Full Presentation: Migration to the
Cloud made Safe and Secure

Ken Eguro ~ Kaushik Rajan

Ravi Ramamurthy

Kapil Vaswani ~ Ramarathnam Venkatesan

Microsoft Research

eguro,krajan,ravirama,kapil,venkie@microsoft.com

1. The Problem

In the last few years, cloud computing has evolved from a buz-
zword to a critical infrastructure component of many enterprise
and consumer services. The cloud provides virtually limitless com-
pute, storage and network resources at low cost, allowing services
to scale on demand. The cloud absolves organizations from manag-
ing IT infrastructure, and allows them to focus on their core com-
petencies.

However, the benefits of cloud computing do not come for
free; building and running applications for the cloud comes with
significant challenges. Arguably the most significant challenge is
security. By their very nature, applications deployed on a public
cloud expose a larger attack surface when compared to their in-
house counterparts. Applications on the cloud are hosted in a multi-
tenant environment, where they share physical resources such as
memory, disk, network and CPU. This model, which is key to
cloud providers achieving benefits of scale, enables a variety of
attacks from co-located malicious applications. Another security
threat are is the cloud operator, who can both observe and tamper
with an application’s execution. These limitations have precluded
the migration of security sensitive applications to public cloud
platforms, forcing organizations to consider more expensive and
less scalable alternatives such as the private cloud.

Data encryption. One approach for guaranteeing security of sen-
sitive data on public cloud platforms is encryption (e.g. using pri-
vate key encryption). Encryption ensures that data at rest is never
seen in plain text on untrusted machines (such as the applica-
tion and database server). Therefore, data is protected from di-
rect attacks such as theft and tampering, though the possibility of
side channel attacks and frequency attacks remain. Most contem-
porary storage systems offer encryption and key management as
core services. For example, SQL Server supports various encryp-
tion schemes, both granularity of individual columns, or the entire
database.

Encryption and application compatibility. I1deally, one would
like encryption to be a semantics preserving i.e. encryption should
preserve the behavior of applications written to work with unen-
crypted data . However, efficient, semantics preserving encryp-
tion schemes (i.e. homomorphic encryption [2]) remain elusive.
Most encryption schemes used in practice are efficient but sig-
nificantly limit the kind of computations that can be performed
directly on encrypted data while preserving semantics. For exam-
ple, one way hash functions and deterministic encryption schemes
permit equality checks to be performed directly on encrypted data
while preserving semantics. Therefore, database operations such
as equi-joins and grouping that rely on equality checks can be per-
formed without requiring the data to be decrypted. Strong encryp-
tion schemes such as non-deterministic encryption do not permit

(a) Conventional 3-tier architecture

Untrusted Untrusted
Server Database
-t
Secure hardware

(b) Architecture post encryption

Figure 1. Architectures of a typical 3-tier application pre and post
encryption

even equality checks. In general, data encryption is not semantics
preserving, and has a huge bearing the rest of the application stack.

For example, consider a typical 3-tier application with a browser
based or native client, a middle tier and a data layer consisting of
databases, stored procedures, views and other data access compo-
nents (Figure 1 (a)). Assume that the application is written without
considering encryption. Encrypting parts of the database can break
some or all of these layers, and significant rewriting is required to
restore the application’s functionality. First, the application must be
rewritten to manage encryption keys. For sensitive data, it is desir-
able to store encryption keys with the client and not in the middle
tier or database (which would defeat the purpose of encryption).
Therefore, client side logic must be rewritten to encrypt data be-
fore it is passed to the middle tier, and vice versa.

More importantly, the business logic in the middle tier and the
data layer must be carefully analyzed to detect computations that
are incompatible with encryption. For example, it is not possible to
sort or compute aggregations over encrypted columns (even when
using one way hash functions) while preserving semantics. There-
fore, any such computation must be pushed to the client. If the
middle tier is responsible for rendering the UI and the rendering
logic depends on encrypted data values, the rendering logic must
be pushed to the client. The client logic must be rewritten to first



decrypt the data (since it has access to keys), perform the necessary
operations, and optionally encrypt the results and send them back
to the middle tier. Therefore, business logic that was originally cen-
tralized and easy to write and reason about, must now be distributed
across multiple layers.

The problem of distributing the application’s logic is com-
pounded if a trusted components such as a secure co-processors
or FPGA based secure programmable hardware [1] is added to the
mix (Figure 1 (b)). These components have access to keys and can
perform a limited class of computations on encrypted data securely
(i.e. without revealing plaintext) even though they are physically
hosted in an untrusted envrionment. Pushing computations to such
devices lowers communication costs since sensitive data no longer
needs to be shipped all the way to the client if the computation is
supported by secure hardware.

Today, the process migrating applications post-encryption is
performed manually. The process requires a thorough understand-
ing of the entire application’s logic and dataflows between applica-
tions, if any. It also requires developers with expertise in multiple
languages and frameworks. The rewriting process is error prone,
and therefore, multiple rounds of testing are required to ensure se-
curity and correctness.

Another challenge faced during the process of migrating an
application is the trade-off between encryption and performance.
Strong encryption schemes (such as non-deterministic encryption)
provide stronger security guarantees at the cost of computations
that can be performed without decryption. Therefore, both security
experts and developers must compare different encryption policies
in terms of their impact on the performance and the security guar-
antees they provide. This is challenging because applications rou-
tinely have large databases with many tables and columns and the
search space of encryption policies can be extremely large.

Tool support for application migration. As described above, the
process of migrating data and computation to untrusted hosts is
akin to low level assembly programming. We believe that for the
full potential of the cloud to be realized, developers must be sup-
ported with tools that automate the process of migrating applica-
tions while guaranteeing correctness, performance and the desired
level of security. Specifically, we envisage a development environ-
ment where security experts or application developers state their
security requirements declaratively, and the application is automat-
ically migrated to meet the given security requirements while pre-
serving behavior with minimal manual effort.

2. Role of programming language research

Programming language techniques have a key role to play in iso-
lating developers from the challenges of guaranteeing security. For
example, static analysis techniques such as type systems, data flow
analysis and compiler optimizations can play an important role in
automating the following tasks for a large class of applications.

e Checking application compatibility. The first problem that
arises once an encryption policy has been enforced is to check
if the rest of the application stack is affected. More formally,
given a program p, we would like to check whether its behavior
when all state is plain text is equivalent to its behavior when
some parts of state are encrypted. For example, consider the
following SQL query.

SELECT c.Name, c.Address
FROM dbo.Customer c
JOIN dbo.Sales s ON s.CustomerId = c.CustomerId

The behavior of this query when all columns are plain text is
equivalent to its behavior when the columns CustomerId in the

tables Sales and Customer are encrypted using a deterministic
encryption scheme, and the columns Name and Address are in
plain text.

Secure rewriting. The secure rewriting problem arises for ap-
plications that do not satisfy the above equivalence criteria.
Such programs must be rewritten to identify computations that
are not compatible with the given encryption policy. Such com-
putations must be rewritten to decrypt and encrypt data. Specif-
ically, given a program p, we wish derive a program p’ such that
the behavior of p when the initial state is plain text is equiva-
lent to the behavior of p’ when some parts of the initial state are
encrypted. The program p’ is assumed to have access to keys
and may use routines to encrypt and decrypt parts of state as
required.

Consider the query above. If columns Name and Address are
encrypted, the query must be rewritten as follows. The routine
DECRYPT decrypts the column using the given key.

SELECT DECRYPT(k, c.Name), DECRYPT(k, c.Address)
FROM dbo.Customer c
JOIN dbo.Sales s ON s.CustomerId = c.CustomerId

Program partitioning. The above rewriting is incomplete be-
cause it assumes that the host has access to keys. In a real de-
ployment, keys are accessible to clients and trusted hardware
but not to the database and application servers. Therefore, we
require that the application be partitioned between different
hosts. Formally, given a program p, we wish to derive a pro-
gram p’ such that the behavior of p when all state is plain text
is equivalent to the behavior of p’ when some parts of the initial
state are encrypted. Further, we require that p’ consist of two
components, a trusted component that has access to key and
may use encryption and decryption routines, and an untrusted
component that does not have access to keys but has access to
state. We also require that the component delegated to trusted
hardware should only run computations that are supported by
the hardware.

Our current work focuses on designing static analysis tech-
niques that address some of these challenges for a small part of the
application stack, namely stored procedures written in T-SQL. We
first formalize the correctness and security guarantees of stored pro-
cedures deployed on an untrusted host. We propose a simple type
system for T-SQL with one base type for each type of encryption,
record types and function types. We define a sub-typing relation
between types; the sub-typing relation models conversion of values
from one encryption type to the other. For example, we consider
plain text to the a sub-type of deterministic encryption since plain
text values can be converted to deterministically encrypted values
using appropriate encryption routines. The problem of checking ap-
plication compatibility can be reduced to type inference over this
type system. Furthermore, secure rewritings for incompatible ap-
plications can be generated by automatically inserting coercions.
We then prove that the rewritings we generate are both secure and
behaviorally equivalent to the original stored procedures. However,
we recognize that our work represents just initial steps in this space
, and a much larger research effort is required to realize the goal of
transparent migration of applications to the cloud.

References

[1] R. V. Ken Eguro. FPGAs for Trusted Cloud Computing. In Inter-
national Conference on Field Programmable Logic and Application,
2012.

[2] D. Micciancio. A first glimpse of cryptography’s Holy Grail. Commu-
nications of ACM, 53(3):96, 2010.



