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ABSTRACT
The rise of smartphones equipped with various sensors has enabled
personalization of various applications based on user contexts ex-
tracted from sensor readings. At the same time it has raised serious
concerns about the privacy of user contexts.

In this paper, we present MASKIT, a technique to filter a user
context stream that provably preserves privacy. The filtered context
stream can be released to applications or be used to answer queries
from applications. Privacy is defined with respect to a set of sensi-
tive contexts specified by the user. MASKIT limits what adversaries
can learn from the filtered stream about the user being in a sensitive
context – even if the adversaries are powerful and have knowledge
about the filtering system and temporal correlations in the context
stream.

At the heart of MASKIT is a privacy check deciding whether
to release or suppress the current user context. We present two
novel privacy checks and explain how to choose the check with
the higher utility for a user. Our experiments on real smartphone
context traces of 91 users demonstrate the utility of MASKIT.

Categories and Subject Descriptors
H.3.5 [INFORMATION STORAGE AND RETRIEVAL]: On-
line Information Services—data sharing

General Terms
Algorithms, Security

1. INTRODUCTION
Mobile devices today are increasingly equipped with a range of

sensors such as GPS, microphone, accelerometer, light, and prox-
imity sensors. These sensors can be effectively used to infer a
user’s context including his location (e.g. at home or in the of-
fice) from GPS, transportation mode (e.g. walking or driving) from
accelerometer, social state (e.g. alone or in a group) from the mi-
crophone, and other activities (e.g. in a meeting) from a combi-
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nation of sensors. Consequently, a large and increasing number of
applications in popular smart phone platforms such as the iPhone,
the Android, and the Windows Phone utilize user contexts in or-
der to offer personalized services. Examples of such applications
includeGeoReminder that notifies the user when he is at a partic-
ular location, JogBuddy that monitors how much he jogs in a day,
PhoneWise that automatically mutes the phone during meetings,
SocialGroupon that delivers coupons or recommendations when
he is in a group of friends, etc.

However, these context-aware mobile applications raise serious
privacy concerns. Today, people already believe that risks of shar-
ing location information outweigh the benefits in many location-
based services [34]. One reason why risks are high is that many
mobile applications today aggressively collect much more personal
context data than what is needed to provide their functionalities [7]
(for example, a calculator application might send the user’s location
to an advertisement server). Moreover, applications rarely provide
privacy policies that clearly state how users’ sensitive information
will be used, and with what third-parties it will be shared. To avoid
the risks, a user can decide not to install these application or not to
release any context information to them (by explicitly turning off
sensors); but then the user might not be able to enjoy the utility
provided by these applications. In order to explore a better trade-
off between privacy and utility, we can let the user control at a fine
granularity when and what context data is shared with which ap-
plication [18, 34]. For example, a user might be okay to release
when he is at lunch but he might be hesitant to release when he is
at a hospital. With such fine-grained decisions, a user can choose a
point in the privacy-utility tradeoff for an application and can still
enjoy its full functionality when he chooses to release his context
information or when his context information is not actually needed.

To support such fine-grained control, we need to answer the
question: When and what context should be suppressed to preserve
privacy? A naïve approach, that we call MaskSensitive, is to let
the user specify sensitive contexts and to simply suppress those.
This, however, does not necessarily prevent an adversary from in-
ferring sensitive contexts. One reason why an adversary can infer
suppressed sensitive contexts is that the suppression itself leaks in-
formation. Consider a user who suppresses his context if and only
if he is playing a video game at work. An adversary knowing the
suppression rule can infer exactly when he is playing a game at
work. In general, we want to guard against leakage attacks from
adversaries knowing the suppression system. Such adversaries are
powerful and can reverse-engineer the system in order to infer in-
formation about suppressed contexts. Protecting against them fol-
lows Shannon’s maxim “The enemy knows the system,” and does
not rely on privacy through obscurity.

Another way an adversary can infer a sensitive context is by ex-



ploiting temporal correlations between contexts. Consider a user
who suppresses his location when he is at a hospital. This, how-
ever, might not be sufficient: when he releases his non-sensitive
context while he is driving to the hospital, the adversary can infer
where he is heading. Similarly, when he releases the use of a hos-
pital finder app, the adversary can again infer where he is heading.
In these cases the sensitive context can be inferred from its de-
pendence on non-sensitive contexts. In general, we want to guard
against inference attacks from adversaries knowing temporal cor-
relations. Such adversaries are realistic because human activities
and contexts exhibit daily and weekly patterns. For example, Bob is
at work at 9am during the week and he always picks up his children
from daycare after returning from work. Previous work has shown
that human behavior and activities can be modeled well with a sim-
ple Markov chain [15, 24]. We use the same approach and model
the user behavior as a Markov chain over contexts with transition
probabilities that generates the stream of contexts. A Markov chain
captures frequencies of contexts and temporal correlations. Adver-
saries can gain knowledge about patterns and frequencies of con-
texts from observing a person to create a rough daily schedule or
by using common sense; for example, knowing that Bob works full
time at a bakery, the adversary can guess that he is most likely to
be at work at 9am. An adversary can also extract patterns from the
sequence of contexts released to applications. We consider strong
adversaries knowing the Markov chain of a user and weaker adver-
saries with only limited information about the Markov chain.

In the presence of such adversaries, the aforementioned question
needs to be reformulated as when and what context should be sup-
pressed in order to protect privacy against adversaries knowing
temporal correlations and also the system making this decision?
Here, privacy is defined with respect to a set of sensitive contexts.
Users can decide on the sensitivity of contexts (for example, in-
clude “at the hospital” but not “walking the dog”) with the help of
special tools (see for example [33]). Guaranteeing privacy means
to limit what an adversary can learn about a user being in a sen-
sitive context at some point in time from the released sequence of
contexts. By looking at the released contexts and combining them
with his background knowledge, an adversary should not be able
to learn that a user was/is/will be in a sensitive state. Our exper-
iments show that the MaskSensitive approach does not meet this
requirement: more than half of the masked sensitive states con-
stitute privacy breaches, i.e., upon observing the output generated
by MaskSensitive, an adversary can use his background knowledge
about a user’s Markov chain to gain much confidence in the fact
that the user is in a sensitive state.

In this paper, we propose MASKIT, a system that addresses the
above question with two novel privacy checks deciding in an on-
line fashion whether to release or suppress the current state of the
user. The probabilistic check flips for each context a coin to decide
whether to release or suppress it. The bias of the coin is chosen
suitably to guarantee privacy. The simulatable check makes the de-
cision only based on the released contexts so far and completely
ignores the current context. That way, the decision does not leak
additional information to the adversary. Both checks provably pro-
vide privacy, but interestingly their relative benefit varies across
users —there are situations where the probabilistic check provides
higher utility than the simulatable check and vice versa. We explain
how to select the better check among the two for a given user.

Both checks provide privacy against very strong adversaries who
know the system and the Markov chain modeling a user and his
frequent patterns. We also consider weaker adversaries with less
background knowledge about the user model. Protecting against
these adversaries is challenging because they can learn and gain

additional knowledge either from other sources or from the released
contexts.1 We explain how to adapt our checks to preserve privacy
against weaker adversaries as they learn.

There is large body of prior work on privacy-preserving publish-
ing of location streams. Most work does not consider adversaries
knowing temporal correlations. The only system that we are aware
of that provably protects privacy in location streams against adver-
saries knowing the system and temporal correlation is limited to a
single type of temporal correlation based on the maximum velocity
of a user [9]. It is vulnerable to attacks from adversaries knowing
frequencies (e.g., the user is never at home at 2pm) or other tem-
poral correlations (e.g., the distribution of time between two con-
secutive user locations or the average velocity). Schemes based on
cryptographic protocols [10, 28] provide a strong privacy guaran-
tee, but they cannot release streams of user contexts. To the best of
our knowledge, our work is the first to release user context streams
while protecting privacy of sensitive contexts against powerful ad-
versaries knowing the system and various temporal correlations in-
cluding typical user behavior (the user gets up every day at 6am)
and correlations (after going to the doctor the user is likely to go
to the pharmacy). Moreover, previous work offering privacy guar-
antees for streams focuses exclusively on locations. Our work can
handle more general contexts including the social state, the trans-
portation mode, and activities as we illustrate in our experiments.

We have evaluated MASKIT on a PC as well as on a smart phone,
with real public traces from 91 human subjects over the course of
nine months, representing user contexts over 266,000 hours. Our
evaluation shows that we do not have to pay a high price in terms of
utility and efficiency for the privacy guarantee: MASKIT releases
nearly as many states as the MaskSensitive approach (and only 7%
fewer states in the worst case), and MaskSensitive does not guar-
antee privacy. Moreover, the suppression decision incurs negligible
overhead (≤ 128ms on average on a smart phone) compared to the
context extraction time of typically a few to tens of seconds.

In summary, the paper makes the following contributions.

• We present two privacy checks for deciding whether to re-
lease or suppress a user’s current context. They provably
preserve the privacy of sensitive contexts against powerful
adversaries knowing the system and the Markov chain of the
user (Sections 3 and 4).

• We examine how the relative benefit of the two privacy checks
varies across users, and we provide a superior hybrid privacy
check (Section 5).

• We explain how to adapt these checks to protect privacy against
adversaries who have limited knowledge about the user’s Markov
chain but can potentially learn more about it over time (Sec-
tion 6).

• We compare the privacy checks experimentally on real user
context traces (Section 7).

We start by laying out the problem of privately releasing user
context streams and describing the overall architecture of MASKIT.

2. PROBLEM STATEMENT

2.1 MASKIT
System Model. We assume a system that models today’s sensor-
equipped smart phones running context-aware applications (e.g.,
those mentioned in Section 1). Untrusted applications access user
contexts through MASKIT and do not have access to raw sensor
1This observation lead to attacks in micro-data publishing [19, 36].



data.2 For energy-efficient support of continuously running appli-
cations, MASKIT senses user contexts x1, x2, . . . periodically at
discrete points in time (like [2, 26]). Upon extracting a context xt
at time t, MASKIT produces a privacy-preserving output ot. Con-
tinuously running applications can subscribe to the full privacy-
preserving context stream o1, o2, . . . MASKIT can also serve ap-
plications issuing sporadic queries over the stream (e.g. asking for
the current context), although these applications are not the main
focus of this work.

To compute ot, MASKIT employs a check deciding whether to
release or suppress the current context xt. The check follows the
“release or suppress” paradigm and restricts the output ot to be
either the true state xt or the suppression symbol ⊥, i.e., ot ∈
{xt,⊥}. 3 We make this restriction because it reflects standard ac-
cess control mechanisms in existing phones and the modus operandi
of many location-based mobile applications [34]. This restriction
makes it easy to port existing applications to MASKIT—all that is
necessary is the ability to deal with suppressed states in the stream.
User Model. We assume that a user’s various contexts and transi-
tions between them can be captured by a Markov chain M ; i.e., the
user behaves like a sample from M . Previous work has shown that
human behavior and activities extracted from smartphone sensors
can be modeled well with a simple Markov chain [15, 24]. Markov
chains have also been used to model user behavior in other domains
including computer-aided manufacturing [20], Web search [3, 16]
and search in entity relation graphs [4]. The states inM are labeled
with contexts {c1, . . . , cn}. The transition probability ati,j denotes
the probability of the user being in context cj at time t given that
he is in context ci at time t − 1. We use the term state to denote a
user’s context at a given time (e.g., at home at 9pm).

We consider a model over a day: the states in M represent all
possible contexts of a user in a day.4 Each day, the user starts at the
“start” state in M and ends T steps later in the “end” state. Here,
T denotes the sensing frequency. We denote by X1, . . . , XT ran-
dom variables generated fromM , each taking on the value of some
context ci. The independence property of Markov chains states that

Pr[Xt = ci|X1, . . . , Xt−1] = Pr[Xt = ci|Xt−1]. (1)

Adversary Model. We consider two types of adversaries. Strong
adversaries know the Markov chainM of a user. Weak adversaries
initially have less knowledge about M ; but they can learn more
about M over time. We further assume that adversaries can access
the full output sequence generated by a general suppression system
A, and we assume the adversaries also knowA. 5 In the following,
We assume that the adversaries apply Bayesian reasoning. Based
on the Markov chain, adversaries have a prior belief about the user
being in context ci at time t, denoted by Pr[Xt = ci], where the
randomness comes from the process M generating X1, . . . , XT .
Upon observing a released output sequence, they infer as much
as possible about contexts and update their belief. The posterior
belief, denoted by Pr[Xt = ci|A(~x) = ~o] is computed by condi-
tioning the prior belief on the observed sequence ~o that was gener-
ated from the user’s sequence ~x by the system A. The randomness
comes from M and A. When it is clear which system A we are
referencing, we drop it from our notation. More details about the
computation of beliefs can be found the next subsection.
2Trusted applications, however, can access raw data and contexts
directly if needed.
3Other ways of sanitizing the output, e.g., generalization, are left
for future work.
4To capture correlations across days, we can consider a larger
model capturing a week or a month.
5This type of knowledge is often overlooked [35, 37].

Privacy. Consider a user u with a Markov chain M over con-
texts c1, . . . , cn. The user declares a subset of these contexts S ⊂
{c1, . . . , cn} as sensitive (e.g., by using special tools [33]). In-
formally, a released sequence ~o preserves privacy if the adversary
cannot not learn much about the user being in a sensitive state from
~o. That is for all sensitive contexts and all times we require the
posterior belief about the user being in the sensitive context at that
time not to be too much larger than the prior belief.6

DEFINITION 1. We say that a system A preserves δ-privacy
against an adversary if for all possible inputs ~x sampled from the
Markov chain M with non-zero probability (i.e., Pr[~x] > 0), for
all possible outputs ~o (Pr[A(~x) = ~o] > 0), for all times t and all
sensitive contexts s ∈ S

Pr[Xt = s|~o]− Pr[Xt = s] ≤ δ.
Note, that our privacy definition also limits what an adversary

can learn about the user being in some (as opposed to a specific)
sensitive context at a certain time. In general, for any subset S′ ⊂
S, any t, any ~o preserving δ/|S′|-privacy according to the above
definition we have that Pr[Xt ∈ S′|~o] − Pr[Xt ∈ S′] ≤ δ. This
is because Pr[Xt ∈ S′|~o] is equal to

∑
s∈S′ Pr[Xt = s|~o]. By the

δ/|S′|-privacy guarantee this is at most
∑

s∈S′ δ/|S
′|+ Pr[Xt =

s] which is equal to Pr[Xt ∈ S′] + δ.
Furthermore, our privacy definition limits what an adversary can

learn about the user being in a sensitive context in a time window.
For a time window of length ∆t any ~o preserving δ/∆t-privacy we
have that the posterior belief formed after observing ~o of the user
being in a sensitive context s at some point in the time window is
at most δ larger than his prior belief.
Utility Goal. We want to release as many states as possible, while
satisfying the privacy goal. We measure the utility of a system for a
user with chain M as the expected number of released states in an
output sequence. The randomness comes from M and the system.
The MASKIT System. Algorithm 1 shows the MASKIT system.
It takes as input the user’s model M , sensitive contexts S, and the
privacy parameter δ. MASKIT learns M from historical observa-
tions x1, x2, . . . . The other two parameters can be configured by
the user to obtain the desired level of privacy. At its heart, there
is a privacy check deciding whether to release or suppress the cur-
rent state. This privacy check supports two methods initialize and
okayToRelease. After the initialization, MASKIT filters a stream
of user contexts by checking for each context whether it is okay to
be released or needs to be suppressed. MASKIT releases an out-
put sequence “start”, o1, . . . , oT , “end” for a single day. We can
use MASKIT repeatedly to publish longer context streams. It suf-
fices to prove privacy of a single day due to our assumption that
there are no correlations across days. Before describing the privacy
check for a day, we lay the foundation for the privacy analyses and
review Markov chains.

2.2 Preliminaries
This section forms the background of the adversarial reasoning.

We roughly follow the notation of Manning and Schütze [23].
Markov chains. Markov chains constitute the background knowl-
edge of our adversaries. Consider a Markov chain with random
variables X1, . . . , XT each taking on a value in the set of contexts
C = {c1, . . . , cn}. A chain is not necessarily time-homogenous,
i.e., the transition probability from one context to another may de-
pend on the time. Thus we can view such a chain is as a DAG
6If the sensitivity of a context depends on the time then we can
generalize this definition to sensitive states. Extending our system
is straight-forward.



Algorithm 1 System to generate δ-private streams.
procedure MASKIT(δ, Markov chain M , sensitive contexts S)

initialize(δ,M, S)
~o =“start”
for current time t ∈ [1, 2, . . . , T ] do

ci = GETUSERCURRENTCONTEXT()
if okayToRelease(ci, t, ~o) then

ot = ci
else ot = ⊥
~o← ~o, ot
Release ot

~o← ~o, “end”

with T + 2 levels, in which a state at level t has outgoing edges to
all states in level t + 1 (possibly with probability zero). At level
0 we have the “start” state and at level T + 1 we have the “end”
state; Figure 1 shows an example. Note that states at different lev-
els might carry the same context label. Thus, we can describe the
Markovian process with transition matrices A(1), . . . , A(T+1):

a
(t)
i,j = Pr[Xt = cj |Xt−1 = ci]

PROPOSITION 1. The prior belief of an adversary (who knows
a user’s chain M ) about the user being in a sensitive context s at
time t is equal to

Pr[Xt = s] = (A(1) ·A(2) · · ·A(t))s.

The joint probability of a sequence of states is:

Pr[X1, . . . , XT ] =

T∏
t=1

a
(t)
Xt−1,Xt

In general, we can compute the probability of transitioning from
state ci at time t1 to state cj at time t2 efficiently:

Pr[Xt2 = cj |Xt1 = ci] = (eiA
(t1+1) · · ·A(t2))j (2)

where ei is the unit vector that is 1 at position i and 0 otherwise.

Hidden Markov Models. Hidden Markov models help us un-
derstand how adversaries make inference about suppressed states.
Each state has a distribution over possible outputs from a set K =
{k1, . . . , km}. The output at time t is a random variable Ot. The
random variable Ot is conditionally independent of other random
variables given Xt. We define emission matrices B(t) as:

b
(t)
i,k = Pr[Ot = k|Xt = ci]

For a given output sequence ~o = o1, . . . , oT , we compute the con-
ditional probability that at time t the hidden state was ci:

Pr[Xt = ci|~o] =
Pr[Xt = ci, o1, . . . , ot−1] Pr[ot, . . . , oT |Xt = ci]

Pr[~o]

We use the forward procedure α and the backward procedure β to
compute this ratio efficiently.

αi(t) = Pr[Xt = ci, o1, . . . , ot−1] =
∑
j

αj(t− 1)a
(t)
j,ib

(t−1)
j,ot−1

We initialize αj(1) = a
(1)
“start”,j for all j.

βi(t) = Pr[ot, . . . , oT |Xt = ci] =
∑
j

b
(t)
i,ot

a
(t+1)
i,j βj(t+ 1)

We initialize βi(T + 1) = 1 for all i. Putting everything together
results in the following formula:

Pr[Xt = ci|~o] =
αi(t)βi(t)∑
j αj(t)βj(t)

(3)

Algorithm 2 Probabilistic Privacy Check.
procedure initialize((δ,M, S))

2: ~p← argmax~p utility(~p)
subject to ISPRIVATE(δ, ~p, S,M ) = true

4: procedure okayToRelease(ci, t′, · )
with probability pt

′
i return false

6: return true

procedure ISPRIVATE(δ, ~p, S,M )
8: for each s ∈ S do

for t ∈ [T ] do
10: Compute prior Pr[Xt = s].

for output sequences ~o do
12: if Pr[~o] == 0 then continue

Compute posterior Pr[Xt = s|~o].
14: if posterior− prior > δ then

return false
16: return true

3. PROBABILISTIC PRIVACY CHECK
In this section we develop a probabilistic privacy check that spec-

ifies for each state ci at time t′ a suppression probability pt
′
i with

which this state is suppressed. With probability 1 − pt
′
i , ci is re-

leased at time t′. Among all vectors of suppression probabilities ~p
that preserve δ-privacy, we seek one with the maximum utility. We
measure utility as the expected number of released contexts:

utility(~p) =
∑
~o

Pr[~o]|{i|oi 6= ⊥}| =
∑

t′∈[T ],i∈[n]

Pr[Xt′ = ci](1− pt
′
i )

EXAMPLE 1. Consider the Markov chain in Figure 2(a). Two
states s, x are reachable from the “start” state with equal proba-
bility of 1/2. Both immediately transition to the “end” state. The
sensitive context is s. To achieve δ = 1/4-privacy it suffices for the
probabilistic check to suppress s with probability 1 and x with prob-
ability 1/3: The prior belief of X1 = s is 1/2. The posterior belief
upon observing ⊥ is Pr[X1 = s]p1

s/(Pr[X1 = s]p1
s + Pr[X1 =

x]p1
x) = 3/4. Suppressing s with probability< 1 breaches privacy.

If s was ever released then the posterior belief would be 1 which is
more than δ larger than the prior belief. Also, if x was suppressed
with probability < 1/3 then the posterior belief of X1 = s upon
observing ⊥ would be more than δ larger than the prior belief.
Thus, p1

s = 1, p1
x = 1/3 preserves privacy and maximizes utility.

Usually, we expect to always suppress a sensitive state s (unless
it has a really high prior belief ≥ 1 − δ) and other states with
sufficiently high probability so that upon observing⊥, an adversary
is uncertain whether the suppressed state is s.

The probabilistic privacy check is outlined in Algorithm 2, where
initialize formalizes the optimization problem of finding a suitable
suppression probability vector ~p. The okayToRelease method sim-
ply uses this vector to release or suppress current states. These two
methods are used by the MASKIT system described in Section 2.

In the remainder of the section, we focus on the optimization
problem in the initialize method. It makes use of the ISPRIVATE
method that checks if a suppression vector ~p preserves δ-privacy.

3.1 Checking a Suppression Vector
Following Definition 1, we compute whether a vector of suppres-

sion probabilities ~p preserves δ-privacy as follows: We enumerate
all possible output sequences ~o up to length T and iterate over all
times t and all sensitive contexts s to make sure that the posterior
belief is at most δ larger than the prior belief. The process is shown
in the Procedure ISPRIVATE in Algorithm 2.



Details on computing beliefs. The user’s chain M together with
the probabilistic check using ~p form a hidden Markov model gener-
ating ~x as hidden states and ~o as output states. The hidden Markov
model extends M with emission matrices:

b
(t)
i,k = Pr[Ot = k|Xt = ci] =


pti if k = ⊥
1− pti if k = i

0 o.w.

PROPOSITION 2. An adversary who knows M and the proba-
bilistic check with suppression probabilities ~p computes his poste-
rior belief simply as Pr[Xt = s|~o] in this hidden Markov model
defined by M and the emission matrices:

b
(t)
i,k = Pr[Ot = k|Xt = ci] =


pti if k = ⊥
1− pti if k = i

0 o.w.

We can efficiently compute this posterior belief using Eq. (3).

3.2 Search Algorithm
We can solve the optimization problem of choosing the best sup-

pression probabilities by iterating over all vectors ~p and checking if
ISPRIVATE(δ, ~p, S,M ) returns true. For those passing the check we
can compute their utility(~p) and return the one with the maximum
utility. This approach, however, is impractical: There is an infinite
number of suppression probabilities and even if we discretized the
space [0, . . . , 1] → {0, 1/d, 2/d, . . . , 1} there are still dn·T many
vectors to check. One might hope to apply efficient techniques for
convex optimization. However, ISPRIVATE is neither convex nor
concave. Thus, we cannot simply apply techniques for convex opti-
mization. However, we can dramatically reduce the search space by
exploiting the monotonicity property of privacy. To define mono-
tonicity, we introduce a total ordering of suppression probabilities.

DEFINITION 2. We say vector ~q that dominates ~p, denoted by
~p � ~q, if for all i, t : pti ≤ qti .

The monotonicity property says that if we increase the suppres-
sion probability we can only improve privacy.

THEOREM 1. Privacy is a monotone property: If ~p preserves
δ-privacy then so does any ~q dominating ~p.

A proof can be found in the Appendix A. Furthermore, utility is
an anti-monotone property, i.e. we can only decrease utility if we
increase suppression probabilities.

OBSERVATION 1. Utility is an anti-monotone property: Any
vector dominating ~p cannot have more utility than ~p.

Our privacy definition has the monotonicity property in common
with other definitions such as k-anonymity [32] and `-diversity [22].7

This monotonicity property allows us to adapt existing efficient
search algorithms. We can adapt the greedy approach of MON-
DRIAN [21] proposed for k-anonymization by starting with the vec-
tor (1, . . . , 1) and gradually reducing the suppression probabilities
until reducing any suppression probability further would violate
privacy. We end up with a minimal vector. There might be other
minimal vectors with more utility, though. To find those we can
use the algorithm ALGPR [1] that only relies on the monotonicity
of privacy and the anti-monotonicity of utility.
Privacy. It is easy to see that the probabilistic check preserves δ-
privacy if ISPRIVATE correctly determines whether the suppression
7In their case monotonicity is defined over the lattice of full-
domain generalizations of the micro-data.

probabilities preserve privacy. ISPRIVATE is correct because it fol-
lows the definition of privacy considering an adversary knowing the
probabilistic check and the Markov chain of the user.

LEMMA 1. MASKIT preserves δ-privacy instantiated with the
probabilistic check.

Utility. The following lemma analyzes the utility of using ALGPR
in the search of privacy-preserving suppression probabilities that
maximize utility.

LEMMA 2. ALGPR [1] using ISPRIVATE solves the optimiza-
tion problem from initialize: It finds suppression probabilities that
maximize utility among all suppression probabilities that preserve
δ-privacy.

3.3 Efficiency
The initialize method of the probabilistic privacy check is ex-

pensive. It calls one of the search algorithms, which in turn makes
many calls to ISPRIVATE, each of which can take exponential time
in the number of states due to the iteration over possible output se-
quences. In particular, MONDRIAN calls ISPRIVATEO(Tn log(d))
times when using binary search. The number of calls to ISPRI-
VATE from ALGPR is O(Tn log(d)) times the number of min-
imally privacy-preserving vectors plus the number of maximally
non-privacy-preserving vectors [1]. We now explore optimizations
to improve the running time of ISPRIVATE to be polynomial. Across
calls to ISPRIVATE, we explain how to re-use partial computations.
Speeding Up ISPRIVATE. To improve the running time of ISPRI-
VATE we exploit the independence property of Markov chains (1).
Instead of iterating over all possible output sequences ~o in Line (11)
in Algorithm 2 to compute the posterior belief of Xt = s given ~o,
it suffices to consider output subsequences ot1 , . . . , ot2 of the form
ci,⊥, . . . ,⊥, cj with t1 ≤ t ≤ t2. We replace Line (11) with
1: Let O = {ot1 ,⊥, . . . ,⊥|t1 ≤ t, ot1 ∈ {c1, . . . , cn, “start”}}
2: O∪= {ot1 ,⊥, . . . ,⊥, ot2 |t1 ≤ t ≤ t2 ∧
3: ot1 , ot2 ∈ {c1, . . . , cn, “start”, “end”}}
4: for partial output sequence ~o ∈ O do
5: . . .

To compute Pr[Xt = s|ot1 ,⊥, . . . ,⊥, ot2 ] with ci = ot1 and
cj = ot2 , we adapt Equation (3): We set αi(t1) = 1, αl(t1) = 0
(for l 6= i) and βj(t2) = 1−pj , βl(t2) = 0 (for l 6= j). Finally, we
can test if Pr[ot1 , . . . , ot2 ] > 0 by testing the following equivalent
condition (1) p(t1)

i , p
(t2)
j < 1, (2) Pr[Xt1 = ci] > 0 and (3) cj

is reachable from ci at time t1 by a path of length t2 − t1 through
states that have non-zero probability of being suppressed.

THEOREM 2. The running time of the refined ISPRIVATE with
Line (11) replaced with Lines (1, 4) is polynomial in the number of
contexts and T . Its correctness is maintained.

The proof follows from the independence assumption in our Markov
Chain. We can show that in our hidden Markov modelXt is condi-
tionally independent of the output variables other than the ones we
iterate over. Two sets of variables X,Y are conditionally indepen-
dent given a third set of variables Z if X and Y are d-separated
given Z [8]. This is the case if in any trail (path ignoring the di-
rections of the edges) between a node in X and a node in Y there
exists a node Z such that
• Z has two incoming arrows on the trail · · · → Z ← . . . and

neither Z nor any of its descendants are in Z, or
• Z does not have two incoming arrows on the trail, that is
· · · → Z ← . . . , and is in Z

Details can be found in the full version of this paper [29].
Speeding Up the Search Algorithm. Both search algorithms, MON-
DRIAN and ALGPR, start from high suppression probabilities ~p that



Algorithm 3 Simulatable privacy check.
procedure initialize((δ,M, S)) return

2: procedure okayToRelease(·, t′, ~o)
for each possible state j at time t′ given ~o do

4: for each s ∈ S do
for t ∈ [T ] do

6: Compute prior Pr[Xt = s] .
Compute posterior Pr[Xt = s|〈~o, cj〉].

8: if posterior− prior > δ then
return false

10: return true

preserve privacy and use binary search over each probability to see
how much it can be decreased without breaching privacy. We can
re-use the results from checking privacy of ~p in order to check pri-
vacy of ~q dominating ~p. If ~p passes the check then so does ~q. This
fact is already exploited by the two search algorithms. However, we
observe that we can get an additional speed-up in these algorithms
by caching intermediate results if ~p failed ISPRIVATE.

LEMMA 3. LetP (~p) (forPassed) denote the set of triplets 〈t, s, ~o〉
that passed the check, i.e., did not result in false in Line (15) in
ISPRIVATE(δ, ~p, S,M). For ~q dominating ~p, it suffices to check
triplets not in P (~p), i.e., the result of ISPRIVATE(δ, ~q, S,M) will
not change if the posterior belief of triples in P (~p) is not computed
and not verified to be at most δ larger than the prior belief.

4. SIMULATABLE PRIVACY CHECK
At current time t′ our simulatable check uses Algorithm 3 to de-

cide whether to release or suppress the current state. This decision
is made in a simulatable way,8 i.e., only based on information avail-
able to the adversary at that time, namely, the Markov chainM and
the output sequence o1, . . . , ot′−1. The current state is ignored.
The simulatable check decides to release the current state if for any
possible state cj at time t′, releasing cj does not violate privacy.
Generation of Possible States. To compute all possible states at
time t′ given ~o, let t′′ denote the time of the last output 6= ⊥. State
cj is a possible state if it is reachable from ot′′ within t′− t′′ steps:
(eot′′A

(t′′+1) · · ·A(t′))j > 0, where eot′′ denotes the ot′′ th unit
vector that has 1 at position ot′′ and 0 in other positions.
Details on computing beliefs. The following proposition describes
how an adversary computes his posterior belief.

PROPOSITION 3. Consider an output sequence ~o = o1, . . . , ot′
computed by the simulatable check. Consider a time t. Let t1 be the
last time before or at t at which a context was released. Let t2 be
the earliest time after t at which a context was released. If no such
time exists, set t2 = T + 1 and oT+1 = “end”. The adversary’s
posterior belief (knowing M and the simulatable check) about a
user being in a sensitive context s at time t is

Pr[Xt = s|Xt1 = ot1 , Xt2 = ot2 ].

where the randomness comes from M .
The proof follows from the simulatability of the check and the in-
dependence property of Markov chains (see the full version of this
paper for details [29]).

COROLLARY 1. We can compute the posterior belief ofXt = s
given ~o as:

Pr[Xt = s|~o] =
Pr[Xt = s|Xt1 = ot1 ] Pr[Xt2 = ot2 |Xt = s]

Pr[Xt2 = ot2 |Xt1 = ot1 ]

8The notion of simulatability goes back to query auditing [27].

We use Equation (2) to efficiently compute the transition probability
between two states.

PROOF. We rewrite the posterior belief using the independence
property of Markov chains and Proposition 3.

Pr[Xt = s|~o] = Pr[Xt = s|Xt1 = ot1 , Xt2 = ot2 ] By Prop. 3

=
Pr[Xt = s,Xt1 = ot1 , Xt2 = ot2 ]

Pr[Xt1 = ot1 , Xt2 = ot2 ]

=
Pr[Xt2 = ot2 |Xt1 = ot1 , Xt = s] Pr[Xt = s,Xt1 = ot1 ]

Pr[Xt2 = ot2 |Xt1 = ot1 ] Pr[Xt1 = ot1 ]

=
Pr[Xt2 = ot2 |Xt = s] Pr[Xt = s|Xt1 = ot1 ]

Pr[Xt2 = ot2 |Xt1 = ot1 ]
By Eq. 1

=
Pr[Xt = s|Xt1 = ot1 ] Pr[Xt2 = ot2 |Xt = s]

Pr[Xt2 = ot2 |Xt1 = ot1 ]

This completes the proof.

Privacy. Our check preserves privacy.

THEOREM 3. MASKIT preserves δ-privacy instantiated with
the simulatable check in Algorithm 3.

See Appendix B for the proof of Theorem 3.
Utility. The simulatable check is locally optimal in the sense that
if the next state is published despite the indication of the privacy
check to suppress it (improving the utility) then there is a chance
that future states will inevitably breach privacy.
Efficiency. The running time of each call to okayToRelease of the
simulatable check is polynomial in the number of contexts and T .

We can speed up the check by noticing that many checks in
Line (8) in Algorithm 3 are carried out over and over again for con-
secutive calls of okayToRelease from the system. Some of these
checks are redundant. At time t′, let t′′ denote the time of the last
output 6= ⊥ before or at t′. For t < t′′ we have due to Theo-
rem 3 that the output after t′′ does not affect the posterior belief
of Xt = s given ~o for all s. Thus in Line (5) in Algorithm 3, it
suffices to iterate t over t′′ + 1, . . . , T .

5. COMPARATIVE ANALYSIS

5.1 Utility
A natural question to ask is which of the two checks (the prob-

abilistic check or the simulatable check) provides more utility. In
this section, we study this question from an analytical point of view.
The relative benefit of the two checks depends on the user’s Markov
chain and her sensitive contexts. We give two examples: An exam-
ple of a Markov chain where the simulatable check performs better
than the probabilistic check and an example where the probabilistic
check performs better than the simulatable check.
Probabilistic check is superior.

EXAMPLE 2. Consider the example Markov chain in Figure 1(a).
The transition probabilities are uniform across the outgoing edges
of a node. States s1, s2 are sensitive. Suppose we want δ = 1/4-
privacy. The simulatable check suppresses X1. The probabilistic
check, however, only suppresses the sensitive contexts, as this suf-
fices to protect privacy. The prior belief of X1 = si is 1/4 and the
posterior belief given ⊥ is 1/2.

This example illustrates a weakness of the simulatable check: It
makes the suppression decision without looking at the current state.
If there is a chance of currently being in a sensitive state that has a
prior belief < 1 − δ then the simulatable check always suppresses
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Figure 1: Two Markov chains.

the current state. The probabilistic check considers the current state
and in such a case does not necessarily have to suppress it.

The simulatable check is superior.

EXAMPLE 3. Consider the example Markov chain in Figure 1(b).
States s1, s2 are sensitive. Suppose we want δ = 1/3-privacy. The
simulatable check outputs one of these sequences: 〈start, w1, x1
⊥,⊥〉, 〈start, w2, x1 ⊥,⊥〉, 〈start, w3, x2, y2, z1 〉, 〈start, w3, x2,
y2, z2 〉, 〈start, w4, x2, y2, z1 〉, 〈start, w4, x2, y2, z2 〉, 〈start,
w5, x3 ⊥,⊥〉, 〈start, w6, x3 ⊥,⊥〉. The expected number of re-
leased states is 8/3. For the probabilistic check the utility of all
minimally privacy-preserving suppression probabilities is at most
7/3, e.g., always suppressing s1, y1, z1, s2, y3, and z2 preserves
δ = 1/3-privacy and maximizes utility (7/3).

Details are omitted for lack of space.

This example illustrates a weakness of the probabilistic check:
Its decision ignores the previously released states. It might have to
suppress a state because there exists some ~o in Line (11) of Algo-
rithm 2 for which otherwise the posterior belief of some sensitive
state is too high. Now, if this ~o is inconsistent with the outputs re-
leased so far it might be okay to release the state. For example, if
the output released so far is 〈start, w3〉 then all the remaining states
can be released. The simulatable algorithm makes decisions based
on the released states so far and can thus achieve higher utility.

Hybrid Privacy Check. How can we analytically determine which
one of the two checks is more suitable for a particular user? We
explain how to compute the utility of both checks. Then it is easy
to pick the better one. Recall from Sec. 2.1 that the utility is defined
as the expected number of released states in an output.

For the probabilistic check with suppression probabilities ~p we
compute the utility as:

utilityProb(M)=
∑
~o

Pr[~o]|{i|oi 6= ⊥}|=
∑
i,t

(1− pti) Pr[Xt = ci]

For the simulatable check we introduce a short-hand, suppi(t),
for the number of suppression symbols immediately following the
release of ci at time t.

supp(i, t) = arg max
t2

t2 − t s.t. ∀t′2 : t < t′2 ≤ t2 :

okayToRelease( · , t′2, 〈o1, . . . , ot−1ci,⊥t′2−t−1〉) == false

where o1, . . . , ot−1 is some output sequence that is consistent with
ot = ci. If no such sequence exists, then ot can never be ci and we
define supp(i, t) to be 0. Using suppi(t) we can compute recur-
sively the expected number of suppressions following the release

of Xt = ci:

E[|{t2|ot2 = ⊥, t < t2 ≤ T}||ot = ci] = γi(t)

=suppi(t)+
∑
j

Pr[Xt+suppi(t)+1= cj |Xt = ci]γj(t+suppi(t)+1)

Our base case is γj(T + 1) = 0 for all j. Overall, the utility of the
simulatable check is utilitySimulatable(M) = T − γ“start”(0).

Our hybrid check computes the utility of both the simulatable
and the probabilistic check and chooses the one with the higher
utility.

THEOREM 4. The hybrid check correctly chooses the check (sim-
ulatable or probabilistic) that provides more utility.

5.2 Efficiency
In the MASKIT system, initialize is computed once offline, while

okayToRelease is computed online whenever a new context is ex-
tracted. Our privacy checks present different tradeoffs between of-
fline and online computation. The simulatable check does not re-
quire any initialization; all its computational overhead is incurred
during the filtering. If MASKIT has to go live and create a stream
immediately then the simulatable check is the only option. The
probabilistic and hybrid checks, conversely, perform most of the
computation offline during initialize and are suitable when the of-
fline computation can be performed by a server. With a server we
can also speedup the simulatable check by pre-computing supp(i, t).
We experimentally measure the computational costs in Sec. 7.

6. LIMITED BACKGROUND KNOWLEDGE
So far, we considered adversaries knowing the complete Markov

chain M of a user (denoted by AM ). Next, we study classes of
weaker adversaries with less information M ′ about M (denoted by
AM′ ). We write M ′ � M ′′ if both M ′,M ′′ belong to the same
class of background knowledge and M ′ can be extended to M ′′.
Classes of Adversarial Knowledge. A generalized Markov chain
has states labeled with sets of contexts. It captures the knowledge
of an adversary who is uncertain about the labels of some states.
For example, the adversary might not be able to tell what activity
a user is doing in the park (walking or playing frisbee). For other
states the adversary might be completely clueless and use a label
containing all contexts. The adversary knows that one of these la-
bels in the set is the correct label but is not sure which. Consider
a complete chain M with contexts c1, . . . , cn. Some of them are
declared to be sensitive. A generalized chain has states labeled
with sets c′1, . . . , c′n′ in 2{c1,...,cn}. Note that two different states
at some time t might now have the same set label. To capture the
adversary’s knowledge that these still are two different states (with
two distinct contexts) we change the label to be a pair consisting
of the state’s ID and the set of contexts. We say a state with ID a,
context ci at time t is generalized to a set-labeled state c′i if ci is
in c′i. M

′ generalizes M (M ′ � M ) if M ′ can be obtained from
M by generalizing each state. We define Π to be the generalization
from IDs to sets of contexts. Thus, for a weaker adversary the label
of a state a in the Markov chain is now 〈a,Π(a)〉.

EXAMPLE 4. For Fig. 2 the transformation is Π(0) = {start},
Π(1) = {s,y,z}, Π(2) = {x}, and Π(3) = {end}.
We denote by X ′t the random variable describing the state-ID at
time t. In relation toXt we have that

∑
i:ci∈Π(a) Pr[Xt = ci|X ′t =

a] = 1 and
∑

b:ci∈Π(b) Pr[X ′t = b|Xt = ci] = 1.
We assume that in the lack of other knowledge the adversary

AM′ computes her prior belief about the user being in a sensitive
context s at time t with ID as

∑
a Pr[X ′t = a] Pr[s|X ′t = a].
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Figure 2: Protection against a strong adversary does not imply
a protection against a weak adversary.

A frequency distribution over states at each time step captures
the knowledge of an adversary unaware of temporal correlations.

A partial Markov chain combined with frequencies captures bits
and pieces of M : For example, an adversary might know that al-
most every Monday morning some user arrives at work at 10 am.
The adversary might further know that the user always stops by
the daycare center right after work. This knowledge can be rep-
resented as a partial Markov chain with frequency constraints that
can be completed to M by adding states and transitions.
Learning Challenges. A weak adversary knowing M ′ can learn
and become stronger over time. More background knowledge can
be obtained from various sources – one of them being the out-
put sequences themselves. For example, an adversary only know-
ing the frequencies of states can quickly pick up temporal correla-
tions from the released sequence. We denote by M ′[o] the updated
model after observing ~o. We distinguish weak adversaries that ex-
clusively learn from the output sequence from weak adversaries
that also discover other sources of knowledge about M .

To protect against weak adversaries who can learn from arbitrary
sources and update their model M ′ we need for all M ′′ (M ′ �
M ′′ � M ), for all possible output sequences ~o, all times t and all
sensitive contexts s ∈ S

Pr
AM′′[~o]

[Xt = s|~o]− Pr
AM′′

[Xt = s] ≤ δ (LC1) (4)

Addressing (LC1) is requires some effort because a protection against
weak adversaries does not imply a protection against strong adver-
saries: Consider again the Markov chain from Figure 1(b). It is
sufficient to only suppress s1, s2, to protect 1/3-privacy against
an adversary knowing only frequencies of states. However, if the
adversary learns M then the sensitive states are blatantly leaked.

Moreover, what makes addressing (LC1) tricky is that there are
many different ways of reasoning and updating (including random
worlds and max entropy [11]). Protecting against only one way of
reasoning can lead to serious privacy breaches [19].

To protect against weak adversaries who can learn only from the
output sequence to update their model M ′ we do not need to con-
sider arbitrary M ′′ (M ′ � M ′′ � M ), instead we only need to
consider stronger models that can be obtained from updated M ′

based on an output sequence. We thus need for output sequences
~o′, ~o, all times t and all sensitive contexts s ∈ S

Pr
A

M′[~o′,~o]

[Xt = s|~o]− Pr
A

M′[~o′]

[Xt = s] ≤ δ (LC2) (5)

Whether it is necessary to address (LC1) or it suffices to address
(LC2), is a decision to be made by the data publisher based on
what assumptions can be made about the adversaries’ knowledge
about M . Our negative results hold even for (LC2) only, while our
positive results address both (LC1) and (LC2).
No Free Lunch. It would be nice, if a privacy protection against
strong adversaries implies a protection against weak adversaries as
is the case for `-diversity [22, 25]. Unfortunately, this is not the
case as the following example illustrates.

EXAMPLE 5. Figure 2(a) shows the complete Markov chain of

a user. Our goal is δ = 1/4-privacy. The probabilistic check sup-
presses s with probability 1 and x with probability 1/3. The sim-
ulatable check always suppresses both s and x. Now, consider the
weak adversary with a Markov chain with set labels depicted in
Figure 2(b). The adversary does not know whether one of the states
is a sensitive context labeled with s or a non-sensitive context la-
beled with either y or z. Suppose he considers these options equally
likely. Thus, his prior belief is Pr[X1 = s] = 1/6. However, upon
observing an output sequence containing ⊥ (either from the prob-
abilistic or the simulatable check) the adversary learns that there
must be a sensitive context in the chain. The adversary infers M
and his posterior belief about X1 = s given ⊥ is 3/4 for the prob-
abilistic check and 1/2 for the simulatable check. The increase in
belief is drastic (≥ 1/3) and violates δ = 1/4-privacy (LC2).

Therefore, we need to find a different way to protect privacy against
weaker adversaries that actually addresses (LC2).

Protection against an Adversary Knowing the Frequency of
sensitive contexts. Adversaries knowing the frequency of sensi-
tive states among other information about M have the same prior
belief as the adversary AM .This includes not just adversaries with
knowledge about frequency distributions, but also some adversaries
with knowledge about a partial or generalized chain. To preserve
privacy, we publish the complete Markov chain M together with
any output sequence that preserve privacy against AM .

THEOREM 5. LetF(δ,M, S) be a system preserving δ-privacy
against strong adversaries knowing the complete Markov chainM .
Consider a weaker adversary knowing the frequencies of sensitive
states among other things about M . Using F(δ,M, S) to com-
pute a privacy-preserving output sequence ~o and publishing this
sequence together with M preserves δ-privacy against adversaries
knowing the frequency of sensitive contexts.

The proof can be found in the full version of this paper [29].
This technique does not necessarily work for weaker adversaries

not knowing all frequencies of sensitive contexts. For example, it
does not work for Fig. 2(b) due to (LC2).

Protection against an Adversary Knowing a Set-Labeled Chain.
We can preserve privacy against this class of adversaries using pri-
vacy checks designed to protect against the strong adversary. We
only need to treat set-labeled states containing a sensitive context as
sensitive states and other set-labeled states as non-sensitive states.

THEOREM 6. Consider a weak adversary knowing M ′, which
is a set-labeled generalization with transformation Π of the com-
plete Markov chainM with sensitive contexts S. We define S′ to be
the subset of states inM ′ that contain at least one sensitive context
in S. Let µ = maxs∈S,t∈[T ] |{a|s ∈ Π(a),Pr[X ′t = a] > 0}|.
Let F be a system that preserves δ/µ-privacy against adversaries
knowing a complete Markov chain.
F(δ/µ,M ′, S′) given the user input sequence transformed through

Π preserves δ-privacy against the weaker adversary knowing M ′.

The proof is in the full version of this paper [29]. Crucial w.r.t. (LC2)
is the fact that output sequences offer no new information to update
M ′ because the adversary can generate output sequences following
the same distribution himself based on M ′.

In order to use Theorem 6 in MASKIT we need to know the
background knowledge of each adversarial application. How do
we obtain this information? If we ask the applications they might
lie about their knowledge. But we can incentivize applications to
be truthful by punishing applications reporting incorrect knowl-
edge with de-installation or legal charges. Then rational adversaries



have an incentive to be truthful: If they withhold knowledge then
their utility decreases while privacy is still preserved. If they make
guesses to pretend they have more knowledge then they actually
do, they risk being detected and punished.

7. EXPERIMENTS

7.1 Setup
Dataset. We evaluated our system using the Reality Mining dataset.9

It contains continuous data on daily activities of 100 students and
staff at MIT, recorded by Nokia 6600 smartphones over the 2004-
2005 academic year [6]. The trace contains various attributes such
as a user’s location (at granularity of cell towers), proximity to oth-
ers (through Bluetooth), activities (e.g., making calls, using phone
apps), transportation mode (driving, walking, stationary), etc. over
different times of the day. We consider 91 users who have at least
1 month of data. The total length of all users’ traces combined is
266,200 hours. The average, minimum, and maximum trace length
over all users is 122 days, 30 days, and 269 days, respectively. For
each user, we train a Markov chain on the first half of his trace; the
remaining half is used to for evaluation.

Most of our experiments use the location contexts of all 91 users
(as location represents the most complete and fine-grained context
in the dataset). The average, minimum, and maximum number of
locations per user is 19, 7, and 40, respectively. We also report
an experiment with contexts based on users’ activities and trans-
portation modes to demonstrate the generality of MASKIT. This
information is only available for 23 users.

Systems. We compare MASKIT using the simulatable check, the
probabilistic check (with a granularity of d = 10) and the hybrid
check with the naïve approach, called MaskSensitive, which sup-
presses all sensitive states. For higher values of d we expect the
utility but also the computational cost to go up.

Privacy Configuration. Unless otherwise stated, we choose δ =
0.1. We experiment with two different ways of choosing sensitive
contexts. Unless otherwise stated, we choose sensitive contexts
uniformly at random for each user. Alternatively, we choose the
home location of a user as the sensitive context.

Measures. We measure utility as the fraction of released states in
the second half of the trace. We measure privacy breaches as the
fraction of sensitive states for which the posterior belief is more
than δ larger than the prior belief. Note, that MASKIT will al-
ways assure that there are no privacy breaches. For MaskSensitive
an adversary computes his posterior belief as follows: Consider a
hidden Markov model defined by M with emission probabilities
b
(t)
i,k = Pr[Ot = k|Xt = ci] which is 1 if and only if k = ⊥

and ci ∈ S or k = i and ci 6∈ S. This hidden Markov model
correctly describes the behavior of MaskSensitive. An adversary
who knows M and MaskSensitive computes his posterior belief
simply as Pr[Xt = s|~o] in this hidden Markov model. We can
efficiently compute this posterior belief using Equation (3). We
say that the privacy of the user’s sensitive state s ∈ S at time t is
breached by the output ~o of MaskSensitive if the adversary’s pos-
terior belief, Pr[Xt = s|~o], is more than δ larger than his prior
belief Pr[Xt = s]. We measure privacy breaches as the number of
sensitive states in the user’s sequence that are breached divided by
the length of the user’s sequence.

Hardware. Most of our experiments are run on an Intel Xeon 2.33
GHz machine. To measure the overhead of MASKIT when run on

9http://reality.media.mit.edu/dataset.php.

Check initialize okayToRelease
PC PC Phone

Simulatable - 36 ms 128 ms
Probabilistic 15 min < 1 ms < 1 ms
Hybrid 18 min ≤ 36 ms ≤ 128 ms

Table 1: Average processing times.
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Figure 3: Comparison of various privacy checks

a smart phone, we also conduct experiments on a Samsung Focus
SGH-i917 phone with the Windows Phone 7.5 operating system.

7.2 Results
Efficiency. Before we explore the privacy-utility trade-off, we want
to shed light onto the efficiency of various checks. Table 1 shows
the average time it takes for MASKIT to initialize the various pri-
vacy checks and to filter the trace. Note that on average the sup-
pression decision takes at most 128ms on the phone. If we exclude
the slowest 5% of the users this average goes down to 46 ms. This
is a negligible overhead compared to the context extraction time of
a few up to tens of seconds [2, 26].

The probabilistic and the hybrid check have an expensive initial-
ization even with the speed-up from Section 3 (without which the
running time would be exponential). This initialization can be of-
floaded to a remote server. Overall, in our experiments it seems that
the performance of MASKIT is practical for smart phones.

Privacy Breaches. Figure 3 reports results from an experiment
where we choose three sensitive contexts for each user at random.10

We report the average fraction of released and suppressed states by
various checks. MaskSensitive suppresses sensitive states account-
ing for 24% of all states. However, this does not prevent an adver-
sary knowing the Markov chain and MaskSensitive from inferring
sensitive states: 54% of the suppressed sensitive states still consti-
tute privacy breaches. For these sensitive states the adversary’s pos-
terior belief exceeds his prior belief by more than δ. This illustrates
the value of having a formal privacy guarantee: With MASKIT no
such privacy breaches can happen. Our privacy checks suppress
not just sensitive states but also non-sensitive states. (Interestingly,
they manage to release some sensitive states without breaching pri-
vacy. Those are states with a high prior belief ≥ 1− δ.)

What is the price in terms of utility that we have to pay for a
formal privacy guarantee? As Figure 3 shows, the probabilistic
check and the simulatable check sacrifice less than 31% and 13%
respectively of the utility of MaskSensitive. This appears to be a
price well worth the privacy guarantee.

Hybrid. From Figure 3(b) and (c), we may get the impression that
the simulatable check is superior to the probabilistic check. Despite
having a higher average utility across users, the simulatable check
is not better for all users. Figure 4 shows the utility of both checks
for each of the 91 users in our dataset. While for roughly 45% of

10Recall that states specify time and context. Thus, there are a lot
more than three sensitive states in the trace.
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Figure 7: Activity contexts

the users the simulatable check is better, for 55% of the users the
probabilistic check is better. The goal of the hybrid check is to
choose the better check for each user. In our experiment, for 95%
of the users the hybrid check picks indeed the check suppressing
fewer states in the trace. The hybrid check makes mistakes only
for users for which the fraction of suppressed states in the trace dif-
fers significantly from the expected fraction of suppressions. Note
that by the Law of Large Numbers, for longer traces the fraction
of suppressions will be more concentrated around the expectation
thus decreasing the number of mistakes of the hybrid. Overall, the
hybrid achieves an average utility of 75.8% (see Figure 3(d)) which
is much higher than both the utility of the probabilistic and the sim-
ulatable check and almost matches that of MaskSensitive (76.4%).

In fact, our hybrid checks provides more utility than MaskSen-
sitive when we increase the number of sensitive states (we omit
this experiment due to space constraints). Here, unlike MaskSensi-
tive our hybrid check releases some of the sensitive states without
breaching privacy and suppresses fewer states in total.

MaskSensitive provides the highest utility relative to the hybrid
check when there is only one sensitive context per user; neverthe-
less, our hybrid check provides a utility of 84% in this case, which
is within 7% of MaskSensitive’s utility (91%). This shows that in
our experiments the price for a provable privacy guarantee is minor.

Privacy-Utility Tradeoff. We also vary the target privacy level by
varying the value of δ. We conduct two sets of experiments: In
the first set, we choose one sensitive context for a user at random;
in the second set, we choose the sensitive context for a user to be
his home. When we increase privacy (by decreasing δ), we expect
utility to decrease. As we can see from Figure 5, for both sets
of experiments, the overall decrease in utility is small. This implies
that in our experiments we can afford strong privacy guarantees (by
choosing a smaller value of δ) without sacrificing too much utility.

Limited Background Knowledge. As explained in Section 6,
we can protect against weaker adversaries knowing the frequen-
cies of sensitive states simply by releasing a user’s Markov chain
along with any output sequence that protects privacy against the
strong adversary. This does not affect utility and we obtain the
same privacy-utility tradeoff. To protect against a weaker adversary
knowing only a generalized Markov chain with set-labeled states,
however, we expect the utility to decrease. This is because our

learning challenges require that we provision our system to protect
against the adversary as he learns and becomes stronger.

Figure 6 measures the utility when protecting against adversaries
of varying strength. As the adversary knows less about the Markov
chain, the states have an increasing number of labels. This only
affects the utility if a non-sensitive state in M now is labeled with
a set of contexts including a sensitive context. In that case, our
adapted privacy checks will treat it as sensitive according to The-
orem 6. This results in a decrease in utility, but also in decrease
of privacy, i.e., the effective privacy guarantee degrades to 0.1· the
number of sensitive contexts.

For this experiment, we picked a subset of 25 users with a num-
ber of contexts between 15 and 20. The effect of increased uncer-
tainty will be more (less, respectively) drastic for users with fewer
(more, respectively) contexts. Figure 6 shows the effect on utility
as the adversary knows less about M , i.e., as the number of po-
tentially sensitive states grows. While the utility decreases for all
three checks, the rates of decrease differ; the hybrid’s utility de-
creases slowest.

Beyond Location. The experiments so far used location as a con-
text. To show that MASKIT can operate with other types of context,
we now consider user contexts that are combinations of the user’s
activities (making a phone call, sending an sms, using an applica-
tion on the phone) and his transportation mode (sitting, walking,
riding a bus or car).11 As in Figure 5(left), we choose a single sen-
sitive context for each user at random. Figure 7 shows the privacy-
utility tradeoff for the activity contexts—the results are very similar
to the results for location contexts.

8. RELATED WORK
Prior work has considered preserving privacy while releasing a

user’s location in a location-based service (LBS). Many existing
privacy techniques focus on the “single shot” scenario [17]. Un-
like MASKIT, these techniques do not protect privacy against ad-
versaries knowing temporal correlations. Anonymity-based tech-
niques aim to hide the identity of a user issuing a query specifying
his location, by replacing user’s exact location with a broader re-
gion containing at least k users [12, 32, 31]. However, k−anonymity

11The transportation mode is inferred from survey responses.



does not readily imply privacy, e.g., k users can be in the same sen-
sitive location. As we discussed before, MaskSensitive-like naïve
approach, which masks sensitive locations [34] or sensitive pat-
terns [14], cannot guarantee privacy.

There has been work to protect against adversaries aware of some
temporal correlations [5, 9, 10, 13, 28]. Gruteser and Liu [13] con-
sider an adversary applying linear interpolation to infer suppressed
locations. They introduce uncertainty about sensitive locations by
creating zones so that each zone has multiple sensitive locations.
This approach does not prevent privacy breaches completely but re-
duces them in comparison the naïve approach. Cheng et al. [5] con-
sider an adversary knowing the maximum velocity of users. Given
two consecutive cloaked regions of a user the adversary can exclude
points in the second region that are unreachable from any point in
the first one. They protect against this attack but not against adver-
saries also knowing the system. This work is improved by Ghinita
et al. [9] using spatial cloaking and introducing delays. However,
the delay can leak information about the user’s exact location and
is thus vulnerable to an attack from an adversary knowing a little
bit about the distribution of the time between consecutive queries:
If the delay is just long enough to make every point in the sec-
ond region accessible from every point in the first region then it is
likely that the second region has been artificially delayed. Parate
and Miklau release not location but communication traces [30]. A
trace is transformed so that the number of possible traces consistent
with the transformed trace is maximized subject to a constraint on
utility. This technique does not provide a semantic privacy guar-
antee. In summary, the work by [5, 9, 13, 30] does not provably
protect privacy against adversaries knowing the system and tempo-
ral correlations beyond the max velocity.

Several recent cryptographic protocols can provably provide pri-
vacy against these adversaries [10, 28]. However, these protocols
can only be used to answer nearest neighbor queries [10] and find
close-by friends [28]. They cannot be used to release a privacy-
preserving stream of contexts.

To the best of our knowledge, MASKIT is the first system releas-
ing context streams that protects privacy against very strong adver-
saries knowing the system and temporal correlations in the form of
a Markov chain that go far beyond the max velocity. Moreover, our
contexts are not limited to location, but can include the social state
and other activities. This enables more powerful personalizations.

9. CONCLUSIONS
We addressed the problem of privately releasing user context

streams. Our system, MASKIT, employs a privacy check that de-
cides whether to release or suppress the current user context. We
presented two privacy checks that provably guarantee privacy against
powerful adversaries knowing the system and temporal correlations
in the stream. They differ, though, in their utility for a user and
our hybrid check determines the one with the higher utility. To
also protect against weaker adversaries, who can learn and become
stronger, we adapted our privacy checks. Our experimental eval-
uation on real context traces demonstrates that we do not have to
sacrifice much utility in order to guarantee privacy.
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APPENDIX
A. MONOTONICITY PROPERTY OF PROB-

ABILISTIC CHECK
Proof of Theorem 1. Consider vectors ~p, ~q so that ~q dominates ~p and is

larger by ε in exactly one dimension: qt
′

i = pt
′
i + ε. Suppose that ~p pre-

serves δ-privacy. To simplify exposition, we introduce a notation. With two
different suppression probabilities ~p, ~q, we use a subscript to specify which
one is used in the computation of a particular probability. For example, we
write Pr~p[Xt = s|~o]. We might change one of the values ptj to v and write
~p[ptj = v] to denote the new suppression probabilities.

In order to prove that also ~q preserves δ-privacy we need to show that
the maximum difference (over sensitive states s, time t, outputs ~o) between
posterior and prior belief does not increase when going from ~p to ~q. Fix a
sensitive state s and a time t. It suffices to show that the maximum (over
outputs ~o) of the posterior belief does not increase. In particular, we show
that for all ~o either Pr~p[Xt = s|~o] ≥ Pr~q [Xt = s|~o] or if that is not
the case, then there exists an ~o′ such that Pr~p[Xt = s|~o′] = Pr~q [Xt =

s|~o′] ≥ Pr~q [Xt = s|~o]. We consider three cases: Either ot′ = ci or
ot′ = cj (for some j 6= i) or ot′ = ⊥.
ot′ = cj for j 6= i: Recall that according to Proposition 2 the posterior be-
lief of Xt = s|~o is computed in the hidden Markov model defined by M
and the emission matrices. Changing pt

′
i only changes bt

′
i,⊥ and bt

′
i,i. All

other emission probabilities remain unchanged. As we can see from Equa-
tion (3) and the definition of α and β the changed emission probabilities
are not part of the computation of Pr[Xt = s|~o]. Thus, we have that
Pr~p[Xt = s|~o] = Pr~q [Xt = s|~o].

ot′ = ci: In that case increasing pt
′
i has no effect on the probability of

being in a sensitive state given ~o.

Pr
~p
[Xt = s|~o] =

Pr~p[Xt = s, ~o]

Pr~p[~o]
=
pt
′
i Pr

~p[pt
′

i =1]
[Xt = s, ~o]

pt
′
i Pr

~p,[pt
′

i =1]=1
[~o]

=
Pr~q[qti=1][Xt = s, ~o]

Pr~q[qti=1][~o]
=
qt
′

i Pr
~q[qt
′

i =1]
[Xt = s, ~o]

qt
′

i Pr
~q[qt
′

i =1]
[~o]

= Pr
~q
[Xt = s|~o]

ot′ = ⊥: If Pr~p[Xt = s|~o] ≥ Pr~q [Xt = s|~o] we are done. So consider
the case where κPr~p[Xt = s|~o] = Pr~q [Xt = s|~o] for some κ > 1. To
complete the proof, we show that for ~o′ = ~o except for o′

t′ = i: Pr~p[Xt =

s|~o′] = Pr~q [Xt = s|~o′] ≥ Pr~q [Xt = s|~o]. The first equality is a result
of the calculations above. Thus to suffices to show the following claim:

CLAIM 1. Pr~p[Xt = s|~o′] ≥ Pr~q [Xt = s|~o].

We have that

Pr
~q
[Xt = s|~o] = κ · Pr

~p
[Xt = s|~o]

⇔
Pr~p[Xt = s, ~o] + εPr

~p[pt
′

i =1]
[Xt = s,Xt′ = i, ~o]

Pr~p[~o] + εPr
~p[pt
′

i =1]
[Xt′ = i, ~o]

= κ ·
Pr~p[Xt = s, ~o]

Pr~p[~o]

⇔1 +
εPr

~p[pt
′

i =1]
[Xt = s,Xt′ = i, ~o]

Pr~p[Xt = s, ~o]

= κ

(
1 +

εPr
~p[pt
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i =1]
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Pr~p[~o]

)

⇔
Pr

~p[pt
′

i =1]
[Xt = s,Xt′ = i, ~o]

Pr
~p[pt
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i =1]
[Xt′ = i, ~o]

=
(κ− 1)Pr~p[Xt = s, ~o]

εPr
~p[pt
′

i =1]
[Xt′ = i, ~o]

+ κ
Pr~p[Xt = s, ~o]

Pr~p[~o]

We use this to prove the Claim (1). We rewrite the left-hand side.

Pr~p[Xt = s, ~o′]

Pr~p[~o′]
=

Pr
~p[pt
′

i =1]
[Xt = s,Xt′ = i, ~o]

Pr
~p[pt
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i =1]
[Xt′ = i, ~o]

=
(κ− 1)Pr~p[Xt = s, ~o]

εPr
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i =1]
[Xt′ = i, ~o]

+ κ
Pr~p[Xt = s, ~o]
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≥κPr
~p
[Xt = s|~o] = Pr

~q
[Xt = s|~o]

We arrive at the right-hand side of Claim (1) completing the proof.

B. PRIVACY GUARANTEE OF SIMULAT-
ABLE CHECK

Proof of Theorem 3. Consider a sensitive context s and a time t and
an output ~o produced by the simulatable check. We argue that the posterior
belief ofXt = s given ~o is at most δ larger than the prior belief. Theorem 3
states that the posterior belief of Xt = s given ~o is equal to Pr[Xt =
s|Xt1 = ot1 , Xt2 = ot2 ], where t1, t2 denote the time of the two released
states closest to t. (If no such time t2 exists, we set t2 = T + 1 and
ot2 =“end”.) We distinguish two cases based on whether t2 = T + 1.
t2 < T + 1: In this case, the check verified that this posterior belief is not
too large before releasing ot2 at time t2.
t2 = T + 1: In this case, consider the decision to release t1: If t1 = 0
then the prior belief is equal to the posterior belief. Otherwise, when ot1
was released the check verified that the posterior belief of Xt = s given
Xt1 = ot1 and XT+1 =“end” is not too large.


