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ABSTRACT 

Reading text from document images can be difficult on 
mobile devices due to the limited screen width available on 
them. While there exist solutions for reflowing Latin-script 
texts on such devices, these solutions do not work well for 
images of other scripts or combinations of scripts, since 
they rely on script-specific characteristics or OCR. We 
present a technique that reflows text in document images in 
a manner that is agnostic to the script used to compose 
them. Our technique achieved over 95% segmentation 
accuracy for a corpus of 139 images containing text in 4 
genetically-distant languages—English, Hindi, Kannada 
and Arabic. A preliminary user study with a prototype 
implementation of the technique provided evidence of some 
of its usability benefits. 
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INTRODUCTION 

In several practical scenarios, electronic documents can be 
viewed only as images and access to the underlying raw 
text is either difficult or infeasible. One example of such a 
scenario is of reading text from digital libraries like Google 
Books. Another example is that of collective viewing of a 
digital presentation made using a document camera [12].  

One issue that can hinder readability in such scenarios is the 
screen width available to the user. A researcher reading 
scanned pages from Google Books on a phone or an eBook 
reader may find it frustrating if he is forced to scroll back 
and forth for every line of text. Students in a large class 
reading text from a projector screen may have a hard time if 
the displayed text lines do not fit the screen or are otherwise 
made too narrow to maintain legibility. A suitable user 
interface for such scenarios would be one which allows text 

to be enlarged and shrunk while also being reflowed into a 
fixed screen width. (See figure 1.) 

Although the problem of reflowing text in document images 
has been studied in the past [1], such work has largely 
focused on documents containing English text. The 
resulting tools are inapplicable to non-English documents 
and those written in non-Latin scripts, in particular. There 
are several ongoing efforts today on digitizing books in 
Asian and other non-Western languages [11,3] and 
simultaneously, the number and variety of electronic 
reading devices available to users is on the rise worldwide. 
Enabling universal and convenient access to cross-language 
digital libraries raises the need for reflow-capable readers 
that operate on different scripts; indeed, such a need has 
been expressed by some mobile phone users already1. 

  

  

Figure 1. Document images in Hindi (top-left) and Arabic 

(bottom-left) and their corresponding reflowed versions. Hindi 

is written from left to right, Arabic from right to left.  

In this paper, we present a technique to reflow text stored in 
document images in a manner that is independent of the 
script used to create them. Our technique is simple and at its 
heart, it involves segmenting blocks of text in a document 
image into individual words without implementing any 
character recognition. While segmenting text, we address 
the possible presence of diacritics and tolerate a moderate 
amount of variability in inter- and intra-word spacing, 
particularly capturing cases of zero intra-word spaces, a 
characteristic of some Asian scripts. Addressing such 
possibilities raises interesting challenges unmet by previous 
reflow techniques. 

                                                           
1 See this online discussion forum, for example: 
http://www.mobileread.com/forums/showthread.php?t=61633, 2009. 
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Our technique works for scripts which use white spaces to 
delimit words and lines; this includes scripts of most major 
language families including, in particular, the Indo-
European, Semitic and Dravidian families. As a proof of 
concept, we have tested a prototype implementation on text 
from 4 languages: English (a West-Germanic language), 
Hindi (an Indo-Aryan language and the most-widely spoken 
one in India), Kannada (a Dravidian language from South 
India) and Arabic (a Semitic language spoken in West Asia 
and Africa). Results from our initial experiments are 
promising: for a sample of 139 document images, our 
technique achieved over 99% accuracy for English and 
Hindi and over 95% for the other two languages.  

While these accuracy rates could potentially be improved 
by tweaking our technique for individual scripts, we believe 
there is value in persisting with a script-agnostic approach. 
First, it results in a simpler user interface – a reflow-
enabled reader that requires no parameter input from the 
user (not even the script name!). The second and more 
important reason is that it addresses the case of multi-
lingual text. The use of English words in non-Western text 
is prevalent practice and even in our sample corpus, we find 
several instances of English words immersed in largely 
non-English text. We also find cases of English documents 
containing non-Latin script (e.g., language-learning books) 
and of Indian documents that use multiple Indian scripts. 
Text reflow for such documents must necessarily be 
agnostic to the underlying script. 

RELATED WORK 

The issue of reflowing text for facilitating reading on small 
screens has arisen multiple times in the literature [6, 7]. For 
the case of reading Western-language text on small screens, 
it is well established that viewing automatically reflowed 
text (in document images or otherwise) is preferred by users 
over navigating horizontal pan/scroll interfaces [7]. In fact, 
text reading studies for mobile devices often use reflowed 
text as the baseline presentation format [9]. What is missing 
in the literature is a tool that implements reflow for 
document images and does this cross-linguistically. This is 
the problem we address in the current paper. 

For English, there are reflow-capable document readers 
already available in the market [10] but most of the 
commercial tools rely on OCR for implementing reflow. 
However, good OCR tools are not yet available for Asian 
languages like Hindi and Kannada and there is some 
evidence (from users of web forums) that reflow 
technologies for English do not work with such languages. 
In the academic literature, there is some work on OCR-less 
reflow but largely, for English only [1]. Some assumptions 
made by [1], like the presence of inter-character spacing 
and the absence of diacritics, are violated by non-Latin 
scripts. To the best of our knowledge, ours is the first work 
which attempts text reflow for Indic, Arabic and Latin 
scripts using a single algorithm. 

There is much literature on document image segmentation 
for both Latin and non-Latin scripts. Surprisingly, though, 
there is little work on techniques to segment document 
images in a script-agnostic manner. Ittner and Baird build a 
language-free document image analysis tool [5] but they 
rule out Hindi and Arabic because of the way these 
languages treat intra-word spaces. Accuracy of their tool is 
not known for any script; in fact, there is subsequent work 
[2] which shows that their technique (and of others, e.g., 
[8]) performs poorly on Indic scripts. There has been some 
work on script-independent line segmentation of hand-

written text [4] but accuracy measures are again not known, 
and applicability to Indic/Arabic text is unclear. Besides, 
line segmentation, in general, is insufficient for text reflow. 

THE ALGORITHM 

Our technique works well for a class of scripts which we 
refer to as segmentable scripts. Such scripts have distinct 
white spaces separating adjacent lines and adjacent words 
and if they admit spaces within words then the width of 
every such space is strictly less than that of every inter-
word space. For simplicity, we assume that text is written in 
straight horizontal lines and read from top to bottom, 
although it seems possible to remove this assumption by 
automatically learning line orientation. We rule out 
logographic scripts like Chinese which do not delimit words 
by spaces; such scripts require domain knowledge for 
segmentation. (Our definition of segmentable scripts is 
similar to that of Manhattan scripts/layouts [5], except that 
(a) we permit zero intra-word spacing and the use of 
dangling diacritics; (b) we do not consider vertical 
orientations.) 

The technique operates on high-resolution document 
images such as those obtained by digitally scanning paper 
documents (300+ dpi). In the current version, we make a 
few other assumptions about the input image: it contains 
only text, the text has nearly-consistent font size and inter-
line and inter-word spacing, the image is binarized (has 
only black and white pixels) and there is no skew or shear. 
There are known script-agnostic approaches to address 
some of these issues [5], although some others (e.g., use of 
variable font size and spacing) are hard to address even for 
single scripts.  

There are two main components of our algorithm: a 
segmentation engine which identifies words within the text 
and a reflow process which reorganizes the identified words 
to fit a particular line-width. For segmentation, we use a 
top-down approach based on projection profiles: first, 
compute the black-pixel density for each row of pixels in 
the image and identify rows with zero density; these define 
the line boundaries. Then, for each identified line (region 
between 2 line boundaries), compute the black-pixel density 
for each column of pixels and identify “large” groups of 
consecutive columns with zero density; these define word 
boundaries within that line. Implementing this approach 



accurately and script-agnostically, however, raises some 
non-trivial issues.  

Line Identification Issues 

First, black pixels in the space between lines can cause 
pairs of lines to be treated as one line. This could either be 
because of noise but, more importantly, due to the use of 
diacritics which extend downwards or upwards from a text 
line. Figure 2 shows an extract of Kannada text from our 
corpus with heavy use of such diacritics; the horizontal 
projection of this extract has no rows with zero black-pixel 
density. It is for this reason that segmentation algorithms 
for Kannada (and other Dravidian languages) tend not to 
use projection profiles but instead adopt a bottom-up 
segmentation approach [2]. Bottom-up approaches, though, 
are difficult to apply cross-linguistically, so we stick with 
the projection profiles approach but modify it to search for 
minimas in row pixel densities, instead of absolute zeroes. 
This introduces a slight risk of line over-segmentation but 
we counter the risk using suitable thresholds to separate 
inter-line minimas from intra-line ones. (A multiplicative 
threshold of 0.1 sufficed in our tests.) 

 

Figure 2. A splice of a Kannada document image with its 

horizontal projection profile. There are no regions of zero 

pixel density in the profile but there are several minimas. 

Sometimes, diacritics could be completely detached from 
associated words and could get treated as separate lines by 
our segmentor. We detect such cases by relying on two 
characteristics of diacritic-only lines: they are much shorter 
than true text lines and contain regions of contiguous white 
columns. Using appropriate thresholds, we detect these 
lines and merge them with nearby text lines. 

Word Identification Issues  

Once text lines have been identified, the key issue is to 
identify inter-word spaces in each line. Doing this script-
agnostically is difficult since some scripts admit intra-word 
spaces while others (e.g., Hindi) don’t. For the former 
scripts, the distribution of white spaces in each line is 
bimodal; for the latter, it is unimodal. Our goal is to address 
both possibilities simultaneously and we do it as follows:  

1. Let w(i) be the width of the i
th  

narrowest white space in 

the line. 

2.  Identify the smallest i, say i
*
, for which the ratio 

w(i)/w(i-1) exceeds a threshold t and for which the slope 

of function w(.) is locally maximized at i.  

3. Discard all spaces of width smaller than w(i
*
). 

In our experiments, t = 1.4 emerged as an effective choice. 
Later, we also check that the i

* selected in the above 
manner is the closest match (in terms of width) to the i* of 
other lines and adjust its value if this is not the case; this 

helps address corner cases like lines with single words and 
those with scanty inter-word spacing. In the end, we use a 
contour-walking technique to expand word boundaries 
where needed; this reduces line boundary errors (e.g., 
diacritic spillovers).  

The Reflow Process 

Once words have been identified in a document image, 
reflowing them to fit a given width is relatively easy. We 
adapt the dynamic-programming approach used by LaTex 
[13] to make it work on document images. Three tricky 
issues arise when doing this: (1) word alignment – when a 
word is moved from one line into the preceding or 
succeeding line, it needs to be aligned with the words in 
that line. For this, we identify the highest pixel-density row 
for every text line – call it the “center” of that line and of 
each contained word – and for positioning a word in a fresh 
line we align the word’s center with the line’s center; (2) 
flow direction – some scripts are written left to right, some 
not. Flow direction can be learnt with reasonable accuracy 
by locating forced line breaks (although in our current 
prototype, we let the user specify it); (3) hyphenation – in 
some scripts like English, it is common to break words at 
the end of a line using a hyphen. So, if a new word is to be 
placed at the end of a hyphen-ending line, it could follow 
the hyphen (treat it as part of the word) or it could replace it 
(treat it as a word-breaker). The choice seems hard to make 
without doing text recognition and so we treat hyphen-
ending lines just as ordinary lines in our current system, 
hoping it will not hurt usability in practice. 

ACCURACY 

We tested the accuracy of our segmentation engine using a 
corpus of 139 document images containing printed text – 
English (41 images, 7 documents), Hindi (51 images, 6 
documents), Kannada (40 images, 8 documents) and Arabic 
(7 images, 2 documents). The English, Hindi, and Kannada 
images were obtained from the Digital Library of India [3], 
the Arabic images through a web search. Documents were 
font-diverse within each language, including one case of 
type-written text. Twelve documents had bilingual text (7 
English-Hindi, 1 Kannada-English, 4 Kannada-Sanskrit). 
On average, there were 221.9 words per document. All 
Arabic documents used contemporary scripting (figure 1); 
traditional Arabic scripts are harder to segment using a 
generic top-down technique like ours. 

Line Errors Word Errors Language 
Merge Split Merge Split 

English  0 0 0.37 0.07 

Hindi 0 0 0.73 0.09 

Kannada 0.26 0 3.87 0.42 

Arabic 0 0 3.74 0.10 

Table 1. Error rates for our prototype implementation (in %).  

Table 1 depicts our accuracy results, which were computed 
by manual inspection of the engine’s output. We 
encountered very few line identification errors: zero line 
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splits and only a 0.26% rate of line mergers in the case of 
Kannada (none for other languages); these errors were 
largely due to dangling diacritics, which characterize 
Kannada. Word identification was less accurate. We noted 
up to a 3.9% rate of word mergers, which were either due to 
poor print quality or high variability in inter-word spacing 
(e.g., in Arabic, due to the cursive nature of text, some 
words tend to be closer to each other than normal, 
sometimes as close as characters). Word splits were still 
scarce: at most 0.42% per script. These were largely due to 
print erasures and sometimes due to stray deviations in 
intra-word spacing. The overall segmentation accuracy of 
our technique is close to that of the best script-specific 
segmentation algorithms: in Kannada, we achieve 95.4% 
accuracy and the best accuracy rate for Dravidian languages 
is 98.5% [2]. (We remark that [2] achieves this accuracy 
using a semi-automated technique which is applied to text 
drawn from a single document; our Kannada test set, on the 
other hand, was derived from 8 documents.) For Arabic, the 
best known accuracy rate is 97% [6] and our technique 
currently achieves about 96.1%. 

USABILITY 

To test usability, we ran a preliminary user study for a 
smartphone implementation of our technique. There were 2 
goals of the study: (a) compare usability of our technique 
with that of reflow-lacking readers across different scripts, 
and (b) assess the impact of reflow errors on readability. 
Twelve bilingual subjects (6 male, 6 female, mean age: 29) 
participated in our study. All subjects were experienced 
phone users and 9 reported to have used smartphones in the 
past for reading long texts. Subjects were fluent in English 
and Hindi; fluency in English was consistently reported to 
be greater. During the study, subjects read 2 scanned texts 
in each of these languages (a within-subjects design) using 
a PDA with Windows Mobile 5.0. One text was read using 
the image viewer available for this platform and the other 
using our reflow-capable reader. (The former required both 
horizontal and vertical scrolling; the latter only vertical 
strokes.) For each language, the texts were extracted from a 
single source and were identical in word count. Text 
presentation was balanced against order and condition.  

Subjects read aloud in all conditions and answered 4 
multiple-choice questions on each text after reading it. We 
observed a significant difference in reading speed between 
the two conditions for both English (t(11) = 10.9, p<0.001) 
and Hindi (t(11) = 4.9, p<0.001). The difference was 
greater for English than for Hindi, plausibly due to the gap 
in the subjects’ fluency in the languages. No significant 
differences in comprehension were observed, indicating 
that the increased speed of reading did not reduce attention.  

All subjects stated a preference for the reflow-capable 
reader over the reflow-lacking one, and across languages. 
Some reported to have noted irregularities while reading the 
reflown texts (7 noted word split errors, 5 noted a reflown 
line-ending hyphen and 1 noted word misalignment, all 

correctly so), but none felt these issues were significant 
enough to induce a switch to the default viewer. 

Reading speed Comprehension Language Condition 
Mean Std.dev Mean Std.dev 

No reflow 85.29 10.94 75 26.11 English 

Reflow 148.33 26.06 77.08 12.87 

No reflow 83.67 26.54 72.91 19.82 Hindi 

Reflow 103.27 30.32 72.91 32.78 

Table 2. Reading speed and comprehension data for default 

(reflow-lacking) image viewer and our reflow-enabled reader. 

Reading speed is in words/minute and comprehension in %. 

CONCLUSION 

With libraries across the world being digitized, there is a 
growing need for electronic reading software that can 
flexibly address variations in document structure and 
composition and, in particular, those in the underlying 
script. In this paper, we have addressed a key process in 
electronic document reading, namely automated reflow of 
text in document images. We demonstrated that it is 
possible to execute this process in a script-agnostic manner 
without relying on OCR. The technique developed by us 
works reasonably well for four scripts; future work will 
strengthen accuracy rates for these (and possibly, other) 
scripts and incorporate other important elements of layout 
analysis like text segregation and block identification. Once 
completed, the prototype will be made available publicly. 
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