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Abstract—Libraries usually impose constraints on how
clients should use them. Often these constraints are not
well-documented. In this paper, we address the problem of
recovering such constraints automatically, a problem referred
to as specification mining. Given some client programs that use
a given library, we identify constraints on the library usage
that are (almost) satisfied by the given set of clients.

The class of rules we target for mining combines simple
binary temporal operators with state predicates (involving
equality constraints) and quantification. This is a simple yet
expressive subclass of temporal properties that allows us to
capture many common API usage rules. We focus on recovering
rules from execution traces and apply classical data mining
concepts to be robust against bugs (API usage rule violations)
in clients. We present new algorithms for mining rules from
execution traces. We show how a propositional rule mining
algorithm can be generalized to treat quantification and state
predicates in a unified way. Our approach enables the miner to
be complete — mine all rules within the targeted class that are
satisfied by the given traces — while avoiding an exponential
blowup.

We have implemented these algorithms and used them to
mine API usage rules for several Windows APIs. Our experi-
ments show the efficiency and effectiveness of our approach.

I. INTRODUCTION

Libraries and APIs usually impose constraints on how
clients should use them but often these constraints are not
well-documented. In this paper, we address the problem
of recovering such constraints automatically via dynamic
analysis of clients of an API (i.e., from a large number of
execution traces that use a given API).

Target Class Of Specifications: A key attribute of any
specification miner is the class of properties (or specifica-
tions) that can be mined. In this paper, we introduce a class
of quantified binary temporal rules with equality constraints
(QBEC). This is a simple yet expressive class of temporal
properties that allows us to capture many common (API
usage) rules/constraints such as:

o Temporal rules, such as “every call to m1() must be
preceded by a call to m2()”.

o Rules with equality constraints on parameters such as
“every call to m5(3,...) must be followed by a call to
m6(10,..)".

¢ Quantified (temporal) rules such as “for every object
x, every call to m3(x) must be followed by a call to
md(x)”.
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Importantly, QBEC illustrates three natural dimensions of
API usage rules (as shown by the above examples): temporal
operators which impose constraints on the order in which
API calls may be made, state predicates which qualify the
API calls referred to in a temporal rule, and quantification
which captures data-flow constraints between API calls.

The binary temporal operators we consider have been
addressed by several others previously, but we present a new
linear-time algorithm in this respect. Our more important
contribution is the formalism we present for handling state
predicates and quantification. Our mining algorithm is com-
plete (i.e., it mines all rules within the targeted class that are
satisfied by the given traces), while avoiding an exponential
blowup that alternative strategies can encounter.

Bug-Tolerant Specification-Mining: Another important
characteristic of specification miners is whether they can
tolerate “input errors”. For example, given a set of execution
traces, one possibility is to compute the set of rules that are
satisfied by all traces in the given set. Unfortunately, such
an approach is not robust to occasional bugs in the programs
(used for mining), which may produce execution traces that
violate valid API rules. Instead, we focus on inferring API
usage rules that are “almost satisfied” by a given set of
clients (in a sense formalized below).

Data-Mining Based Specification Mining: Another dis-
tinguishing characteristic of our approach is that it is based
on data-mining. Specifically, we use well-accepted concepts
from the data-mining literature to formalize what it means
for a rule to be “almost satisfied” by a given a set of
execution traces. This formalization is based on the concepts
of support and confidence. The support for a rule in a given
set of traces is a count of the number of “positive instances”
of the rule in the set of traces. The confidence is the ratio of
the number of instances satifying the rule to the number of
instances where the rule is applicable. The mining problem,
then, is to identify all rules whose confidence and support
in the given set of traces is above user-provided thresholds
for these two quantities.

Efficient Mining Algorithms: In this paper, we present
efficient algorithms for mining QBEC rules. These algo-
rithms are efficient as their time complexity is linear in the
length of the analyzed traces. Hence, these work well for
mining purely temporal rules. However, mining temporal
rules that also incorporate state predicates (such as con-
straints on a procedure’s arguments) pose a challenge. In



general, the number of candidate rules can be very high (or
even potentially infinite); consequently, the mining can be
very expensive. We tackle this problem by using the a-priori
property from data mining: this technique prunes the search
space of candidate rules by inductively constructing terms
(which eventually form rules) by composing only subterms
that occur frequently enough to justify consideration.
Finally, we consider quantified rules. We show that a
logical view of quantification shows how we can naturally
extend the above mentioned propositional rule mining algo-
rithms to mine quantified rules. The formal approach also
helped us uncover and handle subtle corner cases correctly.
Eliminating Redundant Rules: In general, the mining
rules may contain some redundancy. A rule is redundant if
it is logically implied by one or more of other rules. We
propose a set of simplifications to eliminate redundancy in
in a set of rules. Such redundancy elimination can serve as
a useful filter before the rules are presented to the user.
Implementation and Evaluation: We have implemented
our mining algorithms (along with the redundancy elimina-
tion strategies) and evaluated our implementation by apply-
ing it to a set of clients of several Windows API, including
the Windows Driver Model (WDM), a framework for device
drivers. Our evaluations show that the mining algorithms are
efficient. The results also show that the mining is effective:
our miner is able to mine device driver rules that are both
valid and useful — help identify real bugs in device drivers.
Our miner is able to mine rules used by the Static Driver
Verifier [1] as well as rules not currently in SDV. The
latter set of rules look reasonable based on our preliminary
examination of textual documentation. We also show that
the search space of QBEC rules is very large in practice,
and that the a-priori technique is effective in pruning this
search space. We study the impact of varying confidence
and support on the mining. We show that our redundancy
elimination technique is very effective and useful.

Contributions

The contributions of this paper include:

« A formalism for mining quantified rules. The formalism
is novel in introducing quantification to the framework
of data-mining and, in fact, can be applied to standard
data-mining problems such as association rule mining.

o A mining algorithm that handles quantification and
state predicates in unified fashion. Furthermore, our
mining algorithm is complete (i.e., it mines all rules
within the targeted class that have the desired support
and confidence in the given execution traces).

e A new linear-time algorithm for mining must-be-
followed-by rules.

o An empirical evaluation of our mining algorithm.

II. A CLASS OF TEMPORAL RULES

In this section, we define various classes of temporal rules
that are interesting from the perspective of mining, including

several classes addressed by previous work in specification
mining.

Formally, we assume that we are given a set of sequences
of events, which we refer to as traces. We use the symbol
m, possibly subscripted, to denote a sequence. We use the
symbol e, possibly subscripted, to denote an event.

Events: In our work, an event is a tuple of primitive
values. A primitive value is either string or an integer (which
can also represent an address or pointer value). Let V denote
the set of all primitive values. In our context, an event
represents a particular call to an API method (during an
execution) by a client. The tuple captures the name of the
method called, as well as the values of the parameters
of this particular call and the return value. Thus, a tuple
[0, foo,5,10] represents a call to foo with parameters 5
and 10 whose return value was 0. We will represent such a
tuple mnemonically as “0 <— foo(5,10)”.

More generally, however, an event could be any concrete
or abstract representation of program state, and a sequence
could be a corresponding representation of an execution
trace. Note that a tuple, in our usage as described above,
actually represents an abstraction of a pair of states, one
representing a point where the procedure call begins and
one representing a point where the procedure call ends.

Event Predicates: An event-predicate is a predicate &
over events. We will use the notation e = £ to denote that
an event e satisfies an event-predicate .

In our setting, an event predicate typically combines a
specific procedure name with potential constraints on the
parameter values or return value. As an example, we could
have an event predicate £ that matches calls to a procedure
bar where the second parameter value is 13. If ¢ is a tuple,
we will use the representation ¢ | ¢ to denote the ¢ + 1-th
element of the tuple ¢. Thus, ¢ | 0 denotes the first element
of the tuple. We define a set of predicates EC of the form
$2 = ¢, where 7 is a non-negative integer and c is a primitive
value, whose meaning is defined as follows: a tuple ¢ satisfies
the predicate $i = c iff ¢ | ¢ equals c¢. We refer to these
predicates as equality constraint predicates.

Let EC; denote the subset of EC consisting of predicates
of the form “$1 = procname”. These are the simplest
event predicates of interest to us, which check if the given
event is a call to a specific procedure.

More generally, we would like to consider any event
predicate that can be expressed as the conjunction of one or
more equality constraint predicates. In our context, an event
predicate “$2 = 5” is satisfied by an event iff it represents
a call whose first parameter has the value 5. Such an event
predicate is typically meaningless without any information
about the procedure that is called. Hence, we restrict our-
selves only to conjunctions of equality constraint predicates
that include a constraint of the form “$1 = procname”.
Let EC* denote the set of all such event predicates. Thus,
EC* is isomorphic to EC; x 2FC\EC1



We will use the notation (co<—ci(ca,- -+ ,ck)), where
each ¢;, except cy, is either a primitive value or an under-
score, and c; is a primitive value (representing a procedure
name) to represent an element of EC*. This represents an
event predicate that is satisfied by a call to ¢; with parameter
values cy through ¢ and a return value of cq. Furthermore,
we will use an underscore in place of a constant c¢; if
we do not want any constraint on the corresponding tuple
element. In other words, (co<—cy(ca, -+ ,cx)) is short for
A{$i=c;|0<i<k,c;#_ } Further, we will abbrevi-
ate (co<—>cy(ca,++ ,cx)) to {c1(ca, -+ ,cx)) when ¢q is “_”

For example, the event “0 <— foo(5,10)” satisfies the fol-
lowing predicates in EC*: (_<—=foo(_,_)), (0+>foo(_,_)),
and (_<—foo(5,10)).

Temporal Operators: We construct temporal formulae
(or temporal rules) by combining event predicates using tem-
poral operators. We currently consider two types of temporal
operators, the “eventual” operator and the “alternation”
operator, in two flavors each (forward and backward). This

gives us the following temporal operators: &; - & (forward
eventual operator), &o & & (backward eventual operator),
& — & (forward alternation operator), and & < &
(backward alternation operator) where & and &, represent
event predicates. The meaning of these operators is defined
below. .

The temporal formula & — & represents the rule that
any occurrence of £; must eventually be followed by an
occurrence of £;. More formally, we say that a sequence
T = eyey--- e, satisfies the temporal formula & s &
(denoted 7 = & . &) iff for any e; = & there exists a
j > i such that e; |= o.

For example, the formula (foo(1)) - (bar(2)) repre-
sents the rule that any call to foo with the first argument as
1 must be followed by a call to bar with the first argument
as 2. .

Similarly, the temporal formula & «—= &; represents the
rule that any occurrence of &; must be preceded by an
occurrence of &5.

The formula &; iR &, represents the rule that (i) any
occurrence of &5 must eventually be followed by an occur-
rence of & and (ii) an occurrence of £; cannot be followed
by another occurrence of £; before an occurrence of &5. The
formula &, < & is similar, but in the backward direction.

In all of the rule forms described above, we refer to &;
as the antecedent and &, as the consequent of the rule.

We will use the symbol IEA to denote the set of four
temporal operators defined above.

Quantification: We will refer to the type of temporal
rules considered so far as propositional temporal rules. We
use guantification to introduce constraints involving parame-
ter (and return) values of different events in a temporal rule,
as in “Every call to foo(z) must be preceded by a call to
bar that returned z”. This rule can be expressed formally

as: Va.(zbar()) <= (foo(z)).

Formally, we need to first generalize event predicates to
allow event predicates that contain free variables. In our
instantiation, we allow equality constraints of the form “$; =
x”, where x is a free variable. For clarity, we shall refer
to event predicates with free variables as quantifiable event
predicates and to event predicates with no free variables
as propositional event predicates. A binding 6 is a map
from free variables to (primitive) values. Given a quantifiable
event predicate £, and a binding 6 for all the free variables
occurring in &, we will use £[f] to denote the event predicate
obtained by replacing every variable x in £ by its value 6(z).

A quantified forward-eventual rule is of the form
vX £ - &5 where & and &5 have the same set of free
variables X . We say that a sequence ™ = ej ey - - - €, satisfies
the quantified formula vX 3! - &y iff for any binding 6 of
values to the free variables in X, if e; = &110] then there
exists a j > 4 such that e; = &»[f]. The quantified form
of other rules and their meanings are defined in a similar
fashion.

The above definition constrains the antecedent and the
consequent to have the same set of free variables, without
loss of generality. A rule such as Vx.(foo(x)) - (bar())
is equivalent to the unquantified rule (foo(_)) - (bar())).
The rule Va.(foo()) - (bar(x)) cannot be satisfied if the
quantification is over an infinite domain, and is equivalent
to a conjunction of unquantified rules AY_,(foo()) .
(bar(v;)) otherwise.

Summary: We obtain different classes of rules by
varying (a) the temporal operators allowed, (b) the event
predicates allowed, and (c) the degree of quantification
allowed. Let EP denote a set of event predicates, T denote
a set of temporal operators, and n denote a whole number.
We define §(EP, T, n) to be the set of temporal rules built
out of event predicates in EP and temporal operators in
T and consisting of at most n quantified variables. In this
paper, we present our formalization and mining algorithms
by considering the following, increasingly richer, classes of
rules in that order.

1) S(ECMFA, 0): We first consider propositional tem-
poral rules such as {foo) — (bar).

2) g(E(C*,FA,O): We then consider propositional tem-
poral rules with equality constraints, such as
(foo(3)) ~ (bar(7)). While we shall illustrate and
evaluate our algorithm in this class, our algorithm
is more generally applicable. It can handle event
predicates that can be expressed as the conjunction
of predicates belonging to a finitely instantiable set
of predicates, defined as follows. A set S of event
predicates is said to be finitely instantiable if any
event can satisfy at most a finite number of predicates
belonging to S. Any finite set S is trivially finitely



instantiable. Note that the set EC is infinite but finitely
instantiable.
3) F(EC*,EA,k > 1): We then consider quantified rules

with equality constraints such as Vz.(foo(x)) -
(bar(x)). In our experimental evaluation, we restrict
attention to rules with one level of quantification
(k = 1), but our algorithms can handle any value of
k.

III. THE PROBLEM

In this section we formally define the problem considered
in this paper. Informally, our goal is: given a set T of traces,
identify the set of all rules  from the class of temporal rules
(defined in the previous section) such that we can say with
“high confidence” that T satisfies r.

We use a well-accepted definition from the data-mining
literature [2] to formalize the problem. The first step in
this formalization is to define the notion of support and
confidence for a rule r in a set T of traces.

Propositional Temporal Rules: Let 7,--- ,m, be the
set of given sequences. Let 7[j] denote the j-th element of a
sequence 7 and the ordered pair (4, j) denote the position of
the j-th element of the i-th sequence ;. We say that position
(i,7) is a wimess for the event predicate ¢ if m;[j] = &.
Similarly, we say that position (i,j) is a witness for the
temporal rule &; . & if (i,7) is a witness for £ and there
exists a witness (4, k) for & with k > j.

Given a temporal rule &; . &o, we define its support as
the number of witnesses for the rule and its confidence as the
ratio of its support to the number of witnesses for £;. Support
and confidence of rules with other temporal operators are
similarly defined. The support of any event predicate & is
also defined to be the number of witnesses for &.

Quantified Temporal Rules: While dealing with quan-
tification, we say that position (i,7) is a witness for a
quantifiable event predicate £ ()_(' ) if there exists a binding 6
for X such that m;[j] = £[0]. As in the case of propositional
temporal rules, we say that position (i,5) is a witness for
the quantified temporal rule vX £ - & if there exists a
binding 6 for X such that (i, ) is a witness for &,[0] and
there exists a witness (i, k) for £;[0] with k > j. With these
definitions of witnesses, the notion of support and confidence
for propositional temporal rules carries over to quantified
temporal rules.

Problem Definition: Given a set of traces T, a positive
integer Syin, and a value C,,;;, in the range [0,1], identify
all rules belonging to class QBEC whose support in Tis at
least S,,i» and whose confidence in Tis at least C,,,;,.

IV. MINING ALGORITHMS

In this section, we describe our mining algorithms. For the
sake of brevity, we only describe the algorithms to mine the
forward forms of rules as these algorithms can be trivially
adapted to mine the backward forms of rules.

A. Forward-Eventually Rules

In this section we present our algorithm for mining .
rules. We will start with the simplest form of these rules,
and then consider increasingly richer forms of these rules.

1) Propositional Rules With No Equality Constraints:
We first consider mining rules such as (foo) — (bar), which
involve only the temporal ordering of procedure calls and not
the parameters or return-values of these calls. The design of
our algorithm is influenced by two key insights.

The first insight is based on the following observation.
To compute the support and confidence for the rule (foo) -
(bar) in a trace, it is sufficient to consider the last occurrence
of bar in the trace (ignoring the earlier occurrences of bar).
Given the last occurrence of bar in the trace, we then
just need the number of occurrences of foo that precede
it: this gives us the support for rule (foo) . (bar) in the
given trace. The support for the rule in a set of traces can
be computed by just adding its support from each trace.
Given the support, we just need to know the total number
of occurrences of foo in all the traces to compute the
confidence.

We can identify the last occurrence of every procedure in
a trace in a single pass through the trace. Similarly, we can
compute the occurrence count of every procedure in every
prefix of the given trace in a single pass through the trace.
This leads to an algorithm whose complexity is linear in Ny,
the sum of the lengths of the input traces. The worst-case
time complexity of the algorithm is N;.IN,, where N, is the
number of distinct procedures.

The second insight draws from the use of Apriori property
[2] in the data mining community. The following (straight-
forward) theorem serves as the basis for applying the Apriori

property:
support(&1 — &2) < support(&:).

This theorem says that the support for a rule {foo) - (bar)
can be no more than the support for foo (i.e., the total
number of occurrences of foo in the traces). We say that
a procedure p is frequent if its support is atleast Sy,ip. It
follows that in mining rules of the form () - (g) it suffices
to consider only functions f that are frequent.

Using this optimization reduces the time complexity of
the algorithm to N;.F), where F), is the number of frequent
procedures. While this improvement may not appear excit-
ing, the Apriori property will be significant as we expand
our scope to more general forms of rules.

2) Propositional Rules With Equality Constraints: We
now consider mining rules of the form &; - &, where
either &; may include equality constraints. The intuitions of
the earlier approach carry over. A key distinction, however,
is that in the earlier approach every event satisfies only
one predicate of interest. In the current setting, an event



can satisfy many different event predicates. Note that it is
straightforward to enumerate the set of predicates from EC*
that an event satisfies. The algorithm is presented in Figure 1
and it operates in three phases.

In the initial phase, it constructs the set Preds of all event
predicates (line 2) satisfied by some event in the input traces
and the set FreqPreds of frequent event predicates (line 3).
(An event predicate £ is said to be frequent if its support
is atleast Sy,;,.) It also initializes a map Ng that will be
used to compute the support for rules (lines 4-5) that are
represented as a pair of event predicates. Driven by the
second insight, only pair of event predicates from the set
FreqPreds x Preds are considered.

In the second phase, each trace is processed to compute
the support for rules (lines 7-19). Driven by the first insight,
the position of the last occurrence of every predicate from
Preds in a trace is identified and recorded in last (lines 8-
10). Every event e in a trace 7, say at the i-th position, is
then processed, in order, to calculate the total support of
frequent event predicates in 7[1..7]. This support is recorded
in the map Np (line 19). During this processing, if the last
occurrence of an event predicate &, is encountered (line 16),

the cumulative support for rules £ - &, involving frequent
event predicate & € FregPreds is incremented by Np|[&f],
the support for & (again, driven by the first insight) (line
18).

In the final phase the algorithm selects rules that
have/exceed the minimum desired support S,,;, and con-
fidence C,,;, (lines 21-24) and returns them.

The worst-case time complexity of the algorithm is
N;.F..M, where N, is the total length of the input traces
and F, is the number of frequent event predicates, and M,
is the maximum number of event predicates satisfied by any
event. Thus, the complexity of the algorithm is linear in the
total length of all the traces.

Note. The computation of the set of frequent event pred-
icates (line [3]) is done using a frequent item set mining
algorithm [2]. The key idea exploited here is again the
Apriori property: a predicate £; A &2 is frequent only if
& and & are both frequent. Hence, this conjunction needs
to be considered by the algorithm only if both conjuncts
are frequent. Since most event predicates (conjunctions of
equality constraints involving different parameters) will be
infrequent and uninteresting, this technique lets us explore
a big space of candidate predicates effectively.

3) Quantified Rules with Equality Constraints: We now
extend our algorithm to mine quantified rules. As motiva-
tion, consider the common rule involving lock and unlock
operations, on a given lock, must strictly alternate. Con-
sider the trace m = 0<=lock(3), 0<=lock(7), 0<=unlock(3),
0<«—unlock(7). Events 1 and 3 together are a positive witness
to this rule, and so are events 2 and 4. The key to noting
that these two pairs are witnesses to the same rule is to
abstract away the parameter that couples the antecedent and

PROPOSITIONALMUSTFOLLOWEVENTUALLY (T, Smin, Crmin)
1 # (1) Initialize
Preds < Jycr U,y PredsOf (e)
3 FreqPreds < {& € Preds | Supp(&,T) > Smin}
4 for each (&1,&2) € FreqPreds X Preds
5 do NR[51,52]<—0
6 # (2) Mine rule instances
7 for eachtin T
8 do for each i+ 1 to [¢]
9 do for each £ € PredsOf(e)
10 do last[¢] 1
11 for each £ € Preds
12 do Np[¢] + 0O
13 for i < 1 to |¢|
14 do e« t[i]

15 for each . in PredsOf (e)

16 do if last[¢.] =

17 then for each &; in FreqPreds

18 do Ng[&f, &e] <= Nr[&r, €] + Np[éf]
19 NP[fB]FNP[£C]+1

20 # (3) Identify significant rules

21 Rules < 0

22 for each Ng[&,&] =s
23 do if s > Siin A (5/Supp(€1,T)) > Crin,

24 then Rules < Rules U {¢&1 — &}
25 return Rules

Figure 1. Algorithm to mine &; s &2 rules composed of propositional
event predicates. PredsOf (e) is the set of all propositional event predicates
satisfied by event e and Supp(¢,T) is the total number of ¢ satisfying
events in 7.

consequent together: both event pairs are positive witnesses
to the parameterized rule (lock(z)) - (unlock(x)) with
different bindings for x. From this, we would like to infer
the quantified rule Vz.{lock(z)) - (unlock(x)).

A key first step in our previous algorithm was to enumer-
ate the set of event predicates that a given event e satisfied.
We generalize this step as follows: we will now enumerate
for every event e the set of ordered pairs (£, 8), consisting of
a quantifiable event predicate £ and a binding 6 for the free
variables of £ such that e satisfies £[f]. We refer to a pair
(£,0), as described above, as a generalized event predicate
(denoted as ().

We assume a fixed variable naming scheme for quantified
variables in the mined rules. If we want to mine rules
with k£ quantifiers, then we will use the set of variables
{ w1, - ,v; } for this purpose. Let GenPredsOf(e,k)
denote the set of generalized event predicates (£,6) sat-
isfied by e, where the set of free variables in £ and the
domain of binding 6 are both { wvy,---,v; }. Note that
GenPredsOf (e,0) is just the set of event predicates (with
no variables) satisfied by e, and that elements (,; of
GenPredsOf (e, k + 1) can be obtained from elements (,, of
GenPredsOf (e, k) in a straightforward fashion by binding
Vk+1 to every possible value occurring in (,, as illustrated
below.
let event e =

consists  of

For example,
GenPredsOf (e, 0)

1<=baz(2). Then,
({17 ¢=baz(27)), {}),



where 1° can be replaced by either 1 or
and 2° can be replaced by either 2 or _.
GenPredsOf (e, 1) contains ((v;¢=baz(2%)), {vi+ 1})
and  ((1"=baz(vy)), {v1+2}). GenPredsOf(e,?2)
consists of ((vi<2baz(vy)), {v1+— 1,9+~ 2}) and
((vg¢=baz(v1)), {v1 — 2,v2 — 1}). (The two predicates
in GenPredsOf (e,2) are equivalent modulo variable
renaming, but we retain such redundant predicates to
simplify presentation.)

Description: The algorithm to mine > rules in-
volving quantifiable event predicates is identical to the one
in Figure 1 with the exception of processing generalized
event predicates (controlled by a parameter k instead of
propositional event predicates (at lines 2, 9, and 15) and
except for two minor yet key differences described below.

We represent a rule VZ.&; - &o by the pair (&1,&2)
where each &; is a quantifiable event predicate. Hence, the
map Ny used to compute the support of rules maps pairs
of quantifiable event predicates to non-negative numbers (at
lines 4-5).

While selecting witnesses for a rule at line 17, we
consider only pairs of generalized event predicates ({1, 61)
and (&2, 02) where & is frequent (i.e. £, € FreqPreds) and
the bindings are equal, i.e. ; = 60s.

For details of the algorithm, please refer to the technical
report [3].

B. A Comparison with Alternative Techniques

We now contrast our technique with an alternative ap-
proach based on the idea of trace slicing [4], [5]. Let w
= f(1); f(2);9(1); g(2) be a trace (where the return values
have been omitted for simplicity). The slice of m with respect
to the value 1 is f(x); g(x) and the slice of 7 with respect to

value 2 is f(x);g(x). The rule f(x) - g(x) can be mined
from each of these trace slices, and this serves as the basis
for mining quantified rules.

However, this approach raises several subtle questions.
How do we define the slice of the trace f(1,1);¢g(1,1) with
respect to the value 1? Should the first event be abstracted
into f(x,z) or f(z,1) or f(1,2)? All are reasonable pos-
sibilities. If we choose just one of these possibilities, the
mining algorithm becomes incomplete and may fail to mine
some valid rules. If we consider all of these possibilities,
then we need to consider 9 different slices (since we have 3
such choices for the second event as well). In general, the
number of slices we need to consider could be exponential
in the length of the trace.

Furthermore, computing support and confidence from the
slices is tricky. If a single trace produces multiple slices,
many of these may not satisfy a given rule, but cannot be
treated as negative witnesses.

The same problem arises in the mining of rules with
equality constraints. Yang et al. [4] use a context-sensitive
mining approach for such rules. Essentially, this amounts

to transforming a trace f(1);¢(2) into a trace f_1;g_2 and
applying the basic mining algorithm to this trace (where
f_1 is treated as a procedure name). Consider an event
f(1,2). Should this be transformed into f or f_1 or f_2
or f_1_27 Again we face a choice between incompleteness
or an exponential blowup.

One of our key contributions is a mining algorithm that is
complete (i.e. mine all rules within the targeted class that are
satisfied by the given traces), yet avoids the above mentioned
exponential blowup. Our approach works by generalizing a
trace into a sequence of sets of predicates (while the trace
slicing approach relies on generalizing a trace into a set of
sequence of predicates).

C. Alternation Rules

Similar to algorithms for mining eventually rules, we
have designed algorithms for mining both propositional
and quantified forms of alternation rules. While the treat-
ment of equality constraints and quantification in these
algorithms is the same as in the algorthims for mining
eventually rules, the key differences are 1) the overall
iterative structure of the algorithms, which are guided by
the nature of the alternation operator, and 2) the application
of Apriori property: we rely on a relatively stronger theorem:
support(&; ~ &2) < min(support(&1), support(€2)) to only
consider frequent events f; and fy for mining f; N fo.

Due to lack of space, we present these algorithms in the
techincal report [3].

V. ELIMINATING REDUNDANCY

Note that a number of logical implication relations hold
between various different temporal rules. These implications
can be used to simplify the output set of mined rules by
eliminating redundant rules, which can make it easier for
end users to study the set of mined rules.

Theorem 1: Let &1,&2,&3,&], and &) be event predicates.
Then,

D & =&, & o €. & = & imply & — &. (Similarly
for all other temporal operators.)
2) & o & implies & — &. (Similarly for << and «<.)
3) & > & and & ~ & imply & — &. (Similarly for
&)
Our algorithm for eliminating redundant rules iteratively
identifies (using the above implications) and removes redun-

dant rules. The complexity of our algorithm is quadratic in
the number of rules.

VI. EXPERIMENTAL EVALUATION

In this section, we empirically evaluate many aspects of
our formalism and algorithms.



[ API [ #Procs | # Traces [ # Calls [ # Rules | Supp/Conf |

WDM 68 7038 99736 15/15/7 1000/0.9

10 72 54 56721 8/9/53 1000/0.95

Registry 44 41 35435 13/12/54 2000/0.95

Memory 50 63 | 581187 10/11/8 20000/0.9

Printing 36 34 4172 | 21/13/110 200/0.95
Table I

THE APIS USED IN EVALUATION ALONG WITH THE MINED RULES. AN
ENTRY X/Y/Z IN THE RULES COLUMN DENOTES X PROPOSITIONAL
BINARY RULES, Y BINARY RULES W/ QUANTIFICATION, AND Z BINARY
W/ QUANTIFICATION AND EQUALITY CONSTRAINTS WERE MINED.

A. Expressiveness of QBEC

We chose to target QBEC rules in our work because we
believe that it offers a good tradeoff between expressiveness
and the complexity of mining. We performed a simple study
to validate our belief that QBEC is quite expressive in
practice. We manually analyzed a set of 78 widely used
rules from the WDM API (incorporated in the Static Driver
Verifier [1]).

Our study shows that 23 of the 78 rules can be directly
expressed in QBEC and that 45 (including the 23 that are
directly expressible) of the 78 rules can be expressed in
a simple extension of QBEC where we permit inequality
constraints (involving < and >) over finite enumeration
types and allow predicates involving global variables. (The
use of global variables requires only a generalization of the
concept of an event, rather than a generalization of QBEC).
Our mining algorithms can directly handle these extensions.
(See our description of finitely instantiable predicates in
Section II).

The other 33 rules cannot be expressed in QBEC for one
or more of the following reasons: (a) 24 rules require ternary
temporal operators, such as “between every occurrence of
events e; and eo, there must be an occurrence of event
e3”. (b) 18 rules require disjunction in the rule: e.g., “every
occurrence of e; must be followed by an occurrence of es
or e3”. (c) 17 rules require negation: e.g., “an occurrence of
e1 must not be followed by an occurrence of es”.

B. Implementation

We now describe a couple of aspects in which our

implementation differs from the algorithms presented earlier.
*

Restricted to — rules: While mining rules of the form

& s & and &9 < &1, our implementation only considers
consequents with an equality constraint involving at most
one parameter. We made this pragmatic choice as the a priori
property is not applicable to the consequent of these rules.
We plan to relax this restriction in our ongoing work.

Value equality: One of the limitations of mining rules
using dynamic execution traces is that it relies on the
equality of values to relate events. However, it is possible
that two unrelated events may have the same parameter or
return values. Consider the following trace.

0x40000 = HeapAlloc (0x56000, O0);

HeapFree (0x56000, 0x40000);

0x40000 = HeapAlloc(0x56000, 0);

Here, the memory object 0x40000 is reused by the memory
allocator and hence returned by two calls to HeapAlloc.
However, note that the call to HeapFree and the second
call to HeapAlloc are logically unrelated, although they
share a common value. Such accidental value equalities can
lead to imprecision in the mined rules. We use a simple
heuristic to work around this problem. While mining quan-
tified rules, we restrict attention to those pairs of compatible
generalized event predicates that do not have an intervening
event whose return value equals the bound variable’s value.
We found that this heuristic helps improve the quality of
rules we generate, and we plan to formally study this
phenomenon in a future work.

C. Experimental Methodology

We applied our algorithms to several commonly used
Windows APIs. Table I lists the APIs, the number of
procedures in the API, the number of traces we generated
for each API, the number of API calls in the traces, and the
number of mined rules of different forms.

The traces for the Windows APIs (Registry, IO, Memory
Management and Printer) were generated using 1ogger [6].
As clients of these APIs, we selected a number of desktop
applications such as Adobe Reader, XEmacs, Windows
media player, Outlook etc. We ran each application several
times and during each run, we performed a series of actions
simulating realistic usage of the applications.

The Windows Driver Model (WDM) is a framework for
device drivers. We generated WDM traces from a set of
20 device drivers using a software model checker because
we could not find a logging utility that generates device
driver traces. The model checker executed the drivers in
the process of verifying their correctness. We instrumented
the model checker to generate a function call trace during
every execution. Compared to the Windows API traces, the
traces generated by the model checker tend to be smaller (an
average of 14 API calls per trace). To compensate for the
size of the traces, we generated a significantly larger number
of traces.

We ran our experiments in a system with a 1.6GHz Intel
Pentium Core2 Duo processor with 3GB RAM running
Windows Vista. We measured the running times of the
mining algorithms using the .NET TimeSpan class. The
execution times we report are averages across 3 runs of the
algorithm.

D. Size of the Search Space of QBEC rules

First, we measured the number of instantiated equality
constraints associated with functions in the APIs. We say
that an equality constraint $i = ¢; where ¢ # 1 is an
instantiated equality constraint associated with a function
f if there exists some event e in the traces such that
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Figure 2. The distribution of the number of base event predicates

associated with functions in various APIs.
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Figure 3. The distribution of the number of frequent event predicates

associated with each function in the WDM API for different support
thresholds.

e E (31 == f A$i == ¢;). Figure 2 shows the distribution
of the number of instantiated equality constraints for various
APIs. The bottom bar in each column of the figure shows
that a majority of the functions are associated with less than
100 instantiated equality constraints. However, between 2
and 20% of functions have more than 500 constraints (rep-
resented by the top bar in each column). This observation
shows that the search space of QBEC rules is extremely
large. The observation also shows the need for mining
algorithms that search this space efficiently.

As described earlier, our algorithms exploit the a priori
property to search this space efficiently by considering
only frequent predicates where possible. Figure 3 shows
the distribution of the number of frequent event predicates
for functions from the WDM API for various minimum
support values. Not surprisingly, most functions in the API
have a small number (between 0 and 10) of frequent event
predicates. The percentage of API functions with < 10
frequent predicates increases from 70% to 90% as the
support threshold is increased from 50 to 500. Note that the
number of frequent predicates is significantly smaller than
the number of instantiated equality constraints (Figure 2).
This shows the effectiveness of using the a priori property.
The data from other APIs is qualitatively similar; we omit
the results due to space constraints.

700 - Min Support | 50 #100 m200 m500
600

500
400
300
200
100

# of frequent event predicates

Size of frequent event predicate

Figure 4. The distribution of the size of frequent event predicates
associated with functions in the WDM API for different support thresholds.

Support] Before elimination After elimination
Conf. — 09 T 095 0.98 0.9 1095 ] 098
50 2212 | 2092 | 1079 || 268 | 230 | 261
100 1117 | 1053 750 || 108 96 112
200 526 510 456 76 70 72
500 199 186 141 57 47 37
1000 156 149 111 37 31 23

Table 11
NUMBER OF QBEC RULES WITH EQUALITY CONSTRAINTS GENERATED
FOR THE WDM API.

Figure 4 shows the distribution of the size of frequent
event predicates in the WDM API. The size of an event
predicate ¢ is the number of equality constraints in . We
find that most frequent event predicates are conjunctions of
1 or 2 equality constraints.

E. Impact Of Confidence/Support Threshold

We performed a sensitivity analysis to study the impact
of the support and confidence thresholds on the number of
QBEC rules mined by our algorithm. Tables II and III show
the number of s rules mined, before and after redundant
rule elimination, for the WDM and memory management
APIs. As these tables illustrate, the number of mined rules
decrease significantly when the support threshold or the con-
fidence threshold is increased, showing that these parameters
can be effective filters for choosing rules for subsequent
manual examination. Note that in a few cases, the number
of non-redundant rules mined increases with an increase in
the confidence threshold: this can happen when the increase
in the confidence threshold causes a stronger rule 7 in the
output to be replaced with two or more weaker rules (which
were originally redundant because of 7).

F. Effectiveness Of Redundancy Elimination

Tables II and III also illustrate that redundancy elimina-
tion is very effective in reducing the number of mined rules
that one must consider. On the average, this phase eliminates
77% of the rules in the WDM API and 82% of the rules in
the Windows APIs. Thus, this phase is critical in ensuring
that the mined rules do not overwhelm users.



Support| Before elimination After elimination

Conf. — 09 T 095 0.98 09 T 095 0.98
10000 4301 | 3150 | 2967 || 3728 | 2777 | 2759
20000 229 155 95 29 23 16
50000 55 25 7 6 3 2

Table III
NUMBER OF QBEC RULES GENERATED FOR THE MEMORY
MANAGEMENT API.

Support
50 100 200 500 50 100 200 500
180
160 - W Eliminate
140 1 [ Mine rules
120 -
[ Quantify

100 -

Runtime [secs)

20 - = Mine predicates
60 ClRead traces
40
20 A7
0
Binary eventually Alternation
Figure 5. Time taken to mine rules for the WDM API.

G. Efficiency of the Mining Algorithms

Figure 5 shows the total running time of the two al-
gorithms for mining rules from WDM traces for various
support thresholds. The running times are averages across
four different confidence thresholds; we did not find any
significant variation in the running times as the confidence
thresholds are changed. We can attribute the total running
time to the time consumed in reading and parsing raw traces,
mining frequent event predicates, performing trace quan-
tification, mining rules themselves and finally, eliminating
redundant rules.

The figure shows that the time for mining the binary
eventually rules and the alternation rules are almost the
same. At low support thresholds, a large fraction of the
running time is due to redundancy elimination. This is
because redundancy elimination takes time quadratic in the
number of rules and at low support thresholds, we mine a
large number of rules. The running time decreases sharply as
the minimum support threshold is increased. However, even
with high support thresholds, the time consumed in mining
QBEC rules itself is small ( 10% on average), with a large
fraction of the runtime is attributed to trace quantification.
E.g., rules with support and confidence greater than 200 and
0.9 respectively are mined in approximately 20 seconds, out
of which 11 seconds are spent in trace quantification and
3.4 seconds in mining rules.

H. Quality of Mined Rules

An important measure of a mining algorithm is its pre-
cision: how many of the candidate rules mined are indeed
valid rules? However, evaluating this metric is challenging
(in our context) as it can only be done manually. A manual
examination of a subset of the rules mined from the WDM

traces produced promising results. We found that several
of the examined rules were valid rules, documented as
part of the Static Driver Verifier (SDV) tool. Several of
the remaining rules appeared to be valid, based on an
examination of the textual documentation [7]. Several of the
mined rules appear to correspond to idiomatic programming
practice recommendations [7], though it is unclear if these
are mandatory rules.

Similarly, we validated some of the rules mined for the
other APIs (the rules mined at a reasonably high support
and confidence specific to each API) against the informal
documentation of the APIs and found that a large fraction
of the rules were stated in the documentation.

VII. RELATED WORK

The topic of specification mining has attracted wide
attention in the recent years. The early work of [8] addresses
the problem of mining program invariants (as opposed to
API usage rules), but restricts attention to non-temporal
invariants. Some researchers (e.g., [9]) explore the problem
of mining API usage rules by analyzing the library, while
others (including us) use clients to mine API usage rules.
Within the space of client-based mining, several researchers
(e.g., [10]) have pursued a static-analysis based approach to
mining, while we (and several others) address the problem
of mining specifications from traces. We now compare
our work with related work in the space of trace-based
specification-mining.

We first state some distinguishing features of our work.
(a) We provide a simple yet rigorous formalization of
event quantification along with a general algorithm to mine
quantified rules. Further, our algorithm is complete with
respect to possible quantifications that are considered during
rule mining. (b) We provide a unified formalism and min-
ing algorithm that combine state predicates with temporal
constraints. (c) The algorithm we present for mining binary-
eventually rules is novel, and is linear in the total size of
the input traces. (d) Our approach exploits the classical a-
priori property from data-mining to make the mining more
efficient.

The work most closely related to ours is that of Yang
et al. [11], [4]. Yang et al. also focus on mining binary
temporal rules, but differ from us in several respects. They
rely on trace slicing for quantification and context-sensitive
mining for equality constraints. Section IV-B compares these
approaches and outlines the advantages of our approach.

Quantified rules are very common, but only a few past
efforts support the mining of quantified rules. Ammons et
al. [12] support only quantification over the first argument to
a procedure call. Chen and Rosu [5] is the only prior work
that provides a complete formalism for quantification. Our
formalism, done independently, is similar in some respects to
their formalism, but there are very significant differences as



[ Rule [[Support | Confidence]|
KeAcquireSpinLock(_,V) = KeReleaseSpinLock(_,V) 5124 1.00
ExAcquireFastMutex(V) 5 ExReleaseFastMutex(V) 1242 1.00
InterlockedIncrement(V) = InterlockedDecrement(V) 3571 1.00
IoGetNextIrpStackLocation(V) = ToCallDriver(V,_) 2599 0.99
ToCopyCurrentIrpStackLocationToNext(V) & IoCallDriver(V,0) 3346 0.98
V ExAllocatePoolWithTag(_,_,_) .l ExFreePool(V) 2060 0.97
ToCopyCurrentIrpStackLocationToNext(V) < PoCallDriver(V,_) 519 0.94
ToCopyCurrentIrpStackLocationToNext(V) — IoCallDriver(V,_) 4473 0.90

Table IV
A SELECTION OF THE QBEC RULES MINED USING OUR TOOL. V REPRESENTS A QUANTIFIED VARIABLE.

well. The Chen and Rosu algorithm is based on trace slicing
and we contrast our work with trace slicing in Section IV-B.

Some of the previous work [12], [13], [5] has focused
on mining API usage rules in the form of a single finite-
state automaton. Our approach may be viewed as mining a
number of small automata of a special form (corresponding
to the temporal operators), which has some advantages. E.g.,
consider an API with k rules f; - gi» 1 < < k. Expressing
these as a single automaton would require 2* states. Since
mining algorithms tend to limit their attention to automata
with a limited number of states, a single-automaton-miner
is likely to miss some of these temporal rules. In contrast,
mining this set of k temporal rules is straightforward with
our approach. Furthermore, our mining algorithms are linear
in the total size of the trace, while the automaton-based
approaches are cubic. It would be interesting to generalize
our approach to mine a set of arbitrary automatons within
some size. Recently, Gabel and Su [14] showed how simpler
rules (like ours) can be combined to form more complex
rules (or automaton).

Recently, Lorenzoli et al. [13] have presented a technique
for mining an Extended FSM, which combines state predi-
cates with finite-state automaton, but this neither supports
quantification nor tolerates erroneous inputs. In contrast,
our techniques can mine binary temporal rules involving
state predicates and quantification (more efficiently) while
tolerating erroneous inputs.

The work in [15], [16] also use data mining, but they
mine frequent patterns rather than rules. While rules capture
constraints, patterns only capture series of events that appear
frequently. de Sousa er al. [17] address mining of implied
scenarios, in the form of message sequence charts, which
describe sequences of events that could occur.

REFERENCES

[1] “Static driver verifier,”
devtools/tools/sdv.mspx.

http://www.microsoft.com/whdc/

[2] R. Agrawal and R. Srikant, “Fast algorithms for mining
association rules,” in Proc. of VLDB, 1994.

[3] D. Lo, G. Ramalingam, V. P. Ranganath, and K. Vaswani,
“Mining quantified temporal rules: Formalism, algorithms,
and evaluation,” Microsoft Research, Tech. Rep., 2008.

[4] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das, “Per-
racotta: Mining temporal API rules from imperfect traces.” in
Proc. of ICSE, 2006.

[5] F. Chen and G. Rosu, “Mining Parametric State-Based Spec-
ifications from Executions,” in Technical Report (Unpub-
lished), 2008.

[6] “Debugging tools for windows,”
http://www.microsoft.com/whdc/devtools/debugging/
default.mspx.

[7] “Windows Driver Development,” http://www.osronline.com/.

[8] M. Ernst, J. Cockrell, W. Griswold, and D. Notkin, “Dy-
namically discovering likely program invariants to support
program evolution,” TSE, vol. 27, no. 2, 2001.

[9] R. Alur, P. Cerny, G. Gupta, and P. Madhusudan, “Synthesis
of interface specifications for java classes.” in Proc. of POPL,
2005.

[10] M. K. Ramanathan, A. Grama, and S. Jagannathan, “Static
specification inference using predicate mining,” in Proc. of
PLDI, 2007.

[11] J. Yang and D. Evans, “Dynamically inferring temporal
properties.” in Proc. of PASTE, 2004.

[12] G. Ammons, R. Bodik, and J. R. Larus, “Mining specifica-
tion,” in Proc. of POPL, 2002.

[13] D. Lorenzoli, L. Mariani, and M. Pezze, “Automatic Gen-
eration of Software Behavioral Models,” in Proc. of ICSE,
2008.

[14] M. Gabel and Z. Su, “Javert: fully automatic mining of
general temporal properties from dynamic traces,” in Proc.
of FSE, 2008.

[15] H. Safyallah and K. Sartipi, “Dynamic analysis of software
systems using execution pattern mining.” in Proc. of ICPC,
2006.

[16] M. El-Ramly, E. Stroulia, and P. Sorenson, “Interaction-
pattern mining: Extracting usage scenarios from run-time
behavior traces.” in Proc. of KDD, 2002.

[17] E. de Sousa, N. Mendonca, S. Uchitel, and J. Kramer, “De-
tecting implied scenarios from execution traces..” in Proc. of
Work. Conf. on Reverse Engineering, 2007.



