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Figure 1. Simplified block diagram of a typical image or video compression system. 
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ABSTRACT 
 
This paper presents a brief overview of the multiresolution transform designs used in a few image and video 
compression systems, namely H.264, PTC (progressive transform coder), and JPEG2000. The first two use hierarchical 
transforms, and the third uses wavelet transforms. We review the basis constructions for the hierarchical transforms, and 
compare some of their characteristics with those of wavelet transforms. In terms of compression performance as 
measured by peak-signal to noise ratio, H.264 provides the best performance, but at much higher computational 
complexity. In terms of visual quality, the multiresolution transforms provide an improvement over block (single 
resolution) transforms. 
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1. INTRODUCTION 
 
Compression of natural images (pictures) and video is quite common today; for example in Web pages we usually find 
images compressed with the JPEG (Joint Photographic Experts Group) codec (coder/decoder) [1] and video compressed 
with several kinds of MPEG (Moving Picture Experts Group) codecs [2]. A fundamental approach towards compression 
of media signals is to remove redundancy via signal prediction or linear transforms (or a combination of both), followed 
by a quantization (scaling and rounding to a nearest integer) and entropy coding (representing those integers with a 
small number of bits by exploiting their joint statistics) [3]. The scaling factor in the quantization process controls the 
basic tradeoff between compressed file size and decoded signal fidelity. In Fig. 1 we show a basic diagram representing 
the processing steps of a modern image or video compression that uses those ideas. By cascading a pixel-domain 
predictor with a transform operator, we mean that the transform is computed on the prediction residuals. The color 
space mapper is a first step of redundancy reduction, usually converting the pixels from an R-G-B color space to a 
luminance and chrominance space, such as Y-Cb-Cr (luma, blue-luma, and red-luma), with the luma and chroma 
images typically being encoded independently. 
 
For video coding, pixel prediction is usually nonlinear, through motion compensation – a motion field applied to a 
previously-encoded frame [2,4]. In image coding, most codecs do not use pixel prediction, so that a linear transform is 
applied directly to the image pixels. A notable exception is the new H.264 (also referred to as MPEG-4 Part 10) video 
codec [4], in which “intra” frames (those encoded independently, that is, without motion-based prediction from other 
frames) use pixel prediction from previously-encoded blocks within the same frame. We discuss this aspect further in 
Section 3. 



 
2. MULTIRESOLUTION TRANSFORMS 

 
Implicit in the diagram in Fig. 1 is that the transform operator is not applied to the image as a whole, but rather to blocks 
of pixels. In codecs such as JPEG [1] or MPEG [2], the blocks have the fixed size ox 8×8, and the transform is a DCT 
(discrete cosine transform). Other transforms can be used, but the DCT is fast-computable and is nearly optimal in terms 
of energy compaction [3,5], that is, for typical blocks the low-frequency coefficients have high magnitudes, whereas the 
high-frequency coefficients have low magnitudes. After quantization, many of the high-frequency coefficients are 
truncated to zeros, which are efficiently compressed by the entropy coder. The choice of block size is determined by a 
basic tradeoff: larger blocks are better for encoding flat regions, but small blocks lead to fewer ringing artifacts due to 
the missing high-frequencies [5,6]. The sets of pixels that form the blocks can be either disjoint (non-overlapping), as in 
JPEG or MPEG, or overlapping, as in wavelet-based [3] or lapped-transform-based [5] codecs. The main disadvantage 
of using non-overlapping transforms is the appearance of blocking artifacts at high compression ratios [5,6]. Older 
codecs such as JPEG and MPEG use a fixed-resolution transform, whereas modern codecs such as H.264 [4] and 
JPEG2000 [7] use multiresolution transforms. 
 
Multiresolution signal analysis is used in many applications [8]. In many cases, such as image coding, by 
multiresolution we usually mean a small set of resolutions (two to six), associated to longer block sizes for low-
frequency components and shorter block sizes for high-frequency components. That works well for images, where high 
frequencies tend to be associated with short-duration features, such as edges and lines. 
 
Besides representing image pixel data, another application for multiresolution transforms in video coding is in motion 
estimation and compensation. Typically we measure motion by cross-correlating blocks of a pair of frames [2] and we 
use motion vectors to displace and interpolate pixels from the reference frame to generate predictions of pixels of the 
current frame. An alternative approach is to apply a complex-valued transform (wavelet or lapped) to both the reference 
and the current frames, and use phase measurements and phase shifting to perform motion estimation and 
compensation, respectively. Advantages of this transform-based approach are much finer precision in estimated motion 
vectors and smoother motion compensation, without blocking artifacts. One disadvantage is that it is difficult to encode 
images efficiently in a complex-valued transform domain. For details, see [9]. 
 
In practice, an efficient way to obtain multiresolution signal decompositions is to apply a first transform operator to the 
signal, then a second transform operator to a set of low-frequency coefficients of the first transform. The low frequency 
coefficients of the second transform can be transformed by a third operator, and so on, up to the desired number of 
levels. We call this generic cascade of transform operators a hierarchical transform [5]. An important case is when the 
transform operators are two-band decompositions and the low-frequency subbands are sent to the next transform 
operator, which is the well-known tree structure for a discrete wavelet transform [3,8]. There is a vast amount of 
literature on wavelet image compression, e.g. see the references in [7]. Thus, in this paper we pay more attention to 
hierarchical transforms. 
 
A popular construction for a hierarchical transform is shown in Fig. 2, in which we consider only a one-dimensional 
transform. For images, we need a two-dimensional transform, which can be easily generated by applying the same 1-D 
transforms to the rows and then to the columns of each block. In Fig. 2 we apply a first-level transform to blocks of 
length four, and a second-level transform to length-4 blocks of lowest-frequency coefficients of the first transform. 
Effectively, the transform generates three high-frequency subbands with a 4-pixel resolution (the outputs of the first 
level), and four low-frequency subbands with a 16-pixel resolution (the outputs of the second level). Thus, the high-
frequency subbands have finer resolution and the low-frequency subbands have coarser resolution than the length-8 
transforms used in JPEG and MPEG. Thus the hierarchical transform in Fig. 2 leads to fewer ringing artifacts and better 
compression performance than length-8 DCTs [6]. Also, if the first-level transform (XF1 in Fig. 2) is a lapped 
transform, the reconstructed signal is essentially free from blocking artifacts. Note that in Fig. 2 the overlapping is not 
explicitly represented; for example, if each XF1 transform operator is an LBT (lapped biorthogonal transform), there are 
in fact eight pixel inputs to each block: four pixels from the current block, two from the previous one, and two from the 
next one, for a 50% overlap; for details, see [6]. 
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Figure 2. A hierarchical 4/16 transform used in image and video codecs. For H.264, XF1 and XF2 
are a near-DCT and the Hadamard transform, respectively. For PTC, XF1 and XF2 are lapped 
biorthogonal transforms. 

 

With wavelet transforms, we can achieve a similar range of resolutions as those for the hierarchical transform in Fig. 2 
by using a tree with four wavelet levels. The wavelet filters need to be better subband filters than the basis functions of 
the hierarchical transform, because the wavelet transform has a larger number of cascaded filtering operators, which 
reduces smoothness of the equivalent basis functions of the coarse resolution coefficients [3,8,10]. 
 

3. COMPARATIVE PERFORMANCE OF MULTIRESOLUTION IMAGE CODERS 
 
In this Section we consider briefly a few image and video codecs: JPEG2000 [7], H.264 [4], and PTC (progressive 
transform coder) [11]. Our emphasis is on the multiresolution transforms used in those codecs, and on their performance 
in encoding independent frames. Of course, the compression performance of those codecs is mostly determined by their 
entropy coding engines that follow transform coefficient quantization [see Fig. 1], but discussing the entropy coding 
algorithms is outside the scope of this paper. Here we focus on the kinds of distortions that are generated at high 
compression rates, which depend on the choice of multiresolution transform. 
 
JPEG2000 uses the well-known “CDF 9/7” biorthogonal wavelet filters [12]. By relaxing the constraint that the direct 
(analysis) and inverse (synthesis) transform operators must use the same basis functions, biorthogonal constructions 
have two main advantages: first, the synthesis basis functions can have a higher degree of smoothness than the analysis 
ones [6,12], which is important to minimized decoded image artifacts; second, the coding gains of biorthogonal 
transforms are higher than those of their orthogonal counterparts [6]. 
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Figure 3. Length-4 transforms used in the PTC and H.264 codecs. 
 

 
In Fig. 3 we show simplified block/flow diagrams of the length-4 transforms used in H.264 and in the PTC variant 
we’re considering here. Those length-4 transforms are used in the hierarchical construction in Fig. 2. Note that for 
H.264 the transform blocks are nonoverlapping, and the transform operators can be computed easily in integer 
arithmetic, without multiplications, just additions and shifts [13]. That is why we proposed a near-DCT transform for 
H.264 (for a true DCT, the nontrivial coefficient in the top-right flowgraph in Fig. 3 would have been 1/tan(π/8) = 
1 2+ = 2.414, but changing it to 2 leads to virtually no change in coding gain [13]. Note that the second-level 
transform is a simple Hadamard transform, because the coding gain is not significantly affected, and the dynamic range 
reduction allows for implementation of the entire decoder in 16-bit arithmetic [13]. A cascade of two block transforms 
without overlap could generate significant artifacts; that doesn’t happen in H.264 because the hierarchical transform is 
preceded by a pixel-domain predictor, as shown in Fig. 1. Whenever there is significant correlation among pixels of 
consecutive blocks, such as in relatively flat areas of the image, the H.264 encoder can choose one among nine 
predetermined predictors [4]. That way, significant discontinuities across blocks are significantly reduced; they are 
further attenuated by the use of a nonlinear deblocking filter at the decoder [4]. 
 
For the LBT, the final 2×2 Z operator applied to the odd-indexed coefficients is a rotation matrix, with angle π/8 [6], 
that means the rows of that matrix are [cos(π/8) –sin(π/8)] and [sin(π/8) cos(π/8)]. Also, a good biorthogonal design is 
achieved by modifying only one coefficient (labeled a in Fig. 3). In practice, these irrational coefficient values can be 
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Figure 4. Low-frequency synthesis basis functions of the hierarchical transform in Fig. 2 using the 
LBT in Fig. 3 for both levels. 

 

approximated by rational values with denominators equal to powers of two, for efficient implementation with integer 
arithmetic and no division (e.g. we can use a = 23/16, for example, with good results). 
 
In Fig. 4 we plot the basis functions corresponding to the coarse-resolution, second-level transform. As we mentioned 
before, the cascading of two transform operators reduces smoothness of the basis functions, but they are still smooth 
enough to produce high-quality reconstructed images at moderate compression rations. The longer filters of the CDF-
9/7 transform lead to better smoothness. One advantage of the hierarchical LBT over wavelet transforms is the shorter 
region of support of the HLBT transform, because of the limited amount of overlap of the LBT. As we see in Fig. 4, the 
second-level basis functions have a region of support of 36 samples, whereas the CDF-9/7 wavelet after four levels 
(equivalent resolution) has a region of support of 115 samples. Thus, it is easier to implement region-of-interest 
decoding in an HLBT-based coded than in a CDF-9/7-based wavelet codec. 
 
A couple of examples of image coding using the codecs mentioned above are show in Figs. 5 an 6. The original pictures 
are 352×288-pixel rectangles from an image of the JPEG2000 test set [7] (Fig. 5) and from an image of the Kodak test 
set [6] (Fig. 6). That picture size is referred to CIF (common intermediate format), which is one of the supported 
formats in H.264. For each picture, we encoded and decoded it using the JPEG, JPEG2000, PTC, and H.264 codecs, 
setting the quality/quantization parameters for a compression ratio of 86:1, corresponding to a bit rate of 0.28 bits/pixel. 
That is a relatively high ratio, which we chose so that the compression artifacts are visible, but acceptable for 
applications such as posting in a Web page or photo printing, especially if the entire images have over 1 million total 
pixels, which is quite common in today’s digital photography scenarios. 
 
In Table 1 we present the PSNR (peak-signal to noise ratio, defined as the ratio in decibels between the peak value of an 
unsigned 8-bit pixel to the root-mean-square error in the pixel values of the decoded image) [11] for each of the codecs, 
as well as the encoding times. Those times were measured in a Pentium-IV 2.4 GHz machine, after the original image 
files have been cached in RAM. The JPEG codec was the latest release from the Independent JPEG group [14], which 
includes assembly language optimizations in a few of the inner loops. The PTC codec was compiled from our source 
code in C, with no optimizations beyond those automatically performed by the compiler. The JPEG2000 codec was an 
executable demo encoder from Image Power [15] (a beta version that was not optimized). The H.264 coder was an 
executable built from the latest reference software from the ISO/ITU-T JVT Committee [16]. We see that without 
optimization, the H.264 encoder is 200× slower than the PTC encoder, for example. That is because the H.264 encoder 
does exhaustive search to determine the optimal pixel-domain predictor to be used for every block, and it also searches 
through several paths in the entropy coding stage. We could say that H.264 is an example that these days a significant 
improvement in compression is only possible with a major increase in available computing resources. Strategies for 
speeding up H.264 encoding while preserving most of its compression benefits are a current area of research. 



 
PSNR, dB Codec 

Fig. 5 Fig. 6 
Encoding 
time, ms 

JPEG 29.74 37.16 12 
PTC 30.08 37.82 25 
JPEG2000 31.63 39.23 200 
H.264 32.52 39.81 5,000 

 
Table 1. PSNR (peak-signal to noise ratio) for the luminance channel, and encoding times, for the 
decoded images in Figs. 5 and 6. 

 
 
We see from Table 1 that the PSNR improvements of JPEG200 and H.264 over JPEG and PTC depend on the image to 
be encoded, of course, and the results for Fig. 6 are closer to typical performance, as measured in large data sets. 
Usually, the higher the level of detail in the image, the closer in performance the codecs will be. The more the image 
contains flat areas, the higher the improvement of JPEG2000 or H.264 over PTC or JPEG, because of the longer basis 
functions of the wavelet filters used in JPEG2000 and the inter-block pixel prediction in H.264. 
 
One caveat about the results in Table 1 is that it is well known that PSNR values do not correlate well with subjective 
image quality. In fact, comparing PSNR among those codecs is not an apples-to-apples comparison, especially when we 
recall that the JPEG codec by default applies weighting factors to the transform coefficients before quantization, in an 
attempt to improve visual quality. It is easy to show that such weighting necessarily decreases the PSNR [6], so for fair 
PSNR comparisons against JPEG, its transform coefficient weighting would have to be turned off, which is rarely done 
in most comparisons. 
 
The main value of the images in Figs. 5 and 6 is for us to evaluate the kinds of artifacts generates by the codecs. We see 
that the JPEG codec tends to produce a sharper appearance, but that comes at the price of excessive ringing around 
edges (for example, in the teeth area in Fig. 6). The time-domain predictors in H.264 perform well, thus reducing the 
energy of the mid- and high-frequency coefficients. At the relatively high compression ratio of 86:1, most of such 
coefficients are quantized to zero, leading to significant blurring, which is clearly noted in the bottom right image in 
Fig. 5. User tests are usually inconclusive about the tradeoff between blurriness and ringing, but there seems to be a 
slight preference for blurriness. When the PDF file for this paper is viewed at an increased zoom (> 200%), the blocking 
artifacts of JPEG are apparent, because its analysis and synthesis basis functions are not overlapping, and there is no 
mechanism to exploit pixel correlation across blocks. We recall that besides the pixel-domain predictor, H.264 has a 
nonlinear postfilter that reduces blocking artifacts (the “deblocking filter” [4]). 
 
Besides quality vs. complexity there are other aspects that we have not considered. One example is partial decoding. In 
JPEG and H.264 the entire frame has to be decoded up to the desired blocks, since encoding of a block depends on all 
previously-encoded blocks1. In PTC and JPEG2000 it is possible to decode only a small rectangle of an image (useful 
when browsing large images, e.g. those with many millions of pixels). Also, in PTC and JPEG2000 it is possible to 
decode a reduced resolution version of the image, for viewing at a reduced zoom factor or for fast thumbnail generation. 
It is clear from Fig. 2 that a reduced resolution image can be decoded by decoding only the coefficients of the second 
level transform, and performing only the second level inverse transform, thus generating an image that has a quarter of 
the size of the original image, in each dimension. Because of the relatively smooth filters of the hierarchical PTC 
transform, such reduced-resolution decoding produces results almost as good as downsampling with a good filter (e.g. 
bicubic). Finally, PTC and JPEG2000 also generate progressive bitstreams [7,11], meaning that the quantized 
coefficients are encoded in bit plans, starting from the most significant bit. That way, given an encoded JPEG2000 or 
PTC file, it is possible to generate another encoded file corresponding to a higher compression ratio by simply parsing 
out some of the bits in the original compressed file. In other words, further compression can be performed very quickly, 
directly in the compressed domain, without decoding and re-encoding. 

                                                           
1 One aspect of JPEG is that it employs a different kind of inter-block prediction than that depicted in Fig. 1. In JPEG 
the lowest-frequency (DC) coefficients of a block are encoded differentially with respect to the previous block [1]. 



4. FURTHER RESEARCH 
 
A natural question that arises is there if there are better designs for hierarchical transforms, for use in multiresolution 
image coders. The answer is yes, and recent research efforts show promising results. For example, in the PTC codec we 
used only two levels of transform, because as we saw in Fig. 4 there is a loss of smoothness in the basis functions. If we 
were to perform another level of transformation with an LBT, the resulting loss of smoothness would lead to noticeable 
artifacts even at moderate compression levels. One way to increase the smoothness (or regularity) of lapped transform 
basis functions is to increase their length, with more than 50% overlap across blocks, as in designs based on GenLOT 
(generalized lapped orthogonal transform) [17]. Also, using a different implementation structure for LBTs via time-
domain pre- and post-filtering, it may be possible to obtain higher regularity while still maintaining a fast computation 
algorithm [18]. 
 

5. CONCLUSION 
 
We presented a brief overview of the multiresolution transform designs used in the H.264 and PTC codecs, and 
compared their performance with that of another multiresolution codec, JPEG2000, and a single-resolution codec, 
JPEG. While PTC and H.264 use hierarchical transforms, JPEG2000 uses wavelet transforms. Although wavelet 
transform can potentially lead to better compression performance, hierarchical transforms can lead to faster processing 
times, as well as easier implementation of region decoding. Recent developments in the design of fast hierarchical 
transform may lead to codecs with quite similar performance to those based on wavelet transforms, but potentially more 
efficient implementations. 
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Figure 5. Image coding results at 0.28 bits/pixel (86:1 compression). Top: original. Middle left: 
JPEG; middle right: PTC. Bottom left: JPG2000; bottom right: H.264. 

 



 
 

   
 

   
 

Figure 6. Image coding results 0.28 bits/pixel (86:1 compression). Top: original. Middle left: 
JPEG; middle right: PTC. Bottom left: JPG2000; bottom right: H.264. 

 


