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ABSTRACT

The use of cellular data networks is increasingly populartduhe
widespread deployment of 3G technologies and the rapidtemfop
of smartphones, such @Bhone and GPhone. Besides email and
web browsing, a variety of network applications are now lazée,
rendering smartphones potentially useful substitutethieir desk-
top counterparts. Nevertheless, the performance of shrartpap-
plications in the wild is still poorly understood due to aKaaf
systematic measurement methodology.

We identify and study important factors that impact user-
perceived performance of network applications on smartpbo
We develop a systematic methodology for comparing thisoperf
mance along several key dimensions such as carrier netnaeks
vice capabilities, and server configurations. To ensureraafal
representative comparison, we conduct controlled exparis) in-
formed by data collected througdGTest, a cross-platform mea-
surement tool we designed, executed by more than 30,008 user
from all over the world. Our work is an essential step towanas
derstanding the performance of smartphone applicatiams the
perspective of users, application developers, cellulawork oper-
ators, and smartphone vendors. Our analysis culminatésavget
of recommendations that can lead to better applicatiorgdesid
infrastructure support for smartphone users.

Categories and Subject Descriptors

C.2.1 Network Architecture and Design]: Wireless communi-
cation; C.4 Performance of Systemp Performance attributes;
C.4 [Performance of Systemp Measurement techniques; D.2.8
[Metrics]: Performance measures

General Terms
Experimentation, Measurement, Performance
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1. INTRODUCTION

As of the third quarter of 2009, global smartphone shipments
reached 41.4 million units representing about 15% of the tab-
bile phone market [3]. It is expected that in the next few gear
smartphone sales will catch up with the sales of regular @bon
Vendors, such as Research in Motion, Samsung, Palm, HTC, and
Apple, offer a variety of smartphones equipped with incireglg
faster CPUs and larger memory, though still lagging behieske
top or laptop systems. With access to various high-speede3G n
works, such as EVDO and UMTS, they are powerful enough to run
modern operating systems and sophisticated network apiplis
such as web browsing, email, and streaming media.

Unlike traditional Internet-based applications, whosefqre
mance is mostly constrained by the wired network, netwodiap
cation performance on smartphones with limited physicsdueces
also heavily depends on factors including hardware andvaoét
on the phone as well as the quality and load of wireless link- U
derstanding the application performance on smartphoriespisr-
tant for the purpose of assisting consumers in choosingecaiand
phones and guiding application developers in designirgligent
software. Moreover, cellular network operators and snharte
hardware and software vendors can use this knowledge tmiagti
networks and phones for better end-user experiences. &iynil
content providers can leverage this knowledge to bettdomize
content for mobile users. However, this task is quite chaileg
since the performance of network applications on smartgfos
poorly understood thus far, due to a lack of a systematiccampr
for controlled experiments and comparative analysis. Wie\
this work fills this gap.

We focus on developing systematic methodology for meagurin
and analyzing 3G network performance as well as smartphpne a
plication performance. We make it relevant to end users lbgyst
ing real applications directly on the phone platforms. Opr a
proach differs inherently from most previous work of usiagtops
equipped with 3G data cards in three ways: (1) We measure the
performance of applications rather than that of the lovelg@voto-
cols. Prior work has shown that application performanceroig-
nificantly deviates from protocol performance [24]. We &irthe
pervasive web browsing, streaming video, and VoIP apjitinat
that most end-users care about; (2) We measure application p
formance on several common mobile devices. Applicatiofoper
mance varies widely across devices due to differences thwzae



and software, necessitating direct experimentation ontpimanes
instead of on laptops with wireless cards; (3) We study thdicg
tion performance under real-world scenarios and quartigyper-
formance of web browsing by evaluating commercial websites
addition to locally-constructed ones with replicated) veab con-
tent under our control. The latter setup helps dissect aat/za
the individual factors that contribute to the overall welvasing
performance.

To overcome the limitation of a single vantage point for lgca
conducted measurements, we design and deploy a crossrpiatf
measurement tool, calle8GTest, to measure network-level per-
formance, using basic metrics such as throughput, roupdinie
(RTT), retransmission ratefc. attracting more than 30,000 users
all over the world, providing a representative data set ercthrent
3G network performance3GTest enables us to carry out local ex-
periments informed by realistic 3G network conditions asrdi-
verse locations and network carriers. As far as we krig@fiest
is the first such cross-platform tool available that compretively
characterizes 3G network performance, and our data setds al
unique in that regard.

In addition to shedding light on the overall application aed-
work performance, we perform detailed analysis to idendifyl
isolate factors that impact user-perceived performand¢elo car-
riers, phone vendors, content providers, and applicattweldpers
gain insight. For example, for carriers, we infer variousamoek-
level problems,e.g., high latency or high loss rate, which they
can directly take action on. For phone vendors, we identdy p
formance bottlenecks on the devices or issues associatbdhei
content. These issues can be resolved either independerily
cooperating with content providers. And for applicatiovelep-
ers, we evaluate factors such as the overhead of HTML remgleri
and Javascript execution given a particular software cordigon.

We comprehensively study the 3G network and application per
formance for all four major U.S. wireless carriers inclugiiir &T,
Sprint, Verizon, and T-Mobile. We choose popular devicesuid-
ing iPhone, Android G2 from HTC, and Windows Mobile phones
from Palm, HTC, and Samsung for carrying out experiments. Ou
results show that their performance varies significanthpse net-
work applications. In fact, even for the same network ajgpion
such as web browsing, certain types of phones consistentheo
form others due to the differences in factors such as dowliriga
behavior, customized contents, and page rendering. ThHeapp
tion performance also heavily depends on properties oferarin-
cluding DNS lookup, RTT, and loss rate.

We summarize our main observations from extensive experime
tation:

1. The four carriers we studied demonstrate distinct cherise
tics in network performance in terms of throughput, RTT, re-
transmission rate, and time-of-day effect. For exampley-co
pared with T-Mobile and AT&T’'s median of TCP retrans-
mission rate of 0%, Sprint and Verizon have a higher median
value of 0.7%.

2. TCP throughput, RTT, and retransmission rate vary widely
even for a single carrier in measurement taken at different
times and locations.g., downlink throughput ranges from
50 kbps to 4 Mbps for AT&T, with the median value of about
1 Mbps.

3. The wireless delay in the 3G network dominates the whole
network path delaye.g., latency to the first pingable hop is

4. Besides networks, devices heavily influence applicatiem
formance. Given the same content and network condition,
different devices exhibit vastly different webpage loagin
time, e.g., the page loading time of Samsung SCHi760 is
consistently twice that of iPhone.

. Mobile devices can benefit from new content optimization
techniques like the data URL scheregy., page loading time
for GPhone can improve by 20% in our experiments, despite
its already good performance compared to other devices.

The paper is organized as follows. 82 covers related worg3Jn
we propose our methodology for experiments, followed bitet
of the experimental setup in 84. In 85, we present 3G network
characterization and then focus on web performance in 86. We
evaluate the performance of streaming video and voice dvén |
§7, and conclude in §8.

2. RELATED WORK

Our work is inspired by the Netdiff system [17], which es-
tablished a benchmark for comparing performance of differe
ISPs. In our research, we attempt to establish an equiviaésmth-
mark for comparing network application performance on $mar
phones. Although some online comparisons are availableh su
as Speedtest.net [7] and FCC's broadband test [4], whiclsunea
throughput and latency in 3G networl@&Test covers a more com-
prehensive set of metrics, including DNS lookup, ping tofiret
hop, TCP handshake, and HTTP request to landmark servats. Ta
et al. carried out a similar measurement study on multiple commer-
cial 3G networks [20]. However, their study is limited to doea-
tion (Hong Kong) and a few devices. Compared with their study
our work covers significantly more users from many diffelena-
tions.

There have been several studies focusing on mobile users fro
the perspective of applications, such as [21] which cheramtd
the relationship between users’ application interests raotil-
ity, and [9] which examined the possibility of geolocatirf® &d-
dress in 3G networks. Other related measurement works lofael
data networks include a study of the interaction betweemihe
less channels and applications [16], an investigation pliegtion-
aware acceleration to improve application performancég Rger-
formance study of multimedia streaming [12], and perforagan
analysis of TCP/IP over 3G network with rate and delay varia-
tion [11]. Our work complements these works with differemtiis
and methodology.

From the perspective of measurement methodology3GTest
tool is among the earliest cross-platform 3G network penforce
characterization tools for smartphones covering a diveesef per-
formance metrics, even though the idea of taking measuresmen
from voluntary users is not novel. For example, Netalyziigsine
such tool focusing on desktop environment. Unlike previstusi-
ies,e.g., [16, 10, 14], which perform measurements on desktop or
laptop systems, relying on cellular network data cards amphk
tethered through USB as a modem, we evaluate application per
formance directly using phones as the measurement plattorra
more accurately reflecting the actual user experience.

Compared to many previous works, we do not rely on propri-
etary data from carriers and mostly take a black-box measeme
approach by examining performance at the application atwdonk
layers without accessing detailed information of wirelelsannels
(e.g., [16]) or the internal state of cellular data networkgy(, [23]).

around 200 ms, which is close to the end-to-end Ping latency This therefore presents an interesting challenge of iimfgthe bot-

to landmark servers distributed across the U.S.

tleneck of observed application performance. We argue ttieat



limitation of reduced visibility into the inner working ohé 3G
network does not prevent us from achieving the goal of effelgt
comparing network and application performance acroserdifft
3G carriers and understanding the effect of major factors.

Our work is built upon numerous previous TCP studies forucell
lar data networks which aim to understand the behavior of I&P
ing cross-layer measurement techniques [18], to modeli-raik
and multi-user behavior [13], and to improve transport tafpe
wireless wide-area networks [22]. These studies exposértie
tations of existing TCP designs, some of which are also aoefir
by our work.

3. METHODOLOGY

In this section, we present our methodology for measuririg ne
work and application performance over 3G networks. Inspirg
previous work in the Internete.g., Netalyzr [5], which collects
measurement data from volunteers, we develop a crossyptatf
measurement tool used by tens of thousands of users onrtfegit-s
phones to build a comprehensive data set for cellular n&svdy
analyzing the performance of web, video, and VoIP appliceti
we examine the effects of various factors on the overalliegipbn
performance.

Unlike most previous works, we directly measure applicatio
performance on devices that consumers really use with 3@cser
provided by four major cellular carriers in the U.S., thidgseus
understand the client side factors and their impact on eagidin
performance. The novelty of our measurement methodolagyst
from our approach of approximately replicating the 3G nekwo
condition for controlled experiments using WiFi to enabépno-
ducibility, and isolating the impact of each factor. Thesghnhiques
are non-trivial given the complexity of mobile devices amdwork
environment, and essential for eliminating interactioroas fac-
tors.

3.1 Measuring network performance

We first describe the metrics we use for evaluating network pe
formance and how we compute them.

3.1.1 Metrics

To characterize network performance, we use TCP throughput
downlink RTT, retransmission rate, local DNS lookup time& P
handshake time, and Ping latency to the first responsive pPako
our metrics. TCP is of particular interest, since most nekvep-
plications use TCP. An application session usually regub8lS
lookup, and every TCP connection begins with a TCP handshake
Hence these two factors contribute heavily to user-peeceper-
formance of many network applications. Ping latency to the fi
responsive hop provides an estimate of the latency of thelegs
hop.

3.1.2 3GTest

We developed a cross-platform tool nang&iflest for measuring
cellular network performance. It runs several experimentsllect

networks but not on the phone based on observed latenciés. Th
is possible since compared to the phone the LDNS serveraijyic
has a larger DNS cache. To measure TCP handsB&lest sends
TCP connect requests to several landmark servers sparsely dis-
tributed across the U.S. To characterize ping latency,anlmtings
www. googl e. comwith increasing TTL values starting from 1
and records the IP address and corresponding RGTest also
pings the landmark servers to obtain the delay distributodi-
verse Internet locations.

We have made&GTest (htt p://ww. eecs. umi ch. edu/
3GTest /) publicly available, which allows us to characterize 3G
network performance in multiple cellular carriers at dsetoca-
tions over an extended duration.

3.1.3 Analysis methodology

We calculate RTT and TCP retransmission rate from server col
lected packet trace. We follow the standard method to infefR
from traces at the sender. At any given time, we pick one data
packet and its corresponding ACK packet to compute one RTT
sample. We take one sample per TCP window so that the average
RTT will not be skewed by the window size. To prevent retraissm
sion from inflating RTT estimation, we discard an RTT sample i
there is any retransmission in the same window. We then cteampu
the average RTT of all the samples of a TCP connection.

3.2 Measuring web browsing performance

Web browsing is one of the most popular smartphone appli-
cations. The process of visiting a webpage can be quite com-
plex given the dynamic nature of the content often generfated
Javascript, resulting in multiple concurrent TCP conrmeti Con-
tent can also be customized based on mobile device and rcarrie
network.

Web browsing performance depends on various factors,
e.g., DNS lookup time, TCP handshake time, TCP transfer time,
Javascript execution time, and content size. To study tleetedf
these factors, we carefully design controlled experimémtsia-
nipulate a single factor at a time while keeping others thaesa
We first describe the metrics used to evaluate web browsing pe
formance, followed by the controlled experiments to meashese
metrics.

3.2.1 Metrics

Page loading time: The time between the first DNS packet
and the last data packet containing payload from the senwéngl

a page loading. It reflects the overall performance perdebse

a user. Note that a browser needs to further parse and render a
webpage after it is loaded. This additional processing nwybe

fully included in page loading time due to a lack of visihjlibf

the browser internals. Nonetheless, this is still a keydattir of
user-perceived performance when loading a webpage.

Javascript execution speed: Many webpages contain
Javascripts, and hence Javascript execution speed haficsign

measurements such as TCP throughput, DNS lookup delay, TCPimpact on page rendering time.

handshake time, and Ping latency. In the TCP throughputrexpe
ment, data is transferred between the phone and a servezaedn
to the Internet for a time duration. Packet traces are deitkat the
server side to calculate TCP downlink and uplink throughRdtT,
and retransmission rate.

For the DNS experimen8GTest sends DNS requests to resolve
a list of selected popular domain names. By tuning the sizbef

Page size: The total number of unique bytes downloaded. It can
be used to computaverage throughput and to detect content vari-
ation and customization. We found that in real web browsavgn

the same URL can have different page sizes when accessed from
different platforms. We cope with this effect by taking sslapts

of URLs and replicate their content on our local web server.
Browser concurrency:  Most modern browsers support concur-

list and looking up each DNS name twice, we ensure the namesrent TCP connections to a single web domain. The maximum num-

are highly likely cached at the local DNS (LDNS) server inrear

ber of concurrent TCP connections to a domain varies aclibss d



ferent browsers. Usually, higher concurrency enablegbbtnd-
width utilization which in turn leads to shorter page loagtmme.
DNS lookup time: A browser sometimes needs to look up the
IP address of a domain name before establishing a TCP commect
with the web server. Since the content of a webpage can bechost
in multiple domains, a browser may have to perform a DNS Ipoku
for each domain.

TCP handshake time: Each TCP connection starts with a three-
way handshake during which no data is transferred. More TCP
handshakes for a single page loading often lead to larger lpagd-
ing time.

TCP idle time & transfer time: Given a TCP connection, an
idle period is defined to be a period of at ledstsecond with no
network activity. The remaining time periods within the nention
aretransfer periods. An idle period usually corresponds to the local
processing delay or server processing delay. Given thegth@PU
power and memory on smartphones, the TCP idle time is lilely t
be dominated by local processing delay., between the receipt
of a response and transmission of the next request, ofteseddy
HTML rendering and JavaScript execution

3.2.2 Controlled experiments

We create a list of popular URLs from [1]. These websites are
visited using smartphones via 3G networks. From the catbct
packet trace, we infer various metrics such as page loadimg t
To study the effect of each factor influencing the web brogsin
performance, we host static copies of these popular URLsuon o
local web server. The content is replicated to ensure thahel
phones download the same content and all HTTP requestsrare se
to the local server. To control the network conditions, wiarmly
use WiFi across all phones while varying one factor at a tifte
WiFi link is lightly loaded and has stable throughput and RTG
produce network conditions comparable to 3G, we artifigiait
troduce delay and packet loss at our server. We study thecinopa
the following factors on web browsing performance:

Impact of network:  To study the effect of network conditions
on page loading time, we vary the RTT and loss rate on our serve
Impact of concurrency: To study the effect of concurrency,
we control the maximum number of concurrent TCP connections

3.2.3 Analysis methodology

Now we describe how to analyze the traces collected from con-
trolled experiments to compute the desired metrics. Weutztie
the page loading time of each URL as defined in 83.2.1 and the
average page loading time of all the selected URLs. To measur
Javascript execution time, we modify the Javascripts tplays
their execution time when their execution finishes. We usath
erage concurrency as a measure of browser concurrency. The av-
erage concurrency of a page loading is calculated by digite
total duration of all the TCP connections by the page loatliimg.

For each TCP connection, TCP handshake time is calculated as
the time between the fir§YN and SYN-ACK packets. TCP idle
time is measured by scanning the connection for durationsooé
thanT seconds of no network activityl. should be larger than the
maximum RTT values and we will discuss the choiceloin §4.
TCP transfer time is the rest for the connection. We alsoutzie
the response time of all the DNS lookups, ;.

Since each web browsing session often consists of multgie ¢
current TCP connections, to estimate the contribution ot éactor
to the overall performance, we logically serialize all DN®Kups
and TCP connections. This is possible for mobile web brows-
ing since no HTTP pipelining is observed on any phones. Af-
ter serialization, we get a total time&,,:,; which is the sum of
each connection’s duration. Assuming the actual pagengatne
is T} ..., the normalized DNS lookup timé&}, . is calculated as
T}otar * Tans /Trotar. This metric shows the overall weight of DNS
lookup in the actual page loading time. The normalized TQRlha
shake time, TCP idle time and TCP transfer time are caladlizte
a similar way.

4. EXPERIMENTAL SETUP

In this section, we introduce the platforms used for our expe
iments, the cross-platform measurement t@@Test) that we de-
veloped and widely deployed, and the actual conditions analp-
eters chosen for the experiments outlined in §3.

4.1 Platforms

Table 1 lists the devices used and carriers studied in thik.wo
We studied four major carriers in the U.S., AT&T, Sprint, Mer

to a web domain on the server side. Because a phone also limitszon, and T-Mobile. They split between UMTS/HSPA (AT&T and

the maximum number of concurrent connections per domain, we
create a special webpage in which each web object is hostad in
unique domain on the same web server. This effectively allow
us to bypass the concurrency limit imposed by the phonese Not
that this is necessary as we do not have the permission tctlglire
modify the concurrency limit on the phone.

Impact of compression: To study the tradeoff between network
overhead and computation overhead, we configure our webrserv
into two modes, one uses compression, while the other daes no
We compare the page loading time under these two modes.
Impact of Javascript execution speed: To evaluate Javascript
execution speed on different phones, we use a benchmarki8] ¢
sisting of 26 different Javascripts. The benchmark is ltbeteour
web server and accessed by phones via WiFi so that the dadvnloa
ing time is negligibly small. We measure the total executiome

of these Javascripts.

Impact of data URL scheme: We also study the effect of
the data URL scheme [15], a recently-proposed mobile webpag
design techniques.
constructed using and without using the data URL scheme.

T-Mobile) and EVDO (Sprint and Verizon). AT&T has the highes
advertised downlink and uplink data rates. The actual daéssithat

a user can attain depend on many factors, such as signajtstren
location, and background traffic. One of our goals is to usided
how the actual data rates match the advertised ones and falsich
tors have the biggest impact on actual data rates.

To measure user-perceived performance on smartphones, we
conducted controlled experiments on five popular devictadiin
Table 1. We also used a few desktop computers as web servers.
These desktops are connected with high-speed ethernettdbely
are unlikely to become the bottleneck. They have Intel Cive@

2.26 GHz processors and 2 GB memory, running Ubuntu 9.10 and
Firefox 3.5.

4.2 3GTest

To make our study representative across multiple locations
and carriers, we developed a cross-platform measuremeht to
3GTest [6] for three mobile platforms: iPhone, Android and Win-

We compare the time to load a webpagedows Mobile. 3GTest consists of several types of experiments

essential to characterize network performance, includizP
throughput, DNS lookup, TCP handshake to landmark servers,
ping to the first responsive hop, ping to landmark sertcs,For



| Referred to as I iPhone | Palm | Samsung | G2 | HTC |
Carrier AT&T Sprint Verizon T-Mobile AT&T
Network UMTS EVDO EVDO UMTS UMTS
Advertised Downlink(Mbps) 0.7-1.7 0.6-1.4 0.6-1.4 0.6-1.0 0.7-1.7
Advertised Uplink(Mbps) 0.5-1.2 0.35-0.5 0.5-0.8 0.3-0.7 0.5-1.2
Vendor Apple Palm Samsung HTC HTC
Device iPhone Treo800w SCHi760 Android G2 TyTnll
Memory (MB) 128 128 64 192 128
Processor (ARM) 1176 1136 920T 1136EJS 1136EJS
CPU frequency (MHz) 620 333 400 528 400
oS iPhone OS 2.1l Windows Mobile 6.1| Windows Mobile 6.1| Android 1.6 | Windows Mobile 6.1
Browser Safari IE IE Browser App IE

Table 1: Device specifications and 3G network carriers

[ 8] Figure | Description | Category |
5.1 | Figure 1(a)(b)(c)(d)] 3GTest downlink, uplink performance TCP @GTest)
5.1 | Figure 1(e)(f)(g)(h)| 3GTest Ping, DNS, TCP handshake Ping, DNS lookup, TCP handshak&3Test)
5.2 Figure 2 3GTest user time pattern User time pattern3GTest)
5.2 | Figure 3(a)(b)(c) | TCP downlink performance and time of day effect | TCP and user time patterBGTest-Local)
6.1 Figure 4(a)(b) Page loading time vs. RTT/retransmission rate TCP performance vs. web performance
6.2 Figure 4(c) Impact of parallelism Parallelism in concurrent TCP connections
6.3 Figure 4(d) Impact of compression Content compression
6.4 Figure 5 JavaScript Execution Client capability
6.5 Figure 6 Data URL scheme Content optimization
6.6 Figure 7 Time breakdown for simple vs. content-rich URLs | 3G web browsing
7.1 Figure 8 Content size and video timeline Streaming video
7.2 Figure 9 \oIP timeline \olP

Table 2: Summary of experimental results

TCP throughput experimen8GTest conducts a length of 20 sec-
onds of data transfer between the phone and our server. iQurat
of 20 seconds is chosen so that enough packets are traddberre

tween phone and server and users will not suffer from long-wai

collected continually for a long period of time, it can be dier
characterizing the time-of-day effect.

ing time. We chose 80 domain names for DNS experiment sothat4 4 \\eb browsing experimental setup

DNS resolution results are not locally cached on the phontare

cached on LDNS server. For TCP handshake and Ping latency ex-

periments, we chose 20 landmark servers from PlanetLalelpar
distributed across the U.S. Results for these experimeatsent
back to our server befol@GTest terminates.

We have been usingGTest to collect data for several months,
during which tens of thousands of users from various coestri
have installed and ruBGTest. The data set used in this paper was
collected between August 27, 2009 to December 1, 2009, icenta
ing 68,908 runs 08GTest with 30,105 unique users in total. In this
paper, we only analyzed the 3G network data collected irtsidle
U.S. (~50% of the entire data set).

4.3 Network performance experimental setup

To measure the network performance over a long term, we cre-

ated an internal version &dGTest-Local and installed it on the
smartphones listed in Table BGTest-Local is modified to record
the signal strength on the Samsung and Palm ph@&Eest-Local
continually conducts measurements every 10 minutes teataihe
week’s data (excluding weekends) in Ann Arbor, MI. We makesu
that the phones are placed at the same location with extsiign
nal strength during the entire measurement study. Sinceatzeis

For web browsing experiments, we picked a list of 20 popular
and representative URLSs including search engines, enualse
maps, social networking websitegtc. For most of the URLSs,
we used their mobile version. To facilitate repeated expenis,
we wrote a program to invoke browser to visit each URL in turn
with an interval of 120 seconds. Such interval is expectebeto
large enough to complete the page download. We ugmithe
2.0 HTTP server for hosting the replicated websites. Wesctdid
packet traces on iPhone and GPhone usipdump and on Win-
dows Mobile phones usingetlog. We verified that the CPU uti-
lization caused by trace collection is under 5%. All the ekpents
were repeated 10 times.

To introduce artificial delay and loss, we ran a user-levegpm
on the server. This program intercepts all packets destioexl
particular IP address and injects delay and random pacgst We
controlled loss rate values from 0% to 10% and RTT values fdom
ms to 800 ms. These values cover the entire range of lossirdte a
RTT values observed in 3G networks from @@Test data set.

We controlled the maximum concurrent connections by config-
uring theApache server with the help of thenpm_prefork_module.

We constructed a webpage with 30 embedded objects in the main
HTML page to infer the maximum number of concurrent connec-
tions allowed by a phone to one web domain. For concurrency



experiments, we used RTT of 400 ms and loss rate of 0%. They are
the median values from tiGTest data set.

For the compression experiments, we uSetDutputFilter and
BrowserMatch directives to specify whether compression is en-
abled for a specific type of browser. We fixed loss rate at 0% and
varied RTT from 0 ms to 800 ms. Our goal is to understand whethe
compression is beneficial under different network condgio

For the data URL experiment, we constructed a webpage with
20 images; 10 of them are 18KB and the rest 10 are 0.241KB. We
created two versions of this webpage, one with links to doad!
the images and the other with the images embedded in the gebpa
itself. We could not carry out this experiment for Windows iiile
phones since IE currently does not support the data URL sehem

throughput compared with Sprint and Verizon. One of thearas
could be the lack of support for UMTS/HSUPA on the phones used
for AT&T and T-Mobile. Even the latest version of iPhone 3GS
does not claim to support HSUPA. The median uplink throughpu
for AT&T and T-Mobile ranges from 200 kbps to 300 kbps, while
that for Sprint and Verizon is around 400 kbps.

Figure 1(d) shows that Verizon and Sprint exhibit slightigher
TCP retransmission rate, matching observations from aa lex-
periments. On average, AT&T’s downlink throughput outperis
that of the other carriers due to its relatively lower RTT dosk
rate. The median of TCP downlink throughput for all carriers
ranges from 500 kbps to 1 Mbps. Median RTT varies from 300
ms to 500 ms, suggesting 400 ms is a representative delay t@lu

When analyzing the web browsing traces, we chose 1 second asemulate 3G networks. AT&T and T-Mobile have a median retrans

the threshold to identify TCP idle time. In tB&Test data set, RTT

is smaller than 1 second in 99% of the cases. Thus, if there are
no network activities for 1 second or more, the phone shoeld b
busy with some local processingg., rendering HTML pages or
executing Javascripts.

4.5 Video streaming experimental setup

Streaming video is another popular application on smartpho
We measure streaming video performance by playing a 37:40-
minute video on the phones using a Youtube application. From
the collected packet trace, we calculate the downloadrgyithe
video by adding up the payloads for all the packets from tiheese
to phone while excluding the retransmitted packets.

4.6 VoIP experimental setup

We used Skype to study VoIP performance on smartphones given
its popularity. The current version of Skype cannot be itedizon

mission rate of 0%, while that for Sprint and Verizon is 0.7%.

Figures 1(e) & (f) show that Ping latency to the first respomsi
hop is close to that to landmark servers, suggesting thatirgte
responsive hop consisting of 3G wireless link contributesbst
of the delay along the end-to-end network path. Note thay Rin
tency to the first responsive hop actually refers to the flrshop
responding to ICMP probing. For AT&T and T-Mobile, the firgt |
hop, when TTL is set to 1, does not respond in most cases. Only
the second IP hop replies with a private IP address. For Sanith
Verizon, the first IP hop does reply with a public IP addreske T
median latency to the first responsive hop ranges from 150ms t
200 ms, while that to landmark servers is between 180 ms abd 25
ms. We observe that both the Ping latency and TCP handshake
time are smaller than RTT values measured in TCP downlink ex-
periments.

Figure 1(g) shows DNS lookup performance. We design the ex-
periment in a way that all DNS lookups are cached at the LDNS

iPhone OS 2.1 or G2. So we only ran Skype on the Samsung andserver but not locally on the phone (84.2). This allows us twem

Palm phones. In our experiments, we played a 3-minute music fi
from both the phone side and the server side. We collect packe
trace at the phone side to calculate throughput. Given ffiateht
volume may lead to different data size, throughout the expent,

we keep the volume to be the same.

5. 3G NETWORK CHARACTERIZATION

To fully understand the underlying factors accounting far ob-
served performance of network applications, we first focushar-
acterizing the performance of current commercial 3G nédtaior
Two data sets are used for this purpose, one B8@Test (Figure 1)
and the other fron8GTest-Local (Figure 3). To verify the rep-
resentativeness of the results fr@@Test-Local, we compare the
data ranges of the metrics studied in both data sets. As ®dec
the data ranges fro@GTest-Local are within those fron8GTest.

5.1 Comparison across carriers

Figures 1(a) illustrates measured TCP downlink throughput
Given stable TCP throughput is roughly inversely propaorioto
RTT and to the square root of packet loss rate [19], we alslyzma
RTT and retransmission rate. In Figure 1(b), all carriemsbom-
parable RTT distributions, with T-Mobile showing slightigrger
RTT values and correspondingly lower downlink TCP through-
put. Various reasons contribute to large RTT in 3G networks,
e.g., queueing delays at the base station or other internal nodes,
such as RNC, SGSN, and GGSN in UMTS networks. We study
this in more details in 85.2. Large RTTs may also be due togtack
loss recovered through link layer retransmission, whichdaeot
have direct information about.

Figure 1(c) plots measured TCP uplink throughput. Unlike
downlink throughput, AT&T and T-Mobile have lower uplink

accurately estimate the delay to the LDNS servers. The LDNS
servers studied tend not to respond to ICMP packets, making i
challenging to directly measure the network delay betwéen t
phone and LDNS server. From the results, we found that all car
riers exhibit similar trend with median values close to 208. m
Given that the DNS lookup delay is already close to Ping atéo

the first responsive hop, there is limited room for improvibiyS
lookup performance.

As shown in Figure 1(h), the median of TCP handshake delay
ranges from 160 ms to 200 ms, close to the Ping latency to #te fir
responsive hop in Figure 1(f). We also observe that theivelat
ranking among all carriers is consistent with that in Figi(g.
Compared with Figure 1(b), large packets with size close TaUM
(eg., 1348 bytes in AT&T) are found to have 2 - 4 times RTT of
small packets.
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Figure 2: Number of 3GTest users vs. time of day
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Figure 1: TCP performance comparison among carriers (dataffom deployed application3GTest, only U.S.)

5.2 Time of day correlation

Understanding whether traffic patterns exhibit any time af d

behavior is useful for improving the design of applicatiansl mo-
bile network infrastructure. We expect smartphone usetwat@

diurnal patterns in their behavior. For example, we can ioese
such a pattern in Figure 2. To further understand its impact o

performance, we search for such a pattern in the data cedleltr-

ing 5 contiguous weekdays as an initial investigation. Tagdet
is from 3GTest-Local described in §4.3 with results shown in Fig-
ure 3.

First, time of day effect is less pronounced for uplink thgbu
put compared to downlink throughput, comparing Figure afa)
(d). This is likely due to higher demand for downlink capgdy
popular applications such as web browsing and video streami



Second, we observe an obvious time pattern for AT&T's down-
link throughput. At night and early morning hours, betweean2
and 8 am, the downlink throughput can reach 1 Mbps. However,
the downlink throughput of lower than 500 kbps is observed at
other times. This phenomenon is possibly due to the large-num
ber of iPhone users and the large traffic volume brought bipwar
network applications. For Sprint and Verizon, we observai-si
lar though less prominent trend compared to that for AT&Tr Fo
T-Mobile, the TCP downlink throughput is more stable, whieh
conjecture is due to the fact that its 3G service has onlyntgce
become available at our location.

Figures 3(b) & (c) indicate that RTT and retransmission eate
hibit time of day pattern for some carriers. For AT&T, the ddink
throughput is found to be mostly affected by RTT values,ljike
be caused by queueing delays in AT&T's 3G networks. RTT garie
from 300 ms during late nights to as high as 700 ms at peak times
For Verizon and Sprint, the RTT values are more stable, thoug
with varying TCP retransmission rate. One possible expiana
is that in Verizon and Sprint's 3G networks, shared queueasdvo
drop packets once the queue length exceeds a thresholddd-his
sign will restrict the variation of RTT but incur more packesses.

5.3 Signal strength effects

Signal strength is an important factor that affects 3G net-
work performance, since higher signal-to-noise ratio ($alRwWs
higher bit rate. We therefore also carried out experimemtsnt
derstand this correlation. Since it is not easy for us to robnt
the signal strength, we continuously monitor signal sttlerand
TCP downlink throughput during a week. Due to space linotati
we only highlight our major observations here. When the aign
strength is too weak, TCP connections will disconnect. W&ign
nal strength is at some middle range, we observe clear atimel
between signal strength and TCP downlink throughput. TG#heo
link throughput is not affected by the signal strength if tder is
above some threshold. Given these observations, we extiede
data points corresponding to poor signal strength fronBeigest-
Local data set.

5.4 Smartphone vs. laptop

To understand whether the computation capability of a smart
phone limits its 3G performance, we set up a controlled expsart
to compare a smartphone (iPhone 3G) with a laptop (ThinkPad
T42). The laptop can access AT&T's 3G network via a wireless
data card, while the iPhone measurement is conducted aamhe s
location and the same time. We found that the distributicehowin-
link throughput is similar, implying that the performancettte-
neck is within the 3G network instead of on the phone. However
for other computation-intensive applications, the perfance dif-
ference is more pronounced. We will study this in more dgfail
§6.4.
Summary: The main observations of 3G network performance
are:

1. Typical values for 3G throughput range from 500 kbps to 1
Mbps for downlink, and 200 kbps to 400 kbps for uplink,
both lower than the advertised rates.

. Network performance differs across all carriers. For mow
link RTT and throughput, the differences among carriers are
evident.

. Sprint and Verizon have higher TCP retransmission rate co
pared with AT&T and T-Mobile.

4. Large packets can have 2-4 times RTT of small packets.

. Some carriers show clear time of day pattern on weekdays,
especially for AT&T'’s downlink throughput.

6. For simple TCP downloading/uploading, the performance

bottleneck is within the 3G network.

7. 3G wireless delay dominates the end-to-end RTT.

Our observations suggest that the low uplink throughput and
large RTT of current 3G networks raise challenges for offilogd
computation into the cloud. Network application desigredrsuld
avoid chatty protocols and minimize total bytes to trans3& op-
erators need to examine their queueing and link layer retnés:
sion policies to reduce latency in wireless links.

6. WEB BROWSING PERFORMANCE
STUDY

Given the previous discussions on the performance of 3G net-
works, we now examine one of the most popular applications on
smartphone, namely web browsing, in addition to two othgupo
lar mobile applications, streaming video and VoIP in §7. éNitat
many factors jointly determine user perceived performaasean
application may not fully utilize available network bandith due
to limited processing power or memory on the phone [24].

Our study shows that the available 3G bandwidth is often not
fully utilized for web browsing, and several modificatiorencbe
applied to current web browsers on smartphones to make bstte
of available network resourcesg., increasing the limit on concur-
rent TCP connections per domain, optimizing Javascriptnesg
etc. We also evaluate the effectiveness of a few content optimiza
tion techniques, including compression and the recemntypgsed
data URL scheme [15].

In the following, we study the impact of network condition,
browser concurrency, compression, and Javascript execspieed
on web performance. We then break down the page loading time
into several major components and identify the performarate
tleneck for some mobile devices (86.6).

6.1 Network effects on web browsing

To understand how network condition affects web browsing, w
fix the web content, server configurations, browser conaggrand
only vary the network condition. We emulate the 3G netwonk-co
dition by injecting packet delay and loss on the WiFi netwpalh
as described in 83.

Figure 4(a) shows page downloading time increases lingatiy
the RTT between smartphone and our local web server. The-down
loading time is computed by averaging across 20 replicatedd)
with each URL visited 3 times. This is expected as througgint
versely proportional to RTT. No additional packet loss tsaduced
since previous section shows packet losses are rare in 3@mhkst
The base RTT in our WiFi network is between 30 ms and 50 ms.
The x-axis in Figure 4(a) shows the actual RTT after injerex-
tra delay. We can observe that under the same network congiti
downloading time varies across phones though the relaiviemg
remains consistent. Note that web browsing cannot fulljzetthe
available network bandwidth, due to page execution anderémgl
on the phone.

Figure 4(b) shows the effect of varying downlink packet lcge
for afixed RTT value of 400 ms. Again the ranking in downloagin
time across phones is consistent. For small packet lossagte
2%, there is little performance degradation. However, idi§o
loss rate, the page downloading time increases up to 35decbn
summary, smartphone web browsing performance heavilyradkspe
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Figure 3: Correlation between TCP performance and time of dg (3GTest-Local)

on network delay and loss conditions.

6.2 Concurrent TCP connections

3G network’s downlink throughput as measured normally esng
from 500 kbps to 1 Mbps for the carriers we studied (Figurg)1(a

mance, we devised a set of experiments, with results shown in
Figure 4(c). We first vary the maximum concurrent connestion
allowed at the server side from 1 to 4. We observe a significant
performance degradation across all platforms with moreicésd
concurrency. Under the restriction of a single connectiendo-
main, web browsing is 3.5 to 4.5 times slower compared touthat

der the default setting. This indicates that today’s mobitevsers

We used the phones to visit the chosen URLs and found that the already benefit much from concurrency.

average throughput is only between 20 kbps and 50 kbps aticlic
that more concurrent TCP connections can potentially ingveeb
browsing performance.

Current web browsers on smartphones already allow condurre
connections. In browser’s settings, there is a parametaifypg
the maximum number of concurrent TCP connections per damain
On Windows Mobile phones, it is a registry value nanvéakCon-
nectionsPer Server with a default value of 4. When we set the value
to be smaller than 4, we observe decreased concurrency.dgwe
when we increase the value to be larger than 4, the concyrrenc
does not increase accordingly. This implies there existthem
setting on maximum allowed concurrency per domain, which we
cannot configure. For iPhone and GPhone, we are unable tuset t
parameter either. We design controlled experiments to unedke
default concurrency setting on different platforms andnfibit to
be 4 for all the phones studied.

We also found that no HTTP pipelining support is present on
these platforms. Web objects are fetched sequentiallyimtiper-
sistent connection, and browser will not send a new HTTPesgu
before data transfer of the previous request completes. n&le a

To understand whether further increasing concurrency iva
prove performance, we take a clever approach of DNS aliasing
(83.2.2) to bypass the concurrency limit on the phone sinrcans
unable to change this setting directly. Figure 4(c) shoves the
phones can indeed attain a higher level of concurrency. ¥ane
ple, iPhone and G2 can establish up to 9 concurrent conmectio
for some content-rich URLs. The concurrency for other pkare
slightly lower (6 to 7), likely due to their slower renderiagd exe-
cution speed. Generally, an improvement of 30% is obsenrahw
concurrency limit on the phone is removed. This means thangi
the selected popular URLs, and given current network camdit
(with RTT of 400 ms), the default concurrency setting on rfebi
browsers appears to be too conservative. Allowing highaceo
rency can help phones make better use of available bandasdth
save page downloading time.

6.3 Content compression

Compression can dramatically reduce web content size.eor t
objects, such as HTML, CSS, Javascript, P&te, the object size

lyzed the 20 popular URLs and found that there are 10.8 images can be reduced by around 70%. Usually, a web server does not

embedded in each page on average, along with several offes ty
of embedded objects, such as Javascript, CSSédtiesThose web-
sites which do not have a mobile version, tend to have eve mor
objects.

To understand how concurrency affects web browsing perfor-

compress image objects. We calculate the compression foatio
the popular URLs in columi©€ompress of Table 3, showing that
the content size can be reduced by more than 50% for most of the
URLSs we studied.

While compression reduces the bytes transferred over the ne
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Figure 4: Factors impacting web browsing performance

| URL | Text' | Image | Size(KB) | Original(KB)* | Compres3 | GZIP | Lines/indexX | Redirect| Server IPs

www.google.com 4 1 79.2 77.6 2.56 v 14 - 2
m.bing.com 4 3 42.9 218.1 1.46 - 2 - 1
maps.google.com 6 10 479.8 656.0 2.78 v 8 - 4
mapquest.com 6 13 135.1 1326.35 1.96 v 752 2 6
xhtml.weather.com| 22 9 41.4 977.3 2.53 - 70 4 2
m.youtube.com 5 3 77.6 490.1 2.34 v 231 - 3
m.ebay.com 4 3 58.6 484.0 2.17 - 1 - 1
m.facebook.com 4 1 19.7 399.1 2.81 v 7 2 2
m.myspace.com 3 2 14.6 600.2 2.6 v 98 1 2
m.fox.com 4 26 306.6 2083.0 1.16 v 297 - 4
mobile.craigslist.org 3 0 113.8 113.8 3.58 v 652 - 1

L This column shows the number of text objects including HTNlavaScript and CSS files

2This column shows the total size of the original website fmtemobile URL, for example, www.bing.com for the row of nmgpicom
3This column shows the compression ratio for mobile URLsltsize in no compression mode / total size in compressioremod
4This column shows the total number of lines in the index pagdéecating whether minification is used

Table 3: Characteristics of today’s popular mobile website

work, decomression will increase computation overhead hen t
phone. To understand this tradeoff, we vary RTT coveringrba-
sured range and compare the web browsing performance in com-for the same OS, such as Windows Mobile 6.1, phone vendors can
pressed and uncompressed modes. In Figure 4(d), we extiade t have different builds for different models of phones.

results for HTC and Palm phones as they show similar trends. W We measured Javascript execution time on different phoses u
observe that compression consistently helps to improve pegbh
formance, irrespective of the RTT values. It is especiadipful
under poor network condition. For example, it reduces iRf®n
page downloading time by 30% when RTT is 800ms.

6.4 Javascript execution

Given the limited processing power on smartphones, HTML ren

dering and Javascript execution may become the bottleneekeb

browsing. Several factors jointly determine the page Bsicg
speed, including CPU frequency, memory, OS, and browsesn Ev

ing a benchmark consisting of 26 different Javascripts [Big-

ure 5(a) shows the total time taken to execute the benchmark o
different phones. The results demonstrate that execuitioa is
20-80 times longer on smartphones than on desktop computers
Among the smartphones, G2 has the best performance followed
by iPhone. For example, G2 is 3 times faster than the HTC phone
Such performance gap helps to explain the differences ipaige
loading time of G2 and iPhone compared to that of the Samsung
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and Palm phones under the same network conditions in Figure 4
Large Javascript execution time leads to more TCP idle tinte a
under-utilization of network bandwidth.

This experiment shows that network is not the only bottl&nec
for web browsing performance. Phone itself also plays a niaje,
underscoring the necessity of measuring application pedace
on real smartphones. Web designers should avoid using eampl
Javascripts when building mobile versions of their welssite

6.5 Server configuration & content optimiza-
tion
Server configurations and content optimization are immbrta
factors for web browsing performance. One type of server con
figuration is the maximum concurrent connections with antlién
86.2, we found that mobile browsers set a default concuyrkmit
of 4 per domain. However, we did not observe any web servers

limit the concurrency per client to be smaller than 4, likegcause
servers have the incentives to attain good web browsingrexpe
ence. The compression configuration is similarly importarith
the identified setting of the URLSs studied shown in G&lP col-
umn in Table 3. Despite the fact that compression almostyawa
helps with web browsing performance (86.3), we found some we
sites do not enable it by default.

Various content optimization techniques also help to inagro
web browsing performance on smartphones. Most popular web-
sites already customize their contents for mobile usert mbre
concise texts and fewer and smaller imagsg, via code minifica-
tion [2], image scalingetc. We study in particular code minifica-
tion which refers to the elimination of redundant charastsuch
as spaces, tabs, line breaks, The size reduction varies from 5%
to 25% for the URLSs studied. Coluntrines/indexin Table 3 shows
the number of lines in the index page of a website, providihina
for whether minification is used. The number of lines will inesd|
for index pages treated with minification. It seems that bathe
URLSs use this technique to optimize their contents.

Another type of optimization helps to reduce the number of
HTTP requests used to fetch contents, including the data URL
scheme [15], CSS&{c. The general idea is to eliminate TCP con-
nections and HTTP requests for small objects, such as theicor
image of a page. We set up a controlled experiment to denatastr
the effectiveness of the data URL scheme, under which small i
ages are integrated with the main HTML page rather than dirsdee
separate objects (4.4). In our experiment, we found thanthges
are actually 1.3-1.5 times of its original size under theadaRL
scheme. Figure 6 shows that it cuts page loading time by about
20%.

The data URL scheme has not been ubiquitously supported. In
fact, only the browser of iPhone and G2 supports it. We aldmdt
observe any URLs we studied adopt this technique, possilgyal
the concern of lack of browser support. Without browser suipp
the image represented by the data URL scheme will be displaye
as a default error image.

Redirection (HTTP response code 301 and 302) is another is-
sue which may adversely impact web browsing performance. Fo
mobile web browsing, this issue becomes more pronouncesh giv
the large RTTs in 3G networks. In coluniRedirect of Table 3,
we found that some websites have multiple levels redirastio
For example,m weat her . comwill be redirected toxht mi .
weat her . comand then tarw. weat her . com In some cases,
users are redirected to another URL which is quite similah&
original one. In other cases, web objects have been movedeawa
location, and the original URL simply redirects the incomire-
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quests to the new location. We think some of these redinestoe
unnecessary and can be eliminated with better webpagendesig

6.6 Web browsing via 3G networks

Figure 7 shows the case study for two groups of URLs listed
in Table 3. Group A corresponds to the URLs that have con-
cise and simple contentg,g., m ebay. com(URL a) contains
7 objects with a total size of 58.6 KB. Many of these websites
are search engines or portals to social networking sitesuda
ingww. googl e. comm bi ng. comm nmyspace. com and
m f acebook. com Group B consists of websites with rich con-
tents, eg., mapquest .. com (URL b) has 19 objects with a to-
tal size of 135.1 KB. Other websites in the group include romli
map (raps. googl e. com), information exchangenpbi | e.
craigslist.org),andnewsr f ox. comandm cnn. com.

There are two sets of data in Figure 7. One set is collecteshwhe
each smartphone visits the real URLs via 3G networks. To-elim
inate the differences in downloaded contents and networklieo
tions, each phone also visits the replicated URLSs via WiRhvai
RTT of 400 ms to emulate the typical 3G network conditions.

Itis clear that all smartphones experience smaller pagdiriga
time for the simple URL in Figure 7(a) compared with that foe t
content-rich URL in Figure 7(b). We break down the page load-
ing time into four parts: TCP transfer, TCP idle, DNS lookapd
TCP handshake. The size mhpquest . comis larger than that
of m ebay. comresulting in longer TCP transfer time. Moreover,
mapguest . comcontains more contents to render and more com-
plex Javascripts to execute, leading to longer TCP idle.tifftee
DNS lookup time and TCP handshake time contribute to less tha
10% of page loading time, which are negligible.

We further observe that the Palm (Sprint), Samsung (Ve}jzon
and HTC (AT&T) phones experience much longer page loading
time formapquest . comcompare to iPhone (AT&T) and G2 (T-
Mobile). This is likely due to their slower Javascript extéon
speed, as shown in Figure 5.

In the WiFi experiments, all the phones download the same con
tents and experience the same network conditions. As & résell
TCP transfer time differences among all phones are smallv-Ho
ever, we can still observe significant page loading timesdices,
mostly due to the gap in TCP idle times. We further note theitrth
relative ranking is consistent with the ranking of Javasogkecu-
tion speed in Figure 5.

Summary: First, we found that higher browser concurrency
enables the phones to better utilize available network \attt,
hence reducing page loading time. Second, server confignsat
and content optimization play a major role in web browsing pe
formance. Compression tends to always help under typical&G
work conditions. However, a few popular websites are employ
ing sub-optimal server configurations and page designsd;Tive

found the bottleneck for web browsing performance oftes ire
the phone itself rather than in the 3G network.

7. OTHER MOBILE APPLICATIONS

In this section, we study two other popular mobile applmadi
streaming video and VolIP.

7.1 Streaming video

We downloaded a 37-minute long video using a YouTube player
on each phone. Figure 8(a) shows the size of the video dodeatba
using TCP via WiFi and 3G on each phone. As expected, the video
size is smaller for 3G than for WiFi, because both the videwvese
and 3G carrier can customize video based on network conditm
ensure good user experience. Interestingly, the videofsiz8G
also varies across carriers: it is the smallest for T-Mgliddowed
by AT&T, Verizon, and Sprint.

Figures 8(b)(c) show the representative time series ofovide
download throughput for iPhone and G2 via 3G networks. The
timeline of iPhone exhibits a distinct pattern with cleauges.

It initially downloads a portion of the video at a high ratbenh
stops before downloading the remaining portions. We counjec

that the download stops when the buffered content exceetisrce
threshold, and resumes after the buffered content fallswbah-

other threshold. The purpose is likely to accommodate thidd
phone memory and to save energy usage associated with the 3G
interface. Another observation is that iPhone always teateis the

TCP connection every 10-20 seconds and then establishes a ne
one on demand. We conjecture that iPhone attempts to put¢he t
3G interface into low power state to save energy.

In contrast, G2 shows a different behavior by periodicatyd-
loading small chunks of the video every 10 seconds. The Sagnsu
and Palm phones behave similarly with a slightly longerriie
of 20 seconds between downloads. This is likely motivatethlby
fact that users sometimes do not watch the entire video aryd ma
skim through certain parts of the video. Such downloading pa
terns can also help to save energy. Our initial study showisttie
video players on different phones employ different poBdiefetch
video. This merits more detailed future study.

7.2 \olP

We carry out a simple VolP experiment on the Samsung (Ver-
izon) and Palm (Sprint) phones given their uniform support f
Skype. During the experiment, the same music file is played on
both the phone and the desktop, when the two are in a Skype call
The volume is kept the same to have similar voice input. Edur
shows that the throughput for both phones via 3G is nearlytide
cal, as the same coding rate is used. The throughput is higlcler
WiFi than under 3G, as different amount of data is transtede-
pending on the network being used. This reflects how Skyps tri



to vary the encoding rate according to the network conditimn
achieve good perceived voice quality.
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Figure 9: VoIP performance

8. CONCLUSION

In this paper, we characterized the performance of netwprk a
plications on smartphones in a way that is relevant to endsuse
cellular operators, smartphone vendors, applicationldpees, as
well as content providers. We comprehensively studied 3Gar&
performance by leveraging our widely-deployed measuréitoeh
3GTest. We carefully devised a set of experiments to quantify how
application performance, in particular web browsing, ipatted
by various factors, and where the performance bottleneclig
analysis provides insight into how network operators andrsm
phone vendors can improve 3G networks and mobile devices, an
how content providers can optimize mobile websites.

Our work represents an important step towards a better under
standing of the performance of 3G networks and smartphone ap
plications. As future work, we will continue to collect ddtam
3GTest and study the network and application performance differ-
ences across various locations. We also plan to study howageb
structure and web object dependency affect page loadirgy tim
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