
Andy Gordon (MSR and University of Edinburgh)

Joint work with Mihhail Aizatulin (OU), Johannes Borgström (Uppsala),
Guillaume Claret (MSR), Thore Graepel (MSR), Aditya Nori (MSR), Sriram
Rajamani (MSR), and Claudio Russo (MSR)

MODEL-LEARNER
PATTERN

MICROSOFT RESEARCH 2

-30

-25

-20

-15

-10

-5

0

5

10

0 5 10 15 20 25

What next?

MICROSOFT RESEARCH

Bayesian Models

 We train on the observed inputs and outputs to learn the
parameters, and to predict new outputs on unseen inputs.

 Bayesian models capture uncertainty about model
components as probability distributions.

3

-35

-30

-25

-20

-15

-10

-5

0

5

10

0 10 20

A Model

𝑦 = 𝐴𝑥 + 𝐵 + 𝑒

where noise 𝑒~𝑁(0, 𝑃)

𝑥 is an input, 𝑦 is an output.
𝐴, 𝐵, 𝑃 are the model parameters.

MICROSOFT RESEARCH

Five Distributions
 Prior distribution: 𝑝(w)

given by 𝑤 = 𝐴, 𝐵, 𝑃 , 𝐴~𝑁 0,1 , 𝐵~𝑁(0,1) and 𝑃~(1,1)

 Sampling distribution: 𝑝 𝑦 𝑥,𝑤
given by 𝑦~𝑁(𝐴𝑥 + 𝐵, 𝑃) for 𝑤 = 𝐴,𝐵, 𝑃

 (Prior) Predictive distribution:

𝑝 𝑦 𝑥 = 𝑝 𝑦 𝑥, 𝑤 𝑝(𝑤) 𝑑𝑤

 Posterior distribution, given training data 𝑑 = (𝑥, 𝑦):

𝑝 𝑤 𝑑 =
𝑝 𝑦 𝑥, 𝑤 𝑝(𝑤)

𝑝(𝑦|𝑥)
 Posterior predictive distribution, given 𝑑 = (𝑥, 𝑦):

𝑝 𝑦′ 𝑥′, 𝑑 = 𝑝 𝑦′ 𝑥′, 𝑤 𝑝 𝑤 𝑑 𝑑𝑤

4

MICROSOFT RESEARCH

Three Classes of Bayesian Inference

 Exact inference for discrete distributions:
Representation: enumerations of probabilities

Example: [𝐻𝐻,
1

10
; 𝐻𝑇,

2

10
; 𝑇𝐻,

7

10
; 𝑇𝑇, 0]

 Approximate inference: sampling eg Markov chain Monte Carlo:
Representation: finite ensemble of samples
Example: [𝐴 = 1.7, 𝐵 = 1.6; 𝐴 = 9.9, 𝐵 = 9.8 ;…]

 Approximate inference: belief propagation on factor graphs:
Representation: parameters for marginal of each variable
Example: [𝐴 = 𝑁(5.1,10), 𝐵 = 𝑁(6.0,5)]

5

𝑝 𝑤 𝑑 =
𝑝 𝑦 𝑥, 𝑤 𝑝(𝑤)

𝑝(𝑦|𝑥)
where 𝑑 = (𝑥, 𝑦)

MICROSOFT RESEARCH

Bayesian Models are Widely Applicable

 Many machine learning tasks may be cast as Bayesian models.

 We infer functions from inputs to outputs, governed by
uncertain parameters.

 Examples include:
 A regression function inputs a tuple of independent variables, and

produces one (or more) dependent variables (typically continuous).

 A classifier inputs a vector of features and outputs a single value, the
class (typically discrete).

 A cluster analysis groups items so that items in each cluster are more
like each other than to items in other clusters.

 A recommender predicts the rating or preference that a user would
give to an item (such as music, books, or movies) based on previous
ratings by a set of users.

 A rating system assesses a player's strength in games of skill (such as
chess or Go) based on observed game outcomes.

6

MICROSOFT RESEARCH

Promise of Probabilistic Programming

 Custom inference code is hard to write, depends on mechanism

 Instead, user writes a probabilistic model for a Bayesian
inference problem as a short piece of code, while the compiler
turns this code into an efficient inference routine.

 Systems include BUGS, IBAL, BLOG, Church, STAN, Infer.NET,
Fun, Factorie, Passage, HBC, HANSEI, and more.

 Still, no linguistic abstractions for Bayesian models.

 Our contribution: a new typed model abstraction to represent
a function from X to Y, governed by W:
 may be composed to form richer models

 via a sampler, may be run to draw from predictive distribution

 via a learner, may be trained to make predictions

7

MICROSOFT RESEARCH

Distributions (1-3) as Probabilistic Code

 Prior distribution: 𝑝 𝑤 ℎ for hyperparameter ℎ:

 Sampling distribution: 𝑝 𝑦 𝑥,𝑤

 (Prior) Predictive distribution:

𝑝 𝑦 𝑥, ℎ = 𝑝 𝑦 𝑥,𝑤 𝑝 𝑤 ℎ 𝑑𝑤

8

let predictive(h,x) = let w = prior h in gen (w,x)

let prior (h:TH) =
{A = random (Gaussian(h.MeanA, h.PrecA))
B = random (Gaussian(h.MeanB, h.PrecB))
P = random (Gamma(h.Shape, h.Scale))} : TW

let gen(w,x) =
[| for xi in x -> random(Gaussian(w.A * xi + w.B, w.P))|]

-40

-30

-20

-10

0

10

0 20

MICROSOFT RESEARCH

Distributions (4-5) as Probabilistic Code

 Posterior distribution, 𝑝 𝑤 𝑑, ℎ where 𝑑 = (𝑥, 𝑦):

 Posterior predictive distribution:

𝑝 𝑦′ 𝑥′, 𝑑, ℎ = 𝑝 𝑦′ 𝑥′, 𝑤 𝑝 𝑤 𝑑, ℎ 𝑑𝑤

9

let posterior (h,x,y) =
let w = prior h in observe (y = gen (w,x)); w

let posterior_predictive (h,x,y,x') =
let w = posterior (h,x,y) in gen (w,x')

9

𝑝 𝑤 𝑑, ℎ =
𝑝 𝑦 𝑥,𝑤 𝑝(𝑤, ℎ)

𝑝(𝑦|𝑥, ℎ)

MICROSOFT RESEARCH

-40

-30

-20

-10

0

10

0 20

Inference on Probabilistic Code

 F# quotations represent probabilistic code:

 Infer.NET’s inference invoked by a dynamically typed function,
returning a marginalized representation marginal(‘U)

 Hence, we train our linear regression example:

1010

let wD:{A=Gaussian;B=Gaussian;P=Gamma} =
infer <@ posterior @> (x,y)

let yD:Gaussian[] =
infer <@ posterior_predictive @> (x,y,x)

let d = <@ fun m -> (random(Gaussian(m,1.0), random(Bernoulli(0.5))) @>
: Expr<double -> double * bool>

val infer : Expr<‘T -> ‘U> -> ‘T -> marginal(‘U)
infer d 42.0 : Gaussian * Bernoulli

MICROSOFT RESEARCH

Abstraction 1: Model

 A model represents a probabilistic function from TX to TY,
governed by an uncertain, learnable TW parameter, and a
fixed TH hyperparameter.

11

type Model<'TH,'TW,'TX,'TY> =
{ HyperParameter: 'TH
Prior: Expr<'TH ->'TW>
Gen: Expr<'TW *'TX ->'TY> }

{ HyperParameter = {MeanA=0.0; PrecA=1.0; … }
Prior = <@ fun h ->

{ A = random(Gaussian(h.MeanA,h.PrecA))
B = random(Gaussian(h.MeanB,h.PrecB))
P = random(Gamma(h.ShapeN,h.ScaleN)) } @>

Gen = <@ fun (w,x) -> [| for xi in x ->
random(Gaussian(w.A * xi + w.B, w.P))|] @> }

MICROSOFT RESEARCH

Abstraction 2: Sampler

 A sampler is an object obtained from a model for sampling
from the prior and (prior) predictive distributions, simply
by running the code.

12

type ISampler<'TW,'TX,'TY> =
interface
abstract Parameters: 'TW
abstract Sample: x:'TX -> 'TY

end
-40

-30

-20

-10

0

10

0 20

MICROSOFT RESEARCH

Abstraction 3: Learner

 A learner is an object obtained from a model and an
inference method, for computing the posterior and
posterior predictive distributions, after training

13

type ILearner<'TDistW,'TX,'TY,'TDistY> =
interface
abstract Train: x:'TX * y:'TY -> unit
abstract Posterior: unit -> 'TDistW
abstract Predict: x:'TX -> 'TDistY

end

MICROSOFT RESEARCH

Learner Semantics

 We have three efficient learners:
 Exact (ADD/CUDD): algebraic decision diagrams

 MCMC (Filzbach): ensembles of samples

 Factor graphs (Infer.NET): marginal parametric distributions

14

type ReferenceLearner(m) =
let mutable d = <@ (%m.Prior) (%m.HyperParameter) @>
interface ILearner<Expr<'TW>,'TX,'TY,Expr<'TW> with
member l.Train(x,y) =
d <- <@ let w = %d in observe(y = (%m.Gen)(w,x)); w @>

member l.Posterior() = d
member l.Predict(x) = <@ let w = %d in (%m.Gen)(w,x) @>

MICROSOFT RESEARCH

Three Examples
Linear Regression BPM Classifier TrueSkill

TH {MeanA: double;
PrecA: double; … }

{Ncols:int} {Players:int}

TW {A:double;
B:double;
Noise:double}

{Noise: double;
Weights: Vector}

{Skills: double[];
PerfPrec: double}

TX double Vector { P1:int; P2:int }

TY double bool bool

Posterior {A:Gaussian;
B:Gaussian;
Noise:Gamma}

{Noise:Gaussian,
Weights:VectorGaussian>

{Skills: Gaussian[]}

Predict double -> Gaussian Vector -> Bernoulli { P1:int;P2:int } -> Bernoulli

15

MICROSOFT RESEARCH

Generic Loopback Function

 Given these abstractions, we can write generic
machine learning code, such as loopback testing

16

let test (toLearner: Model<'TH,'TW,'TX,'TY> ->
ILearner<'DistW,'TX,'TY,'DistY>)

(m:Model<'TH,'TW,'TX,'TY>)
(x:'TX) : 'TW * 'DistW =

let S = Sampler.FromModel(m)
let y = S.Sample(x)
let L = toLearner(m)
do L.Train(x,y)
(S.Parameters,L.Posterior())

MICROSOFT RESEARCH

Array Combinator

 Allows training and prediction on IID data

17

module IIDArray =
let M(m:Model<'TH,'TW,'TX,'TY>)

: Model<'TH,'TW,'TX[],'TY[]> =
{ Prior = m.Prior
Gen = <@ fun (w,x) ->
[| for xi in x -> (%m.Gen) (w,xi) |] @> }

MICROSOFT RESEARCH

Binary Mixture Combinator

 We code a variety of idioms as functions from
models to models, eg, mixtures:

18

let Mixture(m1,m2) =
{Prior =

<@ fun h ->
{Bias=random(Uniform(0.0,1.0))
P1=(%m1.Prior) h
P2=(%m2.Prior) h} @>

Gen =
<@ fun (w,x) ->

if random(Bernoulli(w.Bias))
then (%m1.Gen) (w.P1,x)
else (%m2.Gen) (w.P2,x) @>}

19

Mixture

Of

Gaussians

let k = 4 // number of clusters in the model
let M = IIDArray.M(KwayMixture.M(VectorGaussian.M,k))

let sampler1 = Sampler.FromModel(M);
let xs = [| for i in 1..100 -> () |]
let ys = sampler1.Sample(xs);

let learner1 = InferNetLearner.LearnerFromModel(M,mg0)
do learner1.Train(xs,ys)
let (meansD2,precsD2,weightsD2) = learner1.Posterior()

MICROSOFT RESEARCH

Evidence Combinator

20

let M(m1,m2) =
{Prior = <@ fun (bias,h1,h2) ->

(breakSymmetry(random(Bernoulli(bias))),
(%m1.Prior) h1, (%m2.Prior) h2) @>

Gen = <@ fun ((switch,w1,w2),x) ->
if switch then (%m1.Gen) (w1,x)
else (%m2.Gen) (w2,x) @>}

21

Demo:
Model
Selection

let mx k = NwayMixture.M(VectorGaussian.M,k)
let M2 = Evidence.M(mx 3, mx 6)

A Dozen Models

MICROSOFT RESEARCH 22

MICROSOFT RESEARCH

Related and Future Work

 Roger Grosse’s compositional theory of Bayesian image
processing UAI 2012, plus greedy model selection
algorithm – fits model-learner pattern.

 Extend our learner API to support partially observed
output, eg, for Naïve Bayes or Hidden Markov Models.

 Completeness? Which Bayesian models don’t fit?

 Probabilistic metaprogramming refers to automatic
techniques for constructing probabilistic programs.

 Next, we aim to develop schema-directed probabilistic
metaprogramming for inference on databases, an area in
its infancy (cf Singh and Graepel’s InfernoDB).

23

24

type ISampler type ILearner

type Model

module Classifier
module Regression

module TrueSkill
module TopicModel

Or choose
from library

module LinearRegression =
type TH = {MeanA: double; PrecA: double; … }
let h = {MeanA=0.0; PrecA=1.0; … }
type TW<'a,'b,'c> = {A:'a; B:'b; Noise:'c}
type TX = double
type TY = double
let M: Model<TH,TW<double,double,double>,TX,TY> =
{ Prior = <@ fun h ->

{ A = random(Gaussian(h.MeanA,h.PrecA))
B = random(Gaussian(h.MeanB,h.PrecB))
Noise = random(Gamma(h.ShapeN,h.ScaleN)) } @>

Gen = <@ fun a -> let m = (a.W.A * a.X) + a.W.B
random(Gaussian(m, a.W.Noise)) @> }

Write your
model in F# or C#

Or automatically
generate

Assemble
multiple
models

Synthetic
data to test
learner

Choose algorithm
(eg, EP, VMP, Gibbs, ADD, Filzbach)

Train, predict, repeat

The model-learner pattern brings structure and types,
as well as PL syntax, to probabilistic graphical models

http://research.microsoft.com/fun

MICROSOFT RESEARCH

The Paper

 The new conceptual insight is that code-based machine
learning can be structured around typed Bayesian models,
which are pairs of expressions representing prior and
sampling distributions.
 Definition of a type of Bayesian models, with combinators for

compositionally constructing models, and operations to derive
samplers and learners from an arbitrary model.

 Many Bayesian examples expressed as models.

 A formal semantics for models, learning, and prediction in Fun, and
its semantics using measure transformers and probability monad.

 Learners based on Algebraic Decision Diagrams, message-passing
on factor graphs, and Markov chain Monte Carlo.

25

26

Questions?

MICROSOFT RESEARCH

Infer.NET (since 2006)

 Tom Minka, John Winn, John Guiver, and others

 A .NET library for probabilistic inference

 Multiple inference algorithms on graphs

 Far fewer LOC than coding inference directly

 Designed for large scale inference

 User extensible

 Supports rapid prototyping and deployment of Bayesian
learning algorithms

 Graphs represented by object model for pseudo code,
but not as runnable code

27

MICROSOFT RESEARCH

Some Probability Distributions in Fun

28

Source: Wikipedia

