
Script-Agnostic Reflow of Text in Document Images
Saurabh Panjwani

Bell Labs India
saurabh.panjwani@gmail.com

Abhinav Uppal

IIT Delhi
abhinavuppal88@gmail.com

Edward Cutrell

Microsoft Research India
cutrell@microsoft.com

ABSTRACT

Reading text from document images can be difficult on
mobile devices due to the limited screen width available on
them. While there exist solutions for reflowing Latin-script
texts on such devices, these solutions do not work well for
images of other scripts or combinations of scripts, since
they rely on script-specific characteristics or OCR. We
present a technique that reflows text in document images in
a manner that is agnostic to the script used to compose
them. Our technique achieved over 95% segmentation
accuracy for a corpus of 139 images containing text in 4
genetically-distant languages—English, Hindi, Kannada
and Arabic. A preliminary user study with a prototype
implementation of the technique provided evidence of some
of its usability benefits.

Author Keywords

Document images, segmentation, reflow, script-agnostic.

ACM Classification Keywords

H5.2. Information interfaces and presentation (e.g., HCI):
User Interfaces (interaction styles, prototyping). I7.5.
Document and Text Processing: Document Capture.

INTRODUCTION

In several practical scenarios, electronic documents can be
viewed only as images and access to the underlying raw
text is either difficult or infeasible. One example of such a
scenario is of reading text from digital libraries like Google
Books. Another example is that of collective viewing of a
digital presentation made using a document camera [12].

One issue that can hinder readability in such scenarios is the
screen width available to the user. A researcher reading
scanned pages from Google Books on a phone or an eBook
reader may find it frustrating if he is forced to scroll back
and forth for every line of text. Students in a large class
reading text from a projector screen may have a hard time if
the displayed text lines do not fit the screen or are otherwise
made too narrow to maintain legibility. A suitable user
interface for such scenarios would be one which allows text

to be enlarged and shrunk while also being reflowed into a
fixed screen width. (See figure 1.)

Although the problem of reflowing text in document images
has been studied in the past [1], such work has largely
focused on documents containing English text. The
resulting tools are inapplicable to non-English documents
and those written in non-Latin scripts, in particular. There
are several ongoing efforts today on digitizing books in
Asian and other non-Western languages [11,3] and
simultaneously, the number and variety of electronic
reading devices available to users is on the rise worldwide.
Enabling universal and convenient access to cross-language
digital libraries raises the need for reflow-capable readers
that operate on different scripts; indeed, such a need has
been expressed by some mobile phone users already1.

Figure 1. Document images in Hindi (top-left) and Arabic

(bottom-left) and their corresponding reflowed versions. Hindi

is written from left to right, Arabic from right to left.

In this paper, we present a technique to reflow text stored in
document images in a manner that is independent of the
script used to create them. Our technique is simple and at its
heart, it involves segmenting blocks of text in a document
image into individual words without implementing any
character recognition. While segmenting text, we address
the possible presence of diacritics and tolerate a moderate
amount of variability in inter- and intra-word spacing,
particularly capturing cases of zero intra-word spaces, a
characteristic of some Asian scripts. Addressing such
possibilities raises interesting challenges unmet by previous
reflow techniques.

1 See this online discussion forum, for example:
http://www.mobileread.com/forums/showthread.php?t=61633, 2009.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

MobileHCI 2011, Aug 30–Sept 2, 2011, Stockholm, Sweden.
Copyright 2011 ACM 978-1-4503-0541-9/11/08-09....$10.00.

2

Our technique works for scripts which use white spaces to
delimit words and lines; this includes scripts of most major
language families including, in particular, the Indo-
European, Semitic and Dravidian families. As a proof of
concept, we have tested a prototype implementation on text
from 4 languages: English (a West-Germanic language),
Hindi (an Indo-Aryan language and the most-widely spoken
one in India), Kannada (a Dravidian language from South
India) and Arabic (a Semitic language spoken in West Asia
and Africa). Results from our initial experiments are
promising: for a sample of 139 document images, our
technique achieved over 99% accuracy for English and
Hindi and over 95% for the other two languages.

While these accuracy rates could potentially be improved
by tweaking our technique for individual scripts, we believe
there is value in persisting with a script-agnostic approach.
First, it results in a simpler user interface – a reflow-
enabled reader that requires no parameter input from the
user (not even the script name!). The second and more
important reason is that it addresses the case of multi-
lingual text. The use of English words in non-Western text
is prevalent practice and even in our sample corpus, we find
several instances of English words immersed in largely
non-English text. We also find cases of English documents
containing non-Latin script (e.g., language-learning books)
and of Indian documents that use multiple Indian scripts.
Text reflow for such documents must necessarily be
agnostic to the underlying script.

RELATED WORK

The issue of reflowing text for facilitating reading on small
screens has arisen multiple times in the literature [6, 7]. For
the case of reading Western-language text on small screens,
it is well established that viewing automatically reflowed
text (in document images or otherwise) is preferred by users
over navigating horizontal pan/scroll interfaces [7]. In fact,
text reading studies for mobile devices often use reflowed
text as the baseline presentation format [9]. What is missing
in the literature is a tool that implements reflow for
document images and does this cross-linguistically. This is
the problem we address in the current paper.

For English, there are reflow-capable document readers
already available in the market [10] but most of the
commercial tools rely on OCR for implementing reflow.
However, good OCR tools are not yet available for Asian
languages like Hindi and Kannada and there is some
evidence (from users of web forums) that reflow
technologies for English do not work with such languages.
In the academic literature, there is some work on OCR-less
reflow but largely, for English only [1]. Some assumptions
made by [1], like the presence of inter-character spacing
and the absence of diacritics, are violated by non-Latin
scripts. To the best of our knowledge, ours is the first work
which attempts text reflow for Indic, Arabic and Latin
scripts using a single algorithm.

There is much literature on document image segmentation
for both Latin and non-Latin scripts. Surprisingly, though,
there is little work on techniques to segment document
images in a script-agnostic manner. Ittner and Baird build a
language-free document image analysis tool [5] but they
rule out Hindi and Arabic because of the way these
languages treat intra-word spaces. Accuracy of their tool is
not known for any script; in fact, there is subsequent work
[2] which shows that their technique (and of others, e.g.,
[8]) performs poorly on Indic scripts. There has been some
work on script-independent line segmentation of hand-

written text [4] but accuracy measures are again not known,
and applicability to Indic/Arabic text is unclear. Besides,
line segmentation, in general, is insufficient for text reflow.

THE ALGORITHM

Our technique works well for a class of scripts which we
refer to as segmentable scripts. Such scripts have distinct
white spaces separating adjacent lines and adjacent words
and if they admit spaces within words then the width of
every such space is strictly less than that of every inter-
word space. For simplicity, we assume that text is written in
straight horizontal lines and read from top to bottom,
although it seems possible to remove this assumption by
automatically learning line orientation. We rule out
logographic scripts like Chinese which do not delimit words
by spaces; such scripts require domain knowledge for
segmentation. (Our definition of segmentable scripts is
similar to that of Manhattan scripts/layouts [5], except that
(a) we permit zero intra-word spacing and the use of
dangling diacritics; (b) we do not consider vertical
orientations.)

The technique operates on high-resolution document
images such as those obtained by digitally scanning paper
documents (300+ dpi). In the current version, we make a
few other assumptions about the input image: it contains
only text, the text has nearly-consistent font size and inter-
line and inter-word spacing, the image is binarized (has
only black and white pixels) and there is no skew or shear.
There are known script-agnostic approaches to address
some of these issues [5], although some others (e.g., use of
variable font size and spacing) are hard to address even for
single scripts.

There are two main components of our algorithm: a
segmentation engine which identifies words within the text
and a reflow process which reorganizes the identified words
to fit a particular line-width. For segmentation, we use a
top-down approach based on projection profiles: first,
compute the black-pixel density for each row of pixels in
the image and identify rows with zero density; these define
the line boundaries. Then, for each identified line (region
between 2 line boundaries), compute the black-pixel density
for each column of pixels and identify “large” groups of
consecutive columns with zero density; these define word
boundaries within that line. Implementing this approach

accurately and script-agnostically, however, raises some
non-trivial issues.

Line Identification Issues

First, black pixels in the space between lines can cause
pairs of lines to be treated as one line. This could either be
because of noise but, more importantly, due to the use of
diacritics which extend downwards or upwards from a text
line. Figure 2 shows an extract of Kannada text from our
corpus with heavy use of such diacritics; the horizontal
projection of this extract has no rows with zero black-pixel
density. It is for this reason that segmentation algorithms
for Kannada (and other Dravidian languages) tend not to
use projection profiles but instead adopt a bottom-up
segmentation approach [2]. Bottom-up approaches, though,
are difficult to apply cross-linguistically, so we stick with
the projection profiles approach but modify it to search for
minimas in row pixel densities, instead of absolute zeroes.
This introduces a slight risk of line over-segmentation but
we counter the risk using suitable thresholds to separate
inter-line minimas from intra-line ones. (A multiplicative
threshold of 0.1 sufficed in our tests.)

Figure 2. A splice of a Kannada document image with its

horizontal projection profile. There are no regions of zero

pixel density in the profile but there are several minimas.

Sometimes, diacritics could be completely detached from
associated words and could get treated as separate lines by
our segmentor. We detect such cases by relying on two
characteristics of diacritic-only lines: they are much shorter
than true text lines and contain regions of contiguous white
columns. Using appropriate thresholds, we detect these
lines and merge them with nearby text lines.

Word Identification Issues

Once text lines have been identified, the key issue is to
identify inter-word spaces in each line. Doing this script-
agnostically is difficult since some scripts admit intra-word
spaces while others (e.g., Hindi) don’t. For the former
scripts, the distribution of white spaces in each line is
bimodal; for the latter, it is unimodal. Our goal is to address
both possibilities simultaneously and we do it as follows:

1. Let w(i) be the width of the i
th

narrowest white space in

the line.

2. Identify the smallest i, say i
*
, for which the ratio

w(i)/w(i-1) exceeds a threshold t and for which the slope

of function w(.) is locally maximized at i.

3. Discard all spaces of width smaller than w(i
*
).

In our experiments, t = 1.4 emerged as an effective choice.
Later, we also check that the i

* selected in the above
manner is the closest match (in terms of width) to the i* of
other lines and adjust its value if this is not the case; this

helps address corner cases like lines with single words and
those with scanty inter-word spacing. In the end, we use a
contour-walking technique to expand word boundaries
where needed; this reduces line boundary errors (e.g.,
diacritic spillovers).

The Reflow Process

Once words have been identified in a document image,
reflowing them to fit a given width is relatively easy. We
adapt the dynamic-programming approach used by LaTex
[13] to make it work on document images. Three tricky
issues arise when doing this: (1) word alignment – when a
word is moved from one line into the preceding or
succeeding line, it needs to be aligned with the words in
that line. For this, we identify the highest pixel-density row
for every text line – call it the “center” of that line and of
each contained word – and for positioning a word in a fresh
line we align the word’s center with the line’s center; (2)
flow direction – some scripts are written left to right, some
not. Flow direction can be learnt with reasonable accuracy
by locating forced line breaks (although in our current
prototype, we let the user specify it); (3) hyphenation – in
some scripts like English, it is common to break words at
the end of a line using a hyphen. So, if a new word is to be
placed at the end of a hyphen-ending line, it could follow
the hyphen (treat it as part of the word) or it could replace it
(treat it as a word-breaker). The choice seems hard to make
without doing text recognition and so we treat hyphen-
ending lines just as ordinary lines in our current system,
hoping it will not hurt usability in practice.

ACCURACY

We tested the accuracy of our segmentation engine using a
corpus of 139 document images containing printed text –
English (41 images, 7 documents), Hindi (51 images, 6
documents), Kannada (40 images, 8 documents) and Arabic
(7 images, 2 documents). The English, Hindi, and Kannada
images were obtained from the Digital Library of India [3],
the Arabic images through a web search. Documents were
font-diverse within each language, including one case of
type-written text. Twelve documents had bilingual text (7
English-Hindi, 1 Kannada-English, 4 Kannada-Sanskrit).
On average, there were 221.9 words per document. All
Arabic documents used contemporary scripting (figure 1);
traditional Arabic scripts are harder to segment using a
generic top-down technique like ours.

Line Errors Word Errors Language
Merge Split Merge Split

English 0 0 0.37 0.07

Hindi 0 0 0.73 0.09

Kannada 0.26 0 3.87 0.42

Arabic 0 0 3.74 0.10

Table 1. Error rates for our prototype implementation (in %).

Table 1 depicts our accuracy results, which were computed
by manual inspection of the engine’s output. We
encountered very few line identification errors: zero line

4

splits and only a 0.26% rate of line mergers in the case of
Kannada (none for other languages); these errors were
largely due to dangling diacritics, which characterize
Kannada. Word identification was less accurate. We noted
up to a 3.9% rate of word mergers, which were either due to
poor print quality or high variability in inter-word spacing
(e.g., in Arabic, due to the cursive nature of text, some
words tend to be closer to each other than normal,
sometimes as close as characters). Word splits were still
scarce: at most 0.42% per script. These were largely due to
print erasures and sometimes due to stray deviations in
intra-word spacing. The overall segmentation accuracy of
our technique is close to that of the best script-specific
segmentation algorithms: in Kannada, we achieve 95.4%
accuracy and the best accuracy rate for Dravidian languages
is 98.5% [2]. (We remark that [2] achieves this accuracy
using a semi-automated technique which is applied to text
drawn from a single document; our Kannada test set, on the
other hand, was derived from 8 documents.) For Arabic, the
best known accuracy rate is 97% [6] and our technique
currently achieves about 96.1%.

USABILITY

To test usability, we ran a preliminary user study for a
smartphone implementation of our technique. There were 2
goals of the study: (a) compare usability of our technique
with that of reflow-lacking readers across different scripts,
and (b) assess the impact of reflow errors on readability.
Twelve bilingual subjects (6 male, 6 female, mean age: 29)
participated in our study. All subjects were experienced
phone users and 9 reported to have used smartphones in the
past for reading long texts. Subjects were fluent in English
and Hindi; fluency in English was consistently reported to
be greater. During the study, subjects read 2 scanned texts
in each of these languages (a within-subjects design) using
a PDA with Windows Mobile 5.0. One text was read using
the image viewer available for this platform and the other
using our reflow-capable reader. (The former required both
horizontal and vertical scrolling; the latter only vertical
strokes.) For each language, the texts were extracted from a
single source and were identical in word count. Text
presentation was balanced against order and condition.

Subjects read aloud in all conditions and answered 4
multiple-choice questions on each text after reading it. We
observed a significant difference in reading speed between
the two conditions for both English (t(11) = 10.9, p<0.001)
and Hindi (t(11) = 4.9, p<0.001). The difference was
greater for English than for Hindi, plausibly due to the gap
in the subjects’ fluency in the languages. No significant
differences in comprehension were observed, indicating
that the increased speed of reading did not reduce attention.

All subjects stated a preference for the reflow-capable
reader over the reflow-lacking one, and across languages.
Some reported to have noted irregularities while reading the
reflown texts (7 noted word split errors, 5 noted a reflown
line-ending hyphen and 1 noted word misalignment, all

correctly so), but none felt these issues were significant
enough to induce a switch to the default viewer.

Reading speed Comprehension Language Condition
Mean Std.dev Mean Std.dev

No reflow 85.29 10.94 75 26.11 English

Reflow 148.33 26.06 77.08 12.87

No reflow 83.67 26.54 72.91 19.82 Hindi

Reflow 103.27 30.32 72.91 32.78

Table 2. Reading speed and comprehension data for default

(reflow-lacking) image viewer and our reflow-enabled reader.

Reading speed is in words/minute and comprehension in %.

CONCLUSION

With libraries across the world being digitized, there is a
growing need for electronic reading software that can
flexibly address variations in document structure and
composition and, in particular, those in the underlying
script. In this paper, we have addressed a key process in
electronic document reading, namely automated reflow of
text in document images. We demonstrated that it is
possible to execute this process in a script-agnostic manner
without relying on OCR. The technique developed by us
works reasonably well for four scripts; future work will
strengthen accuracy rates for these (and possibly, other)
scripts and incorporate other important elements of layout
analysis like text segregation and block identification. Once
completed, the prototype will be made available publicly.

REFERENCES
1. Breuel, T. Reflowable document images for the Web. In

Proc. WDA 2003, the 2nd International Workshop on Web

Document Analysis, (2003).
2. Dasigi, P., Jain, R., and Jawahar, C.V. Document Image

Segmentation as a Spectral Partitioning Problem. In Proc.

ICVGIP '08, 6th Indian Conference on Computer Vision,

Graphics and Image Processing, (2008).
3. Digital Library of India. http://www.new.dli.ernet.in.
4. Du, X., Pan, W., and Bui, T. Text line segmentation in

handwritten documents using Mumford-Shah model. ICFHR

'08, (2008), 253-258.
5. Ittner, D.J. and Baird, H. Language-Free Layout Analysis. In

Proc. ICDAR '93, (1993), 336-340.
6. Lee, Y., Pepineni, K., Roukos, S., Emam, O., and Hassan, H.

Language Model Based Arabic Word Segmentation. ACL

'03, (2003), 399-406.
7. Muter, P. Interface Design and Optimization of Reading of

Continuous Text. Cognitive Aspects of Electronic Text

Processing, H. van Oostendorp and S. de Mul (Eds.) (1996).
8. Nagy, G., Seth, S., and Viswanathan, M. A Prototype

Document Image Analysis System for Technical Journals.
Computer 25, 1992, 10-22.

9. Öquist, G. and Lundin, K. Eye Movement Study of Reading
Text on a Mobile Phone using Paging, Scrolling, Leading
and RSVP. In Proc. MUM '07, 6th International Conference

on Mobile and Ubiquitous Multimedia, (2007).
10. Repligo Reader. http://www.cerience.com/products/reader.
11. The Million Book Project. http://www.ulib.org.
12. The Visualiser Forum. http://www.visualiserforum.org/.
13. Word Wrap. http://en.wikipedia.org/wiki/Word_wrap.

