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Abstract—We present a watermarking procedure to embed the embedded watermark is imperceptible. Similar to our
copyright protection into digital video. Our watermarking pro-  jmage and audio watermarking procedures based on perceptual
cedure is scene-based and video dependent. It directly eXplo'tsmodels [11], [12], the video watermark adapts to and is highly

spatial masking, frequency masking, and temporal properties : - -
tcf) embed an invisible and robust watermark. The watermark dependent on the video being watermarked. This guarantees

consists of static and dynamic temporal components that are an invisible and robust watermark.
generated from a temporal wavelet transform of the video scenes.  Watermarking digital video introduces some issues that

The resulting wavelet coefficient frames are modifie_d by a percep- generally do not have a counterpart in images and audio. Due
tually shaped pseudorandom sequence representing the author. to large amounts of data and inherent redundancy between

The noise-like watermark is statistically undetectable to thwart . . . . .
unauthorized removal. Furthermore, the author representation "ames, video signals are highly susceptible to pirate attacks,

resolves the deadlock problem. The multiresolution watermark including frame averaging, frame dropping, frame swapping,
may be detected on single frames without knowledge of the collusion, statistical analysis, etc. Many of these attacks may

location of the frames in the video scene. We demonstrate the he accomplished with little or no damage to the video signal.
rob_ustness of t_he w_atermarklng procedure to several video degra- However, the watermark may be adversely effected. Scenes
dations and distortions. ! . - .
must be embedded with a consistent and reliable water-
Index Terms—Copyright protection, data hiding, perceptual mark that survives such pirate attacks. Applying an identical
masking, video watermarking. watermark to each frame in the video leads to problems
of maintaining statistical invisibility. Furthermore, such an
l. INTRODUCTION approach is neccessarily vid@mependentas the watermark

IGITAL media, e.g., images, audio, and video, are readil§ fixed. Applying independent watermarks to each frame also
manipulated, reproduced, and distributed over informé @ problem. Regions in each video frame with little or no
tion networks. These efficiencies lead to problems regardif#Ption remain the same frame after frame. Motionless regions
copyright protection. As a result, creators and distributors #f successive video frames may be statistically compared or
digital data are hesitant to provide access to their digital intéiveraged to remove independent watermarks.
lectual property. Technical solutions for copyright protection We employ a watermark that consists of fixed and varying
of multimedia data are actively being pursued. components. The components are generated from a tempo-
Digital watermarking has been proposed as a means'& wavelet transform representation of each video scene. A
identify the owner and distribution path of digital data. Wawavelet transform applied along the temporal axis of the
termarking is the process of encoding hidden copyright infoyideo results in amultiresolution temporal representatioof
mation into digital data by making small modifications to théhe video. In particular, the representation consists of temporal
data samples, e.g., pixels. Many watermark algorithms hal@-pass frames and high-pass frames. The low-pass frames
been proposed. Some techniques modify spatial/temporal deg@asist of the static components in the video scene. The high-
samples (e.g., [1]-[5]), while others modify transform coefPass frames capture the motion components and changing
ficients (e.g., [2], [6]-[10]). Unlike encryption, watermarkinghature of the video sequence. Our watermark is designed
does not restrict access to the data. Once encrypted dat@rd embedded in each of these components. The watermarks
decrypted, intellectual property rights are no longer protecte@inbedded in the low-pass frames exist throughoutethtée
A watermark is designed fgermanentlyeside in the host data. video scene. The watermarks embedded in the motion frames
When the ownership of data is in question, the informaticdre highly localized in time and change rapidly from frame
can be extracted to completely characterize the owner torframe. Thus, the watermark is a compositestdtic and
distribution path. dynamiccomponents. The combined representation overcomes
In this paper, we present a novel multiresolution videthe aforementioned drawbacks associated with a fixed or
watermarking scheme. The watermarking procedure expliciilydependent watermarking procedure. Futhermore, averaging
exploits the human visual system (HVS) to guarantee tHaames simply damages the dynamic watermark components.
. . . . As shown in Section VIII, the static components survive such
Manuscript received March 1997; revised July 1997. This work was sughacks and are easily recovered for copyright verification.
ported by the Air Force Office of Scientific Research under Grant AF/F49628-
94-1-0461. To generate a watermark, the visual masking properties
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random sequences, the noise-like watermark is statistically ua-resolve rightful ownership of digital data when multiple
detectable, thereby helping thwart pirate attacks. Furthermoognership claims are made, i.e., when a deadlock problem
due to the combined static and dynamic watermark represeraéses [14]. The inability to deal with deadlock is independent
tion, the watermark is readily extracted fronsiagle frameof of how the watermark is inserted in the video data or how
the videowithout knowledge of the locatioof that particular robust it is to various types of modifications.

frame in the video, even after printing and rescanning. Watermarking techniques that dwt require the original
The work presented in this paper offers several maj@monwatermarked) signal are the most vulnerable to ownership
contributions to the field. deadlocks. A pirate simply adds his or her watermark to

1) A Perception-Based Video Watermarking Procdhe watermarked data. The data now has two watermarks.
dure: Our watermarkadaptsto each individual video Current watermarking schemes are unable to establish who
signal. In particular, the temporal and frequencyatermarked the data first.
distributions of the watermark are controlled by the Watermarking procedures that require the original data set
masking characteristics of the host video signal. Alor watermark detection also suffer from deadlocks. In such
a result, the strength of the watermark increases afghemes, a party other than the owner may counterfeit a
decreases with host, e.g., higher amplitude in regions \Whtermark by “subtracting off” a second watermark from the
the video with more textures, edges, and motion. ThRblicly available data and claim the result to be his or her
guarantees that the embedded watermark is invisidgginal. This second watermark allows the pirate to claim
while having the maximum possible robustness. copyright ownership because he or she can show that both the

2) A Scene-Based Multiscale Watermark Representaublicly available data and the original of the rightful owner
tion: Given one or more frames from a potentiallcontain a copy of their counterfeit watermark.
pirated video, the watermark may be extracted from the To understand how our procedure solves the deadlock
frames without knowledge of the location of the fram¢@roblem, let us assume that two parties claim ownership of
being tested. This detection characteristic exists due @ovideo. To determine the rightful owner of the video, an
the combined static and dynamic representation of tiabitrator examines only the video in question, the originals
watermark. of both parties and the key used by each party to generate

3) An Author Representation Which Solves the Deadlotheir watermark.

Problem: The author or owner of the video is rep- We use a two-step approach to resolve deadlock: Dual
resented with a pseudorandom sequence created bwatermarks and a video dependent watermarking scheme. Our
pseudorandom generator [13] ahslo keys. One key dual watermark employs pair of watermarks. One water-

is author dependent, while the second key sggnal marking procedure requires the original data set for watermark
dependent. The representation is able to resolve rightfigtection. This paper provides a detailed description of that
ownership in the face of multiple ownership claims. procedure and of its robustness. The second watermarking

4) A Dual Watermark:The watermarking scheme intro-procedure doesot require the original data set and hence is
duced in this paper uses the original video signal t#® simple data hiding procedure. Any watermarking technique
detect the presence of a watermark. The procedusdtich satisfies the restrictions outlined in [15] can be used to
can handle virtuallyall types of distortions, including insert the second watermark. The technique must be secure to
cropping, temporal rescaling, frame dropping, etc., usifyevent unauthorized removal of the second watermark. For
a generalized likelihood ratio test. We integrate this pr@xample, it may employ a secret key to embed the watermark.
cedure with a second watermark which doesrequire However, the second watermark need not be highly robust to
the original signal to address the deadlock problem. editing of the video since, as we shall see below, it is meant to

In the next section, we introduce our author representatiBfPtect the video clip that the pirate claims to be diginal.
and dual Watermarking scheme. Our frequency and Spat-l—é]e robustness levels of most of the recent Watermarking tech-
masking models are reviewed in Section Ill. The wavel@iques that do not require the original for watermark detection
transform is reviewed in Section IV. Our watermarking desigie quite adequate. The arbitrator would expect the original to
and detection algorithms are introduced in Sections V and \¢ of a high enough quality. This limits the operations that a pi-
Finally, experimental results are presented. In Section V[Rte can apply to a video and still claim it to be his high-quality
watermark statistics and fidelity results for two test videos aféiginal. The watermark that requires the original video se-
presented. In Section VIII, the robustness of our watermarkifigience for its detection is very robust as we show in this paper.
procedure is illustrated for an assortment of signal processingn case of deadlock, the arbitrator simply checks first
operations and distortions including colored noise, MPEfr the watermark that requires the original for watermark
Coding, mu|t|p|e WatermarkS, frame dropping, and printing arﬁﬁtection. If the pirate is clever and has used the attack
scanning. We present our conclusion in Section IX. suggested in [14] and outlined above, the arbitrator would
be unable to resolve the deadlock with this first test. The
arbitrator simply then checks for the watermark thtes
not require the original video sequence in the video segments

The main function of a video watermarking algorithm is téhat each ownership contender claims to be obiginal.
unambiguously establish and protect ownership of video da&ince the original video sequence of a pirate is derived from
Unfortunately, most current watermarking schemes are unalite watermarked copy produced by the rightful owner, it

Il. AUTHOR REPRESENTATION AND THEDEADLOCK PROBLEM
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will contain the watermark of the rightful owner. On the ;-
other hand, the true original of the rightful owner will not
contain the watermark of the pirate since the pirate has no
access to that original and the watermark does not require
subtraction of another data set for its detection. 107 ]

Further protection against deadlock is provided by the
technique that we use to select the pseudorandom sequence
that represents the author. This technique is similar to an,
approach developed independently by [15]. Both techniqués
solve the shortcomings of the solution proposed in [14] for
solving the deadlock problem.

Specifically, the author has two random keys and z» 107 1
(i.e., seeds) from which a pseudorandom sequencan be
generated using a suitable pseudorandom sequence generator
[13]. Popular generators include RSA, Rabin, Blum/Micali,
and Blum/Blum/Shub [16]. With the two proper keys, the 10104 160 ‘ 10"
watermark may be extracted. Without the two keys, the data Spatial frequency f (cpd)
hidden in the video is statistically undetectable and impossi
to recover. Note that we dmot use the classical maxi-

mal length pseudonoise sequence (e-sequence) generated, sityation where a signal raises the visual threshold for other
by linear feedback shift registers to generate a watermagyna|s around it. Masking characteristics are used in high-
Sequences generated by shift registers are cryptographicgliiity, low-bit rate coding algorithms to further reduce bit
insecure: One can solve for the fee_dback pattern (i.e., the keyshg [17]. The masking models reviewed here are based on
given a small number of output bits . image models. A detailed discussion of the models may be
The noise-like sequencg, after some processing (cf.found in [18]. We are currently developing a watermarking

Section V), is the actual watermark hidden into the videgqorithm that takes temporal masking (e.g., [19]) into account.
stream. The key; is authordependent. The key; is signal

dependent. The key; is the secret key assigned to (or )

chosen by) the author. Key, is computed from the video A Frequency Masking

signal that the author wishes to watermark. It is computed Our frequency masking model is based on the knowledge
from the video using a one-way hash function. In particulathat a masking grating raises the visual threshold for signal
the tolerable error levels supplied by the masking models (gfatings around the masking frequency [20]. The model we use
Section Ill) are hashed to a key.. Any one of a number [18], based on the discrete cosine transform (DCT), expresses
of well-known secure one-way hash functions may be usétk contrast threshold at frequeng¢yas a function off, the

to computez,, including RSA, MD4, and SHA [13], [16]. masking frequencyf,,,, and the masking contrast,

For example, the Blum/Blum/Shub pseudorandom generator _ o

uses the one way functiop = g,(x) = 22 mod n where A7 fm) B colf) - max{l, [B(f/ fm)em]”} @)

n = pq for primesp andgq so thatp = ¢ = 3 mod 4. It can be where the detect_lon threshold at f_requerﬁ;yo(f), anda =
shown that generating or y from partial knowledge ofy is 0-62 are determined by psychovisual tests [20]. The mask
computationally infeasibléor the Blum/Blum/Shub generator. Weighting functionk(f) is shown in Fig. 1. .

The signal dependent key, makes counterfeiting very 10 find the contrast thresholef) at a frequencyf in an
difficult. The pirate can only provide key; to the arbitrator. image, we first use the DCT to transform the image into the
Key z, is automatically computed by the watermarkiné;quency domain and f_|nd the contrast at each frequency.
algorithm from the original signal. The pirate generates €N, we use a summation rule of the form
counterfeit original by subtracting off a watermark. However, 1/2
the watermark (partially generated from the signal dependent o(f) = Z A f, fm)? (2)

key) dependson the counterfeit original. Thus, the pirate i

must generate a watermark which creates a counterfl%tSum up the masking effects from all the masking signals

original which, in turn, generates the watermark! AS ihoqr ¢ | the contrast error af is less thare(f), the model
is computationally infeasible to invert the one-way hasBredicts that the error is invisible to human eyes.
function, the pirate is unable to fabricate a counterfeit

original that generates the desired watermark.

k}—l% 1. The masking characteristic functiéff).

B. Spatial Masking

Our spatial masking model is based on the threshold vision
model proposed by Girod [19]. The model accurately predicts

We use image masking models based on the HVS ttoe masking effects near edges and in uniform background.
ensure that the watermark embedded into each video fraf&suming that the modifications to the image are small, the
is perceptually invisible and robust. Visual masking refers tgpper channel of Girod’'s model can be linearized [18] to

lll. VISUAL MASKING
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obtain the tolerable error level for each coefficient. This is
a reasonable gsspmp_tiqn for transpgrent watermarking. Fig. 3. Example of temporal wavelet transform.

Under certain simplifying assumptions [18], the tolerable er-
ror level for a pixelp(z, y) can be obtained by first computingot the input signal. The output of the cascaded filter banks
the contrast saturation &, y) consists of multiple temporal resolutions of the input.

T
dcsat (.’L’, y) = desar = (3)

Z w4(07 07 xlv y/)
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Y

V. WATERMARK DESIGN

where the weightw,(z,y,2",/) is a Gaussian centered a The first step in our watermarking algorithm consists of
the point (z,y). ParameterT is a threshold based on a reaking the video sequence inszenes[23]. Recall from
series of pS);chovisuaI tests. Onée., (, y) is computed, the the Section | that segmentation into scenes allows the water-

luminance on the retinall,.,. is obtained from the equation marking procedure to take into account temporal redundancy.
’ Visually similar regions in the video sequence, e.g., frames
dcsat (.’IZ’, y) = w2 (.’L’, y) : dlret (.’L’, y) (4)

from the same scene, must be embedded with a consistent
From dl..., the tolerable error levells(z,y) for the pixel watermark. To address assorted pirate attacks on the wa-
p(z,y) is computed from termark, we perform a temporal wavelet transform on the
) video scenes (cf. Section IV). The multiresolution nature of
) ) the wavelet transform allows the watermark to exist across
The weightsw, (z,y) and w(z,y) are based on Girod's itiple temporal scalesesolving the above-mentioned pirate
model. The masking model predicts that changes to pixgkacks. For example, the embedded watermark in the lowest
p(z,y) less thands(x, y) introduce no perceptible distortion. frequency (DC) wavelet frame existsati framesin the scene.
We denote indexed temporal variables by capital letters with
IV. TEMPORAL WAVELET TRANSFORM subscripts, e.g., théh frameF; in a video scene. Frames are
A wavelet transform [21], [22] is a powerful tool employedrdered sequentially according to time. The tilde representation
to represent signals at multiple resolutions. The multiresolutiéh used to denote a wavelet representation, €:g.js the
nature of a wavelet decomposition provides signal specifi? wavelet coefficient frame. Without loss of generality,
information localized in time, space, or frequency that cadavelet frames are ordered from lowest frequency to highest
be exploited for signal analysis and processing. frequency, i.e..lp is a DC frame. Finally, primed capital
We employ the wavelet transform along ttemporal axis letters, e.g.F;, denote the DCT representation of an indexed
of the video sequence. The wavelet transform is used \tariable.
provide a compacinultiresolution temporal representatiaf In Fig. 4, we show our video-watermarking procedure.
a video, leading to static and dynamic video components. @onsider a scene of frames from the video sequence. Let
wavelet transform can be computed using a two-band perfégch frame from the scene be of sizex m. The video may
reconstruction filter bank as shown in Fig. 2. The video signBe grayscale (8 b/pixel) or color (24 b/pixel). L&} denote
is simultaneously passed through low-pdssand high-pass the frames in the scene, wheire= 0, -- -,k — 1. Initially, we
H filters and then decimated k¥to give static (no motion) compute the wavelet transform of theframesZ; to obtaink
and dynamic(motion) components of the original signal. Thavavelet coefficient frames;, i = 0, - - -, k — 1. The watermark
two decimated signals may be upsampled and passed throiﬁgppnstructed and added to the video using the following steps:
complementary filters and summed to reconstruct the originall) segment each wavelet framg& into 8 x 8 blocks
signal. Wavelet filters are widely available [22]. Bij,i=0,1,--- |n/8] andj = 0,1,---, |m/8];
In Fig. 3, we show an example of the temporal wavelet 2) for each blockB;;:
transform. The top row co.nsists of four consecutive _frames a) compute the DC'Iégj of the frame blockB;;;
from a sample “Football” video. The bottom row consists of b) compute the frequency mask!, (cf. Section IlI-A)

dlret(xvy) = 1,U1(.’L',y) : dS(.’L’,y)

the four temporal wavelet coefficient frames computed from
the original “Football” sequence. The two temporal low-pass
frames (bottom left) represent the static components of the
“Football” frames. The detail, i.e., dynamic, components are
represented by the two temporal high-pass frames (bottom
right) in Fig. 3. Note that a filter bank may be cascaded with
additional filter banks to provide further temporal resolutions

of the DCT block B

250

c) use the maskl/;; to weight the noise-like author

Y/, (cf. Section II) for that frame block, creating the
frequency-shaped author signaturg = M;,Y;;

d) create the wavelet coefficient watermark bldék;

by computing the inverse DCT aF;; and locally
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Fig. 4. Diagram of video watermarking procedure.

increase the watermark to the maximum tolerabl€he hypothesis decision is obtained by computing the scalar
error level provided by the spatial ma§kj; similarity between each extracted signal, and original
e) add the watermarkV;; to the block B;;, creating Watermark vy,
the watermarked block; N i Si = simp( X, W) = Xy - Wk' 7)
3) repeat for each wavelet coefficient framh Wy - Wy
The watermark for each wavelet coefficient frame is thEn€ overall similarity between the extracted and original
block concatenation of all the 8 8 watermark blocks¥;; for Wwatermark is computed as the mean 9f for all k: 5 =
that frame. The wavelet coefficient frames with the embedd&pan(S). The overall similarity is compared with a threshold
watermarks are then converted back to the tempora| dommetermine whether the test video is watermarked. As shown
using the inverse wavelet transform. As the watermark |B Section VI, our eXperimental threshold is chosen around
designed and embedded in the wavelet domain, the individ@at, i-e., a similarity value>0.1 indicates the presence of
watermarks for each wavelet coefficient frame are spread #0¢ owner’s copyright. In such a case, the video is deemed
to varying levels of support in the temporal domain. Fdhe property of the author, and a copyright claim is valid. A
example, watermarks embedded in highpass wavelet frangéigilarity value<0.1 indicates the absence of a watermark.
are localized temporally. Conversely, watermarks embedded/Vhen the length (in terms of frames) of the test video is
in lowpass wavelet frames are generally located throughdhe same as the length of the original video, we perform the
the scene in the temporal domain. hypothesis test in thevavelet domain A temporal wavelet
transform of the test video is computed to obtain its wavelet

coefficient framesk;,. Substituting wavelet transform values
VI. WATERMARK DETECTION in (6)

The watermark is designed to be easily extracted by the  H,: X, =R; — F;, = N, (No watermark)

owner, even when signal processing operations are applied Hy: X0 =B — Fr = W5+ N (Wi

, / f - Xy =Ry, — By, =W} 4 atermark 8
to the host video. As the embedded watermark is noise- Sk BTk "_—?_ ke ( ) ( )
like, a pirate has insufficient knowledge to directly removWhereF}. are the wavelet coefficient frames from the original

the watermark. Therefore, any destruction attempts are dofi@eo, Wy is the potentially modified watermarks from each
blindly. Unlike other users, the owner has a copy of thikame, andVy, is noise. This test is performed for each wavelet
original video and the noise-like author signature which wdgme to obtainX;, for all k. Similarity values are computed
embedded into the video. Typically, the owner is presenté§ before:s; = simy (X, Wi).
with one or more video frames which he or she wishes to Using the original video signal to detect the presence of a
prove ownership rights. Two methods have been developed¥gtermark, we can handle virtualgll types of distortions,
extract the potential watermark from a test video or test viddiacluding cropping, rotation, rescaling, etc., by employing a
frame. Both employ hypothesis testing [24]. One test emplog§neralized likelihood ratio test [24]. We have also developed
index knowledge during detection, i.e., we know the placemeasecond detection scheme that is capable of recovering a wa-
of the test video frame(s) relative to the original video. Thiermark after many distortiongithouta generalized likelihood
second detection method domet require knowledge of the ratio test. The procedure is fast and simple, particularly when
location of the test frame(s). This is extremely useful in gonfronted with the large amount of data associated with video.
video setting, where thousands of frames may be similar, andPetection ll—Watermark Detection Without Index Knowl-
we are uncertain where the test frames reside. edge: In many cases, we may have no knowledge of the
Detection —Watermark Detection with Index Knowledgéndexes of the test frames. Pirate tampering may lead to many
When the location of the test frame is known, a straightforwatgpes of derived videos which are often difficult to process.
hypothesis test may applied. For each frame in the test videer example, a pirate may steahe frame from a video. A
Ry, we perform a hypothesis test pirate may also create a video thahis the same length as the
Ho: X, = Re — Fl, = N, (No watermark) original video. Temporal cropping, frame dropping, and frame

N interpolation are all examples. A pirate may also swap the
Hy: Xp =Ry, — Iy = Wi + N (Watermark) — (6) grder of the frames. Most of the better watermarking schemes

where F}, is the original frame ¥V} is the (potentially mod- currently available use different watermarks for different im-
ified) watermark recovered from the frame, aiVg is noise. ages. As such, they generally require knowledgewbich
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frame was stolen. If they are unable to ascertain which frame
was stolen, they are unable to determine which watermark
was used.

Our second method can extract the watermarkhout
knowledge of where a frame belongs in the video sequence.
No information regarding cropping, frame order, interpolated
frames, etc., is required! As a result, no searching and correla-
tion computations are required to locate the test frame index.
The hypothesis test is formed by removing tbes temporal
wavelet framdrom the test frame and computing the similarity
with the watermark for the low temporal wavelet frame. The
hypothesis test is formed as

Ho: X =R, — F; = N;,  (No watermark)
Hy: X =Ry, — Fp = W + N, (Watermark)  (9)

where R, is the test frame in thepatial domain andFy is

the lowest temporalvaveletframe. The hypothesis decision
is made by computing the scalar similarity between each ex-
tracted signalX; and original watermark for the low temporal
wavelet framelVy: simy (X3, Wo). This simple yet powerful
approach exploits the wavelet property of varying temporal
support.

VII. VISUAL RESULTS

We illustrate the invisibility and robustness of our water-
marking scheme on two grayscale (8 bpp) videos: “Pingpong” ()
and “Football.” Each frame is of size 240 352. An original
frame from each video is shown in Figs. 5(a) and 6(a).
The corresponding watermarked frame for each is shown in
Figs. 5(b) and 6(b). In both cases, the watermarked frame
appears visually identical to the original. In Figs. 5(c) and
6(c), the watermark for each frame, scaled to graylevels for
display, are shown. Although the watermarks are computed
on thewaveletframes, we display them in thepatial domain
for visual convenience. The watermark for each frame is the
same size as the host frame, i.e., 24B52. For each frame,
the watermark values corresponding to smoother background
regions are generally smaller than watermark values near
motion and edge regions. This is to be expected, as motion
and edge regions have more favorable masking characteristics.

Some statistical properties for each of the watermarks %S 5. Frame from Pingpong video (a) original, (b) watermarked, and (c)
shown in Table I. The values are computed for the framegtermark.

resented in Figs. 5 and 6, which are representative of the ) . . )
P 9 P ﬁ&tal of ten viewers (not including the authors) took part in

watermarks for the other frames in each of the videos. THE - . ;
maximum and minimum values are in terms of the watermal€ blind test. The results of the test are displayed in Table II.

values over the 2406« 352 watermark. Peak signal-to-noiséo‘S predicted bY the visual—maski_ng modgls_, the original and
ratio (PSNR), a common image quality metric, is defineWatermarked wdt_aos appeaged wsually similar and each was
as 201og,,(255/v/SNR). The signal-to-noise ratio (SNR) is preferred approximately 50% of thg time. We concll_Jde that
computed between the original and watermarked frame. the watermark causes no degradations to the host video.

To determine the quality of the watermarked videos, we
performed a series of informal visual tests. For each test video,
we displayed the original to the viewer. Then two randomly To be effective, the watermark must be robust to incidental
selected videos “A” and “B” were sequentially displayed to thand intentional signal distortions incurred by the host video.
viewer. The ordered pair was randomly selected as (origin@llearly, any lossy signal operations performed on the host
watermarked) or (watermarked, original). The viewer wasdeo effect the embedded watermark.
asked to select the video “A” or “B” that was visually more The robustness of our watermarking approach is measured
pleasing. This test was performed ten times for each video.b& the ability to detect a watermark when one is present in

VIIl. ROBUSTNESSRESULTS
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TABLE |
STATISTICAL PROPERTIES OF THEVIDEO WATERMARK
Video Maximum | Minimum | Variance | PSNR (dB)
Pingpong 42 -44 11.20 37.64
Football 13 -47 14.44 36.54
TABLE 1

BLIND TESTING OF WATERMARKED VIDEOS

Video Preferred original to watermarked

Pingpong 48.5 %
Football 50.56 %

watermark (H;), while a low similarity suggests the lack

of a watermark(Hy). As shown in our tests, no overlap
between the hypotheses occurred during the degradations and
distortions. This indicates a high probability of detection and

a low probability of false alarm.

We use the first 32 frames from each video for our tests.
Both detection approaches were performed during each exper-
iment. Specifically, we performed detection when the entire
test sequence was available and the indexes known (8). We
also performed detection on a frame-by-frame basis without
knowledge of the frame index (9). In this case, we assume
that the index of the frame isnknown so we do not know
the location of the frame in the video.

A. Colored Noise

(b) To model perceptual coding techniques, we corrupted
the watermark withworst case colored noise that follows
the visual masksColored noise was generated by shaping
(i.e., multiplying) white noise with the frequency and spatial
masks for the video. As the colored noise is generated
in the same fashion as the watermark, it acts like another
interfering watermark. We generated colored noise and
added it to the video with and without the watermark. The
variance of the noise for each test sequence was chosen nine
times greater than the watermark embedded in the video.
For example, the average variance of the watermark over all
frames from the Football sequence is 14.0. The colored-noise
sequence was constructed with a variance of approximately
126.0(PSNR = 27.1 dB). A noisy frame from each of the
watermarked videos is shown in Fig. 7(a) and (b). The noisy
Fig. 6. Frame from Football video (a) original, (b) watermarked, and (Jfames correspond to those shown in Figs. 5 and 6.
watermark. For each video, this testing process was repeated 100 times
with a new noise sequence for each run. In the first test, we
the video Robustness is further based on the ability of thgse all of the frames in the video for detection (Detection
algorithmto reject a video when a watermark is not present). The similarity values for each video sequence with and
For a given distortion, the overall performance may be ascgyithout the watermark are shown in Table Ill. The maximum,
tained by the relative difference between the similarity whefiean, and minimum similarity values are computed over all
a watermark is present (hypothedif;) and the similarity 100 noise runs. It is important to note that the minimum
when a watermark is not present (hypotheHs). In each similarity values with watermark are much larger than the
robustness experiment, similarity results were obtained fefaximum similarity values without watermark. An overlap
both hypotheses. In particular, the degradation was applisgtween the two indicates possible errors in detection. In
to the video when a watermark was present. It was algitis case, for example, the minimum similarity value of the
applied to the video when a watermark wast present. Pingpong sequence with watermark is 0.91, which is much
The similarity was computed between the original watermaltérger than the maximum value of 0.03 without watermark. As
and the recovered signal (which may or may not have aaresult, one may readily decide whether a watermark exists in
watermark). A large similarity indicates the presence of the video. Selecting a decision threshd@ldsomewhere in the
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Fig. 7. Frame from videos with colored nois®SNR = 25.1 dB) (a)
Pingpong and (b) Football. 0.2 1
TABLE 1l
SIMILARITY RESULTS FORPING-PONG AND FOOTBALL WITH COLORED NOISE 53 3 . 39,9 3 |
0¢ T o758l old¢z ge® 4
PSNR | With watermark No watermark LR § = § LA 3 B
Video (dB) || Max | Mean | Min || Max | Mean | Min : : : ‘ ‘ ‘
Ping-Pong 27.8 | 1.00| 0.96 | 0.91 || 0.03| 0.00|-0.02 0 5 10 Framjasnumberzo 25 30
Football 27.1 | 1.00| 0.97[0.93 | 0.04| 0.00|-0.03 (b)

Fig. 8. Similarity values versus frame number in colored noise (a) Pingpong
range of approximateljb_l < T < 0.9 guarantees a correctand_(b) Football._ The error .ba_rs around each similarity value indicate the
hypothesis decision for these test videos in colored noise. M&imum and minimum similarity values over the 100 runs.

We also performed testing on a frame-by-frame basis W'tHS simulate additional attacks on the watermark, including

out knowledge of the frame index (Detection Il). DetQCtioﬂ]asking—based coders aother watermarksThe strength of
was performed by removing the_ lowpass tempc_JraI rafpe the colored noise is approximately the same as that of the
from the test frame, and correlating the result with the watqfiarmark and is not visible

mark W, corresponding td%,. The similarity values obtained
during testing indicate easy discrimination between the two
hypotheses as shown in Fig. 8. The upper similarity valu& Coding
in each plot corresponds to each frame with a watermark.|n most applications involving storage and transmission of
The lower similarity curve correspond to each frame withoufigital video, a lossy coding operation is performed on the
a watermark. The error bars around each similarity valwgdeo to reduce bit rates and increase efficiency. We tested the
indicate themaximumandminimumsimilarity values over the ability of the watermark to survive MPEG coding [25] at very
100 runs. The x-axis corresponds to frame number and ruo# quality. In our experiment, we set the MPEG tables at the
from O to 31. Observe that the upper value is widely separatedarsest possible quantization levels to maximize compression.
from the lower value for each frame. An error-free hypothesis A watermarked Pingpong video frame coded at 0.08 bpp is
decision is easy to obtain without knowledge of the positioshown in Fig. 9(a). The corresponding compression ratio (CR)
of the frame in the video scene. is 100:1. The original (noncoded) frame is shown in Fig. 9(b).
In all of the following distortion experiments, we addNote that a large amount of distortion is present in the frame.
colored noise to each videprior to distortion (e.g., cod- Using the same quantizatiion tables, a frame from the Football
ing, printing, and scanning, etc.). The colored noise is usgitieo at 0.18bpp (CR 44:1) is shown in Fig. 9(b). Note that the
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Fig. 9. MPEG coded frame from (a) Pingpong (0.08 b/pixel, CR 100:1) and 0.1 1
(b) Football (0.18 bipixel, CR 44:1).

— T —
TABLE IV Ojigﬁﬂg
SIMILARITY RESULTS FORPING-PONG AND FooTBALL AFTER MPEG GopING

Perptiege,gsrettersd ]

PSNR | With watermark No watermark . . . \ \ \
Video CR || (dB) | Max | Mean | Min || Max | Mean | Min _0'10 5 10 15 20 o5 30
Ping-Pong || 100:1 26.8 || 041 | 0.35|0.28 | 0.06 | 0.00|-0.08 Frame number
Football 44:1 244 0.37 | 0.32)0.27] 0.07| 0.01|-0.05 (b)

Fig. 10. Similarity values versus frame number after MPEG coding (a)
two videos used the same quantization tables. However, m@gpong and (b) Foqtt?all.Thg error bars around each similarity value indicate
. . € maximum and minimum similarity values over the 100 runs.

football sequence has more motion present than the Pingpong
sequence. As a result, it requires additional bits/pixel to encode )
the video. C. Multiple Watermarks

To simulate additional attacks on the watermark, we addedWe also tested the ability to detect watermarks in the
colored noise to each videprior to MPEG coding. Each presence of other watermarks. This distortion seems likely to
video was tested 100 times, with a different colored-noisgcur, as watermarks may be embedded sequentially to track
sequence used during each run. In the first test, we uselagjitimate multimedia distribution. Furthermore, a pirate may
of the frames in the video for detection (Detection I). Thase additional watermarks to attack a valid watermark. We em-
maximum, mean, and minimum similarity values for eachedded threeonsecutivevatermarks into each test video, i.e.,
video sequence with and without the watermark are showne after another. All three use the original (nonwatermarked)
in Table IV. Again, observe that the “Min” similarity valuesvideo as their original during detection. We then added colored
with watermark are much larger than the “Max” similaritynoise to the videos and MPEG coded the result. The Pingpong
values without watermark. Even at very low coding quality, theequence was coded at 0.28 bpp (CR 29:1, PSNR 27.45 dB).
similarity values are widely separated, allowing the existentésing the same MPEG parameters, the Football sequence
of a watermark to be easily ascertained. was coded at 0.51 bpp (CR 16:1, PSNR 25.43 dB). The

We also performed detection on single frames from thest was performed 100 times by generating a new colored-
video (Detection II) without index knowledge. The plots are@oise sequence each time. The curves for detecting the three
shown in Fig. 10(a) and (b). The error bars indicate no overlagtermarks without index knowledge are shown in Fig. 11(a)
between the two similarity curves. Even at very low-bit ratgnd (b). The presence of the three watermarks is easily
the presence of a watermark is easily observed. determined.
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Fig. 11. Similarity values for 3 watermarks after MPEG coding (a) Pingporigig. 12. Similarity values after frame dropping and averaging (a) Pingpong
and (b) Football. and (b) Football. The error bars around each similarity value indicate the
maximum and minimum similarity values over the 100 runs.
D. Frame Averaging
. . . . . . TABLE V
Some of the distortions of particular interest in video water- SIMILARITY RESULTS AFTER PRINTING AND SCANNING
marking are those associated with temporal processing, e.g., — —
Video Similarity

temporal cropping, frame dropping, and frame interpol_ation Frame | With watormark | Without watermark
are all examples. As we have shown, temporal cropping is Pingpong 0.734 0.011
handled with our Detection Il approach that does not require Football 0.611 0.052

information regarding frame indexes. To test frame dropping

and interpolation, we dropped the odd index frames, i.e.,

1,3,---, from the test sequences. The missing frames wefe Figs. 5 and 6 and used a flatbed scanner to re-digitize

replaced with the average of the two neighboring frame@,em' The similarity results obtained from printing and

Font1 = (Fop + Fony2)/2. Again, we applied Detection I. scanning are shown in Table V. Detection was performed

The resulting detection curves are shown in Fig. 12(a) and (§thout knowledge of frame location (i.e., Detection II).
e similarity values indicate easy discrimination between

The curves with and without watermark are widely separated. i
watermarked and nonwatermarked printed frames even

E. Printing and Scanning without knowledge of frame position.

An important copyright issue is that of protecting
individual video frames from being duplicated in print, e.g.,
magazines, technical documents, etc. For this test, we createWe presented a watermarking procedure to embed copyright
a hardcopy of the original and watermarked frames shovpnotection into digital video by directly modifying the video

IX. CONCLUSION
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samples. The watermarking technique directly exploits thes] B. Girod, “The information theoretical significance of spatial and

masking phenomena of the HVS to guarantee that the embed- tempora_l masking i_n_videq signals,” Proc. SPIE Human Vision, Visual
. . . . Processing, and Digital Displayol. 1077, 1989, pp. 178-187.
ded watermark is imperceptible. The owner of the digital vide@g G. E. Legge and J. M. Foley, “Contrast masking in human visidn,”

piece is represented by a pseudorandom sequence defined inOpt. Soc. Amer.vol. 70, no. 12, pp. 1458-1471, 1980.

; ) ; 1] O. Rioul and M. Vetterli, “Wavelets and signal processingEE Signal
terms of two secret keys. One key is the owner’s personal iddh Processing Mag.vol. 8, pp. 14-38, Oct. 1991.

tification. The other key is calculated directly from the originak2] p. p. vaidyanathanMultirate Systems and Filter Banks Englewood
video signal. The signal dependent watermarking procedure Cliffs, NJ: Prentice-Hall, 1992.

. . . . J. Nam and A. H. Tewfik, “Combined audio and visual streams analysis
shapes the noise-like author representation according to for video sequence segmentation,” fmoc. 1997 Int. Conf. Acoustics,

masking effects of the host signal. The embedded watermark Speech and Signal Processingp. 2665-2668. _
is perceptually and statistically undetectable. Furthermore, ti#él H. L. Van TreesDetection, Estimation, and Modulation Thepwpl. 1.

let-b d K exi Itiol les in the vid New York: Wiley, 1968.
wavelet-based watermark exists at multiple scales in the vidggs) p_j. Le Gall, “MPEG: A video compression standard for multimedia

We illustrated the robustness of the watermarking procedure applications,"Commun. ACMvol. 34, pp. 47-58, Apr. 1991.

to several video degradations, including colored noise, MPEG

coding, mglhple watermarks, frame dro_pplng, and pr_mtlng Mitchell D. Swanson (M'93) was born in Min-
and scanning. The watermark was readily detected with a - neapolis, MN, in 1969. He received the B.S., M.S.,

without index knowledge in all of these distortions. and Ph.D. degrees in electrical engineering from
the University of Minnesota, Minneapolis, in 1992,
1995, and 1997, respectively.

He has previously worked at Honeywell, Inc.,
Coon Rapids, MN, and Medtronic, Inc., Fridley,
MN, and is now with the Department of Electri-
cal and Computer Engineering, University of Min-
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