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Optimal FIR Pre- and Postfilters for Decimation
and Interpolation of Random Signals

HENRIQUE S. MALVAR, MeMBER, IEEE, AND DAVID H. STAELIN, FeELLOW, IEEE

Abstract—A new technique for the design of finite impulse response
(FIR) filters for decimation and interpolation in multirate systems is
presented. With this technique, FIR pre- and postfilters that jointly
minimize a frequency-weighted mean-square (MS) error between the
original and reconstructed signals can be designed. Unlike most other FIR
filter design methods, there is no need for ideal filter prototypes: the
optimal pre-postfilter pair is determined from the signal and noise spectra
and the up- and down-sampling factors. Some examples of image and
speech processing show that the MS-optimal filter pair leads to typical
SNR improvements of 2-6 dB, in comparison to other commonly used
filters.

I. INTRODUCTION

N multirate digital signal processing [1], [2] one is

frequently faced with the design of pre- and postfilters for
decimation (down-sampling) and interpolation (up-sampling).
A typical system model is that of Fig. 1(a) where the signal
x(n) must be transmitted through a noisy channel whose
sampling rate is K times lower than that of x(»). Ailthough the
channel noise is physically added to the signal after it is
decimated, we can always work with an equivalent noise d(n)
that precedes decimation, without loss of generality. That
model could be applied, for example, to an image coding/
decoding system in which the pre- and postfilters represent the
interface between a low-resolution coder/decoder (codec) and
high-resolution image acquisition and display subsystems; in
such a case, the noise d(n) would be due to the codec. Our
model in Fig. 1(a) also includes an input noise source u(n)
since in some applications, the input signal may only be
available through a noisy measurement, e.g., in some prob-
lems of telemetry and biomedical signal processing.

Although infinite impulse response (IIR) filters could be
used in Fig. 1(a), in most applications FIR filters are pre-
ferred because of their inherent stability and also because
they can easily be constrained to have a linear phase response.
The design of suitable decimation and interpolation FIR filters
for the system in Fig. 1 is commonly approached in two steps:
first, ideal pre- and postfilter responses (usually low-pass) are
determined, and then FIR responses that approximate the ideal
ones are computed. Common techniques are windowing and
equiripple-ripple Chebyshev approximation [2].

In this paper, we suggest a different approach for the design
of FIR pre- and postfilters: under the assumption that a
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Fig. 1. Discrete-time communication system with down- and up-sampling.
(a) System mode! where u(n) and d(n) are the input and channel noises,
respectively; the down- and up-sampling are equivalent to periodic
sampling by 8x(n). (b) Error signal definition; the observer response W(w)
is a frequency weighting on the absolute reconstruction error.

weighted mean-square (MS) error between the original and
reconstructed signals is a reasonable performance measure, we
directly optimize the FIR pre- and postfilter responses. An
immediate advantage of this approach is the elimination of the
ideal filter prototypes so that one has not to be concerned about
transition bandwidths, ripple factors, etc. Another advantage
is that, unlike other optimal FIR filter design methods such as
Chebyshev approximation, our technique can easily be ex-
tended to multidimensional systems. Such extensions are
reported elsewhere [3], [4]. The SNR gains of optimal pre-
and postfilters over other commonly used FIR filters depend
on the system under consideration; we report here some image
and speech processing examples, for which the improvement
is on the order of 2-6 dB.

In the next section, we examine the independent optimiza-
tion of the pre- and postfilters. The joint optimization
procedure is described in Section III. In Section IV, we
compare the optimal pre- and postfilters to others designed
under different criteria for image and speech processing.

1I. OPTIMIZATION OF THE PRE- OR POSTFILTER

In this section, we are interested in the optimization of a
single filter in Fig. 1(a), either the pre- or postfilter. We
assume that the input signal x(n) and the noise sources u(n)
and d(n) are stationary random signals with known spectra.
We further assume that the noise sequences are uncorrelated
with the signals (in [3] we consider correlated channel noises
and quantization noise, in particular). We note that the
cascaded operations of down- and up-sampling by a factor of
K are equivalent to multiplication by the stardard periodic
sampling sequence 8x(n), defined as [1]
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We have included the scaling factor K in (1) to simplify the
frequency-domain equations that follow.

The error signal e(#n) is defined in Fig. 1(b) as the result of
passing £(n) — x(n) through an observer filter w(n). The
mean-square amplitude of e(n) is the error performance
measure that we seek to minimize. Although other error
measures could be more appropriate for particular applica-
tions, the weighted mean-square error has been successfully
adopted in many problems of communication theory [5].

Before we proceed with our analysis, it is important to note
that the signals y(n), £(n), and e(n) in Fig. 1 are not wide-
sense stationary because of the time-varying multiplication by
5x(n), and so their spectra are not strictly defined. Neverthe-
less, those sequences are cyclostationary [6] processes, with
periodic autocorrelation functions. For that class of processes,
we can still define a meaningful spectrum as the Fourier
transform of the autocorrelation function averaged over
exactly one period [6]. Hence, the variance (or energy) of the
error signal e(n) can be obtained as

1 K-1 ,
E=E ,go Efe*(m)]

1
27

We can relate the error spectrum ®..(w) to the signal and
noise spectra and to the pre- and postfilter frequency responses
by

Bee (@) = | W ()| [Bc(@) + | G (@) |* @y ()]
—2l W(w)|2 Re {G(w)F((ﬂ)}[q’xx(w)+q}'uu(W)] (3)

where the signal y(n) is the channel output, that is, the input to
the postfilter. The spectrum of y(n) is given by [3]

@

gi i $,.(w) dw.

¢, (w)= &,0(w0) + Ki;l F2(w+rwg)[®@o(w+rug)
r=0

+ Quu(w + er)] (4)

where wx = 27/K is the Nyquist frequency and $44(w) is the
spectrum of the sampled channel noise, i.e.,

$yu(w) = 2 Pua(w+rog).

r=0

&)

For any given magnitude responses for the filters F(w) and
G(w), the term Re {G(w)F(w)} in (3) is maximized when the
phases of F(w) and G(w) are both equal to zero for all w
(because we did not allow for a delay in the error signal
definition). Therefore, we shall concentrate on zero phase
filters. Specifically, we impose the following constraints on
their impulse responses:

S(=m)=f(n)
g(—n)y=g(n)
Sf(m)=0,
g(n)=0, 6)

Under the above assumptions, we can rewrite the error
spectrum as

Pee(@) = | W () |*[Pxx(w) + G(w)? ()]
= 2| W(@)|*G(&)F (@) [Pax(@) + P ()]

if [n|>L

if |n|>M.

M
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Our objective in this paper is the minimization of, (7) under
the constraints in (6). We cannot work directly with F(w) and
G(w) since we do not have enough degrees of freedom to
arbitrarily set their values for all frequencies. One approach
towards incorporating the FIR constraints into (3) is to convert
to the time domain all terms in which F(w) and G(w) appear;
this leads to
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where w(n) is the observer impulse response and the se-
quences a(n), b(n), and c(n) are defined by their Fourier
transforms

cc(l-mHr—s+u—v)

A@) = [ W (@) [Pu(w) + Pu(«)]
B(w) = | W(w)[*$s(w)
C@) = Pul@) + Py (w)- ®

The optimization problem could be formulated as the
minimization of (8) as a function of the vector of unknowns
LA -+ f(L)g©0)g(1) --- gM)], but it would be
virtually impossible to analyze such issues as convexity and
convergence because (8) is a quartic form. However, if we fix
the prefilter coefficients, then the error is a quadratic form on
the postfilter coefficients, which is easier to minimize [3] (the
error is also quadratic on the prefilter coefficients if we fix the
postfilter). This suggests a simple approach towards the
derivation of a jointly optimal filter pair: first obtain indepen-
dent solutions for the pre- and postfilters, and then combine
them in an iterative procedure that computes the jointly
optimal pair. As discussed in [3], closed-form solutions for a
jointly optimal filter pair cannot be obtained, except for trivial
cases, e.g., L M = 1, which will not be specifically
considered.

A. The Optimal Postfilter

The design of the postfilter (or interpolator) has received
much more attention in the literature than the prefilter design.
Oetken ef al. [7] derived the optimal interpolator without a
prefilter for band-limited input signals and noiseless samples.
Polydoros and Protonotarios [8] assumed a statistical descrip-
tion of the input signal, as in our work, and derived the
optimal interpolator without a prefilter. As in [7], they have
considered a noiseless system, but with the added restriction of
zero intersymbol interference. Keys [9] used cubic convolu-
tion kernels, derived from cubic splines, to determine the
impulse response of the interpolator; his main concern was the
alleviation of sampling artifacts in image processing.

Interpolation of a stochastic signal from noisy samples with
an FIR filter has been considered by Kay [10] and more
recently by Radbel and Marks [11]. The solution in [11]
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applies to the system in Fig. 1 for the case F(w) = 1 and u(n)
= 0. Our results for the optimal interpolator here are
essentially a generalization of [11] for any prefilter and input
noise spectrum.

Our problem in this subsection is to solve (8) for the optimal
g(+) for a fixed prefilter f(-). In this case, we can rewrite (8)
explicitly as a function of the postfilter’s coefficients in the
form

t= | IWu) do

M M

+ 3 Y ehgmy(—m)

I=-M m=-M

M
~2°% g(h6()

I=-M

(10)

where y(n) and 6(n) are the inverse Fourier transforms of
V¥(w) and O(w), respectively, which are defined by

¥(w) = | W(w)|?®,(w) (11)

and
0(w) = | W(w)|?F () [@x(w) + P (w)]- (12)

The first-order necessary condition for g(n) to be an optimal
postfilter is that d£/3g(/) = O for all /, which leads to the
system of linear equations

M
S gmy(-m)=6(l) I=-M, ~-M+1, ---, M.

m=-M

(13)

Since ¥(w) is a valid power spectrum, the matrix whose
entries are (! — m) for I, m = —M, ---, M is at least
positive semidefinite [16]. With the mild assumption that ¥(w)
> O for all w, the matrix is positive definite, and the error is
then a strictly convex function of the postfilter coefficients.
Thus, the unique solution to (13) globally minimizes the error
for a fixed prefilter. We recognize (13) as a standard FIR
Wiener filter equation [15].

The equations in (13) have a Toeplitz structure, and so they
can be solved in O[{(2M + 1)?] operations by means of
Levinson’s recursion [12]. If M is very large, there are
algorithms with OQM + 1)[log @M + 1)]? complexity [13],
[14], but these algorithms are considerably more difficult to
implement than Levinson’s recursion. It is interesting to note
that the symmetry constraint imposed on the prefilter forces
O(w) to be a real function, so that @(n) is a symmetric
sequence. Therefore, the solution to (13) necessarily leads to a
symmetric sequence g(7) that satisfies (6). We could exploit
this symmetry to convert (13) to a Toeplitz-plus-Hankel
system of only M + 1 equations, which could also be
efficiently solved, as discussed in [15].

With the optimal postfilter, (10) can be simplified to

1 Y
§=— S_WlW(w)V‘i’xx(w) do— Y, ghe(). (14

27 By

It is not possible, however, to write the above equation in
terms of the prefilter coefficients since Toeplitz forms are not,
in general, analytically invertible [16].

B. The Optimal Prefilter

The design of optimal FIR prefilters has received little
attention in the literature. Chevillat and Ungerboeck [21]

derived optimal pre- and postfilters for a discrete-time input
signal and a continuous-time band-limited channel. Their
results apply directly to modem design, for example, but they
cannot be used in our case since we have a discrete-time
channel. Hummel [22] has considered the problem of design-
ing an optimal prefilter when the interpolator is a spline
function and the system is noiseless. He showed that the
optimal prefilter in that case is also a spline function. Ratzel
[23] has derived optimal Gaussian prefilters for digitized
images, based on subjective experiments.

Recently, Faubert [24] has determined the optimal pre- and
postfilters for a noiseless system for a performance criterion in
which filtering and aliasing errors are independently weighted.
If the system in Fig. 1 is noiseless and a flat frequency weight
is considered, our results in the next section lead to filter pairs
that are equivalent to those derived in [24]. Our work in this
section can be viewed as a one-dimensional extension of
Faubert’s results for the noisy system in Fig. 1.

Under this assumption that the postfilter is fixed, the error
expression in (8) can be simplified to

] kg -~
£=5- |7 1W(@)2180(0) + 204@) G2 do
T V-

L L

+2 X

I=—-L m=-L

L
S fmyy(I—-m)=2 %, f(D)s()
I=-L
(15)

where v(n) and §(n) are the inverse Fourier transforms of I'(w)
and T(w), respectively, which are defined by

[(w) = [$x(w) + Pu(w)] Ki:l | W (w—rwg)|?G*w—rwg)

r=0
(16)

and
T(@) = | W()]*G (@) Pul(w). am

At this point, we introduce a power constraint on the
prefilter output v(n). The necessity of such a constraint is clear
from (8); if we multiply all f(n) by a constant o and divide all
g(n) by a with |a| > 1, the error is reduced since the matrix
formed by the elements b(/ — m) is at least positive semi-
definite. Without loss of generality, we assume that the
prefilter output power must be less than unity:

P= E[vz(n)1=%r [ IF@P8a@) + 2] dos1.
(18)

The above equation can also be written in the time domain as

L L
P=3 3 fO)f(M)[Ru(I-m)+Ry(I-m)<1.

==L m=-L
(19)

An optimal prefilter has to be a stationary point of the
Lagrangian [17] corresponding to the objective function (15)
and the constraint (19), i.e., there must exist a Lagrange
multiplier A such that

a aP
¢ A

=0 2
G0 20
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The Lagrange multiplier also has the properties
A=0
ANP-1)=0, (21)

that is, if the power constraint is not satisfied by equality, then
the value of the Lagrange multiplier is zero since the constraint
is not binding. The Lagrange multiplier is nonnegative since
the inequality is P = 1. A proof of (21) for the general
nonlinear optimization problem can be found in [17].

From (20), we obtain

L
> fim){y(I—=m)+NRu(I-m)+Ryu(I-m)l} = 8(/)

m=—L

I=—-L, -L+1,---,L. (22)

We have again a symmetric Toeplitz system of linear
equations to be solved. So, our discussion of fast algorithms
for solving (22) also applies here. We note also that I'(w) is
nonnegative for all w, which means that y(n) is a valid
autocorrelation function, and so the matrices formed by the
elements y(/ — m)and y(/ — m) + NR(! — m) + R,( —
m)] forl, m — L, -+, L are at least positive semi-definite.
Thus, (15) is a convex function of the prefilter coefficients,
and a solution to (22) is a global minimum.

There is still a problem in solving (22), which is the fact that
the value of the Lagrange multiplier A is not known a priori.
There is a simple approach, however: first, we set A = 0 and
solve (22); if the solution satisfies P < 1, we are done;
otherwise, the power constraint must be active, and we
repeatedly solve (22) (A must be updated by some technique
for finding zeros of one-dimensional functions, e.g., Newton-
Raphson’s method [18]) until we obtain a solution for which P
= 1. Such a procedure is guaranteed to converge to an optimal
prefilter [3].

III. JoINTLY OPTIMAL SOLUTION

In the previous section, we derived the optimal postfilter for
any given prefilter and vice versa. The availability of those
solutions suggests using them alternately until they converge
to an optimal pair. Formally, this corresponds to the follow-
ing.

Algorithm

Step 1: Set i < 0 and fy(n) < ad(n), with o chosen so that
(19) is satisfied.

Step 2: Use (11)-(13) with f(n) = f«(n) and solve for the
optimal postfilter g(n). Set g;(n) = g(n).

Step 3: Set A = 0 and use (16)-(22) to compute an optimal
prefilter f(n). Evaluate (19). If P < 1, go to Step 5;
otherwise, go to the next step.

Step 4: Set \ to some positive value, solve (22), and update
N (by means of some technique for finding zeros of functions,
e.g., Newton-Raphson’s method [18]). Repeat the process
until P = 1.

Step 5: Compute A by
_max | fi(m)—fi1(m)].

A

If A is sufficiently small, stop: the optimal pre- and postfilter
are f;(n) and g;(n), respectively. Otherwise, seti <= i + 1 and
go back to Step 2. Alternatively, we could monitor the error
level and stop whenever the error reduction from Step 4 is
small enough.

The above algorithm is in the class of ‘‘coordinate descent’’
algorithms for minimization of functions of several variables
[20], [19] since at each step it finds the unique global
minimum of the error, with either the pre- or the postfilter
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coefficients kept fixed. Therefore, the algorithm necessarily
converges to a stationary point of the Lagrangian [19], with a
monotonic decrease in the error at each step. Unfortunately,
there is no guarantee that the attained stationary point will be a
global minimum; it could be a local minimum or a saddle
point. However, as discussed in [3], our practical experience
with the above algorithm has pointed out that stationary points
tend to be well separated from each other, with large
differences in their corresponding values of the error.

With the initial guess for the prefilter suggested in Step 1,
we have never failed to obtain a correct solution for the
optimal FIR filters with several different signal and noise
spectra, but we did experience nonconvergence problems if
the observer frequency response W(w) got too close to zero for
some frequency range since this leads to ill-conditioned
matrices in (13) and (22).

The algorithm described above has a rate of convergence
typical of coordinate descent methods, i.e., a weakly linear
convergence [20] that is somewhat slower than that of the
steepest descent algorithm [19]. Faster convergence, in terms
of the number of iterations, could be obtained by using the
steepest descent or Newton’s methods. In either of these two
alternative approaches, however, additional information
would have to be computed, namely, the gradient of the error
for the steepest descent method, and both the gradient and the
Hessian for Newton’s. For example, the number of operations
required by the coordinate descent approach with L = M = 8
is approximately 6000 per iteration, whereas Newton’s
method requires about 200 000 operations per iteration (as-
suming, in both cases, that convolutions are performed by
means of FFT’s). Typically, the coordinate descent algorithm
would have converged before a single iteration of Newton’s
method could be performed. Another advantage of the
coordinate descent method besides its simplicity is that, at any
iteration, we have at the end of Step 5 a ‘‘partially optimal’’
solution in the sense that at least the prefilter is optimal for the
current postfilter, which is in turn optimal for the previous
postfilter.

We end this section by deriving an expression for the value
of the Lagrange multiplier \ at a jointly optimal solution;
knowledge of this value can accelerate X’s convergence in Step
4. Using (13), we can write the error as

L M
Ee=ko— X f() D glm)s(—m) 23
M

I=-L m=—

where

€0 Cy

|" Wt do 24)

and §(n) is the inverse Fourier transform of | W(w)|*® . (w).
From (22), we obtain

1 ]
ftirs | IW@IC R do-)P (9

where P is the prefilter output power. Since a jointly optimal
pair satisfies both (13) and (22), we must have £, = &, and so

1
AopT=7——
27 P
Thus, the optimal value of the Lagrange multiplier has a noise-
to-signal ratio interpretation: it is the ratio of the filtered
channel noise at the interpolator output (weighted by the
observer response) to the available prefilter power.

[" @6 b do.  @6)
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Fig. 2. Impulse responses of the filters evaluated for a system with a down-
sampling factor K = 3: (a) linear prefilter, (b) cubic convolution postfilter,
(¢) Parks-McClellan prefilter, (d) Oetken, Parks, and Schiissler postfilter,
(e), (f) jointly optimal pre- and postfilter for a flat observer (W(w) = 1).

IV. PERFORMANCE OF OPTIMAL FIR FILTERS

With the algorithm of the previous section, we can design a
pair of jointly optimal pre- and postfilters for the system of
Fig. 1. A natural question that arises at this point is: how much
reduction in the MS reconstruction error can be achieved by
using an optimal filter pair as compared to other commonly
used pre- and postfilters? Although the answer to that question
certainly depends on the particular system under consider-
ation, we have performed a few image and speech processing
experiments. A more detailed discussion of the performance of
jointly optimal filter pairs can be found in [3].

Consider a system with a down- and up-sampling factor K
= 3, and with pre- and postfilters of length 13, i.e., L = M
= 6; furthermore, assume that the input and channel noise
sources are white, with SNR’s of 30 dB. In Fig. 2, we have the
impulse responses of three pairs of pre- and postfilters that
could be employed. The set in Fig. 2(a), (b) was chosen as one
of the easiest to be designed: the prefilter is just a linear
function, and the interpolator is a cubic convolution filter [9].
In Fig. 2(c), (d), we have a semi-optimal choice for the pre-
and postfilters in the sense that each filter has been optimized
under a certain criterion; the prefilter was designed using the

Parks-McClellan algorithm [25] for equiripple approximation
(passband ripple = 0.15, transition band from 0.2677 to
0.47), and the postfilter was obtained with the Oetken—Parks-
Schiissler algorithm [7], [26] for optimal interpolator design.
Finally, in Fig. 2(e), (f), the optimal pre- and postfilters for a
flat observer (W(w) = 1) are shown; they were computed by
the algorithm of the previous section for an input signal with a
first-order Gauss—-Markov spectrum characterized by an inter-
sample correlation coefficient p = 0.95.

We have processed the *“KID”’ image of Fig. 3(a) with
separable 2-D filters obtained from the filters in Fig. 2. The
sampling grid was rectangular, and the down-sampling factor
K was equal to three in both the horizontal and vertical
directions. The results are shown in Fig. 3(b)-(d). The rms
errors are indicated in Fig. 3 as a percentage of the signal rms
value. The optimal filters led to an error improvement of 4.6
dB when compared to the linear-cubic convolution pair, and
1.7 dB when compared to the Parks-McClellan-Oetken pair.
If we had chosen higher band-edge frequencies for the Parks-
McClellan prefilter, for example, the mean-square error in
Fig. 3(c) would have been higher. In general, a good choice
for the parameters of the Parks—McClellan filter may require a
trial-and-error approach.
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(a) Original “'KID" image, 256 X 240 pixels, 8 bits/pixel. (b)
“KID"" processed with the linear prefilter and cubic convolution postfilter

19.3 percent. (¢) “KID”

processed with the Parks-McClellan prefilter and Oetken-Parks-Schiissler

postfilter of Fig. 2(c) and (d). respectively; rms error =

13.7 percent. (d)

“KID"" processed with the mean-square-optimal pre- and postfilters of Fig.

2(e) and (f). respectively: rms error

We have also processed a 120 ms speech segment with the
filters in Fig. 2. The original segment, shown in Fig. 4(a),
corresponds to the vowel ‘‘ah’ spoken by a male person,
sampled as 16 kHz. In Fig. 4(b)-(d), we have the error
signals, magnified by a factor of six, due to processing the
original segment with the pre- and postfilter pairs: linear-
cubic convolution, Parks-McClellan-Oetken, and mean-
square optimal, respectively. We note that the optimal filters
led to an rms crror about 6 dB below those of the other two
filter pairs. the main reason for that being the virtual absence
of low-frequency crrors. For other segments, the improve-
ment in MS crror due to the optimal pre- and postfilters varied

= 11.3 percent.

from 2 to 7 dB (typically, little improvement was obtained tor
unvoiced segments, for which most of the error is due to the
loss of the high-frequency components). In [3], we show that
the optimal FIR filter pair actually performs within 1-2 dB of
the ideal IIR filters when L, M = 2K.

The above example also verifies the robustness of the
optimal filters with respect to the input spectrum since a first-
order Gauss—-Markov process with a correlation coefficient of
0.95 is a good model for images but not for speech [27]. In
fact, we have used optimal pre- and postfilters computed from
an estimate of the input speech spectrum, and the rms error
was only 0.3 dB below that of Fig. 3(d).
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(a) 120 ms speech segment for the vowel /a/, male speaker; the

bottom trace is a continuation of the top one. (b) Error signals (X 6) for the
filter pairs in: Fig. 2(a), (b), rms amplitude = 12.6 percent; (c) Fig. 2(c),
(d), rms amplitude = 11.5 percent; and (d) optimal filters of Fig. 2(e), (f),

rms amplitude = 5.5 percent.

V. CONCLUDING REMARKS

We have presented in this paper an iterative algorithm for
the design of jointly optimal FIR pre- and postfilters for a
noisy communication/storage system under a weighted mean-
square error criterion. As a byproduct, we have also derived
the independent solutions for the optimal pre- or postfilters,
which can be applied to systems in which one of those filters is
predetermined by other factors. Although the algorithm is only
guaranteed to converge to a local minimum of the error
measure, in practice we have always obtained the correct
solution. The good practical performance of the optimal FIR
filters has been verified by means of speech and image
processing examples.

The optimal FIR filters described in this paper will probably
be most useful for sampling and interpolation systems where
hardware cost is heavily dependent on the number of opera-
tions per second required by the filters, so that short-length
FIR filters are a must. For image processing applications, we
can extended the algorithm to the design of two-dimensional
filters on arbitrary periodic sampling lattices. The general
multidimensional versions of our proposed algorithm can be
found in [3], [4].
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