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Abstract—We present a watermarking procedure to embed
copyright protection into digital video. Our watermarking pro-
cedure is scene-based and video dependent. It directly exploits
spatial masking, frequency masking, and temporal properties
to embed an invisible and robust watermark. The watermark
consists of static and dynamic temporal components that are
generated from a temporal wavelet transform of the video scenes.
The resulting wavelet coefficient frames are modified by a percep-
tually shaped pseudorandom sequence representing the author.
The noise-like watermark is statistically undetectable to thwart
unauthorized removal. Furthermore, the author representation
resolves the deadlock problem. The multiresolution watermark
may be detected on single frames without knowledge of the
location of the frames in the video scene. We demonstrate the
robustness of the watermarking procedure to several video degra-
dations and distortions.

Index Terms—Copyright protection, data hiding, perceptual
masking, video watermarking.

I. INTRODUCTION

DIGITAL media, e.g., images, audio, and video, are readily
manipulated, reproduced, and distributed over informa-

tion networks. These efficiencies lead to problems regarding
copyright protection. As a result, creators and distributors of
digital data are hesitant to provide access to their digital intel-
lectual property. Technical solutions for copyright protection
of multimedia data are actively being pursued.

Digital watermarking has been proposed as a means to
identify the owner and distribution path of digital data. Wa-
termarking is the process of encoding hidden copyright infor-
mation into digital data by making small modifications to the
data samples, e.g., pixels. Many watermark algorithms have
been proposed. Some techniques modify spatial/temporal data
samples (e.g., [1]–[5]), while others modify transform coef-
ficients (e.g., [2], [6]–[10]). Unlike encryption, watermarking
does not restrict access to the data. Once encrypted data is
decrypted, intellectual property rights are no longer protected.
A watermark is designed topermanentlyreside in the host data.
When the ownership of data is in question, the information
can be extracted to completely characterize the owner or
distribution path.

In this paper, we present a novel multiresolution video
watermarking scheme. The watermarking procedure explicitly
exploits the human visual system (HVS) to guarantee that
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the embedded watermark is imperceptible. Similar to our
image and audio watermarking procedures based on perceptual
models [11], [12], the video watermark adapts to and is highly
dependent on the video being watermarked. This guarantees
an invisible and robust watermark.

Watermarking digital video introduces some issues that
generally do not have a counterpart in images and audio. Due
to large amounts of data and inherent redundancy between
frames, video signals are highly susceptible to pirate attacks,
including frame averaging, frame dropping, frame swapping,
collusion, statistical analysis, etc. Many of these attacks may
be accomplished with little or no damage to the video signal.
However, the watermark may be adversely effected. Scenes
must be embedded with a consistent and reliable water-
mark that survives such pirate attacks. Applying an identical
watermark to each frame in the video leads to problems
of maintaining statistical invisibility. Furthermore, such an
approach is neccessarily videoindependent, as the watermark
is fixed. Applying independent watermarks to each frame also
is a problem. Regions in each video frame with little or no
motion remain the same frame after frame. Motionless regions
in successive video frames may be statistically compared or
averaged to remove independent watermarks.

We employ a watermark that consists of fixed and varying
components. The components are generated from a tempo-
ral wavelet transform representation of each video scene. A
wavelet transform applied along the temporal axis of the
video results in amultiresolution temporal representationof
the video. In particular, the representation consists of temporal
low-pass frames and high-pass frames. The low-pass frames
consist of the static components in the video scene. The high-
pass frames capture the motion components and changing
nature of the video sequence. Our watermark is designed
and embedded in each of these components. The watermarks
embedded in the low-pass frames exist throughout theentire
video scene. The watermarks embedded in the motion frames
are highly localized in time and change rapidly from frame
to frame. Thus, the watermark is a composite ofstatic and
dynamiccomponents. The combined representation overcomes
the aforementioned drawbacks associated with a fixed or
independent watermarking procedure. Futhermore, averaging
frames simply damages the dynamic watermark components.
As shown in Section VIII, the static components survive such
attacks and are easily recovered for copyright verification.

To generate a watermark, the visual masking properties
of the wavelet coefficient frames are computed and used to
filter (i.e., shape) a pseudorandom sequence that represents
the author or distribution path of the video. Based on pseudo-
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random sequences, the noise-like watermark is statistically un-
detectable, thereby helping thwart pirate attacks. Furthermore,
due to the combined static and dynamic watermark representa-
tion, the watermark is readily extracted from asingle frameof
the videowithout knowledge of the locationof that particular
frame in the video, even after printing and rescanning.

The work presented in this paper offers several major
contributions to the field.

1) A Perception-Based Video Watermarking Proce-
dure: Our watermarkadapts to each individual video
signal. In particular, the temporal and frequency
distributions of the watermark are controlled by the
masking characteristics of the host video signal. As
a result, the strength of the watermark increases and
decreases with host, e.g., higher amplitude in regions of
the video with more textures, edges, and motion. This
guarantees that the embedded watermark is invisible
while having the maximum possible robustness.

2) A Scene-Based Multiscale Watermark Representa-
tion: Given one or more frames from a potentially
pirated video, the watermark may be extracted from the
frames without knowledge of the location of the frame
being tested. This detection characteristic exists due to
the combined static and dynamic representation of the
watermark.

3) An Author Representation Which Solves the Deadlock
Problem: The author or owner of the video is rep-
resented with a pseudorandom sequence created by a
pseudorandom generator [13] andtwo keys. One key
is author dependent, while the second key issignal
dependent. The representation is able to resolve rightful
ownership in the face of multiple ownership claims.

4) A Dual Watermark:The watermarking scheme intro-
duced in this paper uses the original video signal to
detect the presence of a watermark. The procedure
can handle virtuallyall types of distortions, including
cropping, temporal rescaling, frame dropping, etc., using
a generalized likelihood ratio test. We integrate this pro-
cedure with a second watermark which doesnot require
the original signal to address the deadlock problem.

In the next section, we introduce our author representation
and dual watermarking scheme. Our frequency and spatial
masking models are reviewed in Section III. The wavelet
transform is reviewed in Section IV. Our watermarking design
and detection algorithms are introduced in Sections V and VI.
Finally, experimental results are presented. In Section VII,
watermark statistics and fidelity results for two test videos are
presented. In Section VIII, the robustness of our watermarking
procedure is illustrated for an assortment of signal processing
operations and distortions including colored noise, MPEG
coding, multiple watermarks, frame dropping, and printing and
scanning. We present our conclusion in Section IX.

II. A UTHOR REPRESENTATION AND THEDEADLOCK PROBLEM

The main function of a video watermarking algorithm is to
unambiguously establish and protect ownership of video data.
Unfortunately, most current watermarking schemes are unable

to resolve rightful ownership of digital data when multiple
ownership claims are made, i.e., when a deadlock problem
arises [14]. The inability to deal with deadlock is independent
of how the watermark is inserted in the video data or how
robust it is to various types of modifications.

Watermarking techniques that donot require the original
(nonwatermarked) signal are the most vulnerable to ownership
deadlocks. A pirate simply adds his or her watermark to
the watermarked data. The data now has two watermarks.
Current watermarking schemes are unable to establish who
watermarked the data first.

Watermarking procedures that require the original data set
for watermark detection also suffer from deadlocks. In such
schemes, a party other than the owner may counterfeit a
watermark by “subtracting off” a second watermark from the
publicly available data and claim the result to be his or her
original. This second watermark allows the pirate to claim
copyright ownership because he or she can show that both the
publicly available data and the original of the rightful owner
contain a copy of their counterfeit watermark.

To understand how our procedure solves the deadlock
problem, let us assume that two parties claim ownership of
a video. To determine the rightful owner of the video, an
arbitrator examines only the video in question, the originals
of both parties and the key used by each party to generate
their watermark.

We use a two-step approach to resolve deadlock: Dual
watermarks and a video dependent watermarking scheme. Our
dual watermark employs apair of watermarks. One water-
marking procedure requires the original data set for watermark
detection. This paper provides a detailed description of that
procedure and of its robustness. The second watermarking
procedure doesnot require the original data set and hence is
a simple data hiding procedure. Any watermarking technique
which satisfies the restrictions outlined in [15] can be used to
insert the second watermark. The technique must be secure to
prevent unauthorized removal of the second watermark. For
example, it may employ a secret key to embed the watermark.
However, the second watermark need not be highly robust to
editing of the video since, as we shall see below, it is meant to
protect the video clip that the pirate claims to be hisoriginal.
The robustness levels of most of the recent watermarking tech-
niques that do not require the original for watermark detection
are quite adequate. The arbitrator would expect the original to
be of a high enough quality. This limits the operations that a pi-
rate can apply to a video and still claim it to be his high-quality
original. The watermark that requires the original video se-
quence for its detection is very robust as we show in this paper.

In case of deadlock, the arbitrator simply checks first
for the watermark that requires the original for watermark
detection. If the pirate is clever and has used the attack
suggested in [14] and outlined above, the arbitrator would
be unable to resolve the deadlock with this first test. The
arbitrator simply then checks for the watermark thatdoes
not require the original video sequence in the video segments
that each ownership contender claims to be hisoriginal.
Since the original video sequence of a pirate is derived from
the watermarked copy produced by the rightful owner, it
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will contain the watermark of the rightful owner. On the
other hand, the true original of the rightful owner will not
contain the watermark of the pirate since the pirate has no
access to that original and the watermark does not require
subtraction of another data set for its detection.

Further protection against deadlock is provided by the
technique that we use to select the pseudorandom sequence
that represents the author. This technique is similar to an
approach developed independently by [15]. Both techniques
solve the shortcomings of the solution proposed in [14] for
solving the deadlock problem.

Specifically, the author has two random keys and
(i.e., seeds) from which a pseudorandom sequencecan be
generated using a suitable pseudorandom sequence generator
[13]. Popular generators include RSA, Rabin, Blum/Micali,
and Blum/Blum/Shub [16]. With the two proper keys, the
watermark may be extracted. Without the two keys, the data
hidden in the video is statistically undetectable and impossible
to recover. Note that we donot use the classical maxi-
mal length pseudonoise sequence (i.e.,-sequence) generated
by linear feedback shift registers to generate a watermark.
Sequences generated by shift registers are cryptographically
insecure: One can solve for the feedback pattern (i.e., the keys)
given a small number of output bits.

The noise-like sequence after some processing (cf.
Section V), is the actual watermark hidden into the video
stream. The key is author dependent. The key is signal
dependent. The key is the secret key assigned to (or
chosen by) the author. Key is computed from the video
signal that the author wishes to watermark. It is computed
from the video using a one-way hash function. In particular,
the tolerable error levels supplied by the masking models (cf.
Section III) are hashed to a key Any one of a number
of well-known secure one-way hash functions may be used
to compute including RSA, MD4, and SHA [13], [16].
For example, the Blum/Blum/Shub pseudorandom generator
uses the one way function where

for primes and so that It can be
shown that generating or from partial knowledge of is
computationally infeasiblefor the Blum/Blum/Shub generator.

The signal dependent key makes counterfeiting very
difficult. The pirate can only provide key to the arbitrator.
Key is automatically computed by the watermarking
algorithm from the original signal. The pirate generates a
counterfeit original by subtracting off a watermark. However,
the watermark (partially generated from the signal dependent
key) dependson the counterfeit original. Thus, the pirate
must generate a watermark which creates a counterfeit
original which, in turn, generates the watermark! As it
is computationally infeasible to invert the one-way hash
function, the pirate is unable to fabricate a counterfeit
original that generates the desired watermark.

III. V ISUAL MASKING

We use image masking models based on the HVS to
ensure that the watermark embedded into each video frame
is perceptually invisible and robust. Visual masking refers to

Fig. 1. The masking characteristic functionk(f):

a situation where a signal raises the visual threshold for other
signals around it. Masking characteristics are used in high-
quality, low-bit rate coding algorithms to further reduce bit
rates [17]. The masking models reviewed here are based on
image models. A detailed discussion of the models may be
found in [18]. We are currently developing a watermarking
algorithm that takes temporal masking (e.g., [19]) into account.

A. Frequency Masking

Our frequency masking model is based on the knowledge
that a masking grating raises the visual threshold for signal
gratings around the masking frequency [20]. The model we use
[18], based on the discrete cosine transform (DCT), expresses
the contrast threshold at frequencyas a function of the
masking frequency and the masking contrast

(1)

where the detection threshold at frequency and
are determined by psychovisual tests [20]. The mask

weighting function is shown in Fig. 1.
To find the contrast threshold at a frequency in an

image, we first use the DCT to transform the image into the
frequency domain and find the contrast at each frequency.
Then, we use a summation rule of the form

(2)

to sum up the masking effects from all the masking signals
near If the contrast error at is less than the model
predicts that the error is invisible to human eyes.

B. Spatial Masking

Our spatial masking model is based on the threshold vision
model proposed by Girod [19]. The model accurately predicts
the masking effects near edges and in uniform background.
Assuming that the modifications to the image are small, the
upper channel of Girod’s model can be linearized [18] to
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Fig. 2. Diagram of 2-band filter bank.

obtain the tolerable error level for each coefficient. This is
a reasonable assumption for transparent watermarking.

Under certain simplifying assumptions [18], the tolerable er-
ror level for a pixel can be obtained by first computing
the contrast saturation at

(3)

where the weight is a Gaussian centered at
the point Parameter is a threshold based on a
series of psychovisual tests. Once is computed, the
luminance on the retina, is obtained from the equation

(4)

From the tolerable error level for the pixel
is computed from

(5)

The weights and are based on Girod’s
model. The masking model predicts that changes to pixel

less than introduce no perceptible distortion.

IV. TEMPORAL WAVELET TRANSFORM

A wavelet transform [21], [22] is a powerful tool employed
to represent signals at multiple resolutions. The multiresolution
nature of a wavelet decomposition provides signal specific
information localized in time, space, or frequency that can
be exploited for signal analysis and processing.

We employ the wavelet transform along thetemporal axis
of the video sequence. The wavelet transform is used to
provide a compactmultiresolution temporal representationof
a video, leading to static and dynamic video components. A
wavelet transform can be computed using a two-band perfect
reconstruction filter bank as shown in Fig. 2. The video signal
is simultaneously passed through low-passand high-pass

filters and then decimated byto give static (no motion)
anddynamic(motion) components of the original signal. The
two decimated signals may be upsampled and passed through
complementary filters and summed to reconstruct the original
signal. Wavelet filters are widely available [22].

In Fig. 3, we show an example of the temporal wavelet
transform. The top row consists of four consecutive frames
from a sample “Football” video. The bottom row consists of
the four temporal wavelet coefficient frames computed from
the original “Football” sequence. The two temporal low-pass
frames (bottom left) represent the static components of the
“Football” frames. The detail, i.e., dynamic, components are
represented by the two temporal high-pass frames (bottom
right) in Fig. 3. Note that a filter bank may be cascaded with
additional filter banks to provide further temporal resolutions

Fig. 3. Example of temporal wavelet transform.

of the input signal. The output of the cascaded filter banks
consists of multiple temporal resolutions of the input.

V. WATERMARK DESIGN

The first step in our watermarking algorithm consists of
breaking the video sequence intoscenes[23]. Recall from
the Section I that segmentation into scenes allows the water-
marking procedure to take into account temporal redundancy.
Visually similar regions in the video sequence, e.g., frames
from the same scene, must be embedded with a consistent
watermark. To address assorted pirate attacks on the wa-
termark, we perform a temporal wavelet transform on the
video scenes (cf. Section IV). The multiresolution nature of
the wavelet transform allows the watermark to exist across
multiple temporal scales, resolving the above-mentioned pirate
attacks. For example, the embedded watermark in the lowest
frequency (DC) wavelet frame exists inall framesin the scene.

We denote indexed temporal variables by capital letters with
subscripts, e.g., theth frame in a video scene. Frames are
ordered sequentially according to time. The tilde representation
is used to denote a wavelet representation, e.g.,is the
th wavelet coefficient frame. Without loss of generality,

wavelet frames are ordered from lowest frequency to highest
frequency, i.e., is a DC frame. Finally, primed capital
letters, e.g., denote the DCT representation of an indexed
variable.

In Fig. 4, we show our video-watermarking procedure.
Consider a scene of frames from the video sequence. Let
each frame from the scene be of size The video may
be grayscale (8 b/pixel) or color (24 b/pixel). Let denote
the frames in the scene, where Initially, we
compute the wavelet transform of theframes to obtain
wavelet coefficient frames The watermark
is constructed and added to the video using the following steps:

1) segment each wavelet frame into 8 8 blocks
and

2) for each block

a) compute the DCT of the frame block

b) compute the frequency mask (cf. Section III-A)
of the DCT block

c) use the mask to weight the noise-like author
(cf. Section II) for that frame block, creating the

frequency-shaped author signature

d) create the wavelet coefficient watermark block
by computing the inverse DCT of and locally
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Fig. 4. Diagram of video watermarking procedure.

increase the watermark to the maximum tolerable
error level provided by the spatial mask

e) add the watermark to the block creating
the watermarked block;

3) repeat for each wavelet coefficient frame.

The watermark for each wavelet coefficient frame is the
block concatenation of all the 8 8 watermark blocks for
that frame. The wavelet coefficient frames with the embedded
watermarks are then converted back to the temporal domain
using the inverse wavelet transform. As the watermark is
designed and embedded in the wavelet domain, the individual
watermarks for each wavelet coefficient frame are spread out
to varying levels of support in the temporal domain. For
example, watermarks embedded in highpass wavelet frames
are localized temporally. Conversely, watermarks embedded
in lowpass wavelet frames are generally located throughout
the scene in the temporal domain.

VI. WATERMARK DETECTION

The watermark is designed to be easily extracted by the
owner, even when signal processing operations are applied
to the host video. As the embedded watermark is noise-
like, a pirate has insufficient knowledge to directly remove
the watermark. Therefore, any destruction attempts are done
blindly. Unlike other users, the owner has a copy of the
original video and the noise-like author signature which was
embedded into the video. Typically, the owner is presented
with one or more video frames which he or she wishes to
prove ownership rights. Two methods have been developed to
extract the potential watermark from a test video or test video
frame. Both employ hypothesis testing [24]. One test employs
index knowledge during detection, i.e., we know the placement
of the test video frame(s) relative to the original video. The
second detection method doesnot require knowledge of the
location of the test frame(s). This is extremely useful in a
video setting, where thousands of frames may be similar, and
we are uncertain where the test frames reside.

Detection I—Watermark Detection with Index Knowledge:
When the location of the test frame is known, a straightforward
hypothesis test may applied. For each frame in the test video

we perform a hypothesis test

(No watermark)

(Watermark) (6)

where is the original frame, is the (potentially mod-
ified) watermark recovered from the frame, and is noise.

The hypothesis decision is obtained by computing the scalar
similarity between each extracted signal and original
watermark

(7)

The overall similarity between the extracted and original
watermark is computed as the mean of for all

The overall similarity is compared with a threshold
to determine whether the test video is watermarked. As shown
in Section VIII, our experimental threshold is chosen around
0.1, i.e., a similarity value indicates the presence of
the owner’s copyright. In such a case, the video is deemed
the property of the author, and a copyright claim is valid. A
similarity value indicates the absence of a watermark.

When the length (in terms of frames) of the test video is
the same as the length of the original video, we perform the
hypothesis test in thewavelet domain. A temporal wavelet
transform of the test video is computed to obtain its wavelet
coefficient frames Substituting wavelet transform values
in (6)

(No watermark)

(Watermark) (8)

where are the wavelet coefficient frames from the original
video, is the potentially modified watermarks from each
frame, and is noise. This test is performed for each wavelet
frame to obtain for all Similarity values are computed
as before:

Using the original video signal to detect the presence of a
watermark, we can handle virtuallyall types of distortions,
including cropping, rotation, rescaling, etc., by employing a
generalized likelihood ratio test [24]. We have also developed
a second detection scheme that is capable of recovering a wa-
termark after many distortionswithouta generalized likelihood
ratio test. The procedure is fast and simple, particularly when
confronted with the large amount of data associated with video.

Detection II—Watermark Detection Without Index Knowl-
edge: In many cases, we may have no knowledge of the
indexes of the test frames. Pirate tampering may lead to many
types of derived videos which are often difficult to process.
For example, a pirate may stealone frame from a video. A
pirate may also create a video that isnot the same length as the
original video. Temporal cropping, frame dropping, and frame
interpolation are all examples. A pirate may also swap the
order of the frames. Most of the better watermarking schemes
currently available use different watermarks for different im-
ages. As such, they generally require knowledge ofwhich
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frame was stolen. If they are unable to ascertain which frame
was stolen, they are unable to determine which watermark
was used.

Our second method can extract the watermarkwithout
knowledge of where a frame belongs in the video sequence.
No information regarding cropping, frame order, interpolated
frames, etc., is required! As a result, no searching and correla-
tion computations are required to locate the test frame index.
The hypothesis test is formed by removing thelow temporal
wavelet framefrom the test frame and computing the similarity
with the watermark for the low temporal wavelet frame. The
hypothesis test is formed as

(No watermark)

(Watermark) (9)

where is the test frame in thespatial domain and is
the lowest temporalwavelet frame. The hypothesis decision
is made by computing the scalar similarity between each ex-
tracted signal and original watermark for the low temporal
wavelet frame This simple yet powerful
approach exploits the wavelet property of varying temporal
support.

VII. V ISUAL RESULTS

We illustrate the invisibility and robustness of our water-
marking scheme on two grayscale (8 bpp) videos: “Pingpong”
and “Football.” Each frame is of size 240 352. An original
frame from each video is shown in Figs. 5(a) and 6(a).
The corresponding watermarked frame for each is shown in
Figs. 5(b) and 6(b). In both cases, the watermarked frame
appears visually identical to the original. In Figs. 5(c) and
6(c), the watermark for each frame, scaled to graylevels for
display, are shown. Although the watermarks are computed
on thewaveletframes, we display them in thespatial domain
for visual convenience. The watermark for each frame is the
same size as the host frame, i.e., 240352. For each frame,
the watermark values corresponding to smoother background
regions are generally smaller than watermark values near
motion and edge regions. This is to be expected, as motion
and edge regions have more favorable masking characteristics.

Some statistical properties for each of the watermarks are
shown in Table I. The values are computed for the frames
presented in Figs. 5 and 6, which are representative of the
watermarks for the other frames in each of the videos. The
maximum and minimum values are in terms of the watermark
values over the 240 352 watermark. Peak signal-to-noise
ratio (PSNR), a common image quality metric, is defined
as The signal-to-noise ratio (SNR) is
computed between the original and watermarked frame.

To determine the quality of the watermarked videos, we
performed a series of informal visual tests. For each test video,
we displayed the original to the viewer. Then two randomly
selected videos “A” and “B” were sequentially displayed to the
viewer. The ordered pair was randomly selected as (original,
watermarked) or (watermarked, original). The viewer was
asked to select the video “A” or “B” that was visually more
pleasing. This test was performed ten times for each video. A

(a)

(b)

(c)

Fig. 5. Frame from Pingpong video (a) original, (b) watermarked, and (c)
watermark.

total of ten viewers (not including the authors) took part in
the blind test. The results of the test are displayed in Table II.
As predicted by the visual-masking models, the original and
watermarked videos appeared visually similar and each was
preferred approximately 50% of the time. We conclude that
the watermark causes no degradations to the host video.

VIII. R OBUSTNESSRESULTS

To be effective, the watermark must be robust to incidental
and intentional signal distortions incurred by the host video.
Clearly, any lossy signal operations performed on the host
video effect the embedded watermark.

The robustness of our watermarking approach is measured
by the ability to detect a watermark when one is present in
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(a)

(b)

(c)

Fig. 6. Frame from Football video (a) original, (b) watermarked, and (c)
watermark.

the video. Robustness is further based on the ability of the
algorithm to reject a video when a watermark is not present.
For a given distortion, the overall performance may be ascer-
tained by the relative difference between the similarity when
a watermark is present (hypothesis and the similarity
when a watermark is not present (hypothesis In each
robustness experiment, similarity results were obtained for
both hypotheses. In particular, the degradation was applied
to the video when a watermark was present. It was also
applied to the video when a watermark wasnot present.
The similarity was computed between the original watermark
and the recovered signal (which may or may not have a
watermark). A large similarity indicates the presence of a

TABLE I
STATISTICAL PROPERTIES OF THEVIDEO WATERMARK

TABLE II
BLIND TESTING OF WATERMARKED VIDEOS

watermark while a low similarity suggests the lack
of a watermark As shown in our tests, no overlap
between the hypotheses occurred during the degradations and
distortions. This indicates a high probability of detection and
a low probability of false alarm.

We use the first 32 frames from each video for our tests.
Both detection approaches were performed during each exper-
iment. Specifically, we performed detection when the entire
test sequence was available and the indexes known (8). We
also performed detection on a frame-by-frame basis without
knowledge of the frame index (9). In this case, we assume
that the index of the frame isunknown, so we do not know
the location of the frame in the video.

A. Colored Noise

To model perceptual coding techniques, we corrupted
the watermark withworst case colored noise that follows
the visual masks.Colored noise was generated by shaping
(i.e., multiplying) white noise with the frequency and spatial
masks for the video. As the colored noise is generated
in the same fashion as the watermark, it acts like another
interfering watermark. We generated colored noise and
added it to the video with and without the watermark. The
variance of the noise for each test sequence was chosen nine
times greater than the watermark embedded in the video.
For example, the average variance of the watermark over all
frames from the Football sequence is 14.0. The colored-noise
sequence was constructed with a variance of approximately
126.0 A noisy frame from each of the
watermarked videos is shown in Fig. 7(a) and (b). The noisy
frames correspond to those shown in Figs. 5 and 6.

For each video, this testing process was repeated 100 times
with a new noise sequence for each run. In the first test, we
use all of the frames in the video for detection (Detection
I). The similarity values for each video sequence with and
without the watermark are shown in Table III. The maximum,
mean, and minimum similarity values are computed over all
100 noise runs. It is important to note that the minimum
similarity values with watermark are much larger than the
maximum similarity values without watermark. An overlap
between the two indicates possible errors in detection. In
this case, for example, the minimum similarity value of the
Pingpong sequence with watermark is 0.91, which is much
larger than the maximum value of 0.03 without watermark. As
a result, one may readily decide whether a watermark exists in
the video. Selecting a decision thresholdsomewhere in the
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(a)

(b)

Fig. 7. Frame from videos with colored noise(PSNR = 25:1 dB) (a)
Pingpong and (b) Football.

TABLE III
SIMILARITY RESULTS FORPING-PONG AND FOOTBALL WITH COLORED NOISE

range of approximately guarantees a correct
hypothesis decision for these test videos in colored noise.

We also performed testing on a frame-by-frame basis with-
out knowledge of the frame index (Detection II). Detection
was performed by removing the lowpass temporal frame
from the test frame, and correlating the result with the water-
mark corresponding to The similarity values obtained
during testing indicate easy discrimination between the two
hypotheses as shown in Fig. 8. The upper similarity values
in each plot corresponds to each frame with a watermark.
The lower similarity curve correspond to each frame without
a watermark. The error bars around each similarity value
indicate themaximumandminimumsimilarity values over the
100 runs. The x-axis corresponds to frame number and runs
from 0 to 31. Observe that the upper value is widely separated
from the lower value for each frame. An error-free hypothesis
decision is easy to obtain without knowledge of the position
of the frame in the video scene.

In all of the following distortion experiments, we add
colored noise to each videoprior to distortion (e.g., cod-
ing, printing, and scanning, etc.). The colored noise is used

(a)

(b)

Fig. 8. Similarity values versus frame number in colored noise (a) Pingpong
and (b) Football. The error bars around each similarity value indicate the
maximum and minimum similarity values over the 100 runs.

to simulate additional attacks on the watermark, including
masking-based coders andother watermarks. The strength of
the colored noise is approximately the same as that of the
watermark and is not visible.

B. Coding

In most applications involving storage and transmission of
digital video, a lossy coding operation is performed on the
video to reduce bit rates and increase efficiency. We tested the
ability of the watermark to survive MPEG coding [25] at very
low quality. In our experiment, we set the MPEG tables at the
coarsest possible quantization levels to maximize compression.

A watermarked Pingpong video frame coded at 0.08 bpp is
shown in Fig. 9(a). The corresponding compression ratio (CR)
is 100:1. The original (noncoded) frame is shown in Fig. 9(b).
Note that a large amount of distortion is present in the frame.
Using the same quantizatiion tables, a frame from the Football
video at 0.18bpp (CR 44:1) is shown in Fig. 9(b). Note that the
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(a)

(b)

Fig. 9. MPEG coded frame from (a) Pingpong (0.08 b/pixel, CR 100:1) and
(b) Football (0.18 b/pixel, CR 44:1).

TABLE IV
SIMILARITY RESULTS FORPING-PONG AND FOOTBALL AFTER MPEG CODING

two videos used the same quantization tables. However, the
football sequence has more motion present than the Pingpong
sequence. As a result, it requires additional bits/pixel to encode
the video.

To simulate additional attacks on the watermark, we added
colored noise to each videoprior to MPEG coding. Each
video was tested 100 times, with a different colored-noise
sequence used during each run. In the first test, we use all
of the frames in the video for detection (Detection I). The
maximum, mean, and minimum similarity values for each
video sequence with and without the watermark are shown
in Table IV. Again, observe that the “Min” similarity values
with watermark are much larger than the “Max” similarity
values without watermark. Even at very low coding quality, the
similarity values are widely separated, allowing the existence
of a watermark to be easily ascertained.

We also performed detection on single frames from the
video (Detection II) without index knowledge. The plots are
shown in Fig. 10(a) and (b). The error bars indicate no overlap
between the two similarity curves. Even at very low-bit rate,
the presence of a watermark is easily observed.

(a)

(b)

Fig. 10. Similarity values versus frame number after MPEG coding (a)
Pingpong and (b) Football. The error bars around each similarity value indicate
the maximum and minimum similarity values over the 100 runs.

C. Multiple Watermarks

We also tested the ability to detect watermarks in the
presence of other watermarks. This distortion seems likely to
occur, as watermarks may be embedded sequentially to track
legitimate multimedia distribution. Furthermore, a pirate may
use additional watermarks to attack a valid watermark. We em-
bedded threeconsecutivewatermarks into each test video, i.e.,
one after another. All three use the original (nonwatermarked)
video as their original during detection. We then added colored
noise to the videos and MPEG coded the result. The Pingpong
sequence was coded at 0.28 bpp (CR 29:1, PSNR 27.45 dB).
Using the same MPEG parameters, the Football sequence
was coded at 0.51 bpp (CR 16:1, PSNR 25.43 dB). The
test was performed 100 times by generating a new colored-
noise sequence each time. The curves for detecting the three
watermarks without index knowledge are shown in Fig. 11(a)
and (b). The presence of the three watermarks is easily
determined.
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(a)

(b)

Fig. 11. Similarity values for 3 watermarks after MPEG coding (a) Pingpong
and (b) Football.

D. Frame Averaging

Some of the distortions of particular interest in video water-
marking are those associated with temporal processing, e.g.,
temporal cropping, frame dropping, and frame interpolation
are all examples. As we have shown, temporal cropping is
handled with our Detection II approach that does not require
information regarding frame indexes. To test frame dropping
and interpolation, we dropped the odd index frames, i.e.,

from the test sequences. The missing frames were
replaced with the average of the two neighboring frames,

Again, we applied Detection II.
The resulting detection curves are shown in Fig. 12(a) and (b).
The curves with and without watermark are widely separated.

E. Printing and Scanning

An important copyright issue is that of protecting
individual video frames from being duplicated in print, e.g.,
magazines, technical documents, etc. For this test, we created
a hardcopy of the original and watermarked frames shown

(a)

(b)

Fig. 12. Similarity values after frame dropping and averaging (a) Pingpong
and (b) Football. The error bars around each similarity value indicate the
maximum and minimum similarity values over the 100 runs.

TABLE V
SIMILARITY RESULTS AFTER PRINTING AND SCANNING

in Figs. 5 and 6 and used a flatbed scanner to re-digitize
them. The similarity results obtained from printing and
scanning are shown in Table V. Detection was performed
without knowledge of frame location (i.e., Detection II).
The similarity values indicate easy discrimination between
watermarked and nonwatermarked printed frames even
without knowledge of frame position.

IX. CONCLUSION

We presented a watermarking procedure to embed copyright
protection into digital video by directly modifying the video
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samples. The watermarking technique directly exploits the
masking phenomena of the HVS to guarantee that the embed-
ded watermark is imperceptible. The owner of the digital video
piece is represented by a pseudorandom sequence defined in
terms of two secret keys. One key is the owner’s personal iden-
tification. The other key is calculated directly from the original
video signal. The signal dependent watermarking procedure
shapes the noise-like author representation according to the
masking effects of the host signal. The embedded watermark
is perceptually and statistically undetectable. Furthermore, the
wavelet-based watermark exists at multiple scales in the video.
We illustrated the robustness of the watermarking procedure
to several video degradations, including colored noise, MPEG
coding, multiple watermarks, frame dropping, and printing
and scanning. The watermark was readily detected with and
without index knowledge in all of these distortions.
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