
ABSTRACT 
 

This paper introduces a new optimization criterion for the design 
of microphone arrays, and derives an optimum filter based on this 
criterion. The algorithm computes two separate correlation 
matrices for the signal: one for when only background noise is 
present, and one for when both noise and signal are present. A 
filter is then computed based on these matrices, optimizing the 
proposed weighted mean-square error criterion. A block-
recursive version of the algorithm is presented, using LMS-like 
adaptation of the multichannel filters, with a computational 
complexity under 40 MIPS for a typical application with four 
microphones. Simulation results with typical office noise show 
improvements of up to 20 dB in signal-to-noise ratio, even in 
low-noise environments. 

1. INTRODUCTION 

Using signal processing to improve the quality of speech acquired 
by a microphone has been a long-standing interest in the DSP 
community, with some of the most promising technologies being 
based on microphone arrays. The microphone array literature is 
particularly populated with algorithms based on the Generalized 
Sidelobe Canceller (GSC) [1], but performance degrades quickly 
with reverberation [2]. A few other algorithms are based on 
optimum filtering concepts, or signal subspace projection [3]-[5]. 
A completely different approach comes from Blind Source 
Separation (BSS) [6]. Curiously, while BSS techniques tend to be 
overly sensitive to ambient conditions (e.g., room reverberation), 
it performs extremely well in some environments.  

We analyzed some of the situations in which traditional 
microphone arrays are outperformed by BSS. We noted that BSS 
techniques generally focus in making the recovered signals 
statistically independent, putting essentially no penalty on signal 
distortion. While ignoring signal distortion altogether may not be 
a good idea, paying extra attention to (statically independent) 
noise seem to be highly justified by our subjective perception of 
speech quality. Based on this reasoning, and on a few subjective 
test experiments, we concluded that a new optimization criterion 
is needed, which accounts for noise differently from signal 
distortion. In this paper, after formalizing this new criterion, we 
derive a new algorithm, which produces an optimum filter under 
this new error criterion. The algorithm has some resemblance to 
the SVD-based algorithm proposed by Doclo and Moonen [5], but 
does not involve SVD computations, and optimizes the proposed 
error measure, instead of mean square error (MSE). We also 
present a less computationally intensive, LMS-based, version of 
our algorithm. This version of the algorithm has some similarities 
with the algorithm proposed by Nordholm at all [7], but does not 
rely on pre-stored calibration signals. Results of using the 

proposed algorithms in real-world signals are presented, which 
show noise suppression of up 20 dB. This is around 8 dB higher 
than that of an optimum filter based on traditional criteria, while 
the extra signal distortion is essentially unnoticeable. 

2. A WEIGHTED ERROR CRITERIA FOR  
MULTICHANNEL WIENER FILTER 

We now introduce our notation. For simplicity, we replicate each 
sample of the input as many times as filter taps that will use that 
sample, and form an input vector x(n), which contains samples 
from all input channels, and from current and past (or “future”) 
sample of each of those channels. So, for example, if we denote 
one microphone signal as x1(n), and another microphone signal as 
x2(n), an input vector x(n) for a 3-tap per channel array could be 
composed as: 

 ( ) [ ]1 1 1 2 2 2( 1) ( ) ( 1) ( 1) ( ) ( 1) .n x n x n x n x n x n x n= − + − +x  (1) 

Therefore, at each time instant n, x(n) is a T ×1 vector, where 
T is the number of total taps in the filter (generally the number of 
channels multiplied by the number of taps used for each channel). 
Furthermore, from now on we will drop the time index n, and 
write simply x to denote the input vector. We use a similar 
notation for all other vectors and variables. 

We assume that noise is linearly added to the desired signal. 
In other words, we can write: 

 ,= +x s n  (2) 

where s is the speech component of the signal and n is the additive 
ambient or interfering noise. Furthermore, we assume that the 
noise is statistically independent from the desired signal, although 
it might be correlated between different microphones. 

The basic hypothesis is that the desired signal is essentially 
the same on all channels, possibly with the exception of a delay, 
or maybe different room-transfer functions. We want to compute a 
filter w, which will produce a single-channel output y, given by: 

 . ,y w x�  (3) 

where w is the 1× T filter vector, and which minimizes an 
appropriate error measure between y and a desired signal d.  

2.1.  A weighted error criteria 

We want to choose the filter w in (3) such that the output signal y 
is as close as possible to desired signal d. We could simply use the 
overall mean square error (MSE): 

 2 2' E{( ) } E{( .( ) ) }.y d dε = − = + −w s n  (4) 
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Where E{⋅} denotes expected value. However, the MSE is not 
appropriate, as discussed in the Introduction. It gives the same 
weight to any distortion introduced in the desired signal and any 
remaining noise left in the output. In contrast, subjective tests 
clearly favor a distorted signal when compared to a signal with the 
equivalent noise level in terms of MSE. We therefore want to give 
different weights to the residual noise and to the error due to 
distortion in the desired signal. We introduce a parameter β  to 
denote this extra weight, and so we can write our new weighted 
error measure ε  as: 

 2 2E{( . ) ( . ) } .dε β= − +w s w n  (5) 

Note that the first term in (5) is due to the signal distortion, 
while the second term reflects only the effects of the noise. Since 
we assume n and d are statically independent, ε  and ε’ become 
the same for β = 1. By using a higher value for β, we can put more 
weight on the independent noise component, which is the criterion 
we discussed above. 

2.2.  The optimum filter for stationary signals 

In general, even continuous speech is characterized by periods of 
silence between utterances. Therefore, as commonly done in many 
other speech enhancement algorithms, we use a speech activity 
detector to classify the signal into “speech” and “silence” periods. 
Assuming that the noise is stationary, we can use these “silence” 
periods to obtain estimates about the statistical properties of the 
noise, as commonly done in spectral subtraction and Wiener 
filtering. 

We can compute the optimum filter that minimizes the 
weighted error given in (5). Using a derivation similar to that for 
the Wiener filter, this optimum filter can be shown to be: 

 { }( )1( ) E ,R R dopt xx nnρ −= +w x  (6) 

where Rxx is the autocorrelation matrix for the input vector x 

(which includes both signal and noise), Rnn is the correlation 
matrix for the noise component n, and ρ  = β – 1 . Note that for 
ρ  = 0, this is simply the traditional Wiener filter, as we would 
expect. 

Implicit in the derivation is the assumption that the signal 
and the noise are stationary. We can therefore compute the 
statistics for n during “silence” periods, and the statistics for x 
during speech activity periods.  

To circumvent the need for the desired signal d in (6), we 
select one of the channels (and implicitly the room impulse 
responses within that channel) as our “primary” channel, and use 
that (reverberated) speech signal as our desired signal. We can 
then write: 

 \ ^ \ ^	 
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where x0 and n0 represent the signal and noise from the selected 
reference channel, respectively.  

Figure 1 shows a block diagram illustrating this basic 
algorithm. The statistics for noise and for signal+noise are 
computed/updated periodically. The block “spatial filter” is the 
optimum filter based on these accumulated statistics, and is 
computed (periodically) based on Equation (7). Note also that 

E{x0x} and E{n0n} are in fact just columns of Rxx and Rnn 

respectively.  

2.3.  Some considerations about stationarity 

Although in most situations the noise is approximately stationary 
(e.g. typical office noise from PCs and air conditioning), the 
signal certainly is not. By using relatively short processing frames, 
we can consider the speech as slowly varying. Thus, we can still 
use the noise statistics computed during the silence periods, and 
interactively compute the signal+noise statistics when the signal is 
present. The filter obtained in this manner would be time-varying, 
and would be close to optimum at all time instants, as long as the 
estimate for the signals statistics are accurate. This scenario is the 
typical case of speech in a stationary noise background.  

Finally, we note that the term  “stationary” here refers to both 
time/frequency and space domains. In other words, a fixed-
location noise source will excite always the same correlation 
patterns between microphones. So, even for a completely non-
stationary source (in terms of time behavior), the algorithm would 
be able to cancel the noise if the source is spatially fixed, albeit it 
may not be optimum anymore when compared to a time-varying 
filter tracking the behavior of the noise source.  

3.  TRANSFORM DOMAIN 

Applying the approach derived in Section 2 directly to the input 
signal would imply in using long filters, and therefore, would 
require manipulating (and inverting) large matrices. Furthermore, 
estimating noise in one frequency range would interfere with the 
performance of the filter in other bands, which would be a 
problem because of the highly colored nature of typical speech 
signals. In order to reduce computational complexity, and improve 
the overall performance of the filter, we first apply a transform to 
each input signal (i.e., each microphone signal). We then apply 
the filtering process previously described to each frequency bin.  

We use a modulated complex lapped transform (MCLT) [8], 
but other filter banks with perfect reconstruction could also be 
used. The MCLT helps reducing the uncancelled aliasing 
components, which appear in subband processing without the use 
of cross filters [8]. Figure 2 shows a block diagram of the MCLT 
version of the algorithm. Note also that a single signal presence 
variable is computed, but it is based on information from all 
frequency bands. 
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Figure 1 – High-level block diagram of the optimum filter. 



The band-by-band processing indicated in Figure 2 may be 
done in similar fashion to the one described before, or can use the 
LMS-based version, discussed in Section 4. Of course, the filters 
now will be complex filters, and have to be adjusted 
appropriately. 

4. AN LMS-BASED VERSION 

The algorithm described in the previous sections works based on 
the differences between the statistics of the signal and noise. 
These statistics are computed in a two-phase process (“noise only” 
and “signal+noise”), and stored as internal states in the system, 
represented by the two matrices (one for each phase). The 
adaptation is therefore based on using the incoming signal to 
update one of these matrices at a time, according to the presence 
(or absence) of the desired signal. In contrast, an LMS-based filter 
doesn’t have the same two separate internal states matrices. It 
usually incorporates input data directly into the filter coefficients, 
and therefore does not allow for this two-phase process.  

To circumvent this problem, we first note that the data 
contained in the statistics matrices is essentially a subset of the 
information contained in the corresponding signals, from which 
the matrices were computed. So, instead of storing the two 
statistics matrices, we propose to store the data itself in two 
separate circular buffers, and use them to directly adapt an LMS-
filter. More precisely, the incoming data is classified as either 
“signal+noise” or “noise,” and stored in the appropriate buffer for 
later usage. We then generate a synthetic input signal z and its 
associated desired signal d by adding data from the circular 
buffers to the input data. This synthetic signal is used to adapt an 
LMS filter. The filter coefficients are continuously copied to a 
separate filter, which directly process the input signal. This 
approach is similar to that used by Nordholm at all [7], but 
without the inconvenient of using calibration signals, thus making 
the overall system more robust to changes in the environment, the 
speaker, the noise, or the microphones. Also, the careful choice of 
synthetic signals – as described below – avoids the need to acquire 
a “clean” signal, as required in [7]. Figure 3 shows a block 
diagram of the proposed algorithm, as it applies to a single band. 

The key in achieving the desired results is, of course, how to 
compose the signals that are used to adapt the LMS filter. We 
design our composed signals based on the optimization criteria 
discussed before, and assuming the circular buffers are short 
enough so that the signals contained in each are representative of 
the two classes. We propose using a two-phase composition: if 
speech is detected in the incoming signal x, we add more noise 
(from the circular noise buffer), to guarantee the desired extra 

noise attenuation. In other words, the input signal z to the adaptive 
filter is computed as: 

 ,ρ= +z x n  (8) 

and the desired signal is set to: 

 
0 0

1
.d x n

ρ
= −  (9) 

Note the negative term added to the desired noise; it is designed to 
guarantee that the filter will not try to preserve the small amount 
of noise present in x0, but will converge to an unbiased estimate of 
the filter described in (7) instead. On the other hand, when no 
speech is detected in the incoming signal, we add a little bit of 
signal, to avoid converging to a signal-canceling filter: 

 ,ρ= +z x s  (10) 

and set the associated desired signal to: 

 
0 0

1
.d x s

ρ
= − +  (11) 

Note again the negative term in the desired signal, which has 
the same purpose as described before. Note also that we scale the 
input signal in such a way that the energy at the input of the filter 
does not vary significantly between speech and silence periods.   
Finally, while the algorithm adds different signals – depending on 
the Speech Activity Detector (SAD) – this is not actually critical. 
An eventual misclassification will not have significant 
consequences. On the other hand, including any parts of the 
desired signal in the noise buffer may lead to signal cancellation. 
To alleviate this problem, and since the SAD is not in the direct 
signal path, we use a long-delay SAD to decide in which buffer to 
store the incoming signal. This SAD has a “not-sure” region, 
where the signal is not stored in either buffer. 

5. RESULTS 

We have implemented frequency-domain versions of both the 
direct and the LMS forms of the proposed algorithm. In both cases 
we use a 64-band MCLT. While we have performed a number of 
experiments, we report here the results of using a 4-microphone 
array, in a typical 4m × 3m office. We compare the results with 
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Figure 2 – High-level diagram of the MCLT version. 
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Figure 3. Processing in each frequency band. 

 



those from using an optimum multichannel Wiener filter 
(computed with the aid of a close-talking microphone), and with a 
delay-and-sum beamformer. The signal-to-noise ratio (SNR) was 
computed by considering the ratio between the average energy 
during speech and average energy during silence periods, after 
convergence of the filters.  

The SNR for the 4 microphones in the arrays was 13.3 dB, 
12.6 dB, 11.4 dB, and 11.1 dB, while the close talking 
microphone presented a SNR of 29.8 dB. Using a delay-and-sum 
approach yielded an SNR of 12.9 dB, which is actually marginally 
worse than the best microphone signal. A reference LMS filter, 
based on traditional LMS error criteria, and using the close-
talking signal as reference, improved the SNR to 25.4 dB. Using 
our algorithm we achieved a 33.0 dB SNR for the direct 
implementation, and 30.2 for the LMS-version. This is up to 7.6 
dB better then the reference LMS, and more than 20 dB better 
than delay-and-sum. Furthermore, note that this reference LMS 
could not be implemented in practice, since it makes uses of the 
close talking microphone signal. 

Finally, we observe that, even though, the extra noise 
attenuation is obtained at the expense of increased signal 
distortion, no significant degradation in the speech signal was 
observed. Particularly useful to notice is that the processing in the 
signal path has an intrinsic delay of less than 64 samples, and is 
essentially linear, therefore avoiding artifacts like musical noise, 
which are common in spectral subtraction and other nonlinear 
noise-reduction techniques. Samples of the input and processed 
signals are shown in Figure 4, and the signals are available for 
listening in [10]. 

6. CONSIDERATIONS ABOUT 
REVERBERATION 

By replacing the desired signal in (6) with the desired signal as 
received in one of the microphones, as in (7), we intrinsically 
accept whatever level of reverberation was present at that 
microphone. In applications where the speaker may be seating 
more than a few feet away from the microphone array, and/or in 
highly reverberating rooms, the resulting reverberation may be 
unacceptable. There are several ways in which this problem can 
be alleviated. In particular, one may decide to simply use a 
reverberation reduction technique as the one proposed in [9], 
which can be readily cascaded with the algorithm presented herein 

by using the output of the reverberation reduction algorithm as the 
reference channel for the noise reduction array.  

7. CONCLUSIONS 

We have proposed a new optimization criterion for computing 
filters to enhance a signal in presence of noise. Based on this 
criterion, we have presented two algorithms. One of the key points 
underlying the proposed algorithms is the possibility of giving 
higher importance to independent noise, when compared to signal 
distortion. This has shown to significantly improve noise 
attenuation and overall subjective results. The LMS-like algorithm 
preserves the noise-reduction properties, while requiring a lower 
computational load. Matlab simulations have shown good results 
at a complexity below 40 MIPS, when processing a four-
microphone signal sampled at 16KHz, using a 64-band MCLT, 
and 10 taps per frequency band.  This computational complexity is 
certainly within today’s computer typical processing power. Noise 
reduction of up to 20dB in low noise situations has been observed. 
In lower SNR environments, an even higher noise reduction can 
be obtained, as long as the presence of the noise does not affect 
the Voice Activity Detector. 
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Figure 4. Sample waveforms. From top to bottom: 
processed (33.0dB SNR), reference-LMS (25.4dB), close-
talking mic (29.8 dB), delay-and-sum (12.9 dB), and best 
mic (13.3 dB). 


