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The LOT: Transform Coding Without Blocking
Effects

HENRIQUE S. MALVAR, MEMBER, IEEE, AND DAVID H. STAELIN, FELLOW, IEEE

Abstract—The Lapped Orthogonal Transform (LOT) is a new tool
for block transform coding with basis functions that overlap adjacent
blocks [1]-[3]. The LOT can reduce the blocking effect to very low
levels. In this paper, an exact derivation of an optimal LOT is pre-
sented. The optimal LOT is related to the discrete cosine transform
(DCT) in such a way that a fast algorithm for a nearly optimal LOT is
derived. Compared to the DCT, the fast LOT requires about 20-30
percent more computations, mostly additions. An image coding ex-
ample demonstrates the effectiveness of the LOT in reducing blocking
effects. Unlike earlier approaches to the reduction of blocking effects,
the LOT actually leads to slightly smaller signal reconstruction errors
than does the DCT.

I. INTRODUCTION

NE of the most efficient methods of data compression

of images and other random signals is transform cod-
ing [4], [5]. The incoming signal is generally subdivided
into blocks of N samples; each block is projected into a
particular basis by means of an orthogonal transform, and
the coefficients of the transformation are quantized and
transmitted. At the receiver, the coefficients are recon-
structed and the inverse transformation applied, so that an
approximation of the original block is obtained.

The effects of the quantization error are minimized
when the transform basis functions are the set of eigen-
vectors of the autocovariance matrix of the input signal,
these vectors define the Karhunen-Logve transform (KLT)
[4]-[6]. The KLT packs most of the signal variance, or
energy, into the minimum number of coefficients for any
desired error level, and thus it leads theoretically to the
minimum bit rate [5]. In practice, the discrete cosine
transform (DCT) is preferred over the KLT, since the
DCT is signal independent, it is a good approximation to
the KLT for a large class of signals with low-pass spectra,
and can be computed by means of fast algorithms [4], [7].

DCT-based transform coding has been a popular method
of image and speech compression [5], and most of its re-
cent advances concentrate on adaptive quantization strat-
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egies [8], [9]. One of the basic problems of transform
coding at low bit rates, which has not been efficiently
solved yet, is the so-called ‘‘blocking effect.”” The block-
ing effect is a natural consequence of the independent pro-
cessing of each block. It is perceived in images as visible
discontinuities in features the cross block boundaries [10]
(in the interframe image coding with motion-compensated
frame prediction, blocking effects are not so disturbing,
but are still noticeable [11]). In transform coding of
speech, blocking effects are perceived as extraneous tones
[5].

Some methods for the reduction of blocking effects have
been previously suggested [10], [12], [13]. In [10], two
methods were proposed: overlapping, also discussed in
[12], and filtering. In the overlapping method, the blocks
overlap slightly, so that redundant information is trans-
mitted for the samples in the block boundaries. The re-
ceiver averages the reconstructed samples from the neigh-
boring blocks, in the overlapping areas. The disadvantage
of this approach is the increase in the total number of sam-
ples to be processed, and thus an increase in the bit rate.

In the filtering method, the coding process at the trans-
mitter is unchanged, and at the receiver a low-pass filter
is applied only to the boundary pixels. Although this
method does not increase the bit rate, it blurs the signal
across block boundaries. In [13], the filtering method
avoids blurring by incorporating a prefilter at the trans-
mitter. In [14], the short-space Fourier transform (SSFT)
is used instead of the DCT. Although the SSFT is intrin-
sically free from blocking effects, because the SSFT of a
block depends on the whole signal, it introduces ringing
around edges.

A new class of transforms for blocking signal coding,
introduced in [1] and [2], has the same benefits of the
overlapping method cited above, but wirhour an increase
in the bit rate. These new transforms (collectively re-
ferred to as the *‘lapped orthogonal transform,’” or LOT,
after [2]) are characterized by the fact that each block of
size N is mapped into a set of N basis functions, each one
being longer than N samples. In this paper, we present the
LOT definition and show that its basis functions can be
derived as the solution to an eigenvalue problem, instead
of by means of the possibly noisy iterative numerical pro-
cedure in [1] and [2]. We review the basic properties of
LOT’s in Section II, and an optimal LOT is derived in
Section III. A fast-computable approximation to the LOT
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is presented in Section IV. The LOT efliciency in reduc-
ing the blocking effects is verified in Section V.

1I. Basic ProPERrTIES OF THE LOT

In this section, we review those properties of the LOT
[1], [2] necessary for its analytical derivation in Section
III. We assume that the signals to be processed are uni-
dimensional: extension to two or more dimensions is eas-
ily achieved by defining separable transforms based on the
unidimensional profile; this is a standard approach to mul-
tidimensional transform coding [4], [5].

Let us assume that the incoming discrete-time signal is
a large segment of MN samples, where N is the block size.
In traditional transform coding M blocks of length N
would be independently transformed and coded. In matrix
notation, if we call x, the original input vector of length
MN, the vector y, containing the transform coefficients of
all blocks is given by

Yo = T'x,, (1)
where T is the transpose of an MN X MN block-diagonal
matrix, in the form

(2)
0 D
where D is a matrix of order N, whose columns are the
basis functions that define the transform of each block.
With the LOT, each block has L samples, with L > N,
so that neighboring blocks overlap by L — N samples.
The basic operation of the LOT is thus similar to the over-
lapping method of [10]. A fundamental difference is that
the LOT maps the L samples of each block into N trans-
form coefficients. With the number of transform coeffi-
cients being equal to the block size there is no increase in

the data rate. The LOT can be defined as in (1), with T
given by

P, 0
Py
' (3)
Py
0 P,

where P, is an L X N matrix that contains the LOT basis
functions for each block. We have assumed L < 2N, i.e.,
the length of each basis function is at most twice the block
size. This choice will be justified later. The matrices P,
and P, are introduced because the first and last blocks of
a segment have only one neighboring block, and thus the
LOT for the first and last blocks must be defined in a
slightly different way, to guarantee that none of the basis
functions extends beyond the segment boundaries. We
shall concentrate on P, for now.

We note that the LOT of a single block is not invertible,
since P, is not square. Nevertheless, in terms of recon-
structing the whole segment x,, all we need is invertibility
of T. Orthogonality of T is also a desirable property, as
with all transforms in traditional transform coding, since
it guarantees good numerical stability. In order for T to
be orthogonal, the columns of P, must be orthogonal,

PyPy =1, (4)

and the overlapping functions of neighboring blocks must
also be orthogonal,

PyWP, = PyW'P, = 0, (5)

where I is the identity matrix, and the shift operator W is
defined by :

v-loal

The identity matrix above is of order L — N, and we have
assumed L < 2N. As we will see later, a good choice for
Lis L = 2N. We will say that an LOT matrix P is fea-
sible if it satisfies (4) and (5). The set of feasible LOT’s
is clearly a superset of nonoverlapping transforms.

Besides the required orthogonality conditions above, we
should expect additional properties to hold for a good LOT
matrix Py, based on our knowledge of the DCT and KLT.
If a feasible LOT is to exhibit good energy concentration,
its basis functions should have properties similar to those
of the DCT and KLT functions. Two of these properties
seem to be the most relevant.

First, we recall that the DCT is a good substitute for
the KLT because the DCT functions approximate the ei-
genvectors of the autocorrelation matrix R,, of a first-or-
der Gauss-Markov process [5], [15]

(6)

1 oo o"
0 1 o - pL—l
R.=| N )
ot ! p 1 p
N A

where p is the intersample correlation coefficient. Since
the above matrix is symmetric and Toeplitz, its eigenvec-
tors (which define the KLT) are either symmetric or an-
tisymmetric [16}, [17], i.e.,

R.y=N=1Jy=yorly= -y, (8)
where J is the ‘‘counter-identity’’
0 0
0 01 0
J= (9)
10 s 0.

It turns out that half of the eigenvectors of R,, are sym-
metric, i.e., Jy =y, and the other half are antisymmetric,
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Jy = —y [16]. It is reasonable to expect that the LOT
should also have this kind of symmetry, i.e., it should be
formed by N/2 symmetric (or even) vectors and N/2 an-
tisymmetric (or odd) vectors. The DCT functions have
this even-odd symmetry.

Second, it is reasonable to assume that at least the low-
order vectors (responsible for most of the energy concen-
tration) should be slowly varying sequences, e.g., sam-
pled sinusoids with low frequencies. The eigenvectors of
R, in (7) are exactly sampled sinusoids [4], for any value
of p. The DCT basis functions are also sampled sinu-
soids.

Based on the discussion above, we will assume that half
of the basis functions that compose a good LOT matrix
P, are even, and half are odd. Furthermore, we should
look for a set of feasible functions where the lower order
functions are as smooth as the DCT or KLT functions. It
is interesting to note that the orthogonality of shifted
functions in (5) automatically forces the samples of the
low-order basis functions to decay toward zero at their
ends (otherwise, a zero inner product would not be at-
tained) [3]. This is the key to reducing blocking effects.

III. AN OptiMAL LOT

An optimal LOT should minimize the bit rate for any
reconstruction error level. Assuming that the Markov
model of (7) is applicable, this is equivalent to maximiz-
ing the ‘‘energy compaction’’ measure (also called max-
imum transform coding gain [5])

N /N>
<H a,.z>
i=1

where o7 is the ith diagonal entry of the matrix
RO:P(I)RXXP(). (11)

Cassereau [1], [2] obtained optimal LOT’s by means of
an iterative optimization technique that searches for a
maximum of Gr¢c. At each step, a new basis function (i.e.,
a column of P,) is obtained. This approach has the dis-
advantage of being highly sensitive to numerical errors,
even with double-precision computations. Also, the op-
timal P, may not be easily factorable so that a fast algo-
rithm may not exist.

We present here a direct approach [3] for the derivation
of an optimal LOT when L = 2N, i.e., the basis functions
of neighboring blocks overlap by N samples. Our ap-
proach is virtually insensitive to numerical errors, and it
also leads to a better understanding of the LOT, so that a
fast algorithm can also be derived. The key point is to
start with a feasible LOT matrix P that is not necessarily
optimal. Then, the matrix

P, = PZ
is also a feasible LOT for any orthogonal Z, since
PPy=Z7ZPPZL=2127=1,
PyWP, = Z'P'WPZ = 0.

GTC = (]0)

(12)

We can define a feasible LOT from the DCT, by

_ De - Dn De - Da
P‘%[Jwe—n,,) —J(De—m}’ (15)

where D, and D, are the N X N/2 matrices containing
the even and odd DCT functions, respectively [3]. It is
easy to verify the feasibility of P above. This particular
choice will be justified in Section IV.

With P as in (15), what we need to obtain an optimal
LOT is to find an optimal Z in (12). Substituting (12) into
(11), we obtain

R, = Z PR, PZ. (16)

With P and R,, fixed, it is clear that Grc is maximized
when Ry is diagonal, i.e., when the columns of Z are the
eigenvectors of P' R, P. With such a Z, the LOT matrix
P, is optimal.

It is important to point out that our optimization ap-
proach leads to an optimal LOT that is tied to the choice
of the initial matrix P. Since each column of P has L ele-
ments, with L > N, they span an N-dimensional subspace
of ®". For any Z, the matrix PZ will always belong to
that subspace, and so will the optimal LOT. However,
there may exist a feasible LOT P that does not belong to
the subspace spanned by the columns of P, i.e., it cannot
be generated by (12).

Thus, an optimal LOT derived by the procedure above
may not be the globally optimal LOT, in the sense of
maximizing the energy compaction. However, as we will
see later, our choice for P in (15) is good enough since
we have obtained the same energy compaction as Casser-
eau’s functions [1], [2], which are designed to be globally
optimal (actually, we have obtained slightly higher Gr.’s:
this is probably due to some error propagation in Casser-
eau’s algorithm).

For a Markov model with p = 0.95, the columns of the
optimal Py are shown in Fig. 1. The functions are not very
sensitive to variations in p, so that the results for o = 0.8,
for example, a virtually the same as those in Fig. 1. We
note in Fig. 1 that the orthogonality constraints for the
functions belonging to neighboring blocks led to basis
functions that decay toward zero at their boundaries. The
first basis function, for example, has a boundary value
that is 5.83 times lower than its value at the center. So,
the discontinuity from zero to the boundary value is much
lower than that of the standard DCT functions, and this
is one of the main reasons why blocking effects are re-
duced.

There are two basic properties of the LOT functions in
Fig. 1 that are a direct consequence of the choice L =
2N. First, if the lowest order basis functions for a group
of consecutive blocks are superimposed, the resultant se-
quence has a constant dc value. This is an important and
desirable characteristic, since it implies that a flat field
can be reproduced with only one transform coefficient per
block. If L were smaller than 2N, perfect dc reconstruc-
tion with only one coefficient would necessarily lead to a
loss of smoothness in the central portion of the first basis
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Fig. 1. (a) An optimal LOT for N = 16, L = 32, and p = 0.95, even basis
functions. (b) An optimal LOT for N = 16, L = 32, and p = 0.95, odd
basis functions.

function. Second, the fact is that the right boundaries of
the basis functions for block r are immediately adjacent
to the left boundaries of the functions for block r + 2. If
L were smaller than 2N, there would be two different po-
sitions in block r + 1 where discontinuities from block r
and block r + 2 might occur. It seems, therefore, that L
= 2N is a good choice for the length of the functions.

The factor Z of the optimal LOT matrix P, = PZ may
not be factorable in N log (N) butterfly stages. This is
exactly the same deficiency of the optimal KLT for block
coding without overlapping. In the next section, we dis-
cuss an approximation to the optimal LOT that can be
implemented through a fast algorithm, just as the DCT is
a fast-computable approximation to the KLT.

IV. Fast COMPUTATION OF THE LOT

The key to a fast algorithm for the LOT is the approx-
imation of the matrix Z by a product of a few simple fac-
tors. Actually, this is the main reason why we have cho-

sen the DCT basis functions in the definition of P in (15).
Such a definition will allow us to obtain a useful expres-
sion for the matrix P’ R,, P. In order to simplify notation,
let us refer to the Gauss-Markov autocorrelation matrix
in (7) as R(2N, p), where the first parameter represents
the matrix order. We can relate R(2N, p) to R(N, p) by

R(N,p) B
R(2N, p) = <B(N ) RN p)>, (17)

where B = pJrr’ and r = [1 pp’--pM].
Combining (15) and (17), we obtain, after a few ma-

nipulations,
R0=<Rl "), (18)
0 R
where the diagonal blocks R, and R, are given by
R, = D(R(N, p)D, + D;R(N, p)D,
+ pD.rr'D, + pD,rr'D,, (19)
and
R, = D,R(N, p)D, + D,R(N, p)D,
— pD.rr'De — pD,rr'D,. (20)

If we let the correlation coefficient p approach unity,
the matrices D, and D, will contain the asymptotic even
and odd eigenvectors of R(N, p), respectively, since the
DCT is the limit of the KLT as p — 1 [15]. Thus, the
terms D, R(N, p)D, and D,R(N, p)D, are asymptoti-
cally diagonal, with positive entries. Also, as p = 1, the
vector r will have all of its entries equal to one, i.e., it
will be an even vector. Thus, the term D,rr' D, goes to
zero. Furthermore, since the vector [11 - - - 1]’ is equal
to v/N times the first column of D,, it follows that

NO0OO ---0

00 <0 0

D,rr'D, = | . . . (21)

0O 0 --- 0

Thus, it is clear that R; will asymptotically be a diag-
onal matrix with positive diagonal entries. The factor R,,
however, may not have a dominant diagonal because the
third term in (20) is subtracted from the others. Neverthe-

less, we can expect the following approximation to hold
as p gets closer to one:

{I 0}
Z= s
0 7

where Z is of order N/2. Although R, may not have a
strongly dominant diagonal, we should expect some di-
agonal dominance, so that Z should not be far from the
identity matrix. In fact, in [3] it is shown that Z can be
closely approximated by a cascade of N/2 — 1 plane ro-

(22)
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tations, in the form

Z=TT, - Ty, (23)
where each plane rotation is defined as
10 0
T, =0 Y(6) 0 (24)
00 1
The matrix Y(6;) is a2 X 2 butterfly
¥(0,) = < cos 8, sin 0,->! (25)
—sin 6; cos 6;

where 6; is the rotation angle, and the top left identity
factor in (24) is of order i — 1. If we apply the transpose
of each T; to Z in the reverse order of (24), we should
obtain a close approximation to the identity matrix, and
this is indeed the case [3]. For N = 16 and p = 0.95, an
appropriate set of angles is [0, - - - §,] = [0.42 0.53 0.53
0.50.44 0.350.23 0.11] [3]. With these angles, the en-
ergy compaction is Gyc = 9.32, which is close to the value
Gre = 9.49 corresponding to the exact solution. Thus,
the loss in coding gain by using the approximation in (23)
is only 0.08 dB. The energy compaction for a DCT of
size 16 is Grc = 8.82, so that the LOT leads to an im-
provement of 0.32 dB in the rms reconstruction error.

It is important to note that the approximation of Z by a
cascade of N — 1 butterflies is satisfactory for small N.
When N = 32, the approximation may introduce small
discontinuities in the low-order basis functions, which
would lead to noticeable artifacts in the reconstructed sig-
nal. The problem of finding a good approximation to Z
for large N is still unsolved.

Our fast LOT is defined by Py in (12), with P given by
(15) and Z by (22)-(25). The resulting P, can also be writ-
ten as

L

This LOT matrix has been presented in a shorter ver-
sion of this work, reported in [18]. Here we will present
details of the implementation of that LOT. The flowgraph
corresponding to the above matrix, for N = 8, is shown
in Fig. 2. Note that the flowgraph can be used for both
the direct and the inverse LOT’s, by transposition, as with
all orthogonal transforms. Although the flowgraph of Fig.
2 seems to indicate that we need to compute two DCT’s
of size N to obtain N LOT coefficients, this is not so, as
we discuss below.
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Fig. 2. Flowgraph of the fast LOT for a single block, for N = 8. The
angles that best approximate the optimal LOT are 0, =013 7, 6, =
0.16 7, and ; = 0.13 x. The direct LOT is obtained by processing the
data from left to right, and the inverse LOT from right to left.

1/2

LoT OFM
— BLOCK
THg 2 N1/2 ][:Z

Fig. 3. Flowgraph of the fast LOT for a data segment composed of M
blocks of size N. Note that each line in the flowgraph is actually a set of
N/2 consecutive coefficients, and each butterfly represents a set of N/2
actual butterflies, in a simple extension of Fig. 2. Inside the dashed line
is the LOT of a single block. The letters *‘E’* and 'O’ represent even
and odd coefficients, respectively.

(26)

Now we return to the point that what we need to com-
pute is the LOT of the whole data segment x, in (1), and
also to the relationship among Py, P, and P,, in (3). From
Fig. 2, it is clear that the DCT’s used in block r can also
be used in part for blocks » — 1 and r + 1, as shown in
Fig. 3. The LOT of the first and last blocks, P, and P,,
are obtained by reflecting the data at the segment bound-
aries. This is equivalent to using the block labeled H, in
Fig. 3, where H, is the matrix containing half of the sam-
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Fig. 4. (a) Original **CAMERA"" image. The right side is a magnified
view of a segment from the left side. (b) ‘*“CAMERA’’ coded at 0.5 bits
per sample with the DCT. with a block size N = 16: rms error = 12.1
percent. (c) “"*CAMERA’" coded at 0.5 bits per sample with the LOT,
with a block size N = 16; rms error = 10.5 percent.

ples of the even DCT functions, that is,

(He >
D, = ,
JH,

where, as before, the columns of D, are the even DCT
functions.

We note that the LOT of a data segment of M blocks of
size N can be computed by first computing the DCT of all
blocks, as in traditional transform coding, and then ap-
plying the +1/—1 and Z butterflies of Figs. 2 and 3.

(27)

V. AN IMAGE PROCESSING EXAMPLE

The shapes of the LOT functions in Fig. | suggest that
the LOT can be very effective in reducing the blocking
effects. As an example, consider the ““CAMERA’’ image
in Fig. 4(a), which contains 256 X 240 pixels, at 8 bits
per pixel. The right half of the image was replaced by the

magnified version of a region of the left half, so that the
effects of processing over that particular area of the image
could be better observed.

In Fig. 4(b), the image was coded with the DCT at an
average rate of 0.5 bits per sample, with a block size N
= 16, and a single bit pattern with scalar Max quantizers
for all blocks, as described in [4]. The image quantity is
somewhat low for half a bit per pixel, because the bit pat-
tern was not adaptive. We note that the blocking effect in
the magnified area is strong enough to be annoying. In
Fig. 4(c), the DCT was replaced by the LOT, at the same
rate of 0.5 bits per sample, with a new bit pattern, rede-
rived in terms of the new estimated coefficient variances.
The blocking effects are reduced to a level where they can
barely be detected by the human eye. The coding noise
pattern is virtually unaffected by the LOT, being mainly
a function of the quantization process. The rms error was
slightly lower with the LOT, the main reason being that
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the compaction Gy¢ of the LOT is somewhat larger than
that of the DCT, for the same value of N.

VI. CoNCLUSION

We have derived an optimal set of overlapping basis
functions, which comprise the Lapped Orthogonal Trans-
form, LOT. Unlike the derivation in [1] and [2], where
the basis functions are obtained recursively as the solution
to a series of nonlinear optimization problems, we have
obtained the LOT as the solution to a simple eigenvalue
problem. Therefore, we have derived a direct represen-
tation for the LOT. By approximating one of the factors
of the optimal LOT by a product of plane rotations, it was
possible to derive an efficient implementation for the LOT,
which allows LOT-based transform coding to be realized
with little computational overhead, when compared to the
DCT.

A typical image processing example has shown the ef-
ficiency of the LOT in reducing the blocking effects, in
agreement with the experiments reported in [1]-[3]. We
believe that the fast LOT introduced in this paper allows
the implementation of block coding systems at low bit
rates (below 1.5 bits per sample) with much less notice-
able blocking effects than traditional DCT-based trans-
form coding.

One point about the LOT that we have not mentioned
before is that the LOT can be viewed, as any block trans-
form, as a critically sampled multirate filter bank. Unlike
all nonoverlapping transforms, the basis functions of the
LOT are the impulse responses of reasonably good band-
pass filters. Since the conditions in (4) and (5) guarantee
perfect reconstruction in the absence of coding, the LOT
can also be viewed [20] as a quadrature-mirror-filter
(QMF) bank [19] that has a fast algorithm.
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