: how to assign w

+ Training data: a set of (x(™), (M)
+ Input x™) € R™
. Output y™ = {0,1}

« optimize parameters w on training data
- minimize a loss function (mean square error loss)

« min}M_, L™
w

m=(1,2,.,m} P>

.+ where L(W =1 (£, (x(m) — y )’
 Using Stochastic Gradient Descent (SGD)

« Initialize w randomly

. Update for each training sample until convergence: wmew = wold — 2
P 9 P 9

B Microsoft Research



Multi-layer (deep) neural networks

B Microsoft Research

Output layer y° = a(wTy?)

Vector w

2st hidden layer y? = g(W,y1)

Projection matrix W,

1st hidden layer y! = a(W;x)
Projection matrix W;

Input features x

This is exactly the single neuron model
 with hidden features.

Feature generation: project raw input
__features (bag of words) to hidden features
(topics).




DNN for image processing

very high level representation:
MAN]| |SITTING

A

saa O i

)

slightly higher level representation

)

raw input vector representation:

This is exactly the single neuron model
[ with hidden features.

A’=|23]19|20 18

Project raw input features to hidden
features (high level representation).

[Bengio 09]
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Standard Machine Deep Learning
Learning Process

decisions decisions
TRAINABLE TRAINABLE

HAND-ENGINEERED

e

Adapted from [Duh 14]
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Deep Semantic Similarity Model (DSSM)

[Huang+ 13; Gao+ 14a; Gao+ 14b; Shen+ 14, Yih+ 15]

« Compute semantic similarity btw text strings X and Y

- Map X and Y to feature vectors in a latent semantic space via deep neural net
» Compute the cosine similarity between the feature vectors
« Also called “Deep Structured Similarity Model” in [Huang+ 13]

« DSSM for NLP tasks
T [y

Machine translation Text in language A Translation in language B
Web search Search query Web document

Image captioning Image Caption

Question Answering Question Answer

B Microsoft Research r//@ SO



From common DNNs to DSSM

« Common DNN models

« Mainly for classification % Distoxentropy  one-hot target
» Target: one-hot vector Co8eee® - 460 00000
W.

4

« Example of DNN:
w;, 4

w, 4

Text string X

B Microsoft Research 25 r//@ 2015




From common DNNs to DSSM

To construct a DSSM

« For ranking (not classification with DNN)

- Step 1: target from “one-hot” 7 Dist#Xentropy %

to continuous-valued vectors ]
CO@OOC O « 4000 0000
w, 4

“vector”-valued “target”

| :
B Microsoft Research




From common DNNs to DSSM

« o construct a DSSM

- Step 1: target from “one-hot” to

continuous-valued vectors vector”-valued "target”

- Step 2: derive the “target” vector using a
DNN % Distance(s,t) %
Semantic representation—> w ) 2000, 9000

w, 1 w, 1
W, t Ws t
W, t W, t
W, t W, t
Text string X Text string Y

B Microsoft Research r//@ 2015




From common DNNs to DSSM

« [0 construct a DSSM

- Step 1: target from “one-hot” to continuous-

Distance(s,t1)
valued vectors @
- Step 2: derive the “target” vector using a JF ﬂk
DNN Toe o e
. . i . .’A A A.A A"A < > A.A‘A A.A A‘g
- Step 3: normalize two “semantic” vectors & w, 4 w, 1
compute their similarity
« Use semantic similarity to w. t w, £ ...
. Y .
rank translations/docs/entities w, 4 w, 4
* sim(X, Y1)
. sim(X, Y2) W, 4 Wi
. Sim(X. Y3)
Text string X Text string Y

B Microsoft Research r//@ 2015



Part Il

Deep learning in statistical
machine translation (SMT)




Tutorial Outline

Part I: Background

Part |l: Deep learning in statistical machine translation (SMT)
 Review of SMT and DNN in SMT
« Deep semantic translation models
 Recurrent neural language models
 Neural network joint models
 Neural machine translation
Part lll: Learning semantic representations
Part IV: Natural language understanding

Part V: Conclusion
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Statistical machine translation (SMT)

S: KiE AR B3 BE B Stk £4F

T: Rescue workers search for survivors in collapsed houses

Statistical decision: T* = argmax P(T|S)
T

Source-channel model: T* = argmax P(S|T)P(T)
T

Translation models: P(S|T) and P(T|S)
Language model: P(T)

Log-linear model: P(T|S) =

1
Z(5.T) exp Zi /lihi (S, T)

Fvaluation metric: BLEU score (higher is better)

B Vicroscft Research



Phrase-based SMT




Phrase-based SMT

ik A REEIIRN B R B SR AL E

rescue staff in collapse  of  house in  search SUIVIVOr'S

e AR (& wm oW mRow] [ @R

A ,

B

Y YA

‘ Rescue workers l i collapsed houses ‘ ‘ search for J ‘ SUIVIVOTrS

'\ "y S

-
‘ search for ‘ [ SUIVIVOTS

Rescue workers { in collapsed houses

Rescue workers search for survivors in collapsed houses.

Chinese

Segmentation

Translation

Permutation

English

B Microsoft Research r//< I3§ H




A taxonomy of neural nets in SMT [Duh 2014]

Core Engine: What is being modeled?
@ Target word probability:
» Language Model: [Schwenk et al., 2012, Vaswani et al., 2013,
Niehues and Waibel, 2013, Auli and Gao, 2014|
» LM w/ Source: [Kalchbrenner and Blunsom, 2013, Auli et al., 2013,
Devlin et al., 2014, Cho et al., 2014, Bahdanau et al., 2014,
Sundermeyer et al., 2014, Sutskever et al., 2014]
@ Translation/Reordering probabilities under Phrase-based MT:
» Translation: [Maskey and Zhou, 2012, Schwenk, 2012, Liu et al., 2013,
Gao et al., 2014a, Lu et al., 2014, Tran et al., 2014, Wu et al., 2014a]
» Reordering: [Li et al., 2014b]
@ Tuple-based MT: [Son et al., 2012, Wu et al., 2014b, Hu et al., 2014]
@ |ITG Model: [Li et al., 2013, Zhang et al., 2014, Liu et al., 2014]
Related Components:
@ Word Align: [Yang et al., 2013, Tamura et al., 2014, Songyot and Chiang, 2014]
@ Adaptation / Topic Context: [Duh et al., 2013, Cui et al., 2014]

@ Multilingual Embeddings:
|[Klementiev et al., 2012, Lauly et al., 2013, Zou et al., 2013, Kotisky et al., 2014,
Faruqui and Dyer, 2014, Hermann and Blunsom, 2014, Chandar et al., 2014] .

B Microsoft Research 34 r//<|\_|'_| 2015




Examples of NN in phrase-based SMT

« Neural nets as components in log-linear model
« Translation model P(T|S) or P(S|T): the use of DSSM [Gao+ 14]
« Language model P(T): the use of RNN [Auli+ 2013; Auli & Gao 14]
* Joint model P(t;|S,t; ...t;—1): FFLM + source words [Devlin+ 14]

« Neural machine translation

« Build a single, large NN that reads a sentence and outputs a translation
« RNN encoder-decoder [Cho+ 2014; Sutskever+ 14]

« Long short-term memory (gated hidden units)
- Jointly learning to align and translate [Bahdanau+ 15]

B Microsoft Research r//@ 2015




Phrase translation modeling

HUE AR fE B M BR B SR An (s, 1)
(BIE. rescue)
reseue . (N 1. workers)
workers . (f£. in)
#1535, collapsed)
h (8] 55 p
S . (55 2. house)
for (B, in)
survivors . (F ?k search)
. (445 . survivors)
m . R O ) (FdR A . rescue workers)
collapsed (£ {3135, in collapsed)
(18115 [, collapsed)
houses ('] 55 <. house)

(<3-3K. search for)
(4R 4344, search for survivors)

: _ _NGY) (#EiL 4. for survivors)
MLE: P(tlS) - Zt’ N(s,t") ({8135 1) B5)=. collapsed house)

Simple, but suffers the data sparseness problem

B Microsoft Research r//@ 2015



Deep Semantic Similarity Model (DSSM)

[Huang+ 13; Gao+ 14a; Gao+ 14b; Shen+ 14, Yih+ 15]

« Compute semantic similarity btw text strings X and Y

- Map X and Y to feature vectors in a latent semantic space via deep neural net
» Compute the cosine similarity between the feature vectors
« Also called “Deep Structured Similarity Model” in [Huang+ 13]

« DSSM for NLP tasks
N N

Machine translation Text in language A Translation in language B
Web search Search query Web document

Image captioning Image Caption

Question Answering Question Answer

B Microsoft Research r//@ 2015



DSSM for phrase translation modeling [Gao+ 142]

ti—1 s tj R e
I : : |
... (the process of) | (machine translation) ! Target phrases
, Continuous representations of
D Ye; | target phrases
D Ve | Continuous representations of
L 1
source phrases
...(le processus de) | _ _ i Source phrases
Si—1 Si ; Si+1
T Translation score as dot product of
score(si,t-) = V. V: . I < ;
] j feature vectors in the continuous space

» Two neural nets (one for source side, one for target side)
» Input: bag-of-words representation of source/target phrase
- Output: vector y, for source phrase, y; for target phrase

 Phrase translation score = dot product of these vectors
« score(s,t) = simg(X5,X;) = V4V,
« Alleviate data sparsity, enable complex scoring functions, etc.

B Microscft Research



Model training procedure

« Generate N-best lists using a baseline SMT system
» Oracle BLEU in N-best is much better than 1-best

« Optimize neural net parameters @ on the N-best lists of
training data

» Expected BLEU objective: xBleu(0) = Yregen(s;) P(T1S;)sBleu(T;, T)

- Update 0 with SGD: 0"¢" = 0 — naz;_(ee)l
0L(0) dL(0) dsimg(Xs,X¢)
where 00 Z(S»t) dsimg(x,X¢) 90

* Incorporate DSSM as a feature in log-linear model
 Feature weight is optimized using MERT on development data.
« No decoder modification

* Loop it desired

B Microscft Research



N-gram language modeling

« Word n-gram model (e.g., n = 3)
« A word depends only on n-1 preceding words
« Pwywy owy) = P(w)P Wy |wl) [1i=z _n PWilwi_awi_4)
« Cannot capture long-distance dependency

the dog of our neighbor barks

» Problem of using long history model # parameters

- Rare events: unreliable probability estimates unigram  P(w;) 20,000
bigram  P(w,|w,) 400M

trigram  P(wgw,w,) |8 x 1012

4-gram  P(w,|w,w,w3) | 1.6 x 1077

[Manning & Schitze 99]

B Microsoft Research r//CL 2015




Recurrent neural net for language modeling

m; Y: ) .
> barks m,: input one-hot vector at time step t
g U v - h;: encodes the history of all words up to time step t
°9 2 > y,: distribution of output words at time step ¢
W/ h — runs
t
Zt — Umt + Wht—l
- h; = 0(z;)
v ye = g(Vhy)
Table 1: Performance of models on WSJ DEV set when increas-
ing size of training data. where
[ Model [ #words | PPL | WER | _ 1 _ _exp(Zm)
0(z) =——— Zm) = o——— —
KNS5 LM 200K | 336 | 164 (2) 1+exp(-z)’ 9(zm) Y exp(zk)
KNS5 LM + RNN 90/2 200K | 271 | 15.4
KNS5 LM ™M 287 | 15.1
KNS LM + RNN 90/2 M| 225 | 140 g(.) is called the softmax function
KNS5 LM 6.4M | 221 | 135
KNS5 LM +RNN250/5 || 6.4M | 156 | 11.7

[Mikolov+ 11]

B Microsoft Research r//< I H



RNN unfolds into a DNN over time

St e 2, = Um, + Wh,_,
t SN h, = o(z;)
o v | 7 e = g(Vh,)

m,_; | where
W/ h — 1 exp(Zm)
. / 0@) = b, ga) = ).

ht—3

B Microsoft Research 42 r//@ 2015




RNN LM decoder integration [Auli & Gao 14]

« RNN LMs require history going back to start-of-sentence.
Harder to do dynamic programming.

» [0 score new words, each decoder state needs to maintain
h. For recombination, merge hypotheses by traditional n-
gram context and the best h

WMT12 Fr-En | WMT12 De-En
baseline (n-gram) 24.85 19.80
100-best rescoring 25.74 20.54
lattice rescoring 26.43 20.63
decoding 26.86 20.93

B Microsoft Research 43 r//<|\_|'_| 2015



Joint model: language model with source

* P(t;|t;—2ti—1,S)

« How to model §7
» Entire source sentence or aligned source words
- S as a word sequence, bag of words, or vector representation
- How to learn the vector representation of 57?

 Neural network joint models based on
« RNN language model [Auli+ 13]
 Feedforward neural language model [Devlin+ 14]

B Microsoft Research 44 r//@ 2015




Feed-tforward neural language model [Bengio+ 03]

o e, ™~
ot N o output
| wopu probability estimation layer |
YA -‘ pl —
Wj—m+1 | 1o projection —L P(wi=1h;)
Cisco | . layer hidden gy
: layer :
' ' - guidance
J— . M IC-‘I_E - P(wj_ﬂhj\
A\ N :
| __,.) o] vV : hlgfl; o
u?j_n_|_2| ® shared . : I probability
| I_ projections X
issued :
o / - 3
wWi_1 | P .
f? e - : | py = Boston
earningsy N d '.' | P(w;=N|hj;)
| ;r N l

H
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Joint model of [Deviin+ 14]

3 4 5 6, ) T_ y
S: #F [#||HL| ||| 4] 7| ]
j will get money to pertf. them

2 1T, 0 I |
T: |i||will| [get| ithei money to them

P(the | get, will, i, &, Hi, ¥, 25, 1)

« Extend feed-forward LM to include window around
aligned source words.

* Heuristic: if align to multiple source words, choose middle; if
unaligned, inherit alignment from closest target word

» Train on bitext with alignment; optimize target likelihood.

B Microsoft Research 46 r//<|\_|'_| 2015




Neural machine translation
[Sutskever+ 14; Cho+ 14; Bahdanau+ 15]

» Build a single, large NN that reads a sentence and outputs a
translation

» Unlike phrase-based system that consists of many component models

« Encoder-decoder based approach

« An encoder RNN reads and encodes a source sentence into a fixed-
length vector

A decoder RNN outputs a variable-length translation from the encoded
vector

« Encoder-decoder RNNs are jointly learned on bitext, optimize target
likelihood

B Microsoft Research 47 r//@ 2015



Fncoder-decoder model of [Sutskever+ 2014]

« 'A B C" s source sentence; "W XY /" Is target sentence

<EQS>

o
|

W
A

A

s—>» > x
x —3 F—> <

T T T *
A B C <EOS=> Z

« Treat MT as general sequence-to-sequence transduction
« Read source; accumulate hidden state; generate target
« <EOS> token stops the recurrent process

* In prlactice, read source sentence in reverse leads to better MT
results

» Train on bitext; optimize target likelihood using SGD

B Microsoft Research 48 r//<|\_|'_| 2015




Potentials and difficulties of RNN

* In theory, RNN can “store” in h all —
information about past inputs v v,

 But in practice, standard RNN cannot f

capture very long distance dependency
« Vanishing/exploding gradient problem in backpropagation he;
« Not robust to noise

» Solution: long short-term memory u v,
(LSTM) =D

‘‘‘‘‘

delayed

B Microsoft Research 49 r//<|\_|'_| 2015



A long short-term memory cel
[Hochreiter & Schmidhuber 97; Graves+ 13]

i = 0 (Waimy + Whihy—1 + Weici—1 +b;)
fi=0(Wyszy + Whhi—y + Wepei—y + by)
¢t = frci—1 + iy tanh (Wyeay + Wiehy—1 + be)
0t = 0 (Waoms + Whohi—1 + Weocy + bo)

h = o; tanh(c;)

Information flow in an LSTM unit of the RNN, with both diagrammatic and mathematical descriptions. W's are weight matrices
not shown but can easily be inferred in the diagram (Graves et al., 2013).

B Microsoft Research r//@ 2015




A 2-gate memory cell [Cho+ 14]

#i

71\ —
—l\,l/’_"r/ —Lh X

Figure 2: An illustration of the proposed hidden
activation function. The update gate z selects
whether the hidden state is to be updated with
a new hidden state /. The reset gate r decides
whether the previous hidden state is ignored. See

ri =ao ([W»p}{j -+ [Urh{t—l}]j)

Zj =0 ([sz}j T [UZh{t_D]j)

?};t} — g’} ([WX + [U (I‘ ® h<f—1}nj)

p {0

i ”':jh’{t_l} + (1 — ,-’.;j)f;ie{t}

J J

H
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Joint learning to align and translate

e [ssue with encoder-decoder model for SMT

- Compressing a source sentence into a fixed-length vector
makes it difficult for RNN to cope with long sentences.

 Attention model of [Bahdanan+ 15]

» Encodes the input sentence into a sequence of vectors and
choose a subset of these vectors adaptively while decoding

« An idea similar to that of [Devlin+ 14]

B Microsoft Research 52 r//@ 2015




Attention model of [Bahdanan+ 15]

« Encoder:

e bidirectional RNN to encode each word and
Its context

« Decoder:

« Searches for a set of source words that are
most relevant to the target word to be
predicted.

» Predicts a target word based on the context
vectors associated with these source words
and all the previous generated target words.

» Close to state-of-the-art performance
- Better at translating long sentences

B Microsoft Research 53 r//@ 2015



Interim summary

» A Dbrief history of DNN

« DNNs in statistical machine translation
 Feed Forward Neural Networks

« Recurrent Neural Networks (RNN)

» Long Short-Term Memory (LSTM)

» Deep Semantic Similarity Model (DSSM)
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Tutorial Outline

» Part I: Background
« Part ll: Deep learning in statistical machine translation (SMT)

- Part lll: Learning semantic representations
« Sentence to vector
« The deep semantic similarity model (DSSM)
 Convolutional & Recurrent DSSM
 Applications to IR and contextual entity ranking
« Multimodal semantic learning for image captioning

- Part IV: Natural language understanding
« Part V: Conclusion
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Part 1l

Deep Learning for Semantic
Representations




Deep Learning for Semantic Representations

« Sentence to vector

 The deep semantic similarity model (DSSM)

» Convolutional & Recurrent DSSM

» Applications to IR and contextual entity ranking

» Multimodal semantic learning for image captioning
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Learning semantic representation
e.g., from a raw sentence to an abstract semantic vector (Sent2Vec)

Abstract representation w

in the semantic space
P W, t

/
Ws
each non-linear layer gradually
extracts deeper invariance
w, 4
w, 4
Raw text, e.g, a

sequence of words

a man is reading the new york times

.
B Microsoft Research




Sent2Vec is crucial in many NLP tasks

Web search
Ad selection
Contextual entity ranking

Online recommendation

Machine translation
Knowledge-base construction
Question answering
Personalized recommendation

Image search

Image captioning

H
B Microsoft Research

search query
search query
mention (highlighted)

doc in reading

phrases in language S
entity
pattern | mention

user

query
Image

web documents
ad keywords
entities

interesting things / other docs

phrases in language T
entity

relation | entity

app, movie, etc.
Image

text

MACHI 2015




Sent2Vec is crucial in many NLP tasks

Web search search query

Ad selection search query
Contextual entity ranking mention (highlighted)
Online recommendation doc in reading

Machine translation phrases in language S

Knowledge-base construction  entity
Question answering pattern | mention
Personalized recommendation  user

Image search query

Image captioning image

H
B Microsoft Research

web documents
ad keywords
entities

interesting things / other docs

phrases in language T
entity

relation | entity

app, movie, etc.
Image

text caption

MACCH



Deep Learning for Semantic Representations

 Sentence to vector

 The deep semantic similarity model (DSSM)

» Convolutional & Recurrent DSSM

» Applications to IR and contextual entity ranking

» Multimodal semantic learning for image captioning
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The supervision problem:

F However

« the semantic meaning of texts —

anil@ to be learned — is latent
W,
* no clear target for the model to
learn
A | * How to do back-propagation?
w, 4
rortunately
w, 4 « we usually know if two texts are
“similar” or not.

 That's the signal for semantic

a man is reading the new york times : :
representation learning.
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Deep Structured Semantic Model

Deep Structured Semantic Model/Deep Semantic Similarity Model (DSSM)
Sentence to vector!

The DSSM is built upon sub-word units for scalability and generalizability
e.qg., letter-trigrams, phones, roots/morphs, instead of words

The DSSM is trained by optimizing an similarity-driven objective
projecting semantically similar sentences to vectors close to each other
projecting semantically different sentences to vectors far apart

The DSSM is learned from various signals, with or without human labeling effort

semantically-similar text pairs
e.q., user behavior log data, contextual text

Huang, He, Gao, Deng, Acero, Heck, “Learning deep structured semantic models for web
search using clickthrough data,” CIKM, October, 2013
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DSSM: a similarity-driven Sent2Vec model

Initialization:

Neural networks are initialized with random weights

Semantic vector

Letter-trigram d=500 d=500
embedding matrix — W, t W, , t
Letter-trigram encoding dim = 50K dim = 50K

matrix (fixed) — W, t W, , t
Bag-of-words vector dim = 100M _

Input word/phrase s: "racing car” t*: "formula one” t-: "racing to me”
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DSSM: a similarity-driven Sent2Vec model

Training:
Compute Cosine similarity between semantic vectors =~
Compute exp(cos(Vs,Ve+))

. oW
gradients  X,_g+ - exp(cos(vs, vt/))/

Semantic vector s Us —%

BN -

Letter-trigram
embedding matrix

Letter-trigram encoding dim = 50K

matrix (fixed) — W,

Bag-of-words vector dim = 100M

Input word/phrase s: "racing car” t*: "formula one” t-: “racing to me”
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DSSM: a similarity-driven Sent2Vec model

Runtime:
@ similar @ apart
Vs o V1

Semantic vector S

%

Ws,4 t Wf,4 t

% 0
1

Ws 3 t Wtf3

— S W t t

<

embedding matrix W

5.2 t2
Letter-trigram encoding dim = 50K dim = 50K
matrix (fixed) — W, t W,, t

dim = 100M dim = 100M

Input word/phrase s: "racing car” t*: “formula one” t-: "racing to me”

= Microsoft Research 66 r//CI\_H 2015
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DSSM: built on top of sub-word units

Decompose any word into sub-word units (SWU)

embedding vector W-UxV embedding vector
dim=500 é el SWU embedding
word embedding d U > matrix: 500 x 50K

matrix: 500 X 100M L
<:j dim - 50K [
encoding
S 2y

dim = 100M dim = 100M
Bag-of-words vector Bag-of-words vectck

Could go up to extremely large

Preferable for large scale NL tasks
Arbitrary size of vocabulary (scalability)
Misspellings, word fragments, new words, etc. (generalizability)
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Options:
« Letters, context-dept letters, positioned-phones, context-

dept phones, positioned-roots/morphs, context-dept
morphs

Or
Random projection (random basis unit)
Multi-hashing approach to word input representation
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Sub-word unit encoding

-0_
- : The index of word cat
- E.g, letter-trigram based 1| <~ in the vocabulary
Word Hashing of "cat” x (cat) = |0
. -> #cat# 5
o Tri-letters: #-c-a, c-a-t, a-t-#.
nl
« Compact representation ﬂ

- [Voc| (500K) - |Letter-trigram| (30K)

_ 1 Indices of #c-a, c-a-t, a-t-# in the
Generahze O unseen V\/OI’dS f(cat) = |4 letter-tri-gram list, respectively.

I
e

Robust to misspelling,

inflection, etc. Vocabulary | Unique letter-tg| Number of
size observed in voc Collisions

What if different words have the same word 40K 10306 2 (0.005%)

hashing vector (collision)? 500K 30621 22 (0.004%)
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Learning sub-word unit embedding vectors

SWU uses context-dependent letter, e.q., letter-trigram.

Learn one vector per letter-trigram (LTG), the encoding matrix is a fixed matrix
» Use the count of each LTG in the word for encoding

ﬁxample: cat — #cat# — #-c-a, c-a-t, a-t- \
(w/ word boundary mark #)
Uy
'[‘ K
dim v(cat) = Z(“cat,k 'H)

\l, k=1
3 (N J T [
1,..0... 1,... 1. Count of LTG(k)

K < tE:)taI Iet".t'ér-trigcgraa:r'ig = in the word “cat” u:The vector of LTG(k)/
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Training objectives

Objective: cosine similarity based loss
Using web search as an example:

« aquery q and a list of docs D = {d*,d7, ...dg}
-« d* positive doc; d7, ...dg are negative docs to g ( e.g., sampled from not clicked docs)

« Objective: the posterior probability of the clicked doc given the query

exp (y cos(ve(q), ve(d™)))

P(d*|q) =
( |CI) ZdED exp ()/ COS(U(.)(CI); Ug(d)))

e'g'/ v(—)(Q) — U(Ws,4 X U(Ws,3 X U(Ws,z X ltg(CI)))

vg(d) = oWy X o(Wy3 X a(Wy, X ltg(d)))
where 6 = {Wy,._4, W, 54}, a() is a tanh function.
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Optimization

« Optimize 8 to maximize P(d*|q).
* @ is randomly initialized

« SGD training on GPUs aP<d+|q> . @< )
e.g. NVidia K40 “%&%}k

‘ﬁ?
W l
‘f
l
‘j?
l
Wt‘f

dlm 100M dim = 100M dim = 100M

: “racing car” t*: “formula one” t- “racing to me”

=300

Please refer to the full version of the paper for detailed derivation.
[Huang, He, Gao, Deng, Acero, Heck, 2013]
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Mine semantically-similar text pairs from Search
Logs

how to deal with Sl‘Uffy nose? Best Home Remedies for Cold and Flu

wWina Heat EXternal Pathogens
By: Catherine Browne, L.Ac., MH, Dipl. Ac.

stuffy nose treatment
In Chinese medicine, colds and flu's are delineated

into several different energetic classifications.

/ Here we will outline the different types of cold
co ld h ome rem edles and flu viru;es that you will likely encounter, and

1°9

[Gao, He, Nie, CIKM2010]
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Semantic Hashing

1) Single layer learning: Restricted Boltzmann Machine (RBM)
2) Multi-layer training: deep auto-encoder, learn internal representations

Model is trained to minimize the reconstruction error Document
re-construction error

Step1: get initial weights Step2: auto-encoder (to be minimized in training)
from RBM | 0K |
_____________________________________ 7
| 300 | wl
| 500 |
\
. [0 ] | . w2
B IEBEEEEEEEEEEEEEEEEEE unrolling | 500 |

_____________________________________

Embedding Ws
"""" 500 | of the document | -0 |
: We
& | 500 ]
| 40K
[Salakhutdinov & Hinton 2007, 2010] Document
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SZNet

» Model form is the same as LSA/PCA
@ Learning the projection matrix discriminatively

fsim (Vqry » Vdoc )

Vq ry

Vdoc

[Yih, Toutanova, Platt, Meek, 2011]
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DSSM: Web Search

» Training data:
« 100M query/clicked-doc-title pairs from search log

e Jest set:

16,510 English queries sampled from 1-yr. log
» 5-level relevance label for each query-doc pair
« Evaluated by NDCG

» Baselines

 Lexicon matching models: BM25
 Topic model: PLSA

B Microsoft Research



Results on a document retrieval task

Docs are ranked by the cosine similarity between query vector and doc vector

NDCG@1
BM25 30.8
LSA (Deerwester et al., 1990) 29.8 The DSSM i
PLSA (Hofmann 1999) 29.5 o NDCe
Auto-Encoder (Hinton et al., 2010) 31.0 shallgw models
DPM (w/ S2Net (Yih et al., 2011)) 32.9
Word Translation Model (Gao et al, 2010) 33.2
Bilingual Topic Model (Gao et al., 2011) 33.7
DSSM 36.2

The higher the NDCG score the better, 1% NDCG difference is statistically significant.

* The DSSM learns superior semantic embedding
» Letter-trigram + the DSSM gives superior results
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Reflection: from Auto-encoder to DSSM

Auto-encoder Training loss func.: DSSM
AE: reconstruction error
Input sentence DSSM: distance between cosine
embedding vectors similarity

re -construction error

Trainingdata: A\ " / V ector
AE: unsupervised T ] ?

(e.g., doc<->doc)
DSSM: weakly supervised
(e.g., query<->doc search log) W
embedding»@

vector Input:

(e9. letter-trigram)

source sentence target sentence

q_ AE: 1-hot word vector i
E DSSM: sub-word unit m

Input sentence
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Deep Learning for Semantic Representations

 Sentence to vector

 The deep semantic similarity model (DSSM)

» Convolutional & Recurrent DSSM

» Applications to IR and contextual entity ranking

» Multimodal semantic learning for image captioning
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Convolutional DSSM

Model local context at the convolutional layer
Semantic layer: y (] Model global context at the pooling layer

Affine projection matrix: W,

Max pooling layer: v

Max pooling operation

0000 m

Convolutional layer: h;

Convolution matrix: W,

Word hashing layer: f; | 30k || 30k || 30k | ... | 30k || 30k |
Word hashing matrix: W T T T T /‘\
Word sequence: x; <s> Wy W wr <s>

Figure 1: Illustration of the C-DSSM. A convolutional layer
with the window size of three is illustrated.

[Shen, He, Gao, Deng, Mesnil, WWW?2014 & CIKM2014;
Gao, Pantel, Gamon, He, Deng, Shen, EMNLP2014]
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/ [ [ 300 []f[l300 [} \
— What does the model learn at the / /\ g

convolutional layer? ¢ ]
Capture the local context dependent wetd sense o
e Learn one embedding vector for each-ocal context- \ auto  body repair ... /

dependent word

he = We X [fe—1, fo [l

semantic space

auto body repair
car body shoplcar body kits
auto body part

The similarity between different “body” within contexts

similarit

J

0.698 similarity
0.578 5
wave hady language, 0555 -
forcefield body armouy 0.301
calculate body fat 0.220 o
forcefield body armour 0.165 ] ow

similarity
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CDSSM: What happens at the max-
pooling layer?

Aggregate local topics to form the global intent

» |dentify salient words/phrase at the max-
pooling layer where i=1,...,300

|| 300 [[[[[300 | ... [[[300 [

N

v(i) = tgllng{ht(i)}

Words that win the most active neurons at the max-
pooling layers:

[ [ autd[bodjf repaid cost[ calculatoyL software ]

Usually, those are salient words containing clear intents/topics
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DSSM for Information Retrieval

Training Dataset
30 Million (Query, Document) Click Pairs

Testmg Dataset
12,071 English queries
around 65 web document associated to each query in average
Human gives each <query, doc> pair the label, with range 0 to 4

0: Bad 1: Fair 2: Good 3: Perfect 4: Excellent
. . . 30% 3
« Evaluation Metric: (higher the better) ,co, uery
m Doc Title
NDCG 20% |

15% H———

GPU (NVidia GPU K40) 10% b
0% -

Dist. of query and doc title length
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Main Experiment Results

ULM : Zhai and Lafferty 2001
NDCG@1 Results

35
34.5
34
33.5
33
32.5
32
31.5

31
Lexical Matching Models

30.5 ,—\
N N
BM25  ULM
ENDCG@1 305  30.4

.
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Main Experiment Results

35
34.5
34
33.5
33
32.5
32
31.5

31
Lexical Matching Models

30.5 ,—\
N N
BM25  ULM
ENDCG@1 305  30.4

| :
B Microsoft Research

NDCG@1 Results

Topic Models

PLSA
30.5

PLSA: Hofmann 1999




Main Experiment Results

WTM: Gao et al. 2010

NDCG@1 Results BLTM: Gao et al. 2011

35
34.5
34
33.5

33

32.5 Click-Through based
, Translation Models
32 Topic Models
31.5
. Lexical Matching Models
Ll o om N
30 _ L
BM25 ULM PLSA BLTM WTM
B NDCG@1 30.5 30.4 30.5 31.6 31.5

L]
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Main Experiment Results

DSSM: Huang et al. 2013
NDCG@1 Results

35
34.5
34
33.5

Deep Semantic Model
33

32.5 Click-Through based
, Translation Models
32 Topic Models
31.5
31 : :
Lexical Matching Models
e |
30 _ L

BM25 ULM PLSA BLTM WTM DSSM
B NDCG@1 30.5 30.4 30.5 31.6 31.5 32.7
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Main Experiment Results

CDSSM: Shen et al. 2014
NDCG@1 Results

35 :
Convolutional Deep

34.5 Semantic Model

34
33.5

Deep Semantic Model
33

32.5 Click-Through based
, Translation Models
32 Topic Models
31.5
31 _ _
Lexical Matching Models
e |
30 N E—

BM25 ULM PLSA BLTM WTM DSSM CDSSM
B NDCG@1 30.5 30.4 30.5 31.6 31.5 32.7 34.8
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Fxample: semantic matching

 Semantic matching of query and document

[ \autdtbodj{repai[ cost[calculatoyL software ]
\

S
******
EEE s i T
~ ~ -
~ ~
\~ ~o
N \\s

p ¥ —

[ 264 [ 170 JH 204 | 209 | 132 ][ 231 | | 224 }[ 186 | Most active neurons at
< 7 the max-pooling layers of
( A the query and document
\ [ 264 [ 170 [ 204 J 200 W 132 1 231 S 2;4 i ;86 ] ] nets(,qlrjesgectively )

U4
/ -7
’ -
- -
-~

[ free onIine{carj‘body]shop[repair{estim'ates ]]
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Recurrent DSSM

* Encode the word one by one in the recurrent hidden layer

* The hidden layer at the last word codes the semantics of the full sentence
« Moaodel is trained by a cosine similarity driven objective

Embedding vector/_\
loooo' i‘uu’
Wrec Wrec Wrec V / \ / '\

y(1) » y(2) > - — ¥ : N :
TW TW AW 000000 000000
11A(1) L(2) L (m)
W, W, TWh
x(1) x(2) x(m)
wi w2 w

m

[Palangi, Deng, Shen, Gao, He, Chen, Song, Ward, 2015]
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Using LSTM cells

LSTM (long short term memory) uses [Hochreiter and J. Schmidhuber, 1997]
special cells in RNN

Embedding vector y(t—1) x(HC——— x(H)————— y(t—1)

W 1 1 Wa
Wrec Wrec Wrec v (I) :':l 1 (I) ——
1 2 y(m b ! Wiee
yﬂ\ ) yu ) _>|j“__ﬂ W% b W, !
w w W. L
b

(L] (L2 ] Ii(m) | ye b IO DI

A 3 N

W, W, Wy, 1

| x(1) | | x(2) | ‘ x(m) ] \ g e
f1(f) ‘
Yg (t (W411 ) + Wrec4Y(t - ]-) + b4) ,

( x(1t)
i(t) = o(Wsli(t) + Wieeay (t = 1) + Wze(t — 1) + by)
f(t) = o(Wali(t) + Wieaay(t — 1) + Wpac(t — 1) + ba)
c(t) = f(t)oc(t = 1) +i(t) oy, (?)
o(t) = o(Wili(t) + Wreery (t — 1) + Wpic(t) +by)

y(t) = o(t) o h(c(t)) (2)
Figure 2. The basic LSTM architecture used for sentence embed-

where o denotes Hadamard (element-wise) product. ding

[Palangi, Deng, Shen, Gao, He, Chen, Song, Ward, Deep Sentence Embedding Using the LSTM network:
Analysis and Application to IR, 2015]
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Results

Model NDCG@1 NDCG@3 NDCG@ 10
BM25 30.5% 32.8% 38.8%
PLSA (T=500) 30.8% 33.7% 40.2%
DSSM (nhid = 288/96), 2 Layers 31.0% 34.4% 41.7%
CLSM (nhid = 288/96), 2 Layers 31.8% 35.1% 42.6%
RNN (nhid = 288), 1 Layer 31.7% 35.0% 42.3%
LSTM-RNN (ncell =96), 1 Layer 33.1% 36. 5% 43.6 % TemLSTM-RNN
7 ,"'% ‘ | | RNA{
10" _"_'_"."."',*” N ;.;;_;.;;3:;; - ;;.;f_ N A S
LSTM learns much faster . i,
than reqgular RNN i;; o
2 é
LSTM effectively represents =
the semantic information of
a sentence using a vector
10, s 10 ' 20 0 '
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Related work

Embedding vector @ Embedding vector

/ \
/ \
v N

[Palangi et al, 2015]

T~ > W e
W W W W W N4
W, Wy, Wi, AW AW AW
L x| [ x2 | [ x(m) | [ (x| L ©x [ [ Ox |

Source sentence

Optimize sentence-level semantic similarity

VS.

<EQS=>

T
T

z

Embedding vector T
"

v
h

Y

h 4

L.
Y

k.
Y

T

A B C =EQS>
Source sentence

Y

< ——» —>» N

s— > x
x — — <

Optimize word-level perplexity

[Sutskever, Vinyals, Le, 2014. Sequence to Sequence Learning with Neural Networks]
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Some other related work

Deep CNN for text input [Kalchbrenner, Grefenstette, Blunsom, A Convolutional
I\/Iainly classification tasks in the paper Neural Network for Modelling Sentences, ACL2014]

Paragraph Vector Quoc Le, Tomas Mikolov, Distributed Representations
Learn a vector for a paragraph of Sentences and Documents, in ICML 2014
Recursive NN (ReNN) [Socher, Lin, Ng, Manning, "Parsing natural scenes and

Tree structure, e.g., for parsing natural language with recursive neural networks”, 2011]

Tensor product representation (TPR) [Smolensky and Legendre: The Harmonic Mind, From
Tree representation Neural Computation to Optimality-Theoretic Grammar,

MIT Press, 2006]

Tree-structured LSTM Network [Tai, Socher, Manning. 2015. Improved Semantic
Tree structure LSTM

B Microsoft Research r//@ 2015
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Deep Learning for Semantic Representations

 Sentence to vector

 The deep semantic similarity model (DSSM)

» Convolutional & Recurrent DSSM

» Applications to IR and contextual entity ranking

» Multimodal semantic learning for image captioning
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Contextual Entity Ranking

Given a user-highlighted text span representing an entity of
interest, search for supplementary document for the entity

(1) The perthelion of Mercury shows a discrepancy which has
— ) I

long puzzled astronomers. This discrepancy 1s fully accounted

for by Einstemn. At the time when he published his theory, this \

was 1ts only experimental verification. R Entity page

(e.g., wiki doc)

(2) Modern physicists were willing to suppose that light might be
subject to gravitation—i e assing near a great
1ass like the sun might be deflected to the extent to which a
particle moving with the same velocity would be deflected
according to the grthodox theorv of gravitation. But Einstein's
theory required that the light should be deflected just twice as
much as this. The matter could only be tested during an eclipse

Key phrase

among a number of bright stars. Fortunately a peculiatly favour-

able eclipse occurred last year. The results of the observations

Gao, Pantel, Gamon, He, Deng, Shen, "Modeling interestingness
with deep neural networks” EMNLP2014
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Learning DSSM tfor contextual entity ranking

The Einstein Theory of Relativity Ray of Light (Experiment)

(1) The perthelion of Mercury shows a discrepancy which has Whet would hoppen

I could travel riding
a beam of light?
Would I see

long puzzled astronomers. This discrepancy 1s fully accounted
for by I-'.I'H\"mn. At the time when he published his theory, this

wvas its only experimental verification.

e still bght?

(2) Modern physicists were willing to suppose that light might be
subject to gravitation—i.e., that afray of lightjpassing near a great

mass like the sun might be deflected to the extent to which a
particle moving with the same velocity would be deflected
according to the grthodox theorv of oravitation But Einstein's
theory required that the light should be deflected just twice as
much as this. The matter could only be tested during an eclipse

among a number of bright stars. Fortunately a peculiarly favour-
able eclipse occurred last year. The results of the observations

Ray of Light (Song)

Ray of Light is the

seventh studio album

by American

ray of IigHt

~
b

Release date
Artist

Awards
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Extract Labeled Pairs from Web Browsing Logs

Contextual Entity Search

« When a hyperlink H points to a Wikipedia P’

http://runningmoron.blogspot.in/

| spent a lot of time finding music that was motivating and
that I'd also want to listen to through my phone. | could
find none. None! | wound up downloading three Met

songs, a Judas Priest song and one from Bush.

ICa

%

http://en.wikipedia.org/wiki/Bush_(band)

T,

Wikpeprd  Bush (band)
The Free Encyclopedia

From Wikipedia, the free encyclopedia

Main page For the Canadian band, see Bush (Canadian band).
nnnnnnnn
Foat Bush are a British rock band formed in London in
Curr
Ran : The grunge band found its immediate success
Dojats o il With the release of their debut album Six
Wikil hop
ich is certified 6x multi-platinum
Inter:

by the RIAA P Bush went on to become one of
the most commerci Ily essful roi ands of
the 1990s, selling over 10 million records in the
United States. Despite their success in the United
States, the band was less well known in their
home country and enjoyed only marginal success

* (anchor text of H & surrounding words, text in P’)

B Microsoft Research
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http://judaspriest.com/
http://en.wikipedia.org/wiki/Bush_(band)

Contextual Entity Search: Settings

» Training/validation data: 18M of user clicks in wiki pages

» Evaluation data
« Sample 10k Web documents as the source documents

« Use named entities in the doc as query; retain up to 100
returned documents as target documents

- Manually label whether each target document is a good page
describing the entity

« 870k labeled pairs in total
» Evaluation metric: NDCG and AUC
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Contextual Entity Search Results: Baselines

0.8
0.6
0.4
o 0.215 0.253
| 0.041 0.062 . .
0 mmm
BMZ25 BLTM

BNDCG@1 mAUC

« BMZ25: The classical document model in IR [Robertson+ 1994]
« BLTM: Bilingual Topic Model [Gao+ 2011]
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Contextual Entity Search Results: DSSM

0.8 0.699 0.711
0.6
04

0.215 9223 0.223 0.259
©we ml | wll N
0 mmm OO0

BM25 BLTM DSSM Conv. DSSM
BNDCG@1 mAUC

« DSSM: bag-of-words input
e Conv. DSSM: convolutional DSSM
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Deep Learning for Semantic Representations

« Multimodal semantic learning and image captioning
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Deep Multimodal Similarity Model (DMSM)

Multimodal DSSM for image-text joint learning

@lstance(s 1)
 Recall DSSM for text inputs: s, t ;

« Now: replace text s by image s

 Pick complete captions affinitize to L L
complete images ’ ’
] ]
parrot
$ 1 1
- X softmax layer ] I
© Fulycomnected Y 1
e raweme " )
—r—
onvolution/pooling Image features s Text: a parrot riding a tricycle

Q = image, D = caption, R = relevance

vo  yp
lyellllyoll

Relevance: R(Q, D) = cosine(yq,yp) =

Caption exp(YR(Q, D))
probability: Yprenexp(YR(Q, D))

Candidate captions * \ Smoothing factor

P(D|Q) =

Raw Image pixels

Objective: LA =—log [[ P(D'IQ)

(Q.D1)

B Microsoft Research
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The convolutional network at the image side

o

0000 0000
/

Feed the pre-trained image feature vector
into the image side of the DMSM

Dense feature vector
for input image

13 13

1000

2048 T

Trained to predict
object in image

192 192 128

Raw pixels from
input box

Pretrained from ImageNet [Krizhevsky et al., 2012]
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The convolutional network at the caption side

Models fine-grained structural language information in the caption

Semantic layer: y 500

Semantic projection matrix: W;

Max pooling layer: v | 500 ||
Max pooling operation max max max
Convolutional layer: h, [ 500 [][]] 500 [| ... [[]500 []

Convolution matrix: W.

Word hashing layer: f, | 15K || 15k || 15k | .. | 15Kk || 15K |
Word hashing matrix: W; T
Word sequence: x; <s> Wy W, wr <s>

a parrot ... tricycle

Using convolutional neural network for the text caption side

105 MACHIT 2015

B Microsoft Research



The task: Image -> Language

« Why important?
For building intelligent machines that understand the semantics in complex scenes
And language is like a reqgulator for understanding as human do.

. Why difficult?

Need to detect multiple objects in arbitrary regions, and need to capture the complex
semantics among these objects.

- What different (e.g., vs. ImageNet / object categorization)?
Capturing the salient, coherent semantic information embedded in a picture.

B Microsoft Research



The MSR system

Understand the image stage
Dy Stage:
mage word detection

Deep-learned features, applied to likely items in the
image, trained to produce words in captions

Language generation

Maxent language model, trained on caption,

conditional on words detected from the image pr— ~
. . ' 1. detect ( woman, crowd, cat,
Global semantic re-ranking ), osikge
Hypothetical captions re-ranked by deep-learned & B“([ e e 1
multi-modal similarity model looking at the entire entances /
image A woman holding a cat. )
#1 A woman holding a
K camera in a crowd.

Fang, Gupta, landola, Srivastava, Deng, Dollar, Gao,
He, Mitchell, Platt, Zitnick, Zweig, “From Captions to
Visual Concepts and Back,” CVPR, June 2015 Figure 1. An illustrative example of our pipeline.
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Train to predict words in captions

kitchen
wooden
cabinets
sink

Which words should be detected? Let a neural network figure it out

The prob that the j-th box of the i-th [ NN kitchen
image corresponds to word w is — RN elephant
pW — 1 —— — wooden
Tl oxp ((VEO(b) Fuy)) — NN playing

shoes

Vocabulary = the 1000 most common words in the training captions (92% of data)
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Map features to likely image words

 Train with Multiple Instance Learning (MIL)
« Use noisy-OR version (Zhang et al., 2005)

« For each word w, MIL uses positive and negative bags of bounding boxes
« For each image ¢
- We have the "bag of boxes”, b;
* b; is positive if win ('s description
* b; is negative if w not in ('s description
« Probability that image { manifests word w, p;":

w _ w
pi =1-— II (1—10@';')
Each bounding box in image=7 ! Calculated from CNN (last slide)



Language models with a blackboaro

A LM generates caption candidates given detected words

push

Previous words

|

s |
o -
W

A kitchen with wooden cabinets
kitchen and a sink

sink cabinets remove

1

Image

wooden
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Maximum Entropy Language Model

« Berger et al., 1996
Pr(w; = w|w; 1, ,w1,<s>,Vi_1) =

Word probability: exXp [fo—l Mg fr(wp, @y, -+ , W1, <s> , Vi 1)}

ZUEVU<XS> cXp I:Z:f—_1 Akrfk:(U:E’E 1, """ :E’I:{:S:}a]}l l)]

Feature Type Definition Description

Alttribute 0/1 w; € 1:} i Predicted word 15 1n the attribute set, 1.e. has been visually detected and not yet used.
N-gram + 0/1 W N41:°" W =k and w; € 1:’;_ 1 N-gram ending in predicted word is x and the predicted word is in the attribute set.
N-gram - 0/1 W _N41, - ,W = kand wy & 1:"; 1 N-gram ending in predicted word is x and the predicted word is not in the attribute set.
End 01 W =rkandV;_; =0 The predicted word is x and all attributes have been mentioned.

Score R score(w;) when w; € 1};_1 The log-probability of the predicted word when it is in the attribute set.

All sentences

N ZSentence length
S #(s)

Objective: LA) =33 logPr(a{® @), , @, <s> , V)

s=1 [=1
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Rerank hypotheses globally using DMSM

Top 500 hypotheses from the language model

A man sitting on a bench

A man sitting on a table

A white bench sitting on top of a table Return best
A man sitting at a table with plates of food hypothesis

|

Single hypothesis == Sentence-level features ——

Linear

L : Global score
Similarity regression

ok / (from DMSM neural net) s

image

Image features from AlexNet (Krizhevsky et al., 2012) or VGG (Simonyan and Zisserman, 2014).
They are fine-tuned with in-domain image data for DMSM
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Linear regression based ranker

« Minimum error rate training (MERT) uses linear combination of features
« Trained on M-best lists using BLEU

. The log-likelihood of the sequence.
. The length of the sequence.
. The log-probability per word of the sequence.
. The logarithm of the sequence’s rank in the log-likelihood.
. 11 binary features indicating whether the number
of mentioned objects is x (z =0, .. ., 10).

6. The DMSM score between the sequence and the image.

1
2
3
4
5
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The MS COCO Benchmark s

What is Microsoft COCO? Collaborators http://mscoco.org/
Tsung-Yi Lin Cornell Tech
FAawxta CORNELL
Michael Maire TTI Chicago Y| T EC H
Microsoft COCO is a new image recognition, Serge Belongie Cornell Tech < . .
segmentation, and captioning dataset. Microsoft (.alt(_(_h
COCO has several features: Lubomir Bourdev Facebook Al '
v Object segmentation Ross Girshick Microsoft Research faCEbOOk
v Recognition in Context James Hays Brown University Brown Uni\'crsit}'
& Multiple objects per image Bictro Perona Caltech LT( 1[ e
4" More than 300,000 images ATVIIC
D R UC ] i University ol Calitormes, Irvine
& More than 2 Million instances v Famanan e
30 object categories Larry Zitnick Microsoft Research Microsoft Research
& 5 captions per image Piotr Dollar Facebook Al

D AcA The man at bat readies to swing at the A large bus sitting next to a very tall
pitch while the umpire looks on. building.



http://mscoco.org/home/

Results

System PPLX BLEU  METEOR ~human >human >human

I. Unconditioned 24.1 1.2% 6.8%

2. Shuffled Human - 1.7% 7.3%

3. Baseline 209  16.9% 18.9% 9.9% (£1.5%)  2.4% (£0.8%) 12.3% (+1.6%)
4. Baseline+Score 20.2  20.1% 20.5% 16.9% (£2.0%) 3.9% (=1.0%)  20.8% (+2.2%)
5. Baseline+Score+DMSM 202 21.1% 20.7% 18.7% (£2.1%)  4.6% (£1.1%)  23.3% (+2.3%)
6. Baseline+Score+DMSM+ft  19.2  23.3% 22.2% — - —

7. VGG+Score-+ft 18.1  23.6% 22.8% - - —

8. VGG+Score+DMSM+t 18.1  25.7% 23.6% 26.2% (£2.1%) 7.8% (£1.3%) 34.0% (£2.5%)
Human-written captions — 19.3% 24.1%

* we use 4 references when measuring BLEU and METEOR, while the official COCO eval server uses 5 references.

DMSM gives additional 2.1 pt BLEU (8 vs. 7) over a strong system.
Compared to human, our system is better or equal 34% of the time.

| :
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Related work

Use CNN to generate a whole-image feature vector,
then feed it into a LSTM language model to generate the caption.

[ 105 pi(5) | [ 10z patso) | log pr(Sh)
A group of people Pr
Vision Language g .p peop T
Deep CNN  Generating shopping at an
RNN outdoor market.
> b
'e) — s — |
— There are many 9
vegetables at the
fruit stand. 3
WeSN.|
Figure 1. NIC, our model, is based end-to-end on a neural net- SN-1

work consisting of a vision CNN followed by a language gener-
ating RNN. It generates complete sentences in natural language

Figure 3. LSTM model combined with a CNN image embedder
from an input image, as shown on the example above.

(as defined in [30]) and word embeddings. The unrolled connec-
tions between the LSTM memories are in blue and they corre-

spond to the recurrent connections in Figure All LSTMs share
the same parameters.

Vinyals, Toshev, Bengio, Erhan, "Show and Tell: A Neural Image Caption Generator", CVPR 2015
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Some other related work

Andrej and Fei-Fei, "“Deep Visual-Semantic Alignments for Generating Image Descriptions”. CVPR 2015

Use CNN to generate an image feature vector, then input it, at the 15t step, into a multimodal
RNN language model to generate the caption.

Kiros, Salakhutdinov, Zemel, “Unifying Visual-Semantic Embeddings with Multimodal
Neural Language Models”. TACL 2015

Use LSTM for image-language encoding and decoding

Mao, Xu, Yang, Wang, Huang, Yuille. "Deep Captioning with Multimodal Recurrent Neural
Networks (m-RNN)," ICLR 2015

Use CNN to generate a whole-image feature vector, then input it, at every step, into a
multimodal RNN language model to generate the caption.

Xu, Ba, Kiros, Cho, Courville, Salakhutdinov, Zemel, Bengio, 2015. Show, Attend and Tell:
Neural Image Caption Generation with Visual Attention.

Use CNN to generate a whole-image feature vector, then input it, at every step, into a
multimodal RNN language model to generate the caption.

Hill and Korhonen, 2014 Learning Abstract Concept Embeddings from Multi-Modal
Data: Since You Probably Can't See What | Mean

B Microsoft Research




m-DSSM helps pick the global semantically matching caption for a given image
|

i
'
I‘ é 3 1
|

= rqir-‘[ll

I CANAD 5

—
T
-
-

Baseline: a large jetliner sitting on top of a stop sign at an intersection on a city street
w/ m-DSSM: a stop light on a city street

Baseline: a clock tower in front of a building
w/ m-DSSM: a clock tower in the middle of the street

2 Baseline: a red brick building

w/ m-DSSM: a living room filled with furniture and
a flat screen tv sitting on top of a brick building

/H

Baseline: a large jetliner sitting on top of a table

w/ m-DSSM: a display in a grocery store filled with
lots of food on a table




m-DSSM helps pick the global semantically matching caption for a given image

Baseline: a group of people standing in a kitchen

Baseline: a young man riding a skateboard down ‘F;vi{:tTr;DSSM: a group of people posing for a
a street holding a tennis racquet on a tennis court
w/ m-DSSM: a man riding a skateboard down a

street . -
| | Baseline: a cat sitting on a table
w/ m-DSSM: a cat sitting on top of a bed

Baseline: two elephants standing next to a baby elephant walking behind a fence

w/ m-DSSM: a baby elephant standing next to a fence

16 MACHIT 2015




Our system not only generates the caption, but can also
Interpret It.

B Microsoft Research



Interpretanility

Ay A i IR ~

Our system not only generates the caption, but can also
Interpret It.

B Microsoft Research



baseball (1.00)

a baseball
Our system not only generates the caption, but can also

Interpret It.

B Microsoft Research



player (1.00)
a baseball player
Our system not only generates the caption, but can also

Interpret It.

B Microsoft Research



throwing (0.86)

a baseball player throwing
Our system not only generates the caption, but can also

Interpret It.

B Microsoft Research



ball (1.00)

a baseball player throwing a ball
Our system not only generates the caption, but can also

Interpret It.

B Microsoft Research



Our system not only generates the caption, but can also
Interpret It.

B Microsoft Research I‘//@ 201



Interpretanility

|

| B |

\ o ‘
|

\ e

Our system not only generates the caption, but can also
Interpret It.
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Interpretanility

man (0.93)

d man
Our system not only generates the caption, but can also

Interpret It.
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Interpretanility

2
|
. e A
.

sitting (0.83)
a man sitting
Our system not only generates the caption, but can also

Interpret It.

B Microsoft Research



couch (0.66)

a man sitting in a couch
Our system not only generates the caption, but can also

Interpret It.

B Microsoft Research



dog (1.00)
a man sitting in a couch with a dog

B Microsoft Research



Microsoft Research [

QOur research Connec tions Careers About us

‘ o
| Ite rl | I I S u | I | | I |a ry All Downloads Events Groups News People Projects Publications

Sent2Vec

Sent2vec maps a pair of short text strings (e.g., sentences or query-answer pairs) to a pair of feature
vectors in a continuous, low-dimensional space where the semantic similarity between the text strings
is computed as the cosine similarity between their vectors in that space. sent2vec performs the
mapping using the Deep Structured Semantic Model (DSSM) proposed in (Huang et al. 2013), or the
DSSM with convolutional-pooling structure (CDSSM) proposed in (Shen et al. 2014; Gao et al. 2014).

Learn Sent2Vec by DSSM e
similarity driven deep semantic model

superior performance in a range of NL tasks

Tool kit available online: http://aka.ms/sent2vec/

T —— T


http://aka.ms/sent2vec/

Part IV

Natural Language Understanding



Natural Language Understanding

« Build an intelligent system that can interact with human
using natural language

 Research challenge
« Meaning representation of text
» Support useful inferential tasks

http://csunplugged.org/turing-test
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Natural Language Understanding

» Continuous Word Representations
« Language is compositional
» Word is the basic semantic unit

« Knowledge Base Embedding

« Semantic Parsing & Question
Answering

http://csunplugged.org/turing-test
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Continuous Word Representations

» A lot of popular methods for creating word vectors!
* Vector Space Model [Salton & McGill 83]
» Latent Semantic Analysis [Deerwester+ 90]
« Brown Clustering [Brown+ 92]
 Latent Dirichlet Allocation [Blei+ 01]

« Deep Neural Networks [Collobert & Weston 08]
« Word2Vec [Mikolov+ 13]

« Encode term co-occurrence information
« Measure semantic similarity well
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Semantic Embedding

Project raw text into a continuous semantic space
e.g., word embedding

Captures the word meaning in a semantic space ) e
e IR
06. ;f.z-'.?".".'..‘:.’;;“o. e
0.4 B b BT ey sf.p:’zrlng
A Dy :.". T St

02

f(cat) = a.k.a the 1-hot word embedding = 4| b it
word vector vector in the LEX et E T8 g
-0.4 T %enws WSWrge ¢ o ¥ . P30,y
i i
/ > SemantIC Space :D.B\ .\;“}: ,'".;.;‘...:i:.‘:. de'n'.\ler;. ..:;
. « ge ; ,:’..,.:‘. '..‘..:.,' ." .'.°.::'...:§ Y
The index of “cat” in Gpnoiq b e T
the vocabulary A

Dim=100~1000

Dim=|V|=100K~100M
Deerwester, Dumais, Furnas, Landauer,
Harshman, "Indexing by latent
semantic analysis," JASIS 1990
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Why is Word Embedding Usetul?

» Lexical semantics — semantic word similarity
» Used as features in many NLP applications
* e.9., Question/Sentence matching [Yih+ ACL-13; Jansen+ ACL-14]

What is the fastest car in the world?

TN

The Jaguar XJ220 is the dearest, fastest and most sought after car on the planet.

« Simple semantic representation of text
« Represent longer text using average of the word vectors
* €.79., entity [Socher+ NIPS-13], quUestion [Berant&Liang ACL-14]
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Why is Word Embedding Usetul? (Contd)

» "Pre-training” of a neural-network model

- Take word vectors trained on a general corpus as input
» €.9., Recursive NN for parsing [Socher+ ICML-11]

Parsing Natural Language Sentences
-
T “"“--'--Q.N_RVP A small crowd
NP VP _ ~— NP quuetly enters
’m\—' IiIEOID zc@w the hlSt('?‘l’IC
Asmall quietly ENP il
crowd enters Det . "—~_N. Semantic
LT l"g‘” Representations
‘ Indices
the | |historic/ |church) words
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Roadmap — Continuous Word Representations

« Samples of word embedding models

« Latent Semantic Analysis (LSA), Recurrent Neural Networks
« SENNA, CBOW/Skip-gram, DSSM

» Evaluation
« Semantic word similarity
» Relational similarity (word analogy)

 Related work
- Model different word relations
» Other word embedding models
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Latent Semantic Analysis

. k Xk kXn

dXn d Xk

terms

N

N
7

documents

SVD generalizes the original data

Uncovers relationships not explicit in the thesaurus
Term vectors projected to k-dim latent space

Word similarity: cosine of two column vectors in ZVT

B Microsoft Research



RNN-LM Word Embedding

Word Embedding

w(t) y(t)
EE—
cat > s(t) >
EE—
ﬂ] v chases
. >
W B
P ™\ S
{
.- / > IS
(delayed) _ o
Mikolov, Yih, Zweig, “Linguistic

Regularities in Continuous Space
Word Representations,” NAACL
2013
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SENNA Word Embedding

Scoring:

Score(wy, Wo, W3, Wy, ws) = UTa(WIfy, fo, f3, far f5] + D)
Training:

J =max(0,1+ S~ —S%) Update the model until St > 1+ S~

Where

ST = Score(wy, w,, W, Wy, We)

S~ = Score(Wy, Wy, W™, Wy, We)
And
< Wi, Wy, W3, Wy, Ws > is a valid 5-gram
< Wi, Wo, W™, Wy, Ws > IS @ "negative sample” constructed V
by replacing the word w3 with a random word w™

e.g., a negative example: “cat chills X a mat” W
000000000000 0000 0000
Collobert, Weston, Bottou, Karlen, E —— ) ‘
Kavukcuoglu, Kuksa, “Natural Language _ T T T T T
Processing (Almost) from Scratch,” JMLR Word embedding  cat chills  on d mat
2011
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CBOW/Skip-gram Word Embeddings

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT

wi(t-2) ﬂ wit-2)

wit-1)

\

wit-1)

— wit) wit) o

7N\

wit+1) wit+1)

wit+2) wit+2)

CBOW Skip-gram

Continuous Bag-of-Words

The CBOW architecture (a) on the left, and the Skip-gram architecture (b) on the right.
[Mikolov et al., 2013 ICLR].
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DSSM: Learning Word Meaning

» Learn a word's semantic meaning by means of its neighbors

(context)
» Construct context <-> word training pair for DSSM
 Similar words with similar context => higher cosine similar

 Training Condition:

* 600K vocabulary size
« 1B words from Wikipedia o
* 300-dimentional vector

d=500 l
You shall know a word by t
the company it keeps — L—
(J. R. Firth 1957: 11) dim = 600K | dim=600K |
s: "w(t-2) w(t-1) w(t+1) w(t+2)" t: "w(t)"

[Song, He, Gao, Deng, 2014]
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Fvaluation: Semantic Word Similarity

Data: word pairs with human judgment (e.g., WS-353, RG-65)

___Word1 | Word2 | Human Score (mean)_
midday noon 9.3
tiger jaguar 8.0
cup food 5.0
forest graveyard 1.9

Correlation of the ranking of word similarity and human judgment
- Spearman’s rank correlation coefficient p

Word embedding models individually usually do not achieve the
state-of-the-art results (cf. ACL Wiki Similarity (State-of-the-art))

B Microsoft Research


http://aclweb.org/aclwiki/index.php?title=Similarity_(State_of_the_art)

Fvaluation: Relational Similarity (Word Analogy)

. ?
king : queen = man : woman

» Determine whether two pairs of words have the same
relation (the “analogy” problem) [Bejar et al. ‘91]

« (silverware : fork) vs. (clothing : shirt) [singular collective]
* (coast : ocean) vs. (sidewalk : road) [contiguity]
* (psychology : mind) vs. (astronomy : stars) [knowledge]

« Why it's useful?

Building a general “relational similarity” model is a more
efficient way to learn a model for any arbitrary relation
[Turney, 2008]



Unexpected Finding: Directional Similarity

« Word embedding taken from recurrent neural network
language model (RNN-LM) [Mikolov 2011]

queen

woman

King 0

Mman

 Relational similarity is derived by the cosine score



Experimental Results

« Semkval-2012 Task 2 — Relational Similarity
« Rank word pairs of 69 testing relations
- Evaluate model by its correlation to human judgments

04 -
41.5% 0.324

03 el
= 0.229
S 0.2
=
o
o 0.1
v 0.050

0.018 0.014
0 A 0 | [ | - |

Random BUAP Duluth_VO UTD_NB
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Similar Results Observed on Other Datasets

« MSR syntactic test set [Mikolov+ 2013]
* see : saw = return : returned
* better : best = rough : roughest

« Semantic-Syntactic word relationship [Mikolov+ 2013]
 Athens : Greece = Oslo : Norway
» brother : sister = grandson : granddaughter
« apparent : apparently = rapid : rapidly
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Fvaluation on Word Analogy

The dataset contains 19,544 word analogy questions:
Semantic questions, e.qg.,: “Athens is to Greece as Berlin is to ?”
Syntactic questions, e.g.,: “dance is to dancing as fly is to ?”

Accuracy
Avg.(sem+syn)

61.0%
CBOW 300 1.6B 36.1%
vLBL 300 1.5B 60.0%
IVLBL 300 1.5B 64.0%
GloVe 300 1.6B 70.3%
DSSM 300 1B 71.9%

(ivLBL results are from (Mnih et al.,, 2013); skip-gram (SG) and CBOW results are from
(Mikolov et al., 2013a,b); GloVe are from (Pennington, Socher, and Manning, EMNLP2014)

H
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Discussion

» Directional Similarity cannot handle symmetric relations
« good : bad = bad : good

» Vector arithmetic = Similarity arithmetic
[Levy & Goldberg CoNLL-14]

» Find the closest x to king — man + woman by

arg max(cos(x, king — man + woman)) =
X
arg max(cos(x, king) — cos(x, man) + cos(x, woman))
X

\ 4
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Related Work — Model Different Word Relations
Tomorrow Tomorrow
will be rainy. will be sunny.
‘é Slmllar&sunnyﬁ

antonym(rainy, sunny)?

« Multi-Relational Latent Semantic Analysis [Chang+ EMNLP-04]
frei(®, ®) ~ | XIT x
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Related Work — Word Embedding Models

 Other word embedding models
* GloVe [Pennington+ EMNLP-14], [Wang+ EMNLP-14], [Bian+
ECML/PKDD-14], [Xu+, CIKM-14], [Faruqui+ NAACL-15],
[Yogatama+ ICML-15], [Faruqui+ ACL-15]

* Analysis of Word2Vec and Directional Similarity

- Linguistic Regularities in Sparse and Explicit Word
Representations [Levy & Goldberg CoNLL-14]

» Neural Word Embedding as Implicit Matrix Factorization [Levy
& Goldberg NIPS-14]

» Yoav Goldberg’s blog on comparing word embedding models
(invited speaker of CVSC-2015)

B Microsoft Research


https://plus.google.com/114479713299850783539/posts/BYvhAbgG8T2
https://sites.google.com/site/cvscworkshop2015/home

Natural Language Understanding

« Continuous Word Representations & Lexical Semantics
» Knowledge Base Embedding
« Semantic Parsing & Question Answering

http://csunplugged.org/turing-test
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Knowledge Base

« Captures world knowledge by storing properties of millions of
entities, as well as relations among them

5
SR Hawaii AT
pontical-m ﬁ Km_in | Freebase
Barack Obama DBpedia

chiIV | wof < YAGO
e spouse-or (D e

OpenlE/ReVerb
chilc% : Aﬁ—of
Michelle Obama
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Current KB Applications in NLP & IR

 Question Answering
“What are the names of Obama s daughters?”
Ax.parent(Obama, x) A gender(x, Female)

» Information Extraction
- “Hathaway was born in Brooklyn, New York. ”
bornin(Hathaway, Brooklyn)
contains(New York, Brooklyn)

« \Web Search i.fz:fi';ft“away

Anne Jacquelin H h away is Am rican actress, singer, and
p ducer Afte al stage t wy p d t 999

- [dentify entities and relationships in queries &bt

qIS th chwyh t ddmtflm
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Reasoning with Knowledge Base

» Knowledge base is never complete!
 Predict new facts: Nationality(Natasha Obama,?)
« Mine rules: BorninCity(a, b) A CityInCountry(b, c) = Nationality(a, c)

» Modeling multi-relational data
- Statistical relational learning [Getoor & Taskar, 2007]
 Path ranking methods (e.g., random walk) [e.g., Lao+ 2011]
- Knowledge base embedding
* Very efficient
- Better prediction accuracy
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Knowledge Base Embedding

» Each entity in a KB is represented by an R% vector
+ Predict whether (ey, 7, €;) is true by f,(ve,, ve,)

 Recent work on KB embedding
» Tensor decomposition
« RESCAL [Nickel+, ICML-11], TRESCAL [Chang+, EMNLP-14]

« Neural networks

« SME [Bordes+, AISTATS-12], NTN [Socher+, NIPS-13],
TransE [Bordes+, NIPS-13]
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lensor Decomposition:
Knowledge Base Representation (1/2)

» Collection of subj-pred-obj triples — (eq, 7, e5)

(o

Subject Predicate  Object q\'.f

Obama Bornln Hawalii g. X
Bill Gates Nationality =~ USA v X

Bill SpouseOf  Hillary S
Clinton Clinton L
Satya WorkAt  Microsoft A |
Nadella e ... e,
n. # entities, m: # relations
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lensor Decomposition:
Knowledge Base Representation (2/2)

A ®

ﬂ\"f
- || . Xk Hawaii
X k-th slice -
- Obama .___________________:-_'I__T _______________
A zero entry means either:
* Incorrect (false)
* Unknown
: Bornln
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Tensor Decomposition Objective

o1 1
» ODbjective: §<Zk:llxk - A:RRATII%> + E(IIAII% + Ek”Rk”IZT)

J \ J
. o
Reconstruction Error Regularization

Rk AT
o N

k-th relation RESCAL [Nickel+, ICML-11]
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Measure the Degree of a Relationship

f Bornln (Obama, Hawaii)

_ T
- AObama,: RBornln AHawaii,:

A Hawall
RBornIn AT r

-

Obama
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Typed Tensor Decomposition — TRESCAL
[Chang+ EMNLP-14]

» Relational domain knowledge
» Type information and constraints
 Only legitimate entities are included in the loss

» Benefits of leveraging type information
» Faster model training time
- Highly scalable to large KB
 Higher prediction accuracy
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Typed Tensor Decomposition Objective

. 1
« Reconstruction error: EZIIXR—ARRATII%
k

locations
Xk ﬁ A
. R AT

<- ~ 7l x X —I]

people Relation: born-in
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Typed Tensor Decomposition Objective

: 1
« Reconstruction error: EZIIXIL—ARZRRALIIi
k
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Training Procedure —
Alternating Least-Squares (ALS) Methoo

Fix Ry, update A

Fix A, update R,
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Training Procedure —
Alternating Least-Squares (ALS) Methoo

1-1

A « z XpAp Ry + x,;TAkljek z By + Cy, + I
Lk Lk

where By, = Ry Ay Ay R, Cx, = Ry Ak, A, Ry

vec(R;)
-1
— (Ak,Ap,®AL Ay, + A1) ~ x vec(Ay, XAy, )
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Experiments — KB Completion

« KB — Never Ending Language Learning (NELL)
* Training: version 165
 Developing: new facts between v.166 and v.533
» Testing: new facts between v.534 and v.745

» Data statistics of the training set

# Entities 753k
# Relation Types 229
# Entity Types 300
# Entity-Relation Triples 1.8M
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Training Time Reduction

Model Training Time (hours)

A@d-
TRESCAL - 4.46 XSP P

0 5 10 15 20 25

 Both models finish training in 10 iterations.
« TRESCAL filters 96% entity triples with incompatible types.
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Entity Retrieval (e, 1,7 )

« One positive entity with 100 negative entities

Mean Average Precision (MAP)

72.0%

70.0% 69.26%

68.0%

66.0%

64.0% 62.91%

62.0%
60.0%
58.0%

RESCAL TRESCAL
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Relation Retrieval (ei, 7, ej)

» Positive entity pairs with equal number of negative pairs

Mean Average Precision (MAP)

74.0%

73.08%

72.0%

70.0%

RESCAL TRESCAL
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Neural Knowledge Base Embedding
Sy(a,b)

a=gWxq) / '\b = g(Wxp)
/[....] /[.Q..\
\ "

[.....Q..] 00000000
Xb
Nicole Kidman Nattonality Australia
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Relation Operators

Relation Scoring Function # Parameters
representation S.(a,b)

Vector (TransE) lla —b + V|1 O(n, X k)
(Bordes+ 2013)

Matrix (Bilinear) a’M,.b 0(n,x k?)
EBST{SEZ:t?w’eston 2008) w'f(My1a+ Myzb)

Tensor (NTN) ul'f(a'T,b+ M,1a + M,,b) O(n, X k% x d)
(Socher+ 2013)

Diagonal Matrix aldiag(M,)b O(n, X k)
(RelDot) (Yang+ 2015)

n,. #predicates, k: #dimensions of entity vectors, d: #layers
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-mpirical Comparisons of NN-based KB
-mbedding Methods [Yang+ ICLR-2015]

« Models with fewer parameters tend to perform better (for
the datasets FB-15k and WN).

» The bilinear operator (a’ M,-b) plays an important role in
capturing entity interactions.

« With the same model complexity, multiplicative operations
are superior to additive operations in modeling relations.

« Initializing entity vectors with pre-trained phrase
embedding vectors can significantly boost performance.
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Mining Horn-clause Rules

» Can relation embedding capture relation composition?
BornInCity(a, b) A CityInCountry(b,c) = Nationality(a,c)

« Embedding-based Horn-clause rule extraction

» For each relation r, find a chain of relations r; -:- 13, such that:
dist(M,,,M; oM, 0o--0 M ) <6

- 11(e1, €3) Ary(eg, e3) - Amy(en, entq) = 7(ey, en41)

 Advantages vs. Inductive Logic Programming
» Search the relation space instead of instance space
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Aggregated Precision of Top Length-2 Rules

100F [ T
« AMIE [Galarraga+,
90| WWW-2013] is an
association rule-
5 80| mining approach for
< large-scale KBs.
g 701 » Data: FB15k-401
° - e Execution time:
£  AMIE: 9 min.
8 5ol [wm AMIE e EmbedRule: 2 min.
«—+« EmbedRule (DistAdd)
e—e EmbedRule (Bilinear)
O EmbedRule (DistMult)
+—+ EmbedRule (DistMult-tanh-EV-init)
30

10° 10! 102 10° 4
#Predictions
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Natural Language Understanding

« Continuous Word Representations & Lexical Semantics
« Knowledge Base Embedding
» Semantic Parsing & Question Answering

http://csunplugged.org/turing-test
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{ Who is Justin Bie%}
M Bieber }

semantic parsing

Knowledge Ax.sister_of(justin_bieber, x)

Base

N \ l matching

sibling_of(justin_bieber, x) A gender(x, female)
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WebQuestions Dataset serant+ EMNLP-2013]

« What character aid Natalie Portman play in Star Wars? = Padme Amidala

- What kind of money to take to Bahamas? = Bahamian dollar

« What currency do you use in Costa Rica? = Costa Rican colon

« What did Obama study in school? = political science

« What do Michelle Obama do for a living? = writer, lawyer

- What killed Sammy Davis Jr? = throat cancer [Examples from Berant]

» 5,810 questions crawled from Google Suggest APl and answered using
Amazon MTurk

« 3,778 training, 2,032 testing
A question may have multiple answers — using Avg. F1 (~accuracy)

B Microsoft Research 180 I‘//@ 2015


http://nlp.stanford.edu/joberant/homepage_files/talks/facebook_jun14.pdf

Avg. F1 (Accuracy) on WebQuestions Test Set

60
52.5
o0 453
41.3
392 39.9
40 357 37.5
33
29.7

30
20

10

0

Avg. F1

B Bordes-14a M Yao-14 M Berant-13 M Bao-14 M Bordes-14b Berant-14 M Yang-14 M Wang-14 MmYih-15
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Key Challenge — Language Mismatch

» Lots of ways to ask the same question
e “What was the date that Minnesota became a state?”’
“Minnesota became a state on?”’

o “When was the state Minnesota created?”
“Minnesota's date it entered the union?”

o “When was Minnesota established as a state?”
“What day did Minnesota officially become a state?”

« Need to map them to the predicate defined in KB
- location.dated location.date founded
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Matching Question and Relation

« Similar text can map to very different relations

'+ Q=Who is the father of King George VI?
'+ R=people.person.parents
K Q=Who is the father of the Periodic Table?

'+ R=law.invention.inventor

—

 Estimate P(R|Q) using naive Bayes [Yao&VanDurme ACL-14]

* P(R|Q) < P(QIR)P(R) = [lw P(W|R)P(R)

« Use ClueWeb09 dataset with Freebase entity annotations to create a
“relation — sentence” parallel corpus

 Derive P(w|R) and P(R) from the word alignment model (IBM Model 1)

» Top words for film.film.directed_by: won, start, among, show.
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Matching Questions

« Semantic Parsing via Paraphrasing [Berant&Liang ACL-14]

___________________________________________________________

‘What party did lA fffffffff Learned using question
------------- Y paraphrases in
E Paralex [Fader+ ACL-13]

paraphrase model

" T

What political party founded by Henry Clay? ... What event involved the people Henry Clay?
Type.PoliticalParty [ | Founder.HenryClay ... Type.Event [ Involved.HenryClay
Whlg Party

« Create phrase matching features using phrase table derived from
word alignment results

 Represent questions as vectors (avg. of word vectors)
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Subgraph Embedding [Bordes+ EMNLP-2014 ]

» Basic idea: map question and answer to vectors
* g: question (Who did Clooney marry in 19877)
« a: answer candidate (K. Preston)

- S(q,a) = f(@)" g(a), where f(q) = We¢(q), g(a) = Wi(a)

« Answer candidate generation
« Assume the topic entity (Clooney — G. Clooney) in g Is given
- All neighboring entities 1 or 2 edges away from topic entity

» Input encoding
» ¢(q): bag-of-word binary vectors
- Y(a): binary encoding of the answer entity
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Subgraph Embedding [Bordes+ EMNLP-2014 ]

How the candidate answer

Embedding of the
question f(q)

Binary encoding of

Question g

“Who did Clooney marry in 19877?”

Detection of Freebase
entity in the question

|

Subgraph of a candidate
answer a (here K. Preston)

_ Honolulu -

K’(& JTavolta /

Score 5(q,a) fits the question
A
[ /l\ w
I (@) B | Gocodineofthe
— N~ - siberzpha(c)
Dot product
Embedding matrix W B Embedding matrix W
I I —— 0 — T
the question @(q) N P the subgraph ¢(a)
d e Ty
_;-J \/ 1987 ’NI

1
. Y}
/

Other candidate answer encoding that includes the
path, or other neighboring entities (subgraph)
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Staged Query Graph Generation [Yih+ ACL-15]
« Query graph

» Resembles subgraphs of the knowledge base
» Can be directly mapped to a logical form in A-calculus

« Semantic parsing: a search problem that grows the graph
through actions

« Who first voiced Meg on Family Guy?
« Ax.3y.cast(FamilyGuy, y) A actor(y, x) A character(y, MegGriffin)
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Graph Generation Stages

« Who first voiced Meg on Family Guy?

1. Topic Entity Linking [Yang&Chang ACL-15] @ & e vl |
p 4 J ° ° ' '%ESZQ\AegGm‘f .

2. ldentify the core inferential chain

H
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Graph Generation Stages (contq)

« Who first voiced Meg on Family Guy?

3. Augment constraints

Meg G rlffl :
<:‘<\a‘3°"ev'< :
Ga mily G u}cast’%actor—b@

.
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[dentity Inferential Chain using DSSM

« Who first voiced Meg on Family Guy?

......................................................

IS3
f Fa mily G u}cas&@-actoﬂ@ ; ‘)\'

.....................................................

......................................................

54 0000 0000
Family Guy j—write star

----------------------------------------------------- [ ] [ ]

......................................

« Semantic match (“Who first voiced Meg on (e)”, “cast-actor”)

« Single pattern/relation matching model: 49.6% F, (vs. 52.5% F, Full)
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Interim summary

Continuous-space representations are effective for several
natural language semantic tasks

« Continuous Word Representations & Lexical Semantics
«  Knowledge Base Embedding
« Semantic Parsing & Question Answering

Data & tools (partial list)

«  WordZ2Vec https.//code.google.com/p/word2vec/

« GloVe http://nlp.stanford.edu/projects/glove/

«  MSR Continuous Space Iext Representation http://aka.ms/msrcstr
«  Knowledge base embedding, Semantic Parsing QA (to be released)

T ——— /T



https://code.google.com/p/word2vec/
http://nlp.stanford.edu/projects/glove/
http://aka.ms/msrcstr

Conclusions

» Exciting advances in NN and continuous representations
» Text processing & Knowledge reasoning

» Looking forward

« Building an universal intelligence space

- Text, Knowledge, Reasoning, ...
« Sent2Vec (DSSM) http://aka.ms/sent2vec

« From component models to end-to-end solutions
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