
G.Ciobanu, M.Koutny (Eds.): Membrane Computing and
Biologically Inspired Process Calculi 2010 (MeCBIC 2010)
EPTCS 40, 2010, pp. 1–5, doi:10.4204/EPTCS.40.1

c© Phillips Lakin Paulevé
This work is licensed under the
Creative Commons Attribution License.

Stochastic Simulation of Process Calculi for Biology

Andrew Phillips
Microsoft Research

Cambridge, United Kingdom
andrew.phillips@microsoft.com

Matthew R. Lakin
Microsoft Research

Cambridge, United Kingdom
v-mlakin@microsoft.com

Loı̈c Paulevé
IRCCyN, UMR CNRS 6597

École Centrale de Nantes, France
loic.pauleve@irccyn.ec-nantes.fr

Biological systems typically involve large numbers of components with complex, highly parallel
interactions and intrinsic stochasticity. To model this complexity, numerous programming languages
based on process calculi have been developed, many of which are expressive enough to generate
unbounded numbers of molecular species and reactions. As a result of this expressiveness, such
calculi cannot rely on standard reaction-based simulation methods, which require fixed numbers of
species and reactions. Rather than implementing custom stochastic simulation algorithms for each
process calculus, we propose to use a generic abstract machine that can be instantiated to a range of
process calculi and a range of reaction-based simulation algorithms. The abstract machine functions
as a just-in-time compiler, which dynamically updates the set of possible reactions and chooses the
next reaction in an iterative cycle. In this short paper we give a brief summary of the generic abstract
machine, and show how it can be instantiated with the stochastic simulation algorithm known as
Gillespie’s Direct Method. We also discuss the wider implications of such an abstract machine, and
outline how it can be used to simulate multiple calculi simultaneously within a common framework.

1 Introduction

Biological systems typically involve large numbers of components with complex, highly parallel in-
teractions and intrinsic stochasticity. To model this complexity, numerous programming languages
based on process calculi have been developed, many of which are expressive enough to generate un-
bounded numbers of molecular species and reactions. Examples include variants of the stochastic pi-
calculus [13, 14, 11], BlenX [3], the kappa calculus [2], and variants of the bioambient calculus [15, 10].
As a result of this expressiveness, such calculi cannot rely on standard reaction-based simulation meth-
ods such as [7, 5], which require fixed numbers of species and reactions. Instead, a custom simulation
algorithm is typically developed for each calculus. The choice of algorithm depends on the nature of
the underlying biological system, such as whether exact simulation is required [6, 5], whether certain
reactions operate at different timescales [7, 16], or whether non-Markovian reaction rates are needed
[1, 8].

Rather than implementing custom stochastic simulation algorithms for each process calculus, we
propose to use a generic abstract machine that can be instantiated to a range of process calculi and a
range of reaction-based simulation algorithms. The abstract machine functions as a just-in-time compiler,
which dynamically updates the set of possible reactions and chooses the next reaction in an iterative
cycle. The abstract machine is instantiated to a particular calculus by defining two functions: one for
transforming a process of the calculus to a set of species, and another for computing the set of possible
reactions between species. The abstract machine is instantiated to a particular simulation algorithm by
definition three functions: one for computing the next reaction, one for computing the reaction activity
from an initial set of reactions and species populations, and a third for updating the reaction activity as the
species populations change over time. Having a clear separation between the simulation algorithm and
the language specification allows us not only to easily instantiate the machine to different process calculi,

http://dx.doi.org/10.4204/EPTCS.40.1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Stochastic Simulation of Process Calculi

Table 1: Syntax of the generic abstract machine, where a term T consists of the current time t, a species
map S and a reaction map R. We let Ĩ denote a multiset of species {I1, .., IN} and Õ denote a set of
reactions.

T syntax description
T (t,S,R) Time t, species map S, reaction map R
S {I1 7→ i1, .., IN 7→ iN} Map from a species I to its population i,
R {O1 7→ A1, ..,ON 7→ AN} Map from a reaction O to its activity A
O (Ĩ,r, Ĩ′) Reaction with reactants Ĩ, products Ĩ′ and rate r.

Table 2: Parameterised definition of the generic abstract machine. If Ĩ is a multiset {I1, .., IN} we write
Ĩ⊕T for I1⊕ ..⊕ IN ⊕T , and T 	 Ĩ for T 	 I1	 ..	 IN (the order is unimportant). We write dom(S) for
the domain of S. We also write S(I) for the value associated with I in S, and S{I 7→ v} for S updated so
that v is associated with I.

function definition
P⊕T , species(P)⊕T

I⊕ (t,S,R) , (t,S′,R∪R′) if Ĩ′ = dom(S); I /∈ Ĩ′; S′ = S{I 7→ 1};
Õ = reactions(I, Ĩ′); R′ = init(Õ,(t,S′,R))

I⊕ (t,S,R) , (t,S′,R∪R′) if S(I) = i; S′ = S{I 7→ i+1}; R′ = updates(I,(t,S′,R))
(t,S,R)	 I , (t,S′,R∪R′) if S(I) = i; S′ = S{I 7→ i−1}; R′ = updates(I,(t,S′,R))

but also to add new simulation algorithms that can be shared between calculi. Furthermore, the approach
could be used to dynamically integrate the simulation of multiple process calculi simultaneously, acting
as a common language runtime for the simulation of process calculi for biology.

In this short paper we give a brief summary of the generic abstract machine of [8], and show how it
can be instantiated with the stochastic simulation algorithm of [6]. We also discuss the wider implications
of such an abstract machine, and outline how it can be used to simulate multiple calculi simultaneously
within a common framework.

2 Summary of the Abstract Machine

The syntax of the generic abstract machine is summarised in Table 1, and is based on the definitions of
[8]. A machine term T is a triple (t,S,R), where t is the current time, S is a map from a species I to
its population i, and R is a map from a reaction O to its activity A, which is used to compute the next
reaction. Each reaction is represented by a tuple (Ĩ,r, Ĩ′), where Ĩ denotes the multiset of reactant species,
Ĩ′ denotes the multiset of product species and r denotes the reaction rate. The structure of a term of the
abstract machine can be summarised as follows.

Machine term T
Time t Species map S Reaction map R

Species Population Reaction Activity
I1 i1 Ĩ1

r1−→ Ĩ′1 A1
.

IN iN ĨM
rM−→ Ĩ′M AM

Phillips Lakin Paulevé 3

Table 3: Instantiation of the generic abstract machine with the stochastic simulation algorithm of [6]. We
write {Ei |C1; ..;CN} to denote the set of elements Ei that satisfy conditions C1; ..;CN . We let n1 and n2 de-
note two random numbers from the standard uniform distribution, U(0,1). The function propensity(O,S)
is defined in the main text.

function definition
next(t,S,R) , Oµ , t+ t ′ if a0 = ∑Oi∈dom(R) R(Oi); t ′ = (1

a0
)ln(1

n1
); ∑

µ−1
i=1 ai < n2a0 ≤ ∑

µ

i=1 ai

init(Õ,(t,S,R)) , {Oi 7→ propensity(Oi,S) | Oi ∈ Õ}
updates(I,(t,S,R)) , {Oi 7→ propensity(Oi,S) | Oi ∈ dom(R);Oi = (J̃,r, J̃′); I ∈ J̃}

To instantiate the abstract machine with a given process calculus, it is sufficient to define a function
species(P) for transforming a process P to a multiset of species, together with a function reactions(I, Ĩ′)
for computing the set of reactions between a new species I and an existing set of species Ĩ′. The syntax
of species I is specific to the choice of process calculus. The species function is used to initialise the
abstract machine at the beginning of a simulation, while the reactions function is used to update the set
of possible reactions dynamically. This allows systems with potentially unbounded numbers of species
and reactions to be simulated.

To instantiate the abstract machine with a given simulation algorithm, it is sufficient to define a
function next(T) for choosing the next reaction from a term T , a function init(Õ,T) for initialising a
term with a set of reactions Õ, and a function updates(I,T) for updating the reactions in a term affected
by a given species I. The abstract machine is then executed by repeated application of the following rule.

(Ĩ,r, Ĩ′), t ′ = next(t,S,R)

t,S,R
(Ĩ,r,Ĩ′)−→ Ĩ′⊕ ((t ′,S,R)	 Ĩ)

Each time the next reaction is selected, it is executed by removing the reactants Ĩ from the machine
term, adding the products Ĩ′ and updating the current time of the machine. Corresponding definitions
for adding and removing species are summarised in Table 2. A process P is added to a machine term T
by computing the multiset of species {I1, . . . , IN} which correspond to P and then adding each of these
species to the term. If a new species I is already present in the term then its population is incremented
in S and the activity of the affected reactions is updated. If the species is not already present in the term,
its population is set to 1 in S and new reactions for the species are computed, together with their activity.
The operation T 	 Ĩ removes the species Ĩ from the machine term T , by decrementing the corresponding
species populations and by updating the affected reactions.

3 Instantiating the Abstract Machine

An instantiation of the abstract machine with the stochastic simulation algorithm of [6] is outlined in
Table 3. Each reaction (Ĩ,r, Ĩ′) is mapped to its propensity ai, which is computed by multiplying the rate
of the reaction by the number of distinct combinations of the reactants Ĩ. The function propensity(O,S)
computes the propensity of the reaction O given the species map S and is defined as follows, assuming

4 Stochastic Simulation of Process Calculi

that reactions are either unary or binary and that I1 and I2 are distinct species.

propensity(({I1},r, Ĩ′),S) , r×S(I1)

propensity(({I1, I1},r, Ĩ′),S) , r×S(I1)× (S(I1)−1)/2

propensity(({I1, I2},r, Ĩ′),S) , r×S(I1)×S(I2)

The function init(Õ,T) computes the initial propensity for each reaction in Õ, using the initial species
populations in T , while the function updates(I,T) updates the propensities of all the reactions in T for
which I is a reactant. Finally, the function next(T) chooses a reaction from T with probability propor-
tional to the reaction propensity, and computes the corresponding duration of the reaction according to
[6].

We have also instantiated the abstract machine to the Next Reaction Method of [5] and to the Non-
Markovian Next Reaction Method of [8], by defining corresponding init, next and updates functions,
as described in [8]. We have used the abstract machine to implement the DNA Strand Displacement
(DSD) calculus for modelling DNA circuits [12], the Genetic Engineering of Cells (GEC) calculus for
modelling of genetic devices [9], and the Stochastic Pi Machine (SPiM) calculus for general model-
ling of biological systems [17], by defining appropriate species and reactions functions for each calcu-
lus. Simulators for these three calculi are available online at http://research.microsoft.com/dna,
http://research.microsoft.com/gec and http://research.microsoft.com/spim, respectively.
Technical details of the instantiation of the generic abstract machine with the stochastic pi-calculus and
the bioambient calculus are outlined in [8]. We are currently developing an instantiation of the generic
abstract machine to the kappa calculus of [2]. Although the idea of integrating different modelling and
simulation methods within a common framework is not a new one [4], our approach is the first attempt
to formally define a generic framework for simulating a broad range of process calculi with an arbitrary
reaction-based simulation algorithm.

4 A Common Simulation Framework

The generic abstract machine can be used to simulate multiple calculi simultaneously by assuming a
separate species type IL for each calculus L, together with an initial set of cross-calculus reactions Õ0. An
example of a cross-calculus reaction is IDSD + ISPiM

r−→ ISPiM + I′SPiM, which takes a species of the DSD
language, such as a known DNA vaccine assembled via strand displacement, together with a species of
the SPiM language, such as a polymerase, and produces a corresponding protein species in SPiM together
with the original polymerase. The reaction therefore enables the output of a strand displacement model
in DSD to interface with a cellular model in SPiM. For each dynamically created species IL the function
reactions(IL, Ĩ′) calls the appropriate calculus-specific function reactionsL(IL, Ĩ′L), where Ĩ′L denotes the
subset of species in Ĩ′ that are of type L. This approach allows multiple calculi to interact with each other
within the same simulation environment, via a fixed set of interface reactions. Further work is needed to
formalise the multi-language execution paradigm in more detail.

The generic abstract machine can therefore be used to simulate a range of existing process calculi
within a common framework. By decoupling the choice of calculus from the choice of simulation al-
gorithm, multiple calculi can re-use the same algorithm via a common interface, without the need to
implement custom simulation algorithms for each calculus. In future, this could allow models to be
constructed from components written in different domain-specific languages, each designed to allow a
natural, concise encoding of that component. The components could then interact dynamically via a
common language runtime, allowing integrated simulation of heterogeneous biological systems.

Phillips Lakin Paulevé 5

References
[1] Dmitri Bratsun, Dmitri Volfson, Lev S. Tsimring & Jeff Hasty (2005): Delay-induced stochastic oscillations

in gene regulation. Proceedings of the National Academy of Sciences of the United States of America
102(41), pp. 14593–14598. Available at http://www.pnas.org/content/102/41/14593.abstract.

[2] Vincent Danos, Jéréme Feret, Walter Fontana, Russell Harmer & Jean Krivine (2007): CONCUR 2007 -
Concurrency Theory, chapter Rule-Based Modelling of Cellular Signalling, pp. 17–41. Available at http:
//dx.doi.org/10.1007/978-3-540-74407-8_3.

[3] Lorenzo Dematté, Corrado Priami & Alessandro Romanel (2008): Modelling and simulation of biological
processes in BlenX. SIGMETRICS Performance Evaluation Review 35(4), pp. 32–39. Available at http:
//doi.acm.org/10.1145/1364644.1364653.

[4] Roland Ewald, Jan Himmelspach, Matthias Jeschke, Stefan Leye & Adelinde M Uhrmacher (2010): Flex-
ible experimentation in the modeling and simulation framework JAMES II – implications for computational
systems biology. Brief Bioinform Available at http://dx.doi.org/10.1093/bib/bbp067.

[5] Michael A. Gibson & Jehoshua Bruck (2000): Efficient Exact Stochastic Simulation of Chemical Systems with
Many Species and Many Channels. The Journal of Physical Chemistry A 104(9), pp. 1876–1889. Available
at http://pubs.acs.org/doi/abs/10.1021/jp993732q.

[6] Daniel T. Gillespie (1977): Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25),
pp. 2340–2361.

[7] Daniel T. Gillespie (2001): Approximate accelerated stochastic simulation of chemically reacting systems. J.
Chem. Phys. 115, pp. 1716–1733.

[8] Loı̈c Paulevé, Simon Youssef, Matthew R. Lakin & Andrew Phillips (2010): A generic abstract machine for
stochastic process calculi. In: CMSB ’10: Proceedings of the 8th International Conference on Computational
Methods in Systems Biology, ACM, New York, NY, USA, pp. 43–54.

[9] Michael Pedersen & Andrew Phillips (2009): Towards programming languages for genetic engineering of
living cells. Journal of the Royal Society Interface 6(S4), pp. 437–450.

[10] Andrew Phillips (2009): An Abstract Machine for the Stochastic Bioambient Calculus. Electronic Notes in
Theoretical Computer Science 227, pp. 143–159.

[11] Andrew Phillips & Luca Cardelli (2007): Efficient, Correct Simulation of Biological Processes in the
Stochastic Pi-calculus. In: Computational Methods in Systems Biology, LNCS 4695, Springer, pp. 184–
199.

[12] Andrew Phillips & Luca Cardelli (2009): A programming language for composable DNA circuits. Journal of
the Royal Society Interface 6(S4), pp. 419–436.

[13] C. Priami, A. Regev, E. Shapiro & W. Silverman (2001): Application of a stochastic name-passing calculus
to representation and simulation of molecular processes. Information Processing Letters 80, pp. 25–31.

[14] A. Regev, W. Silverman & E. Shapiro (2001): Representation and Simulation of Biochemical Processes
Using the pi-Calculus Process Algebra. In: Pacific Symposium on Biocomputing, 6, World Scientific Press,
Singapore, pp. 459–470.

[15] Aviv Regev, Ekaterina M. Panina, William Silverman, Luca Cardelli & Ehud Y. Shapiro (2004): BioAmbi-
ents: an abstraction for biological compartments. Theor. Comput. Sci. 325(1), pp. 141–167. Available at
http://dx.doi.org/10.1016/j.tcs.2004.03.061.

[16] Tianhai Tian & Kevin Burrage (2004): Binomial leap methods for simulating stochastic chemical kinetics. J.
Chem. Phys. 121, pp. 10356–10364.

[17] Dennis Y. Q. Wang, Luca Cardelli, Andrew Phillips, Nir Piterman & Jasmin Fisher (2009): Computational
modeling of the EGFR network elucidates control mechanisms regulating signal dynamics. BMC Systems
Biology 3(118).

http://www.pnas.org/content/102/41/14593.abstract
http://dx.doi.org/10.1007/978-3-540-74407-8_3
http://dx.doi.org/10.1007/978-3-540-74407-8_3
http://doi.acm.org/10.1145/1364644.1364653
http://doi.acm.org/10.1145/1364644.1364653
http://dx.doi.org/10.1093/bib/bbp067
http://pubs.acs.org/doi/abs/10.1021/jp993732q
http://dx.doi.org/10.1016/j.tcs.2004.03.061

	1 Introduction
	2 Summary of the Abstract Machine
	3 Instantiating the Abstract Machine
	4 A Common Simulation Framework

