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Bayesian Models

 We train on the observed inputs and outputs to learn the 
parameters, and to predict new outputs on unseen inputs.

 Bayesian models capture uncertainty about model 
components as probability distributions.
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A  Model

𝑦 = 𝐴𝑥 + 𝐵 + 𝑒

where noise 𝑒~𝑁(0, 𝑃)

𝑥 is an input, 𝑦 is an output.
𝐴, 𝐵, 𝑃 are the model parameters.



MICROSOFT RESEARCH

Five Distributions
 Prior distribution: 𝑝(w)

given by 𝑤 = 𝐴, 𝐵, 𝑃 , 𝐴~𝑁 0,1 , 𝐵~𝑁(0,1) and 𝑃~(1,1)

 Sampling distribution: 𝑝 𝑦 𝑥,𝑤
given by 𝑦~𝑁(𝐴𝑥 + 𝐵, 𝑃) for 𝑤 = 𝐴,𝐵, 𝑃

 (Prior) Predictive distribution:

𝑝 𝑦 𝑥 =  𝑝 𝑦 𝑥, 𝑤 𝑝(𝑤) 𝑑𝑤

 Posterior distribution, given training data 𝑑 = (𝑥, 𝑦):

𝑝 𝑤 𝑑 =
𝑝 𝑦 𝑥, 𝑤 𝑝(𝑤)

𝑝(𝑦|𝑥)
 Posterior predictive distribution, given 𝑑 = (𝑥, 𝑦): 

𝑝 𝑦′ 𝑥′, 𝑑 =  𝑝 𝑦′ 𝑥′, 𝑤 𝑝 𝑤 𝑑 𝑑𝑤

4



MICROSOFT RESEARCH

Three Classes of Bayesian Inference

 Exact inference for discrete distributions:
Representation: enumerations of probabilities

Example: [𝐻𝐻,
1

10
; 𝐻𝑇,

2

10
; 𝑇𝐻,

7

10
; 𝑇𝑇, 0]

 Approximate inference: sampling eg Markov chain Monte Carlo:
Representation: finite ensemble of samples
Example: [𝐴 = 1.7, 𝐵 = 1.6; 𝐴 = 9.9, 𝐵 = 9.8 ;… ]

 Approximate inference: belief propagation on factor graphs:
Representation: parameters for marginal of each variable
Example: [𝐴 = 𝑁(5.1,10), 𝐵 = 𝑁(6.0,5)]
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𝑝 𝑤 𝑑 =
𝑝 𝑦 𝑥, 𝑤 𝑝(𝑤)

𝑝(𝑦|𝑥)
where 𝑑 = (𝑥, 𝑦)
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Bayesian Models are Widely Applicable

 Many machine learning tasks may be cast as Bayesian models.

 We infer functions from inputs to outputs, governed by 
uncertain parameters.

 Examples include:
 A regression function inputs a tuple of independent variables, and 

produces one (or more) dependent variables (typically continuous).

 A classifier inputs a vector of features and outputs a single value, the 
class (typically discrete).

 A cluster analysis groups items so that items in each cluster are more 
like each other than to items in other clusters.

 A recommender predicts the rating or preference that a user would 
give to an item (such as music, books, or movies) based on previous 
ratings by a set of users.

 A rating system assesses a player's strength in games of skill (such as 
chess or Go) based on observed game outcomes.

6
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Promise of Probabilistic Programming

 Custom inference code is hard to write, depends on mechanism

 Instead, user writes a probabilistic model for a Bayesian 
inference problem as a short piece of code, while the compiler 
turns this code into an efficient inference routine.

 Systems include BUGS, IBAL, BLOG, Church, STAN, Infer.NET, 
Fun, Factorie, Passage, HBC, HANSEI, and more.

 Still, no linguistic abstractions for Bayesian models.

 Our contribution: a new typed model abstraction to represent 
a function from X to Y, governed by W:
 may be composed to form richer models

 via a sampler, may be run to draw from predictive distribution

 via a learner, may be trained to make predictions

7
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Distributions (1-3) as Probabilistic Code

 Prior distribution: 𝑝 𝑤 ℎ for hyperparameter ℎ:

 Sampling distribution: 𝑝 𝑦 𝑥,𝑤

 (Prior) Predictive distribution:

𝑝 𝑦 𝑥, ℎ =  𝑝 𝑦 𝑥,𝑤 𝑝 𝑤 ℎ 𝑑𝑤
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let predictive(h,x) = let w = prior h in gen (w,x)

let prior (h:TH) =
{A = random (Gaussian(h.MeanA, h.PrecA))
B = random (Gaussian(h.MeanB, h.PrecB))
P = random (Gamma(h.Shape, h.Scale))} : TW

let gen(w,x) =
[| for xi in x -> random(Gaussian(w.A * xi + w.B, w.P))|]
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Distributions (4-5) as Probabilistic Code

 Posterior distribution, 𝑝 𝑤 𝑑, ℎ where 𝑑 = (𝑥, 𝑦):

 Posterior predictive distribution:

𝑝 𝑦′ 𝑥′, 𝑑, ℎ =  𝑝 𝑦′ 𝑥′, 𝑤 𝑝 𝑤 𝑑, ℎ 𝑑𝑤
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let posterior (h,x,y) =
let w = prior h in observe (y = gen (w,x)); w

let posterior_predictive (h,x,y,x') =
let w = posterior (h,x,y) in gen (w,x')

9

𝑝 𝑤 𝑑, ℎ =
𝑝 𝑦 𝑥,𝑤 𝑝(𝑤, ℎ)

𝑝(𝑦|𝑥, ℎ)
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Inference on Probabilistic Code

 F# quotations represent probabilistic code:

 Infer.NET’s inference invoked by a dynamically typed function, 
returning a marginalized representation marginal(‘U)

 Hence, we train our linear regression example:

1010

let wD:{A=Gaussian;B=Gaussian;P=Gamma} =
infer <@ posterior @> (x,y)

let yD:Gaussian[] =
infer <@ posterior_predictive @> (x,y,x)

let d = <@ fun m -> (random(Gaussian(m,1.0), random(Bernoulli(0.5))) @>
: Expr<double -> double * bool>

val infer : Expr<‘T -> ‘U> -> ‘T -> marginal(‘U)
infer d 42.0 : Gaussian * Bernoulli
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Abstraction 1: Model

 A model represents a probabilistic function from TX to TY, 
governed by an uncertain, learnable TW parameter, and a 
fixed TH hyperparameter. 
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type Model<'TH,'TW,'TX,'TY> =
{ HyperParameter: 'TH
Prior: Expr<'TH ->'TW>
Gen: Expr<'TW *'TX ->'TY> }

{ HyperParameter = {MeanA=0.0; PrecA=1.0; … }
Prior = <@ fun h ->

{ A = random(Gaussian(h.MeanA,h.PrecA))
B = random(Gaussian(h.MeanB,h.PrecB))
P = random(Gamma(h.ShapeN,h.ScaleN)) } @>

Gen = <@ fun (w,x) -> [| for xi in x ->
random(Gaussian(w.A * xi + w.B, w.P))|] @> }
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Abstraction 2: Sampler

 A sampler is an object obtained from a model for sampling 
from the prior and (prior) predictive distributions, simply 
by running the code.
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type ISampler<'TW,'TX,'TY> =
interface
abstract Parameters: 'TW
abstract Sample: x:'TX -> 'TY

end
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Abstraction 3: Learner

 A learner is an object obtained from a model and an 
inference method, for computing the posterior and 
posterior predictive distributions, after training

13

type ILearner<'TDistW,'TX,'TY,'TDistY> =
interface
abstract Train: x:'TX * y:'TY -> unit
abstract Posterior: unit -> 'TDistW
abstract Predict: x:'TX -> 'TDistY

end
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Learner Semantics

 We have three efficient learners:
 Exact (ADD/CUDD): algebraic decision diagrams

 MCMC (Filzbach): ensembles of samples

 Factor graphs (Infer.NET): marginal parametric distributions
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type ReferenceLearner(m) =
let mutable d = <@ (%m.Prior) (%m.HyperParameter) @>
interface ILearner<Expr<'TW>,'TX,'TY,Expr<'TW> with
member l.Train(x,y) =
d <- <@ let w = %d in observe(y = (%m.Gen)(w,x)); w @>

member l.Posterior() = d
member l.Predict(x) = <@ let w = %d in (%m.Gen)(w,x) @>
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Three Examples
Linear Regression BPM Classifier TrueSkill

TH {MeanA: double;
PrecA: double; … }

{Ncols:int} {Players:int}

TW {A:double;
B:double;
Noise:double}

{Noise: double;
Weights: Vector}

{Skills: double[];
PerfPrec: double}

TX double Vector { P1:int; P2:int }

TY double bool bool

Posterior {A:Gaussian;
B:Gaussian;
Noise:Gamma}

{Noise:Gaussian,
Weights:VectorGaussian>

{Skills: Gaussian[]}

Predict double -> Gaussian Vector -> Bernoulli { P1:int;P2:int } -> Bernoulli

15
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Generic Loopback Function

 Given these abstractions, we can write generic 
machine learning code, such as loopback testing

16

let test (toLearner: Model<'TH,'TW,'TX,'TY> ->
ILearner<'DistW,'TX,'TY,'DistY>)

(m:Model<'TH,'TW,'TX,'TY>)
(x:'TX) : 'TW * 'DistW =

let S = Sampler.FromModel(m)
let y = S.Sample(x)
let L = toLearner(m)
do L.Train(x,y)
(S.Parameters,L.Posterior()) 
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Array Combinator

 Allows training and prediction on IID data

17

module IIDArray =
let M(m:Model<'TH,'TW,'TX,'TY>)

: Model<'TH,'TW,'TX[],'TY[]> =
{ Prior = m.Prior
Gen = <@ fun (w,x) ->
[| for xi in x -> (%m.Gen) (w,xi) |] @> }
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Binary Mixture Combinator

 We code a variety of idioms as functions from 
models to models, eg, mixtures:
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let Mixture(m1,m2) =
{Prior =

<@ fun h ->
{Bias=random(Uniform(0.0,1.0))
P1=(%m1.Prior) h
P2=(%m2.Prior) h} @>

Gen =
<@ fun (w,x) ->

if random(Bernoulli(w.Bias))
then (%m1.Gen) (w.P1,x)
else (%m2.Gen) (w.P2,x) @>}   
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Mixture

Of

Gaussians

let k = 4 // number of clusters in the model
let M = IIDArray.M(KwayMixture.M(VectorGaussian.M,k))

let sampler1 = Sampler.FromModel(M);
let xs = [| for i in 1..100 -> () |]
let ys = sampler1.Sample(xs); 

let learner1 = InferNetLearner.LearnerFromModel(M,mg0)
do learner1.Train(xs,ys)
let (meansD2,precsD2,weightsD2) = learner1.Posterior()



MICROSOFT RESEARCH

Evidence Combinator

20

let M(m1,m2) =
{Prior = <@ fun (bias,h1,h2) ->

(breakSymmetry(random(Bernoulli(bias))),
(%m1.Prior) h1, (%m2.Prior) h2) @>

Gen = <@ fun ((switch,w1,w2),x) ->
if switch then (%m1.Gen) (w1,x) 
else (%m2.Gen) (w2,x) @>}  
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Demo:
Model
Selection

let mx k = NwayMixture.M(VectorGaussian.M,k)
let M2 = Evidence.M(mx 3, mx 6)



A Dozen Models
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Related and Future Work

 Roger Grosse’s compositional theory of Bayesian image 
processing UAI 2012, plus greedy model selection 
algorithm – fits model-learner pattern.

 Extend our learner API to support partially observed 
output, eg, for Naïve Bayes or Hidden Markov Models.

 Completeness?  Which Bayesian models don’t fit?

 Probabilistic metaprogramming refers to automatic 
techniques for constructing probabilistic programs.

 Next, we aim to develop schema-directed probabilistic 
metaprogramming for inference on databases, an area in 
its infancy (cf Singh and Graepel’s InfernoDB).

23
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type ISampler type ILearner

type Model

module Classifier
module Regression

module TrueSkill
module TopicModel

Or choose
from library

module LinearRegression =
type TH = {MeanA: double; PrecA: double; … }
let h = {MeanA=0.0; PrecA=1.0; … }
type TW<'a,'b,'c> = {A:'a; B:'b; Noise:'c}
type TX = double
type TY = double
let M: Model<TH,TW<double,double,double>,TX,TY> =
{ Prior = <@ fun h ->

{ A = random(Gaussian(h.MeanA,h.PrecA))
B = random(Gaussian(h.MeanB,h.PrecB))
Noise = random(Gamma(h.ShapeN,h.ScaleN)) } @>

Gen = <@ fun a -> let m = (a.W.A * a.X) + a.W.B
random(Gaussian(m, a.W.Noise)) @> }

Write your
model in F# or C#

Or automatically 
generate

Assemble
multiple
models

Synthetic
data to test
learner

Choose algorithm
(eg, EP, VMP, Gibbs, ADD, Filzbach) 

Train, predict, repeat

The model-learner pattern brings structure and types, 
as well as PL syntax, to probabilistic graphical models

http://research.microsoft.com/fun 
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The Paper

 The new conceptual insight is that code-based machine 
learning can be structured around typed Bayesian models, 
which are pairs of expressions representing prior and 
sampling distributions.
 Definition of a type of Bayesian models, with combinators for 

compositionally constructing models, and operations to derive 
samplers and learners from an arbitrary model.

 Many Bayesian examples expressed as models.

 A formal semantics for models, learning, and prediction in Fun, and 
its semantics using measure transformers and probability monad.

 Learners based on Algebraic Decision Diagrams, message-passing 
on factor graphs, and Markov chain Monte Carlo.

25
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Questions?
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Infer.NET (since 2006)

 Tom Minka, John Winn, John Guiver, and others

 A .NET library for probabilistic inference

 Multiple inference algorithms on graphs

 Far fewer LOC than coding inference directly

 Designed for large scale inference

 User extensible

 Supports rapid prototyping and deployment of Bayesian 
learning algorithms

 Graphs represented by object model for pseudo code,
but not as runnable code

27
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Some Probability Distributions in Fun

28

Source: Wikipedia


