IEEE TRANSACTIONS ON ACOUSTICS. SPEECH. AND SIGNAL PROCESSING. VOL. 38. NO. 6. JUNE 1990 969

Lapped Transforms for Efficient Transform/Subband
Coding

HENRIQUE S. MALVAR, MEMBER, IEEE

Abstract—Two new lapped transforms for subband/transform cod-
ing of signals are introduced: a new version of the lapped orthogonal
transform (LOT), which can be efficiently computed for any transform
length; and the modulated lapped transform (MLT), which is based on
a modulated quadrature mirror filter (QMF) bank. The MLT can also
be efficiently computed by means of a type-IV discrete sine transform
(DST-1V). The LOT and the MLT are both asymptotically optimal
lapped transforms for coding an AR(1) signal with a high intersample
correlation coefficient. The coding gains of the LOT and MLT of length
M are higher than that of the discrete cosine transform (DCT) of the
same length; they are actually close to the coding gains obtained with
a DCT of length 2M. An MLT-based adaptive transform coder (ATC)
for speech signals has been simulated; the coder is essentially free from
frame rate noise and has a better spectral resolution than DCT-based
ATC systems.

I. INTRODUCTION

RANSFORM coding and subband coding are well-

known approaches to the efficient waveform represen-
tation at medium and low bit rates [1], [2]. In fact, trans-
form coding is a special case of subband coding, in which
the impulse responses of the synthesis filters are the trans-
form basis functions, the impulse responses of the anal-
ysis filters are equal to the time-reversed basis functions,
and the decimation factor in each band is equal to the
transform length [1], [3], [4]. The design of efficient
transform or subband coders has two major aspects [2]-
[5]: first, the choice of the transform or the filter bank;
and second, the design of adaptive quantizers for the
transform coefficients or the outputs of the analysis filter
bank. This paper will focus on a class of solutions to the
first problem.

In transform coding, the discrete cosine transform
(DCT) [1] is almost always employed, because it is a good
approximation to the statistically optimal Karhunen-
Loeve transform (KLT), for a wide class of signals [2].
In subband coding, the design of the band-splitting filters
depends on the application. For speech, FIR filters with
impulse response lengths of up to six times the number of
bands are commonly used [S], mainly if the number of
bands is small. In image, coding, shorter filters are pre-
ferred, in order to avoid ringing effects around sharp edges
[4]. In any case, the cascade of the analysis and synthesis
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filter banks should lead to an overall impulse response
that is as close as possible to a delayed impulse, so that
reconstruction errors will be due only to quantization
noise.

Since the outputs of a critically sampled filter bank with
M bands are decimated by a factor of M, aliasing will
occur. Thus, a necessary condition for nearly perfect re-
construction is that the synthesis filter bank should be able
to cancel out that aliasing. Filter banks with such a prop-
erty are generally referred to as quadrature mirror filters
(QMF’s) [7]. A rigorous analysis of the conditions for
alias-free reconstruction, and also for perfect reconstruc-
tion, appears in [6]. In [8], a general synthesis procedure
is presented for QMF structures with perfect signal recon-
struction based on FIR filters.

In this paper we will present a family of perfect-recon-
struction QMF filter banks that are characterized by three
properties: 1) the synthesis filters are FIR, with lengths
equal to twice the number of bands; 2) the analysis filters
are identical, within time reversal, to the synthesis filters,
which implies that the analysis and synthesis banks have
identical magnitude frequency responses; and 3) the out-
puts of the filter banks can be obtained by means of a fast
transform of length M and little additional computation.
The perfect reconstruction property is guaranteed by
means of an orthogonality condition that is in fact equiv-
alent to the losslessness property defined in [8].

The general structure of such filter banks is shown in
Fig. 1, where P is a 2M X M matrix whose columns are
the impulse responses of the synthesis filters, and P’ (the
transpose of P) defines the analysis filters. The system is
critically sampled, so that the outputs of the analysis filter
bank are decimated by a factor of M, which is equal to
the number of bands, and the decimated subband signals
are Xo(m), X, (m), -+ +, Xy - (m). The coded subband
signals Yo(m), Y,(m), -+ , Yy _ (m) are upsampled
by a factor of M, and fed to the synthesis filter bank de-
fined by P. In terms of practical implementation, the out-
puts of the analysis filter bank are computed only once for
every M samples that are shifted in on the left of Fig. 1.
Also, the outputs of the synthesis filter bank are computed
once for every M samples that are shifted out on the right
of Fig. 1, in an overlap-add operation [3].

Because of their relatively short lengths, these filter
banks can also be viewed as block transforms, in which
the basis functions overlap the adjacent blocks by 50%.
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Fig. 1. Signal coding with a Lapped Transform P.

Thus, we will refer to these filter banks as lapped trans-
Sforms. Within this class, the lapped orthogonal transfrom
(LOT) [9]-[13] will be considered in Section II, where a
new general formulation for the LOT will be presented.
In Section III, we will introduce the modulated lapped
transform, which is a particular case of a family of filter
banks suggested in [15]. In Section IV, we will show that
the LOT and MLT are asymptotically optimal lapped
transforms. Finally, in Section V, an example of adaptive
transform coding (ATC) of speech demonstrates that the
MLT has two advantages over the DCT: no frame rate
noise and better spectral resolution.

. LarPED ORTHOGONAL TRANSFORMS

The LOT, introduced in [9], was developed with the
aim of reducing the blocking effects (discontinuities in the
reconstructed signal at the block boundaries) in image
coding. In order to keep the direct and inverse transform
matrices as the transpose of each other (so that the direct
transform flowgraph is just the transpose of the inverse
flowgraph), each LOT basis function must be orthogonal
not only to the other functions in the same block, but also
to the functions in the two adjacent blocks. In terms of
the matrix P of Fig. 1, the following conditions {10], [11],
[13] must hold:

PP=1 (1)
and
P'WP =0 (2)
where
0 I
v= <0 0>' 3

The I and 0 matrices above have dimensions M X M.
Equation (1) forces orthogonality of the basis functions
within the same block, whereas (2) forces orthogonality
of the overlapping portions of the basis functions of ad-
jacent blocks.
In [10]-[12] it was shown that the orthogonality con-
ditions were satisfied by the following construction:

<De—Do D, - D, >Z
J(De —Da) _J(De - Da)

where Z is an orthogonal matrix of order M, J is the

P= (4)

ol—

“‘counteridentity’’
0 0 1
0 -0 1 0
J = (5)
1 0 0

and D, and D, are the M X M /2 matrices containing the
even and odd DCT functions, respectively. Calling [A ],
the element of a matrix A in the nth row and kth column,

we have
2 T 1
[D.], = C(k)\/A:/ICOS <M 2k<n + 5)) (6)
and
2 T 1
21, = e (Z e n(n-2)) )
forn=0,1,- M-1.k=0,1,-+-,M/2 ~1,
where
/N2, k=0,
c(k) = _ (8)
1, otherwise.

The definition in (4) is somewhat restrictive, since not
all matrices P that satisfy (1) and (2) can be written as in
(4). Nevertheless, efficient LOT’s can be generated by ap-
propriate choices for the matrix Z, and two criteria have
been considered for the design of Z. In [10]-[12], Z was
obtained as the orthogonal matrix that maximizes the cod-
ing gain, by means of the solution of an eigenvector prob-
lem, and in [13] Z was obtained, through a QR decom-
position, as the orthogonal matrix that leads to good
stopband attentuations for the frequency responses of all
basis functions. It is interesting that, in both cases, the
optimal Z can be closely approximated by

10
Z = .
0 7z
where Z is a cascade of M/2 — 1 plane rotations [11],
[12]

(9)

Z= T, - - - Ty,

A

(10)
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where each plane rotation is defined by

10 0
Ti=10 Y(6) 0 (11)
00 1

The matrix Y(6;) is a2 X 2 butterfly
cos 0,

¥(6,) < sin 6;
' —sin 6, cos 6;

where 0; is the rotation angle, and the top-left identity
factor in (11) is of order i — 1. With Z as in (9), the first
M /2 columns of P will have even symmetry, and the last
M /2 columns will have odd symmetry.

The LOT defined in (4), (9), and (10) can be computed
efficiently. We need M butterflies with factors equal to
+1or —1and M/2 — 1 nontrivial butterflies for Z, be-
sides a length-M DCT [11], [12]. Therefore, the compu-
tational overhead involved in moving from DCT-based
coding to LOT-based coding is small enough that in most
systems there will be enough computing power to accom-
modate the LOT. However, the approximation in (10) is
not good when M is greater then 16, because the first and
second odd basis functions will show some discontinuities
in their central values for any choice of the angles 6,. In
some applications, like adaptive transform coding of
speech [1], [16], [17], M is usually much larger, ranging
typically from 64 to 256. For such applications, we need
another formulation of the fast LOT.

We introduce now a new definition for the LOT that is
fast-computable for any length. The basic point is to use
another approximation for Z, which changes (4) into

P_1<D6—Dv De_Do
2 J(De - Do) _J(De - Do)

(1 0 >R
0 Cu/2Shs

where Cly/, and S}/, are the DCT-II and DST-1V matri-
ces [19], [20], defined by

[ckl,, = C(k)\/%cos <%k<r + %)) (14)

with c(k) as in (8), and

52, = Zn (5 (k4 D) o+ 1)), a9

We should note that the DCT-I is actually an inverse
DCT. The factor R in (13) is a permutation matrix given

(12)

(13)

971
by
Flooo 0 0]
0 - 1
. 0
0
R = 0 1
(16)
1 0 0
0 1
. 0 :
S
0000 ---0 1]

which serves to order the LOT basis functions in terms of
increasing center frequencies of the associated frequency
responses.

It is easy to verify that the LOT basis functions defined
in (13) satisfy the following symmetry condition:

[P, = (=1 [Ply_, .. (17)

which guarantees that all the filters in the analysis and
synthesis filter banks have linear phase. In this way, the
delay from input to the output of any analysis filter is the
same, and is frequency independent. This property may
be advantageous in applications where features are de-
tected from the subband signals.

The transforms involved in the new LOT, namely the
DCT, the DCT-II, and the DST-IV, can all be computed
by means of fast algorithms [19]-[22]. Since the overall
computational complexity of the DCT-II, the DST-IV
(which are of length M/2), and the butterflies with fac-
tors equal to +1 and —1 in (13) is about the same as that
of a length-M DCT, we see that the new LOT leads to a
computational overhead of about 100% over the DCT. In
a speech coding application, for example, the computa-
tion of the direct and inverse LOT’s for M = 256 would
require fewer than 250 operations (multiplies and adds)
per sample. With a sampling frequency of 8 kHz, a signal
processing chip like the TMS320C25 or DSP56001 can
perform about 1000 operations per sample, so that less
than 25% of the chip’s computing power would be used
for the filter banks.

The block diagram of the fast LOT is shown in Fig. 2.
Comparing it to Fig. 1, we note that the input signal passes
only through M unity-delay (z ~') branches, and that M /2
branches with a delay of M samples now appear after the
DCT. We recall that the outputs are only computed for
every M samples that are shifted in, because of the deci-
mators at the right of Fig. 2. The flowgraph of the inverse
LOT is just the transpose of that of Fig. 2, but with the
z ™M delays moved to the branches marked with asterisks.
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Fig. 3. The first four basis functions of the LOT. for M = 16.
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Fig. 4. Magnitude frequency responses of the LOT filter bank. for M =
l6.

In terms of practical implementation, the decimators can
be put before the DCT, so that the z ¥ delays will be-
come z ' delays.

The first four basis functions (synthesis filter impulse
responses) of the new LOT are shown in Fig. 3, for M =
16, and the magnitude frequency responses of all filters
of the synthesis bank are shown in Fig. 4. We recall that
the magnitude responses of the analysis filter bank are
identical to those of the synthesis bank, by the definition
of lapped transforms. All filters have a linear phase re-
sponse, because of the symmetry in (17). The center fre-
quency of the kth basis function is (2k + 1)« /2M, and
the —3 dB bandwidth is w /M. We note that the mainlobes
of all but the first and last functions have approximately
the same shape, and most sidelobes are at a relatively low
level of —24 dB, although some of the sidelobes are a
little higher (at —20 dB).

An important property of the LOT filter bank is that all
filter responses have zero gain at w = 0, except for the
first function. Thus, a constant input signal can be rep-
resented only by the output of the first filter. This is useful
in image coding, because flat background areas can be
coded with a minimum number of bits. In fact, in the Ap-
pendix we will show that an optimal lapped transform
should have this property.

X, (m)
HIM— X(m)

T8 Xppg(m)

Flowgraph of the Lapped Orthogonal Transform.

III. MODULATED LAPPED TRANSFORMS

Another way to arrive at a good set of basis functions
for a lapped transform is to define an appropriate low-pass
filter prototype in a modulated filter bank structure [23],
[24]. If the length of the low-pass prototype is chosen to
be equal to 2M, it is possible to achieve not only aliasing
cancellation, but also perfect reconstruction with identical
analysis and synthesis filters, as noted in [25].

Referring to Fig. 1, and calling p,(n) = [P],, the im-
pulse response of the kth synthesis filter, the modulated
filter bank is based on the construction

pi(n) = h(")\/%; cos

L -1 T

e + —_
<n 5 > I (18)

for k even, and
2 | 1
pi(n) = h(n) ’174 sin | <k + E)

L -1 T

. —_ + _
(n 3 > 3 (19)

for k odd. where L is the length of the low-pass prototype
h(n). The factor ¥2/M is necessary to generate an or-
thogonal transform implementation, as we will see later.
The above construction was suggested in [23], and it
was analyzed in more detail in [14], [15], and [24], with-
out any restrictions on the length L of the low-pass pro-
totype. In [23] and [24]. it was shown that the aliasing
terms between neighboring bands are cancelled, but per-
fect reconstruction is not necessarily achieved. When M
= L = 2M, however, Princen and Bradley [14], [15] have
shown that perfect reconstruction is possible, if the low-
pass prototype (also referred to as the window function)

satisfies the constraints
h(2M — 1 — n) = h(n) (20)

and

h*(n) + h*(n + M) = a (21)

where a is any constant. In order to keep orthogonality of
the P matrix generated by (18) and (19), we must choose
a=1.
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We will refer to the filter bank defined in (18)-(21) with

= 2M as the Modulated Lapped Transform (MLT),
since it belongs to the class of lapped orthogonal trans-
forms, i.e., its P matrix satisfies (1) and (2), and its basis
functions come from a modulated filter bank. We will re-
serve the term MLT, however, to be used with a partic-
ular choice for the window A (n) to be introduced now,

namely
1
+ —
M <" 2)}

withn = 0, I, , 2M — 1, because other terms have
been used for the general case: ‘‘polyphase quadrature fil-
ters’’ [23], ‘‘parallel QMF banks’’ [24], ‘‘pseudo-
QMF’s”’ [25], and ‘‘time domain aliasing cancellation’’
[14]-[16]. The choice for #(n) in (22) will be justified in
Section IV, where we will study the coding efficiency of
the LOT and the MLT. It is importrant to note that the
MLT is not a particular case of the fast LOT in (4), since
there is no matrix Z that can generate the MLT as defined
in (18)-(22). In fact, the MLT is a particular case of the
oddly stacked time-domain aliasing cancellation filter
bank [15].

Modulated filter banks can generally be implemented
by means of a fast sine or cosine transform of length 2M
[15], [16], [23]-[26]. The MLT, however, is more effi-
cient because it can be implemented by means of a fast
transform of length M, as we will see in the following.

With the synthesis filters of the MLT defined in (18)-
(22), the outputs of the analysis filter bank in Fig. 1 can
be written as

h{n) = sin (22)

2M -1

X (m) = go x(mM + n)p(2M — 1 — n) (23)

because the impulse responses of the analysis filters are
equal to the time-reversed impulse responses of the syn-
thesis filters. With the symmetry constraint for 2 (n) in
(20), (23) is equivalent to

X, (m) = ZMZI X (h) h(")\ﬁ cos { <k * ;>

(m-n-3) 1] (24)
for k even, and
X,(m) = ZATZ | () h(n)\ﬁ sin [ (" + ;>
<M—n—%>+ﬂ (25)

for k odd. We note that m is the block index, i.e., the
time index after decimation by M, so that x,,(n) = x(mM
+n),andm =0, 1, , M — 1.

973

It is possible to put (24) anad (25) in a common form,
after some manipulations. The result is

X (m )—’y(k)\/; Z X, (n) h(n)

ccos |2 (k4 3) (n+ 25)] 9)

Q+k/2

(-1 ,

where

k even

v(k) = (27)

=02k odd.

(=1)
The key to an efficient implementation is to define a
new sequence y,,(n) by

[ xu(n + M/2) h(n + M/2)
—xpy(M/2 —n — 1)
h(M/2 —n — 1),
n=0, -, M/2— 1
Xu(n + M/2)Yh(n + M/2)
+ x,(5M/2 —n — 1)
Ch(5M/2 — n — 1),
\ n=M/2 M-1. (28)

Using the above equation, it is easy to show that the filter
bank outputs are given by

1 = |25 sty [2 () (o 1)]
(29)

where we have dropped vy (k), since it only affects the
relative signs of the filter bank outputs. We recognize in
the above equation that X, (m) can be obtained as the or-
thogonal DST-IV of y,,(n).

From (28) and (29), we see that the MLT analysis filter
bank can be implemented in two steps: first, we compute
the butterflies in (28); and second, we calculate the
DST-IV of the sequence y,, (n). We recall that the com-
putational complexity of the DST-IV is the same as that
of the DCT [19], [20]. The flowgraph of the direct MLT
(analysis) is shown in Fig. 5(a), where ¢ = cos (7r/4M)
and s” = sin (wr/4M). The inverse MLT (synthesis)
flowgraph is shown in Fig. 5(b). With M = 64, for ex-
ample, the number of operations per sample necessary to
compute the direct and inverse MLT is about 30, which
is a 40% savings over the LOT.

The first four basis functions (synthesis filter impulse
responses) of the MLT are shown in Fig. 6, for M = 16,
and the magnitude frequency responses of all filters are
shown in Fig. 7. As for the LOT, the center frequency of

)’m(n) =
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Fig. 5. Flowgraph of the Modulated Lapped Transform. The butterfly
transmittances are ¢’ = cos (wr/4M ) and s" = sin (7r/4M ).
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Fig. 6. The first four basis functions of the MLT, for M = 16.
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Fig. 7. Magnitude frequency responses of the MLT filter bank, for M =
16.

the kth basis function is (2k + 1)x/2M, and the —3 dB
bandwidth is 7 /M. The sidelobes are at virtually the same
level, —24 dB, which is slightly better than the sidelobe
levels of the LOT. The MLT filter bank, like the LOT,
has the property that all filter responses have infinite at-
tenuation at w = 0, except for the first function. Thus,
DC is captured only by the first function.

The small price to be paid for the lower computational
complexity of the MLT is that the filter impulse responses
do not have even/odd symmetry, like the LOT. There-
fore, their frequency responses do not have linear phase.
Nevertheless, since the analysis filters are the equal to the

time-reversed synthesis filters, the overall impulse re-
sponse of any channel has even symmetry, and so the
overall group delay is equal to 2M — 1, for all channels.
Linear phase is not generally a required property, since in
niost applications (including transmultiplexing) the anal-
ysis or synthesis filters are not used alone, i.e., if a signal
is processed by the kth analysis filter, it will also be pro-
cessed by the kth synthesis filtet. Thus, only their cascade
connection is required to have linear phase.

IV. CobpiNnG EFFICIENCY

A major issue in transform and subband coding is the
efficiency of the transform or filter bank employed. There
are many meaningful measures of transform efficiency [2],
but perhaps the single most important measure is the cod-
ing gain Gy, defined by [1]

0
1

Mx

Gre =

1
M
- (30)

/M

(i o

i=1

where o7 is the variance of the output of the ith analysis
filter, i.e., the ith diagonal entry of the matrix

1o

"Ry = P'R,P. (31)

In the above equation, P is the lapped transform matrix,
and R, is the covariance matrix of a block of 2M samples
of x(n). The importance of the G- measure is that it
indicates the factor by which the mean-square reconstruc-
tion error is reduced, compared to direct quantization of
the signal (PCM).
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Fig. 8. Coding gain of the LOT and the MLT. for an AR(1) signal with p
= 0.95. The curves labeled KLT-2M and KLT-M correspond to KLT's
of length 2M and M, respectively.

The relative efficiency of transforms is generally eval-

uated for a first-order autoregressive process, for which

[Rxx]i,' = p|i—j[’ (32)
where p is the intersample correlation coefficient. In fact,
in [27] it was shown that the DCT is an asymptotically
optimal transform, because it is the limit of the KLT as 0
approaches unity.

The maximum Gq¢ that can be achieved by a lapped
transform is upper-bounded by that of a KLT of length
2M, as discussed in the Appendix, since the KLT maxi-
mizes Grc, by definition [1]. This upper bound is not
tight, however, since a lapped transform P must be re-
stricted to the space of matrices that satisfy (1) and (2).
In this section we will compare the fast-computable LOT
of (13) to the MLT and the KLT.

In Fig. 8, the coding gain is plotted as a function of the
number of bands (or the transform size) M, for o = 0.95.
We see that the coding gains of the LOT and the MLT
rapidly approach that of a KLT of length 2M. For M =
8, a common transform size in image coding, the LOT
has a coding gain that is 0.4 dB above that of a KLT of
length 8, and the coding gain of the MLT is 0.11 dB
higher than that of the LOT. Also, the coding gain of the
MLT is only 0.13 dB below the maximum value of 9.46,
which is the coding gain of a KLT of length 16.

The plot in Fig. 8 shows that the coding gains of the
LOT and the MLT approach that of the KL T of length 2M
as M grows. In fact, in the Appendix, we show that both
the LOT and the MLT are asymptotically optimal, in the
sense of satisfying the necessary conditions for optimality
of a lapped transform, as p — 1. This is an important
property in adaptive signal coding, because it means that
if the signal gets too close to an AR(1) process with p =
1, e.g., in flat background areas in images, the transform
will lead to a maximum coding gain.

The good performance of the LOT for image coding
with small M was reported in [10]-[12]. In [29], it was
shown that transform domain filtering of speech with the
LOT is free from blocking effects (also referred to as
frame rate noise [17]). In the next section, we will con-
sider an example of the application of the LOT and the
MLT to adaptive speech coding.
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Fig. 9. Top: original speech segment. containing three frames of 256 sam-
ples each. Middle: coded speech at 10 kbps, using the DCT; note the
discontinuity indicated by the arrow. Bottom: coded speech at 10 kbps.
using the MLT.

V. APPLICATION TO SPEECH CODING

In order to evaluate experimentally the performance of
the new LOT and the MLT, we have simulated on a gen-
eral-purpose computer of the ATC coder described in [17],
which is a variation of the ATC coder of [18]. The trans-
form coeflicients (i.e., the outputs of the analysis bank)
were scalar quantized, with an adaptive bit allocation
based on an estimate of the power spectrum derived from
an windowed *‘pseudocepstrum’’ [17]. Pitch information
was added to the windowed pseudocepstrum exactly as
described in [17]. The differences between our ATC im-
plementation and that of [17] were: first, we used an in-
verse DCT to compute the pseudospectrum, instead of the
symmetrical discrete Fourier transform (SDFT), since the
results are virtually the same, but the SDFT requires an
odd block length; second, instead of using the SDFT filter
bank, we used the DCT, the LOT, and the MLT.

In Fig. 9, we have, in the top trace, a segment of 768
samples of speech that is the onset of the word “‘wait’’
spoken by a female speaker. The speech was low-pass
filtered at 3.3 kHz, and sampled at 8 kHz. In the middle
trace, we have the reconstructed signal using the DCT,
for a total bit rate of 10 kbps (with 20% used for side
information), with M = 256. We note the strong discon-
tinuity at the beginning of the second frame (indicated by
the arrow). We note also that the harmonics were not well
represented in the second frame, which was poorly recon-
structed. In the bottom trace, we have the same segment
processed by the same coder, but with the DCT replaced
by the MLT. With the MLT, there are no discontinuities,
and the second frame is well reconstructed.

In listening tests, the MLT-coded speech is completely
free from the periodic ‘clicks’’ that are generated by these
discontinuities. Although this frame rate noise can be re-
duced in a DCT-based coder by frame overlapping [17],
the low-frequency components of the frame rate noise are
still perceivable, unless an overlapping of about 10% is
used, which slightly increases the bit rate.

The better performance of the MLT can also be verified
in Fig. 10. In the top trace, we have the log magnitude
DCT spectrum (solid line), superimposed to its cepstrally
based estimate (dashed line), for the second frame of Fig.
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Fig. 10. Top: log magnitude spectra for the second frame of Fig. 9: solid
line: DCT spectrum. dashed line: estimate based on the windowed pseu-
docepstrum. Bottom: log magnitude spectra for the same speech seg-
ment, but using the MLT: solid line: MLT spectrum, dashed line: esti-
mate.

9. We note the poor resolution of the harmonics, due to
the rectangular window that is intrinsic to the DCT. This
is the cause of the inaccurate reconstruction in Fig. 9.

In the bottom trace, we have the log magnitude MLT
spectrum, superimposed to its cepstrally based estimate.
The harmonics are well resolved because of two facts.
First, the basis functions of the MLT have twice the length
of those of the DCT, and so each analysis filter of the
MLT bank has a narrower bandwidth than those of the
DCT. Second, the sine window (22) that is applied to all
basis functions makes the stopband attenuations of the
MLT filter bank much higher than those of the DCT filter
bank. We should note that the same spectral resolution
could not be obtained by using a DCT of length M = 512,
because of the rectangular window of the DCT. With the
better harmonic resolution of the MLT, the reconstructed
speech sounds less resonant than the one coded with the
DCT, mainly at low bit rates.

With the LOT, results similar to those for the MLT are
obtained. However, with the LOT there is still some slight
frame rate noise (at a much lower level than that from the
DCT) that can be heard during sustained voiced seg-
ments. The reason for the incomplete removal of frame
noise is that the second basis function of the LOT in
eqrefeq:newlot (the one that corresponds to the filter with
the second lowest center frequency) has a small jump in
its values near the center.

It should be noted that the distortions in frame two of
the DCT-processed speech of Fig. 9 are not typical; in
most frames, the distortions are at lower levels, but still
quite noticeable in listening tests. The segmental SNR of
the MLT-coded speech was, in most cases, only between
0.5 and 1.5 dB higher than that for DCT-coded speech.
Thus, the main advantage of the MLT is the elimination
of the frame rate noise.

VI. CoNcLUSION
We have presented a new general formulation for the
Lapped Orthogonal Transform (LOT) [(13)], and we have
introduced the Modulated Lapped Transform (MLT)
[(18), (19), and (22)]. They are called lapped transforms
because they are realizations of the general filter bank in
Fig. 1 with identical analysis and synthesis filters, i.e.,
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they satisty (1) and (2). We have shown in Figs. 2 and 5
that the LOT and the MLT can be implemented using fast
transforms of length M. whereas previous approaches to-
ward the realization of filter banks for the system in Fig.
| required a transform of length 2M. We have also shown
that the coding gain (over PCM) of the LOT and MLT is
actually close to the maximum value for a length-2 M
transform, and that they both asymptotically optimal
lapped transforms for coding an AR(1) signal with a high
intersample correlation coefficient.

The MLT leads to a higher coding gain than the LOT,
especially for small transform sizes. The MLT also has a
lower computational complexity than that of the LOT, in
general. However, the MLT analysis and synthesis filters
do not have a linear phase response; this is actually a small
penalty, since the cascaded responses of all filters are lin-
ear phase, with a delay of 2M — | samples. for all chan-
nels. Thus, it seems that the MLT may be a better choice
for most signal coding applications, except when the
number of bands M is small (e.g.. M = 8), where pre-
vious algorithms for the LOT [12]. [13] are more effi-
cient.

Finally, it should be noted that lapped transforms have
a better performance than nonlapped ones (like the DCT),
not only because they have higher coding gains, but also
because they lead to a strong reduction in discontinuities
in the reconstructed signal at the block boundaries (the
‘‘blocking effects’” in image coding [11], [12] or “*click-
ing’’ sounds in speech coding [17], [29]). Lapped trans-
forms are also more efficient for adaptive speech coding,
as we have demonstrated in Section V, since their better
spectral resolution leads to bit assignments that can more
accurately reproduce most harmonics of voiced sounds.

APPENDIX

The purpose of this Appendix is to derive the necessary
conditions for optimality of a lapped transform, and to
show that the LOT and MLT are at least locally optimal
solutions to the problem of maximizing the coding gain
with a lapped transform.

Let us consider first the problem of optimizing the first
basis function. Calling it p, = [P] . the problem is

maximize ¢ = p(R., p,
subject to p(Wp, = 0
and pjpy = 1 (A.1)

where W is defined in (3). This is the problem originally
considered in [9]; it states that the first basis function
should capture most of the signal energy. i.e., the first
transform coefficient should have the maximum variance,
given the orthogonality restrictions in (1) and (2).

In [9]. an augmented Lagrangian method was used to
solve the problem, but a restriction of even symmetry was
imposed on p,. With this restriction, the optimal p, was
essentially identical to the first basis function of the LOT
definition in (13). However, a solution to (A.1) may be
neither symmetric nor unique, and nonsymmetrical solu-
tions actually do exist, as we will see later.
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A necessary condition for a vector p, to be a solution-

to the problem in (A.1) is that it must be a zero of the
associated Lagrangian [28], i.e., there must exist two La-
grange multipliers y and A, associated to the restrictions
in (A.1), such that

2R, po + p(W+ W )p, +2xp, = 0. (A.2)
Premultiplying (A.2) by pg, we get
p(,)Rxxpo + )\Pépo =0 (A3)

from which we get A = —p{R,, p,.
Also, premultiplying (A.2) by poW and piW', and
using W? = 0, we obtain
2poWR, . po + ppoWW'py = 0 (A4)
and
2poW'Rexpo + upoW’' Wpo = 0. (A.5)

Adding the two conditions above and using WW' + W' W
= [ leads to

b= *2P('>(W+ W,)Rxxpo- (A-6)
With R, given by (32) with p — 1, all elements of R,

will have a unity value, in the limit. Thus, we will have
(W+ W)HR,, = R,,, and (A.2) will assume the form

[Rxx - (p(’)Rxxpo)(W, + W+ I)]pO = 0. (A7)

An optimal p, must satisfy not only the above equation,
but also the restrictions in (A.1). Thus, (A.7) implies
either

M- 1 -1
po(n) + po(n + M) = {kgo Po(k)] (A.8)
forn=0,1,---,M—-1,o0r 7
2 po(k) = 0. (A.9)

The condition in (A.8) states that if we superimpose the
first basis functions of all blocks, the result should be a
constant value. This is generally considered as a reason-
able property in image coding, because it leads to the most
efficient representation of flat background areas, as we
have discussed before. What we have done above was to
show that it is in fact a necessary condition for asymptotic
optimality as p — 1.

If the first basis function p, satisfies (A.8), the objective
function £ will have the value, as p — 1

2M-1 2
E=| X2 P (")} =M.
n=0
In the second equality, we have assumed that the optimal
Do does not satisfy (A.9), because if so, we would have ¢
= 0 in the limit.
Thus, all feasible solutions that satisfy the necessary
condition for optimality in (A.8) lead to the same value
of the objective function, and so they are all globally op-

timal. It is easy to verify that both the first function of the
LOT in (13) and the first function of the MLT in (18),

(A.10)
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(19), and (22) satisfy the necessary condition in (A.8).
Thus, the first basis functions of the LOT and the MLT
are both globally optimal, asymptotically.

Now we turn to the problem of optimizing all basis
functions. The problem can be formulated sequentially,
that is, once an optimal p, is found, we optimize p,, then
P>, and so on, as suggested originally in [9]. Then, the
optimization problem for the ith basis function is

maximize &, = p/R..p;

subject to p/ Wp; = 0

pipi =1
pip =0, j=0,1,---,i~-1
piWp; =0, j=0,1,---,i-1
and p/W'p;=0, j=0,1,---,i-1
(A.11)

The necessary condition for optimality in this case is that
there must exist Lagrange multipliers u, A, «;, §;, and
v, forj=0,1, -+ ,i— 1, such that

2R,.p; + u(W+ W')p + 2\p;

i—1

+ 0(a,1+ B;W+ ;W )p =0.
J

(A.12)

]

Premultiplying (A.12) by p/ and by p/, with0 < r <
i — 1, and after some manipulations, we get

N = —p/R..p: (A.13)

and

—zp;Rxxpi- (A14)

o =

Now, premultiplying (A.12) by p; W and p; W', and
adding the results, we arrive at
2pll(W + W,) Rxxpi + ©
i—1

+I_§)p;(5,w'w + 1y, WW)p, =0. (A.15)

Also, premultiplying (A.12) by p; W and p; W', with 0
=< r < i — 1, and adding the results, we obtain

2p:(W + W)R,p +u

i—1

+I_§Op:(3, W'W+ v, WW )p, =0 (A.16)

Using again the fact that, in the limit as p — 1, we have
(W+ W')R,, = R,,, we conclude from (A.15) that u
= 2. Furthermore, since (A.16) must hold for all r <
i,wegety,=8;=0,forj=0,1,---,i—1,1i.e.,the
last two constraints in (A.11) are not binding at an opti-
mal solution. Then, (A.12) will be equivalent to

[Rxx - (pl, Rxxpi)(wl + W+ I)]pl =0 (A17)

We note that the above equation is identical to the nec-
essary condition for py in (A.7). However, since p; must
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be orthogonal to p,, fori > 0, it follows
2M— 1

pi(k) = 0.

k=0

(A.18)

It is easy to verify that the basis functions of the LOT
and the MLT satisfy the necessary conditions in (A.8) and
(A.18), as well as the constraints in (A.1) and (A.11).
Thus, the LOT and the MLT are at least locally optimal
solutions to the problem of maximizing the coding gain.
We recall that their first basis functions are globally op-
timal.

Due to the highly nonlinear nature of the problem in
(A.11), deriving sufficient conditions for global optimal-
ity is virtually impossible. However, we must recall that
if we remove the restriction in (2), i.e., if we do not re-
quire orthogonality of the overlapping portions of the ba-
sis functions of neighboring blocks, the problem becomes
trivial, and the maximum coding gain is that obtained by
the Karhunen-Loeve transform of length 2M. As we saw
in Fig. 8, the coding gain of the MLT is so close to that
of a length-2M KLT that, for all practical purposes, we
can consider the MLT as the optimal lapped transform.
The LOT is also optimal, since its coding gain is close to
that of the MLT.
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