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Abstract

The block processing inherent in the use of traditional vector quantization (VQ) schemes typically gives
rise to perceptually distracting blocking artifacts. We demonstrate that such artifacts can, in general, be
virtually eliminated via an e�cient lapped VQ strategy. With lapped VQ schemes, blocks are obtained
from the source in an overlapped manner, and reconstructed via superposition of overlapped codevectors.
The new scheme, which we term lapped orthogonal vector quantization (LOVQ), requires no increase in bit
rate and, in contrast to other proposed approaches, no signi�cant increase in computational complexity or
memory requirements. Attractively, the use of LOVQ also leads to a modest increase in coding gain over
traditional VQ schemes of comparable complexity. In addition to the theory, results of experiments involving
speech and image sources are also presented.

1 Introduction and Background

Vector quantization (VQ) plays an important role in a wide range of signal coding and data com-
pression applications [1]. In a typical application, involving imagery or speech for example, the
signal is partioned into contiguous blocks of equal size, each of which corresponds to a vector of
signal samples. Each vector is then represented by one of a set of candidate codevectors that is
closest to the vector with respect to some distortion or distance measure. This set is referred to as
the codebook, and is available to decoder as well. As a result, for each block only the index of the
codevector need be transmitted to allow suitable reconstruction of the block at the receiver.

VQ systems are generally memory-intensive, but the memory requirements are symmetric with
respect to the encoder and decoder. The codebook size is O(2RN ) where R is the prescribed bit rate
and N is the block size. This behavior, coupled with the fact that the codevector lengths obviously
grow linearly with N , means that the codebook memory requirements grow dramatically with block
size.
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By contrast, the computational requirements of VQ systems are highly asymmetric. A full code-
book search at the encoder has a computational complexity comparable to the memory requirements,
viz., O(2RN ) per signal sample. Decoding complexity is negligible however, since it requires a sim-
ple table lookup. This asymmetry is particularly well-suited to a variety of applications, such as
database browsing. However, VQ systems and subsystems are also widely used in a wide spectrum
of other applications, including videoconferencing and digital audio systems.

It is well known, in fact, that VQ is an asymptotically optimal compression strategy in the
sense that given a su�ciently long block length and suitably designed codebook, the rate-distortion
bound for the source can be approached arbitrarily closely. However, the memory and computa-
tional requirements strongly limit block lengths, and as a result the asymptotic limits are rarely
approached in practice. The use of constrained or structured codebooks can reduce the computa-
tional and/or memory requirements, allowing larger block sizes to be used [2] [3] [1]. However, with
such constraints, VQ is generally no longer an asymptotically optimal scheme.

An important class of coding systems that can be interpreted as a form of VQ with constrained
codebooks is the traditional approach of using a linear block transform followed by scalar quanti-
zation [4]. The corresponding decoder then reconstructs the quantized coe�cients and applies the
inverse transform. As is well-known, the resulting system is equivalent to a VQ system in which
the codebook corresponds to a rotated cartesian lattice of codevectors. In e�ect, it is this spe-
cial structure that leads to a fast-searchable codebook. The memory requirements of such systems
are are dramatically reduced, to O(N2R). Moreover, if a fast-computable transform is used, the
computational complexity at both the encoder and decoder is O(logN) per sample. However, al-
though reasonable performance can often be achieved via transform coding, its performance does
not approach the rate-distortion bound with increasing block size.

The need to use �nite block sizes in VQ systems not only limits how closely the rate-distortion
bound can be approached, but also leads to unnatural and perceptually distracting blocking artifacts.
In e�ect, mean-square coding distortion is not minimized because interblock dependencies are not
exploited, and blocking artifacts arise because the distortion that is introduced by the coding process
has statistics that are periodic with a period equal to the block size.

In this paper, we develop a highly e�cient strategy for e�ectively eliminating blocking artifacts
in VQ systems, and which, as a side bene�t, also leads to a reduction in overall mean-square
distortion. Speci�cally, in Section 2 we exploit an interpretation of lapped transform coding as
a constrained lapped VQ system to develop and optimize a powerful generalization of the lapped
transform paradigm as our main result. In Section 3 we then explore several attractive performance
characteristics of the new strategy.

2 Mitigation of Blocking Artifacts: Lapped VQ

One class of techniques for mitigating artifacts in block processing systems such as VQ involves
applying a temporally- or spatially-varying �lter to the reconstructed signal at the decoder [5] [6]
[7]. Such techniques can be combined with suitable pre�ltering to substantially reduce blocking
artifacts, though at the expense of an increase in the overall mean-square reconstruction error [8] [9]
[10].

More e�cient and e�ective systems have generally resulted through the use of lapped block
processing strategies. For example, in unconstrained (full-search) VQ systems, blocking artifacts can
be reduced by extending the reconstruction codevectors beyond the block boundaries at the decoder.
A mean-square optimized overlapping reconstruction codebook can lead to a noticeable reduction
of blocking artifacts and a reduction of the reconstruction error [11]. However, a disadvantage of
this particular approach is the increase in decoding complexity and memory requirements due to
the increased decoder codebook size.

In this section, we develop an e�cient lapped VQ scheme in which blocks are acquired in a
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Figure 1: Transform coding with lapped transforms. Typically, the quantizer block is formed from

a set of N independent scalar quantizers.

lapped manner at the encoder, and reconstructed in a lapped manner at the decoder. As we will
demonstrate, this technique produces performance enhancements similar to those in [11], but without
requiring any increase in the coder or decoder codebook sizes. This new scheme can be interpreted
as a powerful generalization of lapped transform coding schemes. Accordingly, we begin our devel-
opment with a summary of the relevant concepts and results on this topic.

2.1 Lapped Orthogonal Transforms

Lapped transform coding can be viewed as a lapped VQ strategy with a highly structured codebook,
in much the same way as conventional transform coding can be viewed as a conventional VQ strategy
with a highly structured codebook. Moreover, the use of lapped transforms with suitable orthogo-
nality properties can achieve a signi�cant reduction in blocking artifacts, and also simultaneously a
reduction in mean-square reconstruction error over nonlapped transform coding.

Lapped transforms were developed based on the notion of representing the input signal as a
combination of overlapping basis functions. Although other sizes are also used in practice, often the
basis functions from adjacent blocks overlap by 50% on each side of the block, so that their length
is twice the block size [9] [12]. With such a lapped transform, the transform matrix is no longer
N �N , but rather is N � 2N , mapping a block of 2N input samples into a block of N transform
coe�cients, as shown in Fig. 1. Each length-2N block in a lapped transform system cannot be exactly
reconstructed from its N transform coe�cients. However, when the transform basis functions satisfy
the additional \orthogonality in the tails" constraint [12]|so that the collection of basis functions
for all blocks constitute a complete orthonormal set|then, in the absence of quantization, perfect
reconstruction of the signal can be achieved by superimposing the overlapped blocks at the decoder.
These are referred to as lapped orthogonal transform (LOT) systems.

As Fig. 1 implies, the 2N � N transform matrix Q of any LOT system can be factored into
the product of a 2N �N window operator matrixW and an N �N orthogonal transform matrix
U. Moreover, it is evident that this factorization is not unique. However, for some LOT systems,
this factorization can be performed so that W is a sparse matrix and U can be implemented via
a fast algorithm [12]. For example, for the class of LOT systems referred to as modulated lapped
transform (MLT) systems, the resultingU can be e�ciently implemented via an O(logN) per sample
algorithm, and W via an algorithm whose complexity per sample is independent of block size, so
that the overall complexity is O(logN) per sample.
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2.2 Lapped Orthogonal Vector Quantization

E�cient lapped VQ systems result from generalizing the lapped transform coding systems discussed
in the previous section. In lapped transform systems, the N transform coe�cients generated for each
block via the lapped transform are quantized via individual scalar quantizers. As a result, lapped
transform coding corresponds to a lapped VQ strategy with a highly constrained codebook. In the
remainder of this section, we focus on systems where the codebook is substantially less constrained.
In particular, we replace the bank of N scalar quantizers in Fig. 1 with an unconstrained mean-
square optimized vector quantizer whose codewords are length N . We refer to the resulting systems
as lapped orthogonal vector quantization (LOVQ) systems.

When VQ is used in place of the bank of scalar quantizers in the LOT structure of Fig. 1, the
implementation of the lapped transform component of the system can be substantially simpli�ed.
In particular, the N � N orthogonal transform matrix U can be eliminated with no impact on
performance. This is because this matrix merely induces a (generalized) rotation of N -dimensional
vector space, so its e�ect can be conveniently absorbed into the VQ subsystem design provided the
VQ is unconstrained [1]. It is important to stress, however, that the window operator cannot be
absorbed into the VQ since its dimension is 2N �N .

The resulting LOVQ encoder structure, which is equivalent to an LOT followed by VQ, is depicted
in Fig. 2(a). The corresponding decoder structure, which is equivalent to a VQ decoder followed
by the LOT inverse, is depicted in Fig. 2(b). Recall that the VQ decoder in Fig 2(b) is a simple
table lookup operation: the appropriate length-N codevector is selected according to the received
index. The window operator inverse, in turn, maps successive length-N codevectors into overlapping
length-2N codevectors which are superimposed to generate the reconstruction at the output.

Not surprisingly, the choice of window operator has a signi�cant impact on the performance
of the resulting system, both in terms of mitigating blocking artifacts and reducing mean-square
coding distortion. Furthermore, the structure of this operator a�ects the additional computational
complexity inherent in the use of LOVQ over conventional VQ systems. From these perspectives,
a particularly attractive choice for the window operator is that corresponding to the MLT. As we
discussed, this window operator has a computational complexity per sample that is independent of
the with block size. Its implementation via the orthogonal butter
ies is depicted in Fig. 3, where
the butter
y transmittances are given by

h[n] = sin

��
n+

1

2

�
�

2N

�
: (1)

This choice for the window operator leads to the overlapping length-2N decoder codevectors
having some intuitively appealing characteristics. To see this, note that each length-2N codevector
generated at the output of the LOVQ decoder in Fig. 2(b) is a linear combination of the N basis
functions of the window operator, i.e., the columns of the window operator matrix. For the speci�c
choice of the MLT window operator these basis functions all taper smoothly to zero at both ends,
a result one might expect of a reconstruction of the lapped blocks via superposition that avoids
blocking artifacts.

Note that with this fast-computable window, the LOVQ system complexity in terms of both
computation and memory requirements is dominated by its VQ subsystem, and thus is comparable
to that for traditional VQ systems. This makes LOVQ an attractive alternative to the lapped VQ
scheme described in [11], which requires a decoder codebook whose vectors are of length 2N .

2.3 Optimization of Coding Gain in LOVQ Systems

Within the class of LOVQ systems, it is natural to seek that yielding both minimal block artifacts
and minimal overal coding distortion. Fortunately, these objectives are noncon
icting. In this
section we describe a framework for optimizing LOVQ systems.
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Figure 2: Implementation of lapped orthogonal vector quantization.
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Figure 3: LOVQ window operator at the encoder. The inverse window operator to be used at the
decoder is the transposition of this signal 
ow graph.

To begin, let us focus on the length-N vectors of coe�cients generated by the window operator.
When the original source x[n] is, for example, stationary, the sequence of overlapping length-2N
vectors x at the input to the window operator is a stationary vector source with Toeplitz covariance
matrix Rx. In turn, the length-N vectors of transform coe�cients y at the input to the vector
quantizer is also a stationary vector source with covariance matrix

Ry =WRxW
T:

For ergodic sources, the mean-square distortion-rate function for blocks of size N is bounded
according to [13]

DN (R) � �2x 

2

N 2�2R; (2)

where �2x is the variance of the source, and where 
2N is the spectral 
atness measure for the source,
i.e.,


2N =

"
N�1Y
k=0

�k

#1=N

1

N

N�1X
k=0

�k

=
N
�
detRy

�1=N
trRy

=
N
�
det(WRxW

T)
�1=N

tr(WRxWT)
(3)

with �k denoting the kth eigenvalue of Ry.
The bound (2) suggests that optimum VQ performance is obtained when the spectral 
atness

measure 
2N is minimized. Thus, the desired optimization is to minimize (3) over all possible window
operatorsW subject to the constraint that the operators correspond to orthogonal transformations.
This constraint can be expressed in the form

WWT = W1W
T

1 +W2W
T

2 = I (4a)
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W

�
0 I

0 0

�
WT = W1W

T

2 = 0 (4b)

where I is the identity matrix and 0 is the zero matrix, both of size N �N , and where

W =

�
W1

W2

�
:

In addition, it is sometimes convenient to further constrain the window operator to have a fast
implementation of the form described by Fig. 3. In this case, the orthogonality conditions (4) are
equivalent to the condition that the window sequence h[n] satisfy [12]

h2[n] + h2[N � 1� n] = 1:

for n = 0; 1; : : : ; N=2� 1.
Interestingly, for �rst-order autoregressive sources x[n], for which the autocorrelation function is

Rx[k] = �2�jkj;

the MLT window operator is asymptotically near-optimal, i.e., as �! 1 except for very small block
sizes. For N = 2, the optimal window sequence di�ers from that of the MLT, but can be readily
computed, yielding

h[0] = sin(�=6) h[1] = cos(�=6): (5)

3 LOVQ Performance Characteristics

Experiments involving speech and image data were conducted to verify the anticipated reduction in
blocking artifacts. In the set of experiments involving vector quantization of speech, LOVQ based
on the MLT window is compared with conventional VQ, where the VQ block size is N = 12 and the
rate is R = 0:5 bits/sample. Some typical codevectors from the respective codebooks are depicted
in Fig. 4. The codebook was designed from training data using an Linde-Buzo-Gray algorithm [1]
initialized with codevectors randomly selected from the training data. A typical segment of the
decoded speech waveform for each of the two systems is depicted in Fig. 5. While traditional VQ led
to visibly and audibly signi�cant blocking artifacts, these were e�ectively eliminated when LOVQ
was used, as Fig. 5 re
ects.

In the set of experiments involving vector quantization of imagery, LOVQ based on the MLT-
window was compared to traditional VQ with 4 � 4 blocks (N = 16) at rate R = 0:5 bits/sample.
Fig. 6 illustrates the performance of the respective systems on a test image of size 128� 128 pixels,
and 8 bits/pixel resolution. As Fig. 6 re
ects, while using traditional VQ the reconstruction has
prominent blocking artifacts, using LOVQ blocking e�ects are again e�ectively eliminated.

In both the above examples, the reduction of blocking artifacts was accompanied, appealingly, by
a modest reduction in overall mean-square distortion as well. This byproduct is, in fact, predicted
by the theory described in Section 2.3. In particular, Fig. 7 illustrates the coding gain that can
be achieved using LOVQ with a fast window operator over conventional VQ with the same code-
vector size N , as measured by the rate-distortion bound. In this �gure, the source is a �rst-order
autoregressive source x[n] with correlation coe�cient �. For the case N = 2, the window operator
that was used corresponded to the window sequence (5); for N > 2, the MLT window operator was
used. As Fig. 7 illustrates, greater coding gains are achieved for more strongly correlated sources
and smaller block sizes. This is to be expected since there are more statistical dependencies that
can be exploited by lapping in these cases.
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Figure 4: Representative vectors from the codebook of VQ systems for speech where the VQ block
size is N = 12 and the rate is R = 0:5 bits/sample. Top: vectors from the codebook of a traditional
VQ system. Bottom: vectors from an LOVQ codebook. Note that the LOVQ codevectors based on
the MLT window decay smoothly to zero at each end in order to reduce blocking artifacts.

4 Conclusion

In this paper, LOVQ was developed as an e�cient lapped VQ strategy that leads to dramatically
reduced blocking artifacts when compared with traditional VQ systems. Moreover, as an attractive
byproduct, with LOVQ this reduction is also accompanied by a modest reduction in overall mean-
square distortion. Most importantly, these performance enhancements are achieved with negligible
increase in system complexity or memory requirements. In particular, the overhead in complexity
amounts to a total of only 1.5 additional multiplies and adds (MADs) per input sample.
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