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Methodologies for Cross-Domain Data 
Fusion: An Overview 

Yu Zheng, Senior Member 

Abstract— Traditional data mining usually deals with data from a single domain. In the big data era, we face a diversity of datasets 

from different sources in different domains. These datasets consist of multiple modalities, each of which has a different 

representation, distribution, scale, and density. How to unlock the power of knowledge from multiple disparate (but potentially 

connected) datasets is paramount in big data research, essentially distinguishing big data from traditional data mining tasks. This 

calls for advanced techniques that can fuse the knowledge from various datasets organically in a machine learning and data 

mining task. This paper summarizes the data fusion methodologies, classifying them into three categories: stage-based, feature 

level-based, and semantic meaning-based data fusion methods. The last category of data fusion methods is further divided into 

four groups: multi-view learning-based, similarity-based, probabilistic dependency-based, and transfer learning-based methods. 

These methods focus on knowledge fusion rather than schema mapping and data merging, significantly distinguishing between 

cross-domain data fusion and traditional data fusion studied in the database community. This paper does not only introduce high-

level principles of each category of methods, but also give examples in which these techniques are used to handle real big data 

problems. In addition, this paper positions existing works in a framework, exploring the relationship and difference between 

different data fusion methods. This paper will help a wide range of communities find a solution for data fusion in big data projects. 

Index Terms— Big Data, cross-domain data mining, data fusion, multi-modality data representation, deep neural networks, 

multi-view learning, matrix factorization, probabilistic graphical models, transfer learning, urban computing.    

——————————      —————————— 

1 INTRODUCTION

n the big data era, a wide array of data have been gener-
ated in different domains, from social media to transpor-

tation, from health care to wireless communication net-
works. When addressing a problem, we usually need to 
harness multiple disparate datasets [84]. For example, to 
improve urban planning, we need to consider the structure 
of a road network, traffic volume, points of interests (POIs) 
and populations in a city. To tackle air pollution, we need 
to explore air quality data together with meteorological 
data, emissions from vehicles and factories, as well as the 
dispersion condition of a place. To generate a more accu-
rate travel recommendation for users, we shall consider the 
user’s behavior on the Internet and in the physical world. 
To better understand an image’s semantic meanings, we 
can use its surrounding text and the features derived from 
its pixels. So, how to unlock the power of knowledge from 
multiple datasets across different domains is paramount in 
big data research, essentially distinguishing big data from 
tradition data mining tasks.  
     However, the data from different domains consists of 
multiple modalities, each of which has a different repre-
sentation, distribution, scale and density. For example, text 
is usually represented as discrete sparse word count vec-
tors, whereas an image is represented by pixel intensities 
or outputs of feature extractors which are real-valued and 
dense. POIs are represented by spatial points associated 
with a static category, whereas air quality is represented 
using a geo-tagged time series. Human mobility data is 
represented by trajectories [82], whereas a road network is 

denoted as a spatial graph. Treating different datasets 
equally or simply concatenating the features from dispar-
ate datasets cannot achieve a good performance in data 
mining tasks [8][46][56]. As a result, fusing data across mo-
dalities becomes a new challenge in big data research, call-
ing for advanced data fusion technology. 
     This paper summarizes three categories of methods that 
can fuse multiple datasets. The first category of data fusion 
methods use different datasets at different stages of a data 
mining task. We call them stage-based fusion methods. For 
example, Zheng et al. [86] first partition a city into disjoint 
regions by road network data, and then detect the pairs of 
regions that are not well connected based on human mo-
bility data. These region pairs could denote the design that 
is out of date in a city’s transportation network. The second 
category of methods learns a new representation of the 
original features extracted from different datasets by using 
deep neural networks (DNN). The new feature representa-
tion will then be fed into a model for classification or pre-
diction. The third category blends data based on their se-
mantic meanings, which can be further classified into four 
groups: 
 Multi-view-based methods: This group of methods treats 

different datasets (or features from different datasets) 
as different views on an object or an event. Different 
features are fed into different models, describing an 
object from different perspectives. The results are later 
merged together or mutually reinforce each other. Co-
Training is an example of this category. 

 Similarity-based methods: This group of methods lever-
ages the underlying correlation (or similarity) between 
different objects to fuse different datasets. A typical 
method is coupled collaborative filtering (CF), a.k.a. 
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context-aware CF, where different datasets are mod-
eled by different matrices with common dimensions. 
Through decomposing these matrices (or tensors) to-
gether, we can achieve a better result than solely fac-
torizing a single matrix (or a tensor). Manifold align-
ment also belongs to this group.  

 Probabilistic dependency-based methods: This group mod-
els the probabilistic causality (or dependency) betwe-
en different datasets using a graphic representation. 
Bayesian Network and Markov Random Field are rep-
resentative models, denoting features extracted from 
different datasets as graph nodes and the dependency 
between two features with an edge.  

 Transfer learning-based methods: This group of methods 
transfers the knowledge from a source domain to an-
other target domain, dealing with the data sparsity 
problems (including the feature structure missing or 
observation missing) in the target domain. Transfer 
learning can even transfer knowledge between differ-
ent learning tasks, e.g. from book recommendation to 
travel recommendation.  

The rest of this paper goes deeper each category of meth-
ods, introducing the high-level principle and representa-
tive examples for each category. With this paper, research-
ers and professionals are more capable of choosing proper 
approaches to solve real-world data fusion problems with 
big data. This paper also shares a collection of public da-
tasets that can facilitate research on big data.  

2 RELATED WORK 

2.1 Relation to Traditional Data Integration 

Conventional data fusion [10], which is regarded as a part 
of data integration, is a process of integration of multiple 
data representing the same real-world object into a con-
sistent, accurate, and useful representation. Fig. 1 A) pre-
sents the paradigm of conventional data fusion. For exam-
ple, there are three POI datasets for Beijing generated by 
three different data providers. Conventional data fusion 
aims to merge the three datasets into a database with a con-
sistent data schema, through a process of schema mapping 
and duplicate detection. The records (from different da-
tasets) describing the same POI, e.g. a restaurant, are gen-
erated in the same domain, i.e. POI.  
     As illustrated in Fig. 1 B), however, in the era of big data, 
there are multiple datasets generated in different domains, 
which are implicitly connected by a latent object. For in-
stance, traffic conditions, POIs and demography of a re-
gion describe the region’s latent function collectively, 
while they are from three different domains. Literally， 
records from the three datasets describe different objects, 
i.e. a road segment, a POI, and a neighborhood, respec-
tively. Thus, we cannot merge them straightforwardly by 
a schema mapping and duplication detection. Instead, we 
need to extract knowledge from each dataset by different 
methods, fusing the knowledge from them organically to 
understand a region’s function collectively. This is more 
about knowledge fusion rather than schema mapping, 
which significantly differentiates between traditional data 

fusion (studied in the database community) and cross-do-
main data fusion.   

  
Fig. 1 Paradigms of different data fusion  

2.2 Relation to Heterogeneous Information Network 

An information network represents an abstraction of the 
real world, focusing on objects and interactions between 
objects. It turns out that this level of abstraction has great 
power in not only representing and storing essential infor-
mation about the real-world, but also providing a useful 
tool to mine knowledge from it, by exploring the power of 
links [57]. Departing from many existing network models 
that view interconnected data as homogeneous graphs or 
networks, a heterogeneous information network consists 
of nodes and relations of different types. For example, a 
bibliographic information network consists of authors, 
conferences and papers as different types of nodes. Edges 
between different nodes in this network can denote differ-
ent semantic meanings, e.g. an author publishes a paper, a 
paper is presented at a conference, and an author attends a 
conference. Quite a few algorithms have been proposed to 
mine a heterogeneous network, e.g. ranking and clustering 
[58][59].   
      Heterogeneous information networks can be con-
structed in almost any domain, such as social networks, e-
commerce, and online movie databases. However, it only 
links the object in a single domain rather than data across 
different domains. For instance, in a bibliographic infor-
mation network, people, papers, and conferences are all 
from a bibliographic domain. In a Flickr information net-
work, users, images, tags, and comments are all from a so-
cial media domain. If we want to fuse data across totally 
different domains, e.g. traffic data, social media, and air 
quality, such a heterogeneous network may not be able to 
find explicit links with semantic meanings between objects 
of different domains. Consequencely, algorithms proposed 
for mining heterogeneous information networks cannot be 
applied to cross-domain data fusion directly.   

3 STAGE-BASED DATA FUSION METHODS 

This category of methods uses different datasets at the dif-
ferent stages of a data mining task. So, different datasets 
are loosely coupled, without any requirements on the con-
sistency of their modalities.  
     Example 1: As illustrated in Fig. 2 A), Zheng et al. [86] 
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first partition a city into regions by major roads using a 
map segmentation method [75]. The GPS trajectories of 
taxicabs are then mapped onto the regions to formulate a 
region graph, as depicted in Fig. 2 B), where a node is a 
region and an edge denotes the aggregation of commutes 
(by taxis in this case) between two regions. The region 
graph actually blends knowledge from the road network 
and taxi trajectories. By analyzing the region graph, a body 
of research has been carried out to identify the improper 
design of a road network [86], detect and diagnose traffic 
anomalies [15][43] as well as find urban functional regions 
[74][76]. 

 
Fig. 2. Map partition and graph building 

      Example 2: In friend recommendation, as illustrated in 
Fig. 3, Xiao et al. [67][68] first detect the stay points from 
an individual’s location history (recorded in a form of spa-
tial trajectories). As different users’ location histories may 
not have any overlaps in the physical world, each stay 
point is then converted into a feature vector based on its 
surrounding POIs. For example, there are five restaurants, 
1 shopping mall and 1 gas station around a stay point. In 
other words, the distance between these feature vectors de-
notes the similarity between the places people have visited.  
    Later, these stay points are hierarchically clustered into 
groups according to their feature vectors of POIs, formu-
lating a tree structure, where a node is a cluster of stay 
points; a parent node is comprised of the stay points from 
its children nodes. By selecting the nodes (from the tree) 
that a user has at least one stay point in, we can represent 
the user’s location history with a partial tree. A user’s par-
tial tree is further converted into a hierarchical graph, by 
connecting two nodes (on the same layer) with an edge, if 
the user has two consecutive stay points occurring in the 
two nodes. So, the hierarchical graph contains the infor-
mation of a user’s trajectories and the POIs of the places 
the user has visited.  Because different users’ hierarchical 
graphs are built based on the same tree structure, their lo-
cation histories become comparable. Finally, the similarity 
between two users can be measured by the similarity be-
tween their hierarchical graphs. 
     Example 3: In the third example, Pan et al. [49] first detect 
a traffic anomaly based on GPS trajectories of vehicles and 
road network data. An anomaly is represented by a sub-
graph of a road network where drivers’ routing behaviors 
significantly differ from their original patterns. Using the 
time span of the detected anomaly and the names of loca-
tions fallen in the anomaly’s geographical scope as condi-
tions, they retrieve the relevant social media (like tweets) 

that people have posted at the locations when the anomaly 
was happening. From the retrieved social media, they then 
try to describe the detected anomaly by mining representa-
tive terms, e.g. “parades” and ”disasters”, which barely oc-
cur in normal days but become frequent when the anomaly 
incurs. The first step scales down the scope of social media 
to be checked, while the second step enriches the semantic 
meaning of the results detected by the 1st step. 

 
Fig. 3. Estimate user similarity using trajectories and POIs 

    Stage-based data fusion methods can be a meta-ap-
proach used together with other data fusion methods. For 
example, Yuan et al. [76] first use road network data and 
taxi trajectories to build a region graph, and then propose 
a graphical model to fuse the information of POIs and the 
knowledge of the region graph. In the second stage, a prob-
abilistic-graphical-model-based method is employed in 
the framework of the stage-based method. 

4. FEATURE-LEVEL-BASED DATA FUSION  

4.1 Direct Concatenation 

Straightforward methods [66][70] in this category treat fea-
tures extracted from different datasets equally, concatenat-
ing them sequentially into a feature vector. The feature 
vector is then used in clustering and classification tasks. As 
the representation, distribution and scale of different da-
tasets may be very different, quite a few studies have sug-
gested limitations to this kind of fusion [5] [46][56]. First, 
this concatenation causes over-fitting in the case of a small 
size training sample, and the specific statistical property of 
each view is ignored [69]. Second, it is difficult to discover 
highly non-linear relationships that exist between low-
level features across different modalities [56]. Third, there 
are redundancies and dependencies between features ex-
tracted from different datasets which may be correlated.  
     Advanced learning methods [4][61][62] in this sub-cate-
gory suggest adding a sparsity regularization in an objec-
tive function to handle the feature redundancy problem. 
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As a result, a machine learning model is likely to assign a 
weight close to zero to redundant features.  
      Example 4: Fu et al. [20] feed 𝑚 features extracted from 
disparate datasets, such as taxi trajectories, POIs, road net-
works, and online social media, into a learn-to-rank model 
to predict the ranking (in terms of its potential investment 
value) of a residential real estate. Equation 1 is added to 
the learning-to-rank objective function to enforce sparse 
representations during learning. 

    𝑃(Ψ|Ω) = 𝑃(𝝎|0, 𝜷2)𝑃(𝜷2|𝑎, 𝑏)  

    = ∏ 𝑁(𝜔𝑚|0, 𝛽𝑚
2 )𝑚 ∏ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 − 𝐺𝑎𝑚𝑚𝑎(𝛽𝑚

2 |𝑎, 𝑏)𝑚 ;    (1) 

where 𝝎 = (𝜔1, 𝜔2, … , 𝜔𝑚)  is a parameter vector of fea-
tures, 𝑚 is the number of features involved in a learning 
model, 𝜷2 = (𝛽1

2, 𝛽2
2, … , 𝛽𝑚

2 )  is the variance vector of the 
corresponding parameters. More specifically, the value of 
a parameter 𝜔𝑚 is assumed following a Guassian distribu-
tion with a zero mean and variance 𝛽𝑚

2 . Setting a zero mean 
for the distribution reduces the probability of assigning 𝜔𝑚 
a big value. A prior distribution, e.g. an inverse gamma, is 
further placed to regularize the value of 𝛽𝑚

2 . To strengthen 
the sparsity, the constants 𝑎 and 𝑏 are usually set close to 
zero. Thus, 𝛽𝑚

2  tends to be small. In other words, feature 
weight 𝜔𝑚 has a very high probability of varying around 
the Gaussian expectation, i.e. zero. Through such a dual 
regularization (i.e., zero-mean Gaussian plus inverse-
gamma), we can simultaneously regularize most feature 
weights to be zero or close to zero via a Bayesian sparse 
prior, while allowing for the possibility of a model learning 
large weights for significant features. In addition, the 
Bayesian sparse prior is a smooth function, and thus its 
gradient is easy to compute. Given that many objective 
functions are solved by gradient descent, the sparse regu-
larization can be applied to many data mining tasks.     
However, the sparsity regularization of a Bayesian sparse 
prior is not as strong as L1 regularization.  

4.2 DNN-Based Data Fusion 

     Recently, more advanced methods have been proposed 
to learn a unified feature representation from disparate da-
tasets based on DNN. DNN is actually not fundamentally 
new in artificial intelligence. As depicted in Fig. 4 A), it is 
basically a multiple-layer neural network containing a 
huge number of parameters. Previously, a neural network 
is trained based on a back-propagation algorithm, which 
does not work well when the neural network has many 
hidden layers. Recently, new learning algorithms (a.k.a. 
deep learning), such as autoencoder and Restricted Boltz-
mann Machines (RBM), have been proposed to learn the 
parameters of a DNN layer by layer. Using supervised, un-
supervised and semi-supervised approaches, Deep Learn-
ing learns multiple levels of representation and abstraction 
that help make sense of data, such as images, sound, and 
text. Besides being a predictor, DNN is also used to learn 
new feature representations [8], which can be fed into 
other classifiers or predictors. The new feature representa-
tions have proven more useful than hand-crafted features 
in image recognition [37] and speech translations [12]. A 
tutorial on DNN can be found in [40], and a survey on fea-
ture representation using DNN can be found in [8]. 

      The majority of DNN is applied to handle data with a 
single modality. More recently, a series of research [46] 
[52][56][55] starts using DNN to learn feature presenta-
tions from data with different modalities. This representa-
tion was found to be useful for classification and infor-
mation retrieval tasks.  
     Example 5: Ngiam et al. [46] propose a deep autoencoder 
architecture to capture the “middle-level” feature repre-
sentation between two modalities (e.g., audio and video). 
As shown in Table 1, three learning settings (consisting of 
cross-modality learning, shared representation learning, 
and multi-modal fusion) are studied.  Fig. 4 B) presents the 
structure of the deep autoencoder for the cross-modality 
learning, where a single modality (e.g. video or audio) is 
used as the input to reconstruct a better feature represen-
tation for video and audio respectively.  W.r.t. the shared 
representation learning and multi-modal fusion, which in-
volve different modalities during training and testing, the 
paper adopts the architecture shown in Fig. 4. C). Exten-
sive evaluations on these proposed deep learning models 
demonstrate that deep learning effectively learns 1) a bet-
ter single modality representation with the help of other 
modalities; and 2) the shared representations capturing the 
correlations across multiple modalities. 
      Deep learning using Boltzmann Machines is another 
piece of work on multi-modality data fusion. Paper [56] 
first defines three criteria for a good multi-modality learn-
ing model: 1) the learned shared feature representation 
preserves the similarity of “concepts”; 2) the joint feature 
representation is easy to obtain in the absence of some mo-
dalities, and thus fills in missing modalities; 3) the new fea-
ture representation facilitates retrieval of one modality 
when querying from the other. A deep learning model, 
called multimodal Deep Boltzmann Machine (DBM), is 
proposed, to fuse images and texts for classification and 
retrieval problems. The proposed DBM model also satis-
fies the three criteria. 

Table 1. Multi-Modal Feature Represenation Learning [46] 

 
Feature learn-

ing 

Supervised 

training 
Testing 

Classic deep learning 
Audio Audio Audio 

Video Video Video 

Cross modality learn-

ing 

A + V A A 

A + V V V 

Shared representation 

learning 

A + V A V 

A + V V A 

Multi-modal fusion A + V A + V A + V 

     Example 6: As shown in Fig. 4 D), the multimodal DBM 
utilizes Gaussian-Bernoulli RBM (Restricted Boltzmann 
Machine) to model dense real-valued image features vec-
tors, while employing replicated softmax to model sparse 
word count vectors. The multimodal DBM constructs a 
separate two-layer DBM for each modality and then com-
bines them by adding a layer on top of them. Moreover, 
the multimodal DBM is a generative and undirected grap-
hic model with bipartite connections between adjacent lay-
ers. This graphic model enables a bi-directional (bottom-
up and top-down) search (denoted by the two red arrows). 
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Fig. 4. Fusing multi-modality data using DNN

Armed with a well-designed architecture, the key idea of 
multimodal DBM is to learn a joint density distribution 
over texts and images, i.e. 𝑃(𝐯𝑖𝑚𝑔, 𝐯𝑡𝑒𝑥𝑡; 𝜃) where 𝜃 include 
the parameters, from a large number of user-tagged im-
ages. The paper performs extensive experiments on classi-
fication as well as retrieval tasks. Both multimodal and 
unimodal inputs are tested, validating the effectiveness of 
the model in fusing multimodality data. 
     In practice, the performance of a DNN-based fusion 
model usually depends on how well we can tune parame-
ters for the DNN. Finding a set of proper parameters can 
lead to a much better performance than others. Given a 
large number of parameters and a non-convex optimiza-
tion setting, however, finding optimal parameters is still a 
labor-intensive and time-consuming process that heavily 
relys on human experiences. In addition, it is hard to ex-
plain what the middle-level feature representation stands 
for. We do not really understand the way a DNN makes 
raw features a better representation either. 

5. SEMANTIC MEANING-BASED DATA FUSION 

Feature-based data fusion methods (introduced in Section 
4) do not care about the meaning of each feature, regarding 
a feature solely as a real-valued number or a categorical 
value. Unlike feature-based fusion, semantic meaning-
based methods understand the insight of each dataset and 
relations between features across different datasets. We 
know what each dataset stands for, why different datasets 
can be fused, and how they reinforce between one another. 
The process of data fusion carries a semantic meaning (and 
insights) derived from the ways that people think of a 
problem with the help of multiple datasets. Thus, they are 
interpretable and meaningful. This section introduces four 
groups of semantic meaning-based data fusion methods: 
multi-view-based, similarity-based, probabilistic depend-
ency-based, and transfer-learning-based methods.  

5.1 Multi-View Based Data Fusion 

Different datasets or different feature subsets about an ob-
ject can be regarded as different views on the object. For 
example, a person can be identified by the information ob-
tained from multiple sources, such as face, fingerprint, or 
signature. An image can be represented by different fea-
ture sets like color or texture features. As these datasets de-
scribe the same object, there is a latent consensus among 

them. On the other hand, these datasets are complemen-
tary to each other, containing knowledge that other views 
do not have. As a result, combining multiple views can de-
scribe an object comprehensively and accurately.       
      According to [69], the multi-view learning algorithms 
can be classified into three groups: 1) co-training, 2) multi-
ple kernel learning, and 3) subspace learning. Notably, co-
training style algorithms [11] train alternately to maximize 
the mutual agreement on two distinct views of the data. 
Multiple kernel learning algorithms [23] exploit kernels 
that naturally correspond to different views and combine 
kernels either linearly or non-linearly to improve learning. 
Subspace learning algorithms [16] aim to obtain a latent 
subspace shared by multiple views, assuming that the in-
put views are generated from this latent subspace.  

5.1.1. Co-Training  

Co-training [11] was one of the earliest schemes for multi-
view learning. Co-training considers a setting in which 
each example can be partitioned into two distinct views, 
making three main assumptions: 1) Sufficiency: each view 
is sufficient for classification on its own, 2) Compatibility: 
the target functions in both views predict the same labels 
for co-occurring features with high probability, and 3) 
Conditional independence: the views are conditionally in-
dependent given the class label. The conditional independ-
ence assumption is usually too strong to be satisfied in 
practice. Consequently, several weaker alternatives [1][5] 
have thus been considered. 
     In the original co-training algorithm [11], given a set 𝐿 
of labeled examples and a set 𝑈 of unlabeled examples, the 
algorithm first creates a smaller pool 𝑈′ containing 𝑢 unla-
beled examples. It then iterates the following procedures. 
First, use 𝐿 to train two classifiers 𝑓1 and 𝑓2 on the view 𝑣1 
and 𝑣2 respectively. Second, allow each of these two clas-
sifiers to examine the unlabeled set 𝑈′ and add the 𝑝 exam-
ples it most confidently labels as positive, and 𝑛 examples 
it most confidently labels as negative to 𝐿, along with the 
labels assigned by the corresponding classifier. Finally, the 
pool 𝑈′ is replenished by drawing 2𝑝 + 2𝑛 examples from 
𝑈  at random. The intuition behind the co-training algo-
rithm is that classifier 𝑓1 adds examples to the labeled set 
that classifier 𝑓2 will then be able to use for learning. If the 
independence assumption is violated, on average the add-
ed examples will be less informative. Thus, Co-training 
may not be that successful. Since then, many variants have 
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been developed.  
      Instead of assigning labels to the unlabeled examples, 
Nigam et al. [47] give unlabeled examples probabilistic la-
bels that may change from one iteration to another by run-
ning EM (Expectation and Maximization) in each view. 
This algorithm, called Co-EM, outperforms co-training for 
many problems, but requires the classifier of each view to 
generate class probabilities. By reformulating the SVM 
(supported vector machine) in a probabilistic way, Brefeld 
et al. [12] develop a co-EM version of SVM to close this gap. 
Zhou et al. [92] expand the co-training style algorithms 
from classification to regression problems. They propose 
an algorithm, called CoREG, which employs two k-nearest 
neighbor (kNN) regressors. Each regressor labels the unla-
beled data for the other during the learning process. For 
the sake of choosing the appropriate unlabeled examples 
to label, CoREG estimates the labeling confidence by con-
sulting the influence of the labeling of unlabeled examples 
on the labeled examples. The final prediction is made by 
averaging the regression estimates generated by both re-
gressors. 
     Example 7: Zheng et al. [76][85] propose a co-training-
based model to infer the fine-grained air quality through-
out a city based on five datasets: air quality, meteorological 
data, traffic, POIs and road networks. Fig. 5 A) illustrates 
the philosophy of the model from multi-view learning’s 
perspective. Naturally, air quality has temporal depend-
ency in an individual location (represented by the broken 
black arrows) and the spatial correlation among different 
locations (denoted by the red solid arrows). For example, 
the current air quality of a location depends on past hours. 
In addition, the air quality of a place could be bad if the air 
quality of its surrounding locations is bad. So, the temporal 
dependency and spatial correlation formulate two distinct 
views (a temporal view and a spatial view) on the air qual-
ity of a location.  
      As presented in Fig. 5 B), a co-training-based frame-
work is proposed, consisting of two classifiers. One is a 
spatial classifier based on an artificial neural network 
(ANN), which takes spatially-related features (e.g., the 
density of POIs and length of highways) as input to model 
the spatial correlation between air qualities of different lo-
cations. The other is a temporal classifier based on a linear-
chain conditional random field (CRF), involving tempo-
rally-related features (e.g., traffic and meteorology) to 
model the temporal dependency of air quality in a location. 
The two classifiers are first trained based on limited la-
beled data using non-overlapped features, and then infer 
unlabeled instances respectively. The instances that are 
confidently inferred by a classifier in each round are 
brought to the training set, which will be used to re-train 
the two classifiers in the next round. The iteration can be 
stopped until the unlabeled data has been consumed out 
or the inference accuracy does not increase any more. 
When inferring the label of an instance, we send different 
features to different classifiers, generating two sets of prob-
abilities across different labels. The label that maximizes 
the production of the corresponding probabilities from the 
two classifiers is selected as the result. 

 
Fig. 5 Co-training-based air quality inference model 

     The proposed method was evaluated based on data 
from four cities, showing its advantages beyond four cate-
gories of baselines: interpolation-based methods, classical 
dispersion models, well-known classification models like 
decision tree and CRF, and ANNs. In the later two catego-
ries of baselines, all the features are fed into a single model 
without differentiating between their semantic meanings 
and views.  

5.1.2. Multi-Kernel Learning 

Multiple Kernel Learning (MKL) refers to a set of machine 
learning methods that uses a predefined set of kernels and 
learns an optimal linear or non-linear combination of ker-
nels as part of the algorithm. A kernel is a hypothesis on 
the data, which could be a similarity notion, or a classifier, 
or a regressor. According to [23], there are two uses of MKL 
(as shown in Fig. 6):  

 
Fig. 6. Procedure of Multi-Kernel Learning       

    a) Different kernels correspond to different notions of 
similarity. A learning method picks the best kernel, or uses 
a combination of these kernels. A sample of data is re-
trieved from the entrie set to train a kernel based on all fea-
tures. While using a specific kernel may be a source of bias, 
allowing a learner to choose among a set of kernels can re-
sult in a better solution. For example, there are several ker-
nel functions, such as the linear, polynomial and Gaussian 
kernels, successfully used in SVM. This kind of MKL was 
not originally designed for multi-view learning, as the en-
tire feature set is used for training each kernel.  b) A varia-
tion of the first use of MKL is to train different kernels us-
ing inputs coming from different representations possibly 
from different sources or modalities. Since these are differ-
ent representations, they have different measures of simi-
larity corresponding to different kernels. In such a case, 
combining kernels is one possible way to combine multiple 
information sources. The reasoning is similar to combining 
different classifiers. Noble [48] calls this method of com-
bining kernels intermediate combination, in contrast with 
early combination (where features from different sources are 
concatenated and fed to a single learner) and late combina-
tion (where different features are fed to different classifiers 
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whose decisions are then combined by a fixed or trained 
combiner). 
      There are three ways to combine the results of kernels: 
linear, non-linear, and data-dependent combinations. The 
linear combination consists of unweighted (i.e. mean) and 
weighted sum. Nonlinear combination methods [63] use 
nonlinear functions of kernels, namely, multiplication, 
power, and exponentiation. Data-dependent combination 
methods assign specific kernel weights for each data in-
stance. By doing this, they can identify local distributions 
in the data and learn proper kernel combination rules for 
each region [23]. 

Existing MKL algorithms have two main groups of 
training methodology: 1) One-step methods calculate the 
parameters of the combination function and base learners 
in a single pass, using a sequential approach or a simulta-
neous approach. In the sequential approach, the combina-
tion function parameters are determined first, and then a 
kernel-based learner is trained using the combined kernel. 
In the simultaneous approach, both set of parameters are 
learned together. 2) Two-step methods use an iterative ap-
proach. In each iteration, we first update the parameters of 
the combination function while fixing that of the base 
learner. We then update the parameters of base learners 
while fixing the parameters of the combination function. 
These two steps are repeated until convergence. 
       Example 8: Ensemble and boosting methods [1], such as 
Random Forest [13], are inspired by MKL. Random Forest 
combines the idea of Bootstrap Aggregating (also called 
Bagging) and the random selection of features [27][28], in 
order to construct a collection of decision trees with a con-
trolled variance. More specifically, it trains multiple Deci-
sion Trees by selecting a portion of training data each time 
based on Bagging and a portion of features according to 
the principle introduced by [27][28]. When a test case 
comes, different selections of the case’s features are sent to 
corresponding Decision Trees (i.e. kernels) simultane-
ously. Each kernel generates a prediction, which is then ag-
gregated linearly.  

Example 9: Zheng et al. [89] forecast air quality for the 
next 48 hours of a location based on five datasets. Fig. 7 
presents the architecture of the predictive model, which 
contains two kernels (spatial predictor and temporal pre-
dictor) and a kernel learning module (i.e. the prediction ag-
gregator). The Temporal Predictor predicts the air quality 
of a station in terms of the data about the station, such as 
the local meteorology, AQIs of the past few hours and the 
weather forecast of the place. Instead, the Spatial Predictor 
considers the spatial neighbor data, such as the AQIs and 
the wind speed at the other stations, to predict a station’s 
future air quality. The two predictors generate their own 
predictions independently for a station, which are com-
bined by the Prediction Aggregator dynamically according 
to the current weather conditions of the station. Some-
times, local prediction is more important, while spatial 
prediction should be given a higher weight on other occa-
sions (e.g. when wind blows strongly). The Prediction Ag-
gregator is based on a Regression Tree, learning the dy-
namic combination between the two kernels from the data. 

 
Fig. 7. MKL-based framework for forecasting air quality 

The MKL-based framework outperforms a single ker-
nel-based model in the air quality forecast example, for the 
following three reasons: 1) From the feature space’s perspec-
tive: The features used by the spatial and temporal predic-
tors do not have any overlaps, providing different views 
on a station’s air quality. 2) From the model’s perspective: The 
spatial and temporal predictors model the local factors and 
global factors respectively, which have significantly differ-
ent properties. For example, the local is more about a re-
gression problem, while the global is more about a non-
linear interpolation. Thus, they should be handled by dif-
ferent techniques. 3) From the parameter learning’s perspec-
tive: Feeding all the features into a single model results in 
a big model with many parameters to learn. However, the 
training data is limited. For instance, we only have one and 
half year AQI data of a city. Decomposing a big model into 
three organically coupled small models scales down the 
parameter spaces tremendously, leading to more accurate 
learning and therefore the prediction. 

5.1.3. Subspace Learning 

Subspace learning-based approaches aim to obtain a latent 
subspace shared by multiple views by assuming that input 
views are generated from this latent subspace, as illus-
trated in Fig. 8. With the subspace, we can perform subse-
quent tasks, such as classification and clustering. Addition-
ally, as the constructed subspace usually has a lower di-
mensionality than that of any input view, the “curse of di-
mensionality” problem can be solved to some extent. 

 

Fig.8. Concept of subspace learning 

     In the literature on single-view learning, principal com-
ponent analysis (PCA) is a widely-used technique to ex-
ploit the subspace for single-view data. Canonical correla-
tion analysis (CCA) [25] can be regarded as the multi-view 
version of PCA. Through maximizing the correlation be-
tween two views in the subspace, CCA outputs one opti-
mal projection on each view. The subspace constructed by 
CCA is linear, and thus cannot be straightforwardly ap-
plied to non-linearly embedded datasets. To address this 
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issue, the kernel variant of CCA, namely KCCA [38], was 
proposed to map each (non-linear) data point to a higher 
space in which linear CCA operates. Both CCA and KCCA 
exploit the subspace in an unsupervised way. Motivated 
by the generation of CCA from PCA, multi-view Fisher 
discriminant analysis [33] is developed to find informative 
projections with label information. Lawrence [39] casts the 
Gaussian process as a tool to construct a latent variable 
model which could accomplish the task of non-linear di-
mensional reduction. Chen et al. [16] develop a statistical 
framework that learns a predictive subspace shared by 
multiple views based on a generic multi-view latent space 
Markov network. 

5.2 Similarity-Based Data Fusion 

Similarity lies between different objects. If we know two 
objects (X, Y) are similar in terms of some metric, the infor-
mation of X can be leveraged by Y when Y is lack of data. 
When X and Y have multiple datasets respectively, we are 
can learn multiple similarities between the two objects, 
each of which is calculated based on a pair of correspond-
ing datasets. These similarities can mutually reinforce each 
other, consolidating the correlation between two objects 
collectively. The latter enhances each individual similarity 
in turn. For example, the similarity learned from a dense 
dataset can reinforce those derived from other sparse da-
tasets, thus helping fill in the missing values of the latter. 
From another perspective, we can say we are more likely 
to accurately estimate the similarity between two objects 
by combining multiple datasets of them. As a result, differ-
ent datasets can be blended together based on similarities. 
Coupled matrix factorization and manifold alignment are 
two types of representative methods in this category. 

5.2.1. Coupled Matrix Factorization 

Before elaborating on the coupled matrix factorization, we 
need to introduce two concepts. One is collaborative filter-
ing (CF); the other is matrix factorization. The latter can be 
an efficient approach to the implementation of CF models. 

5.2.1.1 Collaborative Filtering  

CF is a well-known model widely used in recommender 
systems. The general idea behind collaborative filtering is 
that similar users make ratings in a similar manner for sim-
ilar items [21]. Thus, if similarity is determined between 
users and items, a potential prediction can be made as to 
the rating of a user with regards to future items. Users and 
items are generally organized by a matrix, where an entry 
denotes a user’s rating on an item. The rating can be ex-
plicit rankings or implicit indications, such as the number 
of visits to a place or the times that a user has browsed an 
item. Once formulating a matrix, the distance between two 
rows in the matrix denotes the similarity between two us-
ers, while the distance between two columns stands for the 
similarity between two items.  
      Memory-based CF is the most widely-used algorithm 
that computes the value of the unknown rating for a user 
and an item as an aggregate of the ratings of some other 
(usually, the N most similar) users for the same item. There 
are two classes of memory-based CF models: user-based 
[45] and item-based [42] techniques. For example, user 𝑝’s 

interest (𝑟𝑝𝑖) in a location 𝑖 can be predicted according to 

Equation 1, which is an implementation of user-based col-
laborative filtering [45][91]: 

          𝑟𝑝𝑖 =  𝑅𝑝
̅̅ ̅̅ + 𝑑 ∑ 𝑠𝑖𝑚(𝑢𝑝, 𝑢𝑞)𝑢𝑞∈𝑈′ × (𝑟𝑞𝑖 −  𝑅𝑞

̅̅ ̅̅ );         (2) 

                         𝑑 =
1

|𝑈′|
∑ 𝑠𝑖𝑚(𝑢𝑝, 𝑢𝑞)𝑢𝑞∈𝑈′ ;                     (3) 

                        𝑅𝑝
̅̅ ̅̅ =

1

|𝑆(𝑅𝑝)|
∑ 𝑟𝑝𝑖𝑖∈𝑆(𝑅𝑝) ,  ;                              (4) 

where 𝑠𝑖𝑚(𝑢𝑝, 𝑢𝑞) denotes the similarity between user 𝑢𝑝 

and 𝑢𝑞 ;  𝑅𝑞
̅̅ ̅̅  and  𝑅𝑝

̅̅ ̅̅  mean the average rating of 𝑢𝑝  and 𝑢𝑞 

respectively, denoting their rating scale; 𝑆(𝑅𝑝) represents 

the collection of items rated by 𝑢𝑝; 𝑈′ is the collection of 

users who are the most similar to 𝑢𝑞. 𝑟𝑞𝑖 −  𝑅𝑞
̅̅ ̅̅  is to avoid 

rating biases of different users. When the number of users 
becomes big, computing the similarity between each pair 
of users is impractical for a real system. Given that the 
number of items could be smaller than that of users, item-
based CF, e.g. the Slop One algorithm [42], was proposed 
to address this issue. When the number of users and num-
ber of items are both huge, matrix factorization-based 
method is employed to implement a CF model. 

5.2.1.2 Matrix Factorization  

Matrix factorization decomposes a (sparse) matrix 𝑋 into 
the production of two (low-rank) matrices, which denote 
the latent variables of users and items respectively. The 
production of the two matrices can approximate matrix 𝑋, 
therefore helping fill the missing values in 𝑋. There are two 
widely used matrix factorization methods: Singular Value 
Decomposition (SVD) [22][35] and non-negative matrix 
factorization (NMF) [30][41].   

 

Fig. 9. SVD matrix factorization 

      1) SVD factorizes an 𝑚 × 𝑛 matrix 𝑋 into the produc-
tion of three matrices 𝑋 = 𝑈∑𝑉𝑇, where 𝑈 is a 𝑚 × 𝑚 real 
unitary matrix (a.k.a. left singular vectors), ∑ is an 𝑚 × 𝑛 
rectangular diagonal matrix with non-negative real num-
bers on the diagonal (a.k.a. singular values); 𝑉𝑇 is a 𝑛 × 𝑛 
real unitary matrix (a.k.a. left singular vectors). In practice, 
as shown in Fig. 9, when trying to approximate matrix 𝑋 
by 𝑈∑𝑉𝑇, we only need to keep top 𝑘 biggest singular val-
ues in ∑ and the corresponding singular vectors in 𝑈 and 
𝑉. SVD has some good properties. First, 𝑈 and 𝑉 are or-
thogonal matrices; i.e. 𝑈 ∙ 𝑈𝑇 = 𝐼  and  𝑉 ∙ 𝑉𝑇 = 𝐼  . Second, 
the value of 𝑘 can be determined by ∑. For example, select 
the first 𝑘 diagonal entries (in ∑) whose sum is larger than 
90% of the entire diagonal entries’ sum.  However, SVD is 
more computationally expensive and harder to parallelize, 
as compared to NFM. 
       2) NFM factorizes an 𝑚 × 𝑛  matrix 𝑅  (with 𝑚  users 
and 𝑛 items) into a production of an 𝑚 × 𝐾 matrix 𝑃 and 
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𝐾 × 𝑛 matrix 𝑄 , 𝑅 = 𝑃 × 𝑄, with the property that all three 
matrices have no negative elements. This non-negativity 
makes the resulting matrices easier to inspect [30]. Addi-
tionally, non-negativity is inherent to the data being con-
sidered in many applications, such as location recommen-
dation [2][88], traffic estimation [53], and processing of au-
dio spectrums. Each row of matric 𝑃 denotes the latent fea-
ture of a user; each column of matrix 𝑄 stands for the latent 
feature of an item. 𝐾 can be significantly smaller than 𝑚 
and 𝑛, denoting the number of latent features for a user 
and an item. To predict a rating of an item 𝑑𝑗 by 𝑢𝑖 , we can 

calculate the dot product of the two vectors corresponding 
to 𝑢𝑖  and 𝑑𝑗 as Equation 5.  

                               𝑟̂𝑖𝑗 = 𝑝𝑖
𝑇𝑞𝑗 = ∑ 𝑝𝑖𝑘𝑞𝑘𝑗

𝑘
𝑘=1 ;                         (5) 

To find a proper 𝑃 and 𝑄, we can first initialize the two ma-
trices with some values and calculate the difference be-
tween their product and 𝑅, as shown in Equation 6. We can 
then try to minimize 𝑒𝑖𝑗

2  iteratively using gradient descent, 

which finds a local minimum of the difference. 

                       𝑒𝑖𝑗
2 = (𝑟𝑖𝑗−𝑟̂𝑖𝑗)2 = (𝑟𝑖𝑗 − ∑ 𝑝𝑖𝑘𝑞𝑘𝑗

𝐾
𝑘=1 )2;           (6) 

Specifically, to know in which direction we have to modify 
the values, we differentiate Equation 6 with respect to 𝑝𝑖𝑘 
and 𝑞𝑘𝑗 separately: 

                         
𝜕𝑒𝑖𝑗

2

𝜕𝑝𝑖𝑘
= −2(𝑟𝑖𝑗−𝑟̂𝑖𝑗)(𝑞𝑘𝑗) = −2𝑒𝑖𝑗𝑞𝑘𝑗;              (7) 

                         
𝜕𝑒𝑖𝑗

2

𝜕𝑞𝑘𝑗
= −2(𝑟𝑖𝑗−𝑟̂𝑖𝑗)(𝑝𝑖𝑘) = −2𝑒𝑖𝑗𝑝𝑖𝑘 ;               (8) 

Having obtained the gradient, we can now formulate the 
update rules for  𝑝𝑖𝑘 and 𝑞𝑘𝑗 as follows: 

                         𝑝𝑖𝑘
′ = 𝑝𝑖𝑘 + 𝛼

𝜕𝑒𝑖𝑗
2

𝜕𝑝𝑖𝑘
= 𝑝𝑖𝑘 + 2𝑒𝑖𝑗𝑞𝑘𝑗;                  (9) 

                         𝑞𝑘𝑗
′ = 𝑞𝑘𝑗 + 𝛼

𝜕𝑒𝑖𝑗
2

𝜕𝑞𝑘𝑗
= 𝑞𝑘𝑗 + 2𝑒𝑖𝑗𝑝𝑖𝑘;                 (10) 

where 𝛼 is a small value that determines the rate of ap-
proaching the minimum. When optimizing 𝑝𝑖𝑘, NFM fixes 
𝑞𝑘𝑗 , vice versa; the gradient descent is performed itera-

tively until the total error ∑ 𝑒𝑖𝑗
2  converges to its minimum. 

To avoid over fitting, a regularization is introduced to the 
error function.  

           𝑒𝑖𝑗
2 = (𝑟𝑖𝑗 − ∑ 𝑝𝑖𝑘𝑞𝑘𝑗

𝐾
𝑘=1 )2 +

𝛽

2
∑ (‖𝑃‖2 + ‖𝑄‖2𝐾

𝑘=1 );    (11) 

As compare to SVD, NFM is flexible and can be parallel-
ized, but it is less precise.  

5.2.1.3. Coupled Matrix Factorization 

Depending on applications, an item can also be a location 
[2][88][91], a website, or a company, while users can be 
drivers, or passengers, or subscribers of a service. We can 
even generalize a user to an object and an item to a prop-
erty of the object. When there are multiple datasets con-
cerning an object, we cannot simply deposit different prop-
erties from different sources into a single matrix. As differ-
ent datasets have different distributions and meanings, 
factorizing them in a single matrix would lead to an inac-
curate complementation of missing values in the matrix. 

Advanced methods [80][53] use coupled matrix factoriza-
tion (or called context-aware matrix factorization) [54] to 
accommodate different datasets with different matrices, 
which share a common dimension between one another. 
By decomposing these matrices collaboratively, we can 
transfer the similarity between different objects learned 
from a dataset to another one, therefore complementing 
the missing values more accurately. 

  Example 10: Zheng et al. [80] propose a coupled matrix 
factorization method to enable location-activity recom-
mendation. As illustrated in Fig. 10, a location-activity ma-
trix 𝑋 is built based on many users’ location histories. A 
row of 𝑋 stands for a venue and a column represents an 
activity (like shopping and dinning). An entry in matrix 𝑋 
denotes the frequency that a particular activity has been 
performed in a particular location. If this location-activity 
matrix is completely filled, we can recommend a set of lo-
cations for a particular activity by retrieving the top k loca-
tions with a relatively high frequency from the column that 
corresponds to that activity. Likewise, when performing 
activity recommendation for a location, the top k activities 
can be retrieved from the row corresponding to the loca-
tion. However, the location-activity matrix is incomplete 
and very sparse, as we only have a portion of users’ data 
(and an individual can visit very few locations). Accord-
ingly, a traditional CF model does not work very well in 
generating quality recommendations. Solely factorizing 𝑋 
does not help much either as the data are over sparse. 

 

Fig. 10 Coupled matrix factorization for recommendation 

To address this issue, the information from another two 
matrices (𝑌 and 𝑍), respectively shown in the left and right 
part of Fig. 10, are incorporated into the matrix factoriza-
tion. One is a location-feature matrix; the other is an activ-
ity-activity matrix. Such kind of additional matrices are 
usually called contexts, which can be learned from other 
datasets. In this example, matrix 𝑌, where a row stands for 
a location and a column denotes a category of POIs (such 
as restaurants and hotels) that fall in the location, is built 
based on a POI database. The distance between two rows 
of matrix 𝑌 denotes the similarity between two locations in 
terms of their geographical properties. The insight is that 
two locations with a similar geographical property could 
have similar user behaviors. Matrix 𝑍 models the correla-
tion between two different activities, which can be learned 
from the search results by sending the titles of two activi-
ties into a search engine. The main idea is to propagate the 
information among 𝑋, 𝑌 and 𝑍 by requiring them to share 
low-rank matrices 𝑈 and 𝑉 in a collective matrix factoriza-
tion model. As matrix 𝑌  and 𝑍  are built based on dense 
data, we can obtain an accurate decomposition of them, i.e. 
matrices 𝑈 and 𝑉.  Thus, Matrix 𝑋 can be complemented 
more accurately by 𝑋 = 𝑈𝑉𝑇. More specifically, an objec-
tive function was formulated as Equation 12: 

𝐿(𝑈, 𝑉, 𝑊) =
1
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𝜆2

2
∥ 𝑍 − 𝑉𝑉𝑇 ∥𝐹

2 +
𝜆3

2
(∥ 𝑈 ∥𝐹

2 +∥ 𝑉 ∥𝐹
2 +∥ 𝑊 ∥𝐹

2 ),       (12) 

where ∥∙∥𝐹 denotes the Frobenius norm. I is an indicator 
matrix with its entry 𝐼𝑖𝑗 = 0 if 𝑋𝑖𝑗 is missing, 𝐼𝑖𝑗 = 1 other-

wise. The operator “∘” denotes the entry-wise product. The 
first three terms in the objective function control the loss in 
matrix factorization, and the last term controls the regular-
ization over the factorized matrices so as to prevent over-
fitting. In general, this objective function is not jointly con-
vex to all the variables 𝑈, 𝑉 and 𝑊 . Consequently, some 
numerical method, such as gradient descent, was used to 
get local optimal solutions. 
     Example 11: Shang and Zheng et al. [53] propose a cou-
pled-matrix factorization method to instantly estimate the 
travel speed on each road segment throughout an entire 
city, based on the GPS trajectory of a sample of vehicles 
(such as taxicabs). As shown in Fig. 11 A), after map match-
ing the GPS trajectories onto a road network, they formu-
late a matrix 𝑀′𝑟  with a row denoting a time slot (e.g., 2pm-
2:10pm) and a column standing for a road segment. Each 
entry in 𝑀′𝑟  contains the travel speed on a particular road 
segment and in a particular time slot, calculated based on 
the recently received GPS trajectories. The goal is to fill the 
missing values in row 𝑡𝑗, which corresponds to the current 
time slot. Though we can achieve the goal by solely apply-
ing matrix factorization to 𝑀′𝑟 , the accurarcy of the infer-
ence is not very high as the majority of road segments are 
not covered by trajectories. 
     To address this issue, four context matrices (𝑀𝑟, 𝑀𝐺 , 𝑀′𝐺  
and 𝑍) are built. Specifically, 𝑀𝑟  stands for the historical 
traffic patterns on road segments. While the rows and col-
umns of 𝑀𝑟 have the same meaning as 𝑀′𝑟 , an entry of 𝑀𝑟 
denotes the average travel speed derived from historical 
data over a long period. The difference between the two 
corresponding entries from 𝑀′𝑟  and 𝑀𝑟 indicates the devi-
ation of current traffic situation (on a road segment) from 
its average patterns. As depicted in Fig.11 B),  𝑍 contains 
the physical features of a road segment, such as the shape 
of a road, number of lanes, speed constraint, and the dis-
tribution of surrounding POIs. The general assumption is 
that two road segments with similar geographical proper-
ties could have similar traffic conditions at the same time 
of day. To capture high-level traffic conditions, as demon-
strated in Fig. 11 C), a city is divided into uniform grids. 
By projecting the recently received GPS trajectories into 
these grids, a matrix 𝑀′𝐺  is built, with a column standing 
for a grid and a row denoting a time slot; an entry of 𝑀′𝐺  
means the number of vehicles traveling in a particular grid 
and at a particular time slot. Likewise, by projecting histor-
ical trajectories over a long period into the grids, a similar 
𝑀𝐺  is built, with each entry being the average number of 
vehicles traveling in a particular grid and at a particular 
time slot. So, 𝑀′𝐺  denotes the real-time high-level traffic 
conditions in a city and 𝑀𝐺  indicates the historical high-
level traffic patterns. The difference between the same en-
tries of the two matrices suggests the deviation of current 
high-level traffic conditions from their historical averages. 
By combining these matrices, i.e. 𝑋 = 𝑀′𝑟||𝑀𝑟  and 𝑌 =
𝑀′𝐺||𝑀𝐺 , a coupled matrix factorization is applied to 𝑋, 𝑌, 
and 𝑍, with the objective function as Equation 13. 

𝐿(𝑇, 𝑅, 𝐺, 𝐹) =
1

2
||𝑌 − 𝑇(𝐺; 𝐺)𝑇||2 +

𝜆1

2
||𝑋 − 𝑇(𝑅; 𝑅)𝑇||2 

              +
𝜆2

2
||𝑍 − 𝑅𝐹𝑇||2 +

𝜆3

2
(||𝑇||2 + ||𝑅||

2
+||𝐺||2 + ||𝐹||2)          (13) 

where ∥∙∥  denotes the Frobenius norm. The first three 
terms in the objective function control the loss in matrix 
factorization, and the last term is a regularization of pen-
alty to prevent over-fitting.    

 

Fig. 11 Estimate traffic conditions based on trajectories 

5.2.3 Manifold Alignment 

Manifold alignment utilizes the relationships of instances 
within each dataset to strengthen the knowledge of the re-
lationships between the datasets, thereby ultimately map-
ping initially disparate datasets to a joint latent space [64]. 
Manifold alignment is closely related to other manifold 
learning techniques for dimensionality reduction, such as 
Isomap [60], locally linear embedding [51], and Laplacian 
Eigenmaps [7]. Given a dataset, these algorithms attempt 
to identify the low dimensional manifold structure of that 
dataset and preserve that structure in a low dimensional 
embedding of the dataset. Manifold alignment follows the 
same paradigm but embeds multiple datasets. There are 
two key ideas in manifold alignment:  
      1) Manifold alignment preserves the correspondences 
across datasets; it also preserves the individual structures 
within each dataset by mapping similar instances in each 
dataset to similar locations in the Euclidean space. As illus-
trated in Fig. 12, manifold alignment maps two datasets (𝑋, 
𝑌) to a new joint latent space (𝑓(𝑋), 𝑔(𝑌)), where locally 
similar instances within each dataset and corresponding 
instances across datasets are close or identical in that space. 
The two similarities are modeled by a lossy function with 
two parts: one for preserving the local similarity within a 
dataset, and the other for the correspondences across dif-
ferent datasets. 
     Formally, with 𝑐 datasets 𝑋1, 𝑋2, … , 𝑋𝑐, the local similar-
ity within each data set is modeled by Equation 14: 

          𝐶𝜆(𝐹𝑎) = ∑ ||𝐹𝑎(𝑖, . ) − 𝐹𝑎(𝑗, . )||2 ∙ 𝑊𝑎(𝑖, 𝑗)𝑖,𝑗 ,        (14) 

where  𝑋𝑎 is the a-th dataset, which is a 𝑛𝑎 × 𝑝𝑎 data matrix 

with 𝑛𝑎  observations and 𝑝𝑎  features. 𝐹𝑎  is the embedding 

of 𝑋𝑎; 𝑊𝑎 is an 𝑛𝑎 × 𝑛𝑎 matrix, where 𝑊𝑎(𝑖, 𝑗) is the similar-

ity between instance 𝑋𝑎(𝑖, . ) and 𝑋𝑎(𝑗, . ). The sum is taken 

over all pairs of instances in that dataset. 𝐶𝜆(𝐹𝑎) is the cost 
of preserving the local similarities within 𝑋𝑎. If two data 
instances, 𝑋𝑎(𝑖, . ) and 𝑋𝑎(𝑗, . ), from 𝑋𝑎 are similar, which 
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happens when 𝑊𝑎(𝑖, 𝑗) is larger, their locations in the la-
tent space, 𝐹𝑎(𝑖, . )  and 𝐹𝑎(𝑖, . )  should be closer, i.e. 
||𝐹𝑎(𝑖, . ) − 𝐹𝑎(𝑗, . )||2  is small. 𝐷𝑎  is an 𝑛𝑎 × 𝑛𝑎  diagonal 
matrix with 𝐷𝑎(𝑖, 𝑖) = ∑ 𝑊𝑎(𝑖, 𝑗)𝑗 . 𝐿𝑎 = 𝐷𝑎 − 𝑊𝑎 is the La-

placian associated with 𝑋𝑎. 

 
Fig. 12. Manifold alignment of two data sets [64] 

To preserve the correspondence information about in-

stances between two datasets, 𝑋𝑎 and 𝑋𝑏, the cost of each 
pair of correspondence is 𝐶𝑘(𝐹𝑎, 𝐹𝑏  ):  

 𝐶𝑘(𝐹𝑎 , 𝐹𝑏  ) = ∑ ||𝐹𝑎(𝑖, . ) − 𝐹𝑏(𝑗, . )||2 ∙ 𝑊𝑎,𝑏(𝑖, 𝑗)𝑖,𝑗 ,     (15) 

where 𝑊𝑎,𝑏(𝑖, 𝑗) is the similarity, or the strength of corre-
spondence, of two instances, 𝑋𝑎(𝑖, . ) and 𝑋𝑏(𝑗, . ). If the two 
data points are in a stronger correspondence, which hap-

pens when 𝑊𝑎,𝑏(𝑖, 𝑗)  is larger, their locations in the latent 
space, 𝐹𝑎(𝑖, . ) and 𝐹𝑏(𝑗, . ), should be closer together. Typi-
cally, 𝑊𝑎,𝑏(𝑖, 𝑗) =1 if 𝑋𝑎(𝑖, . ) and 𝑋𝑏(𝑗, . ) are in correspond-
ence. So, the complete lossy function is: 

𝐶1(𝐹1, 𝐹2 , … , 𝐹𝑘) = 𝑢 ∙ ∑ 𝐶𝜆(𝐹𝑎)𝑎 + 𝑣 ∙ ∑ 𝐶𝑘(𝐹𝑎 , 𝐹𝑏)𝑎≠𝑏 ;  (16) 

Typically, 𝑢 = 𝑣 =1. 
2) At the algorithmic level, manifold alignment assumes 

the disparate datasets to be aligned have the same under-
lying manifold structure. The second loss function is 
simply the loss function for Laplacian eigenmaps using the 
joint adjacency matrix: 

         𝐶2(𝐅 ) = ∑ ||𝐅(𝑖, . ) − 𝐅(𝑗, . )||2 ∙ 𝐖𝑎,𝑏(𝑖, 𝑗)𝑖,𝑗 ;          (17) 

where the sum is taken over all pairs of instances from all 
datasets; 𝐅 is the unified representation of all the datasets 
and 𝐖 is the (∑ 𝑛𝑎𝑎 × ∑ 𝑛𝑎𝑎 ) joint adjacency matrix of all 
the datasets.  

                   𝐖 = (
𝑣𝑊1 𝑢𝑊1,2 ⋯ 𝑢𝑊1,𝑐

⋮ ⋱ ⋮

𝑢𝑊𝑐,1 𝑢𝑊𝑐,2 ⋯ 𝑣𝑊𝑐

).                   (18) 

Equation 19 denotes that if two data instances, 𝑋𝑎(𝑖, . ) and 

𝑋𝑎(𝑗, . ), are similar, regardless of whether they are in the 
same dataset (𝑎 = 𝑏) or from different datasets (𝑎 ≠ 𝑏), 
which happens when 𝐖(𝑖, 𝑗) is larger in either case, their 
locations in the latent space, 𝐅(𝑖, . ) and 𝐅(𝑖, . ), should be 
closer together. Making use of the fact that ||M(𝑖, . )||2 =
∑ 𝑀(𝑖, 𝑘)2

𝑘  and that the Laplacian is a quadratic difference 
operator, 
         𝐶2(𝐅 ) = ∑ ∑ ||𝐅(𝑖, 𝑘) − 𝐅(𝑗, 𝑘)||2 ∙ 𝐖𝑎,𝑏(𝑖, 𝑗)𝑘𝑖,𝑗   

                     =∑ ∑ ||𝐅(𝑖, 𝑘) − 𝐅(𝑗, 𝑘)||2 ∙ 𝐖𝑎,𝑏(𝑖, 𝑗)𝑖,𝑗𝑘  

                     =∑ 𝑡𝑟(𝑘 𝐅(. , 𝑘)′𝐋𝐅(. , 𝑘))= 𝑡𝑟(𝐅′𝐋𝐅)               (19) 

Where 𝑡𝑟(∙)  denotes the matrix trace; 𝐋 = 𝐃 − 𝐖  is the 
joint Laplacian matrix of all the datasets. 𝐃 is an (∑ 𝑛𝑎𝑎 ×
∑ 𝑛𝑎𝑎 ) diagonal matrix with 𝐃𝑎(𝑖, 𝑖) = ∑ 𝐖(𝑖, 𝑗)𝑗 . Standard 
manifold learning algorithms are then invoked on 𝐋 to ob-
tain a joint latent representation of the original datasets. 
Manifold alignment can therefore be viewed as a form of 
constrained joint dimensionality reduction that finds a 

low-dimensional embedding of multiple datasets that pre-
serves any known correspondences across them [64]. 
     Example 12: Zheng et al. [87] infer the fine-grained noise 
situation by using 311 complaint data together with social 
media, road network data, and POIs. As shown in Fig. 13, 
they model the noise situation of NYC with a three dimen-
sion tensor, where the three dimensions stand for regions, 
noise categories, and time slots, respectively. An entry 
𝒜(𝑖, 𝑗, 𝑘) stores the total number of 311 complaints of cate-
gory 𝑐𝑗 in region 𝑟𝑖 and time slot 𝑡𝑘 over the given period 
of time. This is a very sparse tensor, as there may not be 
people reporting noise situation anytime and anywhere. If 
the tensor can be filled completely, we are able to know the 
noise situation throughout the city.  

 

Fig. 13. Context-aware tensor decomposition with manifold 

     To deal with the data sparsity problem, they extract 
three categories of features, geographical features, hu-
man mobility features and noise category correlation 
features (denoted by matrices 𝑋 , 𝑌 , and 𝑍 ), from 
POI/road network data, user check-ins, and 311 data, 
respectively. For example, a row of matrix 𝑋 denotes a 
region, and each column stands for a road network fea-
ture, such as the number of intersections and the total 
length of road segments in the region. Matrix 𝑋 incor-
porates the similarity between two regions in terms of 
their geographic features. Intuitively, regions with sim-
ilar geographic features could have a similar noise situ-
ation. 𝑍 ∈ ℝ𝑀×𝑀 is the correlation matrix between differ-
ent categories of noise. 𝑍(𝑖, 𝑗) denotes how often a cate-
gory of noise 𝑐𝑖  co-occurs with another category 𝑐𝑗. 
     These features are used as contexts in a context-aware 
tensor decomposition approach to supplement the missing 
entries of the tensor. More specifically, 𝒜 is decomposed 
into the multiplication of a few (low-rank) matrices and a 
core tensor (or just a few vectors), based on 𝒜’s non-zero 
entries. Matrix 𝑋 can be factorized into the multiplication 
of two matrices, 𝑋 = 𝑅 × 𝑈 , where 𝑅 ∈ ℝ𝑁×𝑑𝑅  and 𝑈 ∈
ℝ𝑑𝑅×𝑃 are low rank latent factors for regions and geograph-
ical features, respectively. Likewise, matrix 𝑌 can be factor-
ized into the multiplication of two matrices, 𝑌 = 𝑇 × 𝑅𝑇 , 
where 𝑇 ∈ ℝ𝐿×𝑑𝑇 is a low rank latent factor matrix for time 
slots. 𝑑𝑇 and 𝑑𝑅 are usually very small. The objective func-
tion is defined as Equation 20: 

ℒ(𝑆, 𝑅, 𝐶, 𝑇, 𝑈) =
1

2
‖𝒜 − 𝑆 ×𝑅 𝑅 ×𝐶 𝐶 ×𝑇 𝑇‖2 + 

𝜆1

2
‖𝑋 − 𝑅𝑈‖2 +  

𝜆2

2
tr(𝐶𝑇𝐿𝑍𝐶) +

𝜆3

2
‖𝑌 − 𝑇𝑅𝑇‖2 +

𝜆4

2
(‖𝑆‖2 +

‖𝑅‖2 + ‖𝐶‖2 + ‖𝑇‖2 + ‖𝑈‖2) ;                                             (20) 

where ‖𝒜 − 𝑆 ×𝑅 𝑅 ×𝐶 𝐶 ×𝑇 𝑇‖2  is to control the error of 
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decomposing 𝒜; ‖𝑋 − 𝑅𝑈‖2 is to control the error of fac-
torization of 𝑋; ‖𝑌 − 𝑇𝑅𝑇‖2 is to control the error of factor-
ization of 𝑌; ‖𝑆‖2 + ‖𝑅‖2 + ‖𝐶‖2 + ‖𝑇‖2 + ‖𝑈‖2 is a regular-
ization penalty to avoid over-fitting;  𝜆1, 𝜆2, 𝜆3, and 𝜆4 are 
parameters controlling the contribution of each part dur-
ing the collaborative decomposition. Here, matrix 𝑋 and 𝑌 
share the same dimension of region with tensor 𝒜. Ten-
sor  𝒜  has a common dimension of time with 𝑌  and a 
shared dimension of category with 𝑍. Thus, they share la-
tent spaces for region, time and category. This idea has 
been introduced in the coupled-matrix factorization.  
tr(𝐶𝑇𝐿𝑍𝐶)  is derived from Equation 19 of the manifold 
alignment:  

∑ ‖𝐶(𝑖, . ) − 𝐶(𝑗, . )‖2𝑍𝑖𝑗𝑖,𝑗 = ∑ ∑ ‖𝐶(𝑖, 𝑘) − 𝐶(𝑗, 𝑘)‖2𝑍𝑖𝑗𝑖,𝑗𝑘   

= 𝑡𝑟(𝐶𝑇(𝐷 − 𝑍)𝐶) = 𝑡𝑟(𝐶𝑇𝐿𝑍𝐶),                                 (21) 

where 𝐶 ∈ ℝ𝑀×𝑑𝐶  is the latent space of category; 𝐷𝑖𝑖 =
∑ 𝑍𝑖𝑗𝑖  is a diagonal matrix, and 𝐿𝑍 = 𝐷 − 𝑍 is the Laplacian 

matrix of the category correlation graph. 𝑡𝑟(𝐶𝑇𝐿𝑍𝐶), which 
guarantees two (e.g. the 𝑖th and 𝑗th) noise categories with 
a higher similarity (i.e., 𝑍𝑖𝑗  is bigger) should also have a 

closer distance in the new latent space 𝐶. In this case, only 
one data set, i.e. 311 data, is involved in the manifold align-
ment. So, 𝐃 = 𝐷 . As there is no closed-form solution for 
finding the global optimal result of the objective function 
(shown in Equation 20), a numeric method, gradient de-
scent, is employed to find a local optimization. 

5.3. Probabilistic Dependency-Based Fusion 

A probabilistic graphical model is a probabilistic model for 
which a graph expresses the conditional dependence struc-
ture between random variables. Generally, it uses a graph-
based representation as the foundation for encoding a 
complete distribution over a multi-dimensional space. The 
graph can be regarded as a compact or factorized represen-
tation of a set of independences that hold in the specific 
distribution. Two branches of graphical representations of 
distributions are commonly used, namely, Bayesian Net-
works and Markov Networks (also called Markov Random 
Field [34]). Both families encompass the properties of fac-
torization and independences, but they differ in the set of 
independences they can encode and the factorization of the 
distribution that they induce [9]. For instance, a Bayesian 
Network is a directed acyclic graph that factorizes the joint 
probability of 𝑛 variables 𝑋1, 𝑋2,…, 𝑋𝑛 as 𝑃[𝑋1, 𝑋2, … , 𝑋𝑛] =
∏ 𝑃[𝑋𝑖|𝑃𝐴(𝑋𝑖)]𝑛

𝑖=1 . Markov Network is a set of random var-
iables having a Markov property described by an undi-
rected graph, which may be cyclic. Thus, a Markov net-
work can represent certain dependencies that a Bayesian 
network cannot (such as cyclic dependencies). On the other 
hand, it cannot represent certain dependencies that a 
Bayesian network can (such as induced dependencies). 
     This category of approaches bridges the gap between 
different datasets by the probabilistic dependency, which 
emphasize more about the interaction rather than the sim-
ilarity between two objects. This is different from the simi-
larity-based methods introduced in Section 5. For example, 
variables (i.e. features extracted from different datasets) 
are represented by nodes, and the probabilistic depend-

ency (or causality) between two different variables is de-
noted by the edge connecting them. The structure of a 
graphical model can be learned from data automatically or 
pre-defined by human knowledge. Graphical models usu-
ally contain hidden variables to be inferred. The learning 
process of graphical models is to estimate the probabilistic 
dependency between different variables given the ob-
served data. Expectation and Maximization (EM) algo-
rithms are commonly used methods. The inference process 
is to predict the status of hidden variables, given the values 
of observed variables and learned parameters. The infer-
ence algorithms include deterministic algorithms, such as 
variational methods, and stochastic algorithms like Gibbs 
Sampling. More details about graphical models can be re-
ferred to [9][36]. 
      Example 13: Shang et al. [53] propose inferring traffic 
volume on a road based on POIs, road networks, travel 
speed and weather. Fig. 14 presents the graphical structure 
of the traffic volume inference (TVI) model, where a gray 
node denotes a hidden variable and white nodes are obser-
vations. One TVI model is trained for each level of road 
segments.  

 
Fig. 14. The graphical structure of TVI model  

    Specifically, the traffic volume on each road lane 𝑁𝑎 (i.e., 
the number of vehicles per minute per lane) of a road seg-
ment is influenced by four major factors, consisting of the 
weather conditions 𝑤, time of day 𝑡, the type of road 𝜃, and 
the volume of observed sample vehicles 𝑁𝑡. Furthermore, 
a road’s 𝜃 is co-determined by its road network features 𝑓𝑟  
(such as 𝑟. 𝑙𝑒𝑛), global position feature 𝑓𝑔, and surrounding 

POIs 𝛼 which is influenced by 𝑓𝑝 and the total number of 

POIs 𝑁𝑝. 𝑣̅ and 𝑑𝑣 are the average travel speed and speed 

variance, respectively, inferred by TSE model. 𝑣̅ is deter-
mined by 𝜃, 𝑁𝑎, and 𝑤. 𝑑𝑣 is co-determined by 𝑁𝑡, 𝑁𝑎, and 
𝑣̅. Due to the hidden nodes, the conditional probability of 
𝑁𝑎 cannot be drawn simply by counting the occurrence of 
each condition. An EM algorithm was proposed to learn 
the parameters in an unsupervised manner. 
     Example 14: Yuan et al. [74][76] infer the functional re-
gions in a city using road network data, points of interests, 
and human mobility learned from a large number of taxi 
trips. As depicted in Fig. 15, a LDA (Latent Dirichlet Allo-
cation)-variant-based inference model was proposed, re-
garding a region as a document, a function as a topic, cat-
egories of POIs (e.g., restaurants and shopping malls) as 
metadata (like authors, affiliations, and key words), and 
human mobility patterns as words. The mobility pattern is 
defined as the commuting patterns between regions. That 
is when people leave a region and where they are heading 
to, and when people arrive at a region and where did there 
come from. Each commuting pattern stands for one word 
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describing a region, while the frequency of the pattern de-
notes the number of occurrence of a word in a document.  

 
Fig. 15. Learning functional regions based on multiple da-

tasets: A graphical model approach 

      By feeding POIs (denoted as 𝑥𝑟) and human mobility 
patterns (denoted as 𝑚𝑟,𝑛 ) into different parts of this 
model, a region is represented by a distribution of func-
tions, each of which is further denoted by a distribution of 
mobility patterns. 𝑁 stands for the number of words (i.e., 
mobility patterns in a region); 𝑅  denotes the number of 
documents (regions); 𝐾  is the number of topics, which 
should be predefined. Before running the model, a city was 
partitioned into disjointed regions using major roads like 
high ways and ring roads. So, this example also uses stage-
based data fusion techniques. This model can be estimated 
using EM and inferred using Gibbs sampling. Different 
from the basic LDA model [5], the Dirichlet prior  
 is now specified for individual regions based on the ob-
served POI features of each region.    

 Example 15: Zheng et al. [90] combine multiple datasets 
generated in a region to better estimate the distribution of 
a sparse dataset in the region and the latent function of the 
region, based on the following two insights. First, different 
datasets in a region can mutually reinforce each other. Sec-
ond, a dataset can reference across different regions. Fig. 
16 depicts the graphical presentation of the model, entitled 
MSLT (Multi-Source Latent Topic Model). 

    
Fig.16. The graphic presentation of the MSLT model   

𝒇 is a vector storing the features extracted from the road 
network and POIs located in a region. 𝜼 ∈ ℝ𝑘×|𝒇| is a matrix 
with each row 𝜼𝑡 corresponding to a latent topic; 𝑘 denotes 
the number of topics and |𝒇|  means the number of ele-
ments in 𝒇. The value of each entry in 𝜼 follows a Gaussian 
distribution with a mean 𝜇 and a standard deviation 𝜎. 𝜶 ∈
ℝ𝑘 is a parameter of the Dirichlet prior on the per-region 
topic distributions. 𝜽 ∈ ℝ𝑘 is the topic distribution for re-
gion 𝑑. 𝓦 = {𝑾1, 𝑾2, … , 𝑾|𝑺|} is a collection of word sets, 
where 𝑾𝑖 is a word set corresponding to dataset 𝑠𝑖  and |𝑺| 
denotes the number of datasets involved in the MSLT. 𝜷 ∈

ℝ|𝑾𝒊| is the parameter of the Dirichlet prior on the per-topic 
word distributions of 𝑾𝒊. A word 𝑤 in 𝑾𝑖 is one of the cat-
egories 𝑠𝑖’s instances pertain to, e.g. 𝑾1 = {𝑐1, 𝑐2, … , 𝑐𝑚}.  

As illustrated in Fig. 16 B), different datasets share the 
same distribution of topics controlled by 𝜽𝑑, but having its 
own topic-word distributions 𝝋𝑖, 1 ≤ 𝑖 ≤ |𝑺|, indicated by 
arrows with different colors. 𝝋𝑖𝑧 is a vector denoting the 
word distribution of topic 𝑧 in word set 𝑾𝑖.  This is differ-
ent from LDA and its variant DMR [44], which have a sin-
gle word set and topic-word distribution. The topic distri-
bution 𝜽𝑑 of a region and the topic-word distribution 𝝋𝑖 of 
a dataset 𝑠𝑖  are used to calculate the underlying distribu-
tion of each category in 𝑠𝑖 , if 𝑠𝑖  is very sparse, e.g. 
𝑝𝑟𝑜𝑝(𝑤𝑖) = ∑ 𝜃𝑑𝑡𝜑𝑡𝑤𝑖𝑡 . 

5.4. Transfer Learning-Based Data Fusion 

A major assumption in many machine learning and data 
mining algorithms is that the training and future data must 
be in the same feature space and have the same distribu-
tion. However, in many real-world applications, this as-
sumption may not hold. For example, we sometimes have 
a classification task in one domain of interest, but we only 
have sufficient training data in another domain of interest, 
where the latter data may be in a different feature space or 
follow a different data distribution. Different from semi-
supervised learning, which assumes that the distributions 
of the labeled and unlabeled data are the same, transfer 
learning, in contrast, allows the domains, tasks, and distri-
butions used in training and testing to be different.  
       In the real world, we observe many examples of trans-
fer learning. For instance, learning to recognize tables may 
help recognize chairs. Learning riding a bike may help rid-
ing a moto-cycle. Such examples are also widely witnessed 
in the digital world. For instance, by analyzing a user’s 
transaction records in Amazon, we can diagnose their in-
terests, which may be transferred into another application 
of travel recommendation. The knowledge learned from 
one city’s traffic data may be transferred to another city.   

5.4.1. Transfer between the Same Type of Datasets  

Pan and Yang et al. [50] present a good survey that classi-
fies transfer learning into three categories, based on differ-
ent tasks and situations between the source and target do-
mains, as shown in Table 2. Fig. 17 presents another taxon-
omy of transfer learning according to whether label data 
are available in source and target domains.  
     Transductive learning is proposed to handle the cases 
where the task is the same but the source and target do-
main are different. Furthermore, there are two sub-catego-
ries of the difference between source and target domains.  
In the first category, the feature spaces between domains 
are the same, but the marginal probability distributions are 
different. Most of the existing works on transfer learning 
fall into this category. For example, in a traffic prediction 
task, we can transfer the traffic data from a city to another 
one where training data are limited. In the second category, 
the feature spaces between domains are different. For ex-
ample, one domain has Chinese web pages; the other have 
English web pages. But, the task is the same, i.e. clustering 
web pages according to the similarity of their semantic 
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meanings. Yang et.al [72] initiate the setting called “heter-
ogeneous transfer learning” to handle this category of sit-
uation. There are two directions in this stream of work: 1) 
translation from the source to the target [18] or 2) projec-
tion both domains into a common latent space [72][93]. Alt-
hough the source and the target domains are from different 
feature spaces in heterogeneous transfer learning, each do-
main itself is homogeneous with a single data source. 

Table 2. Taxonomy of Transfer Learning (TL) [50] 

Learning settings Source and tar-

get domains 

Source and 

target tasks 

Traditional ML the same the same 

TL 

Inductive 

learning / 

unsuper-

vised TL 

the same 
different but 

related 

different but re-

lated 

different but 

related 

Transductive 

learning 

different but re-

lated 
the same 

     Different from Transductive Learning, inductive learn-
ing handles learning cases where the tasks are different in 
source and target domains. It focuses on storing know-
ledge gained while solving one problem and applying it to 
a different but related problem. Multi-task learning (MTL) 
[3] is a representative approach to inductive transfer learn-
ing. MTL learns a problem together with other related 
problems at the same time, using a shared representation. 
This often leads to a better model for the main task, be-
cause it allows the learner to use the commonality among 
the tasks [14]. MTL works well if these tasks have some 
commonality and are slightly under sampled. Fig. 17 pre-
sents two examples of MTL. 

 

Fig. 17. A different setting of transfer learning 

      
      Example 16: Fig. 18 A) illustrates the transferring learn-
ing between two classification tasks. One task is to infer an 
individual’s interests in different travel packages in terms 
of her location history in the physical world (e.g. check-ins 
from a social networking service). The other task is to esti-
mate a user’s interests in different book styles based on the 
books the user has browsed on the Internet. If we happen 
to have the two datasets from a same user, we can associate 
the two tasks in a MTL framework, which learns a shared 
representation of a user’s general interests. As the books a 
user has browsed may imply her general interests and 
characters, which can be transferred into the travel pack-
age recommendation. Likewise, the knowledge from a 
user’s physical location can also help estimate a user’s in-
terests in different book styles. MTL is particularly helpful 
when the dataset we have is sparse; e.g. we only have a 
small amount of check-in data of a user.  
       Example 17: Fig. 18 B) presents another example of 

MTL, which co-predicts the air quality and traffic condi-
tions at near future simultaneously. The general insight is 
that different traffic conditions will generate different vol-
umes of air pollutants, therefore impacting the air quality 
differently. Likewise, people tend to go hiking or picnic in 
a day with good air quality, while preferring to minimize 
travel in a day with hazardous air quality. As a result, the 
traffic conditions are also affected by air quality. The 
shared feature representation of the two datasets can be re-
garded as the latent space of a location in a time slot.   

 
Fig. 18. Examples of multi-task transfer learning            

5.4.2 Transfer Learning among Multiple Datasets 

In the big data era, many machine learning tasks have to 
harness a diversity of data in a domain so as to achieve a 
better performance. This calls for new techniques that can 
transfer the knowledge of multiple datasets from a source 
to a target domain. For example, a major city like Beijing 
may have sufficient datasets (such as traffic, meteorologi-
cal, and human mobility etc.) to infer its fine-grained air 
quality. But, when applying the model to another city, we 
may not have some kind of datasets (e.g. traffic) at all or 
not enough observations in some datasets (e.g. human mo-
bility). Can we transfer the knowledge learned from mul-
tiple datasets of Beijing to another city?  
      Fig. 19 presents the four situations of transfer learning 
when dealing with multiple datasets, where different 
shapes denote different datasets (a.k.a. views). As depicted 
in Fig. 19 A), a target domain has all kinds of datasets (that 
the source domain has), each of which has sufficient obser-
vations (as the source domain). That is, the target domain 
has the same (and sufficient) feature spaces as the source 
domain. This kind of situation can be handled by multi-
view transfer learning [19][71][77]. For example, Zhang et 
al. [77] propose a multi-view transfer learning with a large 
margin approach (MVTL-LM), which leverages both la-
beled data from the source domain and features from dif-
ferent views. DISMUTE [19] performs feature selection for 
multi-view cross-domain learning. Multi-view discrimi-
nant transfer (MDT) [71] learns discriminant weight vec-
tors for each view to minimize the domain discrepancy and 
the view disagreement simultaneously. 
       As shown in Fig. 19 B), some datasets do not exist in 
the target domain, while other datasets are as sufficient as 
the source domain. To deal with such kind of dataset (a.k.a. 
view structural) missing problems, a line of research on 
multi-view multi-task learning [26][32] has been proposed. 
However, these algorithms cannot handle the situations 
shown in Fig. 19. C), where a target domain has all kinds 
of datasets but some datasets may have very few observa-
tions (or say very sparse), and the situation presented in 
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Fig. 19 D), where some datasets do not exist (view missing) 
and some datasets are very sparse (observation missing). 
The problem is still open for research.  

 
Fig. 19. Transferring knowledge from multiple datasets  

6. DISCUSSION 

It is hard to judge which data fusion method is the best, as 
different methods behave differently in different applica-
tions. Table 3 presents a comparison among these data fu-
sion methods (list in the first column), where the second 
column (Meta) indicates if a method can incorporate other 
approaches as a meta method. For instance, a semantic 
meaning-based data fusion methods can be employed in a 
stage-based fusion method. To select a proper data fusion 
method, we need to consider the following factors:  

Table 3. Comparison of different data fusion methods 

Methods 
M

eta 

Labels Goals Trai

n 

Scal

e Vol Pos 

Stage-based Y NA NA NA NA NA 

F 
Direct N L Flex F,P,C,O S Y 

DNN N L Flex F,P,A,O U/S Y 

S
em

an
ti

c Multiview Y S Fix F,P,O S, SS Y 

Probabil. N S Fix F,P,C,O,A S/U N 

Similarity N S Flex F,A,O U Y 

Transfer Y S Fix F,P,A S/U Y 

      1) The volume, properties and insight of datasets that 
we have in an application. First, as shown in the third col-
umn (Vol) of Table 3, the feature-based data fusion meth-
ods need a large (L) amount of labeled instances as training 
data, while the semantic meaning-based methods can be 
applied to a dataset with a small (S) number of labeled in-
stances. Second, when studying a type of objects, e.g. geo-
graphical regions, we need to consider whether there are 
some object instances that can constantly generate labeled 
data (titled “Fixed” or “Flexible” in the 4th column “Posi-
tion”). For example, we can have fixed monitoring stations 
constantly generating air quality data in some regions in 
Example 7. On the contrary, we cannot ensure that there 
are 311 complaints (mentioned in Example 12) constantly 
reported by people in a region. Sometimes region A and B 
have 311 complaints, while at other time intervals Region 
C, D and E have. In some extreme cases, there are no re-
gions with 311 data. That is, regions with 311 data occur 
flexibly, which cannot formulate stable view-class label 
pairs for a region. As a consequence, it is not appropriate 
to use a multi-view-based fusion method to handle the 311 
example. On the other hand, the former problem cannot be 

solved by a similarity-based fusion method either. As the 
location of a station is fixed, regions with and without la-
bels are both fixed. We cannot calculate the similarity be-
tween a region with labeled data and another always with-
out data. Third, some datasets do not change over time 
while others are temporally dynamic. Directly combining 
features extracted from static data and those from dynamic 
data would cause static features ignored by a machine 
learning model. For example, road networks and POIs 
around a building do not change over time, no matter what 
level of air pollution is over the building. Thus, the feature-
based fusion methods do not work well for this example.  
     2) The goal, learning approach, and requirement of a 
machine learning and data mining task. First, goals of fus-
ing multiple datasets includes Filling Missing Values (of a 
sparse dataset) [53][85][87] [88], Predict Future [89], Cau-
sality Inference, Object Profiling[73][76][74], and Anomaly 
Detection [15][90][49], etc. As presented in the fifth col-
umn, probabilistic dependency-based data fusion methods 
can achieve all these goals (F, P, C, O, A). Particularly, 
Bayesian Networks and the straightforward feature-based 
fusion methods (e.g. when using a linear regression model 
[24]) are usually good at dealing with causality inference 
problems (C). The directed edges of a Bayesian Network 
reveal the causality between different factors (i.e. nodes), 
and the weight of a feature in a linear regression model de-
notes the importance of a factor to a problem. As raw fea-
tures have been converted into a middle-level feature rep-
resentation by DNN, the semantic meaning of each feature 
is not clear any more. Second, the learning methods consist 
of supervised (S), unsupervised (U) and semi-supervised 
(SS) learning, as denoted in the sixth column. For example, 
supervised and semi-supervised learning approaches can 
be applied to multi-view-based data fusion methods. 
Third, there are some requirements for a data mining task, 
such as efficiency and scalability (shown in the most right 
column). Generally speaking, it is not easy for probabilistic 
dependency-based approaches to scale up (N). A graphical 
model with a complex structure, e.g. many (hidden) nodes 
and layers, may become intractable. With respect to the 
similarity-based data fusion methods, when a matrix be-
comes very large, NMF, which can be operated in parallel, 
can be employed to expedite decomposition (Y). 
     Generally, given the same amount of training data, the 
straightforward feature-based methods are not as good as 
semantic meaning-based approaches, as there are depend-
encies and correlations between features. Adding a spar-
sity regularization can alleviate the problem to some ex-
tents, but cannot solve it fundamentally. In some cases 
with a large amount of labeled data, particularly for im-
ages and speech data, feature-based fusion using DNNs 
can perform well. However, the performance of the model 
heavily relies on tuning parameters. Given a huge model 
with many parameters to learn, this is usually a time-con-
suming process that needs the involvement of human ex-
periences. Additionally, there are a few overlaps between 
the multi-view-based approach and transfer learning. For 
instance, there are multi-view multi-task learning ap-
proaches [29].  

A) Complete Datasets and instances B) Some datasets missing

C) Datasets complete but instance sparse

Source Domain Target Domain Source Domain Target Domain

D) Datasets and instances missing
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7. PUBLIC CROSS-DOMAIN BIG DATA 

7.1 Urban Big Data 

Advances in sensing technology and large-scale compu-
ting infrastructure have been generating a diversity of data 
in cities. Quite a few cities, like New York City and Chi-
cago, have opened their datasets to the public. Here are 
some links to the open datasets: 
 NYC Open Data: https://data.cityofnewyork.us/. 
 Chicago Open Data: https://data.cityofchicago.org/  
 Urban Computing in Microsoft Research: http://re-

search.microsoft.com/en-us/projects/urbancompu-
ting/default.aspx [84]. 

 Urban Noise: 311 complaint data with social media, 
POIs and road networks in New York City. http://re-
search.microsoft.com/pubs/217236/Context%20ma-
trices%20and%20tensor%20data.zip [87].  

 Urban Air: air quality data with meteorological data 
and weather forecasts in 5 Chinese cities [31][89][85].  
http://research.microsoft.com/apps/pubs/?id=246398.  

 Traffic speed+POIs+Road network: Features extracted 
from three datasets in Beijing have been accommo-
dated in three matrices, used in Example 11 [53].  
https://onedrive.live.com/?cid=cf159105855090c5&i
d=CF159105855090C5%212774&ithint=file,.zip&au-
thkey=!AFBIXgrChcesYC4. By adding a user dimen-
sion into the data, a tensor is built to describe the travel 
time of a particular user on a particular road at a spe-
cific time slot. The data was used in [65] and can be 
download from the following URL: http://re-
search.microsoft.com/apps/pubs/?id=217493   

7.2 Images/Videos and Texts 

 Image + Text: (2,866 image-text pairs from Wikipedia): 

http://www.svcl.ucsd.edu/projects/crossmodal/ 

 Image + Text (1 million images with captions): 

http://vision.cs.stonybrook.edu/~vicente/sbucap-

tions/  

 Video + Text (about 2,000 video snippets; about 40 

sentences per snippet) http://research.mi-

crosoft.com/en-us/downloads/38cf15fd-b8df-477e-

a4e4-a4680caa75af/  

 Microsoft COCO dataset: More than 300,000 images, 

each of which has 5 captions. http://mscoco.org/. 

 TACoS multilevel dataset: 44,762 video-sentence 

pairs. https://www.mpi-inf.mpg.de/depart-

ments/computer-vision-and-multimodal-compu-

ting/research/human-activity-recognition/mpii-

cooking-activities-dataset/. 

 Flickr30K dataset: 31,783 images, 5 captions per im-

age. https://illinois.edu/fb/sec/229675.   

 MMDB dataset: 160 sessions of 5-minute interaction 

from 121 children, including all multi-modal signals: 

images by camera, audio by microphones, activ-

ity/accelerometry sensors. 

http://cbi.gatech.edu/mmdb/overview.php  

8. CONCLUSION 

The proliferation of big data calls for advanced data fusion 

methods that can discover knowledge from multiple dis-
parate datasets with underlying connections. This paper 
summarizes existing data fusion methods, classifying 
them into three major categories and giving real examples 
in each sub-category of methods. This paper explores the 
relationship and differences between different methods, 
helping people find proper data fusion methods to solve 
big data problems. Some public multi-modality datasets 
have been shared to facilitate further research into data fu-
sion problems. 
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