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Abstract 

We present a simple lossless audio codec, composed of an integer-reversible modulated 
lapped transform (MLT) followed by a backward-adaptive run-length/Golomb-Rice (RLGR) 
encoder. Its compression performance matches those of state-of-the-art predictive codecs, and 
it has the advantage that its compressed bitstream contains frequency-domain data that can be 
used for applications such as search, identification, and visualization. Its compression gain can 
be improved through a novel data model based on cross-block smoothed spectral magnitude 
estimates. Its bitstream can be transcoded into a lossy format, for transfers to portable players, 
at about twice the speed of other codecs. The codec also supports a near-lossless mode, which 
allows for an extra factor of two in compression without noticeable distortions. 

1. Introduction 

In the past decade the use of compressed digital audio has grown rapidly, and the popularity of 
the compact disc (the CD, which carries uncompressed digital audio) has dropped significantly. 
At the time of this writing, the top-selling CD player at Amazon.com doesn’t make it into the 
top 500 best-selling items in consumer electronics, whereas four of the top ten items, including 
the top item, were portable digital audio players that mainly work with compressed audio. 

Usually audio is compressed in lossy formats [1], to minimize file size or network 
bandwidth, with the bit rate determined by the required fidelity for the application. For 
example, Internet radio stations typically use MP3 at 128 kbps, or WMA or AAC at 64 kbps, 
which are appropriate for background music. For headphone listening, though, higher quality is 
usually desired, and many users prefer rates such as 192 or 256 kbps. For a home digital music 
library stored in a personal computer (PC) or file server, where significant more storage is 
available, many users prefer to compress audio to a lossless format [2], so that later playback on 
high fidelity equipment will have the same fidelity as that from the original CDs. Most lossless 
audio compressors today achieve a compression factor of about 2:1 for audio sampled at 
44.1 kHz or 48 kHz. 

In a typical scenario, a user wants to refresh the music collection stored in a portable digital 
audio player, especially for inexpensive devices that do not have enough memory to store the 
user’s entire audio collection at a high enough fidelity. Even users that demand high audio 
quality prefer that music in the portable device be stored in a lossy compression format 
(typically at bit rates between 128 and 256 kbps), so that more tracks will fit within the device’s 



memory. The loss in audio quality is usually acceptable for the typical playback scenarios 
involving portable devices. 

Unfortunately, for the file transfer scenario described above, the user is not well served with 
today’s compressed audio formats. As each music file is transferred from the user’s PC to the 
portable device, it has to be decoded from a high-rate lossy or lossless format and re-encoded 
into a medium rate using a lossy format. Since most devices support high-speed USB 2.0 
connections, even with a modern PC the transfer time for each file is typically 80% for 
transcoding and 20% for the actual file transfer. Therefore, the user experience can be 
significantly improved if the lossless audio compression format can be quickly transcoded into 
a lossy format. Existing popular formats do not support fast transcoding, because lossless audio 
encoding typically uses adaptive time-domain prediction and adaptive entropy coding, whereas 
lossy encoding uses fixed or switchable-length time-frequency transforms, perceptual data 
weighting, and adaptive entropy coding. 

In this paper we propose a simple architecture for lossless audio compression, using an 
integer-reversible modulated lapped transform (MLT) [3]–[6] and a backward-adaptive 
Golomb-Rice (RLGR) entropy coder [7]. Even without any context modeling, the proposed 
encoder achieves a compression ratio that is quite close to those of state-of-the-art encoders. 
The architecture supports fast transcoding into lossy formats and also a simple near-lossless 
mode with negligible transcoding time. With the addition of a data model based on inter-block 
spectral estimation, the encoder can achieve compressed file sizes within less than 1% of the 
best results reported to date, while maintaining fast encoding times. 

In Section 2 we describe the proposed transform-domain lossless audio codec, and in 
Section 3 we describe how its performance can be improved via inter-block spectral estimation. 
In Section 4 we show that the proposed codec compares favorably with existing ones, and in 
Section 5 we discuss a simple near-lossless mode that may be appropriate for high-capacity 
digital audio players. We conclude by noting that the proposed lossless audio codec can provide 
a better user experience in typical scenarios. 

2. Transform-domain lossless audio coding 

Digital music libraries can become unwieldy large if stored in uncompressed form. A typical 4-
minute stereo music track, when stored in raw CD format, occupies 42 megabytes, so that a 
5,000 track library would need about 200 gigabytes. Even by modern standards, that’s a 
considerable amount of storage. Thus, any amount of compression, even the typical 2x of 
lossless codecs, is usually welcome. 

2.1. Predictive Coding 

One of the early well-known designs for lossless audio compression is SHORTEN [8]. 
Although motivated by the need to compress digital speech files, it also works reasonably well 
with music data. SHORTEN decomposes the audio in short blocks (typically with 256 
samples), and achieves a significant dynamic range reduction by the use of linear prediction 
(LP) or a low-order polynomial predictor. The prediction residuals are encoded with a Golomb-
Rice (GR) encoder, because GR encoder approximate very closely the optimal Huffman coders 



for sources with Laplacian probability distributions, which are good models for prediction 
errors [8]. In fact, GR encoders can perform very well for a family of generalized Gaussian 
distributions (of which the Laplacian is a special case) [7]. Each block in the compressed 
bitstream has a header area that stores an index to the kind of prediction used, the values of the 
prediction coefficients, and the value of the GR parameter, followed by the encoded residuals. 
Because the prediction and encoding parameters are pre-computed and then applied to the 
entire block, we say that SHORTEN uses forward-adaptive prediction and forward-adaptive 
entropy coding. 

Shorten also supports a “near-lossless” mode where the samples in each block can be right-
shifted by n bits, where n is adaptively changed from block-to block, to maintain specified 
signal-to-noise ratio per block. In this paper we borrow the terminology “near-lossless” to 
indicate lossy encoding at a high fidelity level (e.g. for imperceptible quality degradation). 

The basic concepts behind SHORTEN – forward-adaptive prediction followed by forward-
adaptive encoding – are still the basis of modern lossless audio codecs. One example is the 
popular FLAC [9] format, which typically leads to about 5% improvement over SHORTEN by 
supporting a larger set of predictors, and by dividing blocks into sub-blocks with different GR 
parameters for each. Another example is Monkey’s Audio, which currently has the best 
performance on most comparison tests. According to [10], Monkey’s Audio uses adaptive 
linear prediction and GR encoding, and [11] mentions that it also uses neural networks and 
range coding. Another modern codec that seems to be based in the same principles, but with 
more sophisticated cross-channel prediction for stereo data, is OptimFROG [12], whose 
compression performance usually comes quite close to that of Monkey’s Audio. 

The latest MPEG standard for audio coding supports two lossless formats: “Audio Lossless 
Coding” (ALS) [13] and “Scalable Lossless Coding” (SLS) [14]. ALS supports only lossless 
compression, whereas SLS supports a scalable-to-lossy mode, in which the bitstream includes 
an AAC lossy representation, for fast transcoding. ALS also uses forward-adaptive prediction 
(linear only) and forward-adaptive GR coding. ALS achieves some improvement in 
compression by encoding larger frames containing variable-size blocks, and by encoding small 
values of prediction residuals via Gilbert-Moore block codes [13]; unfortunately, those lead to a 
significant increase in computational complexity (see Section 4), while still not surpassing 
Monkey’s Audio performance. We discuss SLS in the next subsection. 

2.2. Transform coding 

There are two disadvantages of using predictive coding for audio, even with the well-developed 
technologies described above. First, in many audio segments there are periodic tones, which 
cannot be efficiently predicted by low-order predictors. The use of very high order predictors 
would not be a feasible solution, because in short audio frames there is not enough data for 
reliable convergence of algorithms for finding optimal prediction coefficients, and the use of 
pitch predictors (as in speech coders) would not work well, either, because in music there are 
usually several simultaneous tones. Second, most lossy compression algorithms use a transform 
front-end, and thus there’s no simpler way to transcode from lossless into lossy then full 
decoding of the samples and re-encoding. 



Frequency-domain coding using fast transforms can solve both problems. If the audio frame 
has dominant tones, than most of the energy in the frequency domain is concentrated in a few 
transform coefficients, allowing for efficient compression. If the same transform that is used for 
lossy coding is also used for lossless coding, then fast transcoding can be achieving by just 
decoding the transform coefficients and re-encoding in lossy mode; thus, no transform 
computation is needed for transcoding. Transform coding has other advantages: the frequency-
domain coefficients can be used directly for audio recognition, classification, and search, and 
summarization [15]. 

Transform coding can have the many desirable properties described above, but until a few 
years ago the use of transforms in lossless coding led to a significant loss in compression 
performance, as well as limited transcoding capability. That’s because for lossless compression 
the transforms have to be exactly reversible in integer arithmetic. Early direct approaches for 
integer transforms replaced each 2x2 orthogonal factor by a lifting-based integer-invertible (or 
integer-reversible) module [16]. That works well for short-length transforms such as those used 
in image compression, but for larger transform lengths (e.g. 256 to 4096), the accumulation of 
rounding errors leads to a significant drop in lossless compression, or excessive noise in lossy 
compression. 

Recently, new “matrix lifting” techniques have been developed for the computation of an 
integer-reversible modulated lapped transform (MLT, also known as modified discrete cosine 
transform – MDCT) [4], [5]. Even for large block sizes, those new methods can compute an 
integer MLT whose coefficient values are mostly within an error of less than +/–1from the real-
valued MLT coefficients. 

The MPEG-4 SLS uses such a low-noise integer MLT, of length 1024, 2048, or 4096 
samples [14]. The MLT coefficients are sent to a “core” layer using an AAC encoder, and the 
transform-domain errors between the AAC encoded values and the integer MLT coefficients 
are encoded in bit planes with a hybrid Golomb coder (BPGC) and context-based arithmetic 
coder (CBAC). MPEG-4 SLS also has a “non-core” mode, in which the integer MLT 
coefficients are directly encoded via BPGC or CBAC. Several parameters that control the 
entropy encoders are transmitted in the header for each block. The compression performance of 
MPEG-SLS is quite close to that of Monkey’s Audio. 

2.3. Proposed coder 

In this paper we propose a simple transform audio coder (STAC), using an integer MLT 
followed by an adaptive run-length Golomb-Rice (RLGR) entropy coder [7]. Its block diagram 
is shown in Fig. 1. The main difference from the coders discussed above is that the signal 
mapping block is fixed – an integer MLT of length 1024 – and the entropy encoder is 
backward-adaptive, with no parameter estimation during encoding. Each block is encoded 
independently, and for stereo signals the block header needs only one parameter value: a single 
bit indicating if the channels are encoded independently or after a mean/difference-like matrix 
computation. 

For a stereo audio input, the encoder processes each channel into 50% overlapping frames 
with 2M samples. For each frame we compute an integer MLT with M subbands, via a matrix 
lifting algorithm [4], [5], to minimize rounding noise. In this paper we use M = 1024.The stereo 



matrix module maps each pair {xL, xR} of transform coefficients into a new pair {xM, xD} of 
coefficients that carry mean and difference information, respectively. Instead of the usual 
mean-difference computation, we use the following lifting-based orthogonal approximation, 
which leads to a reduced dynamic range and thus slightly better compression: 
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where the operations are computed in the order shown, N is a fixed shift parameter that should 
be set as large as possible but without leading to overflow, Q = 2N–1, a = round{( 2 – 1)Q}, 
and c = round{ 2 Q}. 

We then encode each of the length-M vectors xL, xR, xM, and xD with our run-length Golomb-
Rice (RLGR) encoder [7]. Unlike the GR encoders used in most lossless audio coders, as 
discussed above, our RLGR encoder is fully backward-adaptive, so no parameters from the 
input data need to be computed and added to the bitstream as side information. We expect the 
RLGR encoder to perform well, because it has a performance comparable to context-adaptive 
arithmetic encoding for sources with a generalized Gaussian (GG) probability distribution [7], 
which is a good model for the distribution of MLT transform coefficients [17]. The encoder 
then chooses the shorter of the encoded bitstreams for the pairs {xL, xR} or {xM, xD}, and adds a 
flag bit indicating the choice. 

In its simple mode, that’s all there is to the encoder: fixed-length integer MLTs followed by 
RLGR encoders. That simple architecture allows for efficient code optimization in software 
implementations: the integer MLT can leverage existing work on fast FFT implementations 
[3]–[5], and the program code for the RLGR module is also easy to optimize, due to its 
simplicity. Using data parallelism and thread affinity, it’s easy to divide the tasks equally 
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Figure 1. Simplified diagram of the proposed lossless simple transform 
audio coder (STAC); the sorting module is optional. 

 



among two processors, if running on a dual-core machine (for a nearly 2x increase in encoding 
speed when compared to a single-core machine). 

3. Improved compression via inter-block coefficient magnitude estimation 

As discussed in Section 4, our simple codec described above is very fast for both encoding and 
decoding.  In fact, it is significantly faster than lossy perceptual audio codecs. Since most 
encoding and player software modules and playback devices usually support both lossy and 
lossless compression formats, there will usually be room for increasing the complexity of the 
lossless codec, even if only for a small gain in compression. 

For our coder we propose a novel data modeling strategy, which improves compression at a 
relatively small penalty in complexity. In this optional mode, the encoder and decoder compute 
a smoothed magnitude spectral estimator xS(k), where k = 0, 1, …, M – 1 is the frequency index. 
Calling {xL(k), xR(k)} the MLT spectra of the current frame to be encoded, we map them into 
their sorted versions {xL(k), xR(k)}, as well as their corresponding versions {xM(k), xD(k)}, and 
encode those also via RLGR encoders. Thus, the encoder now has to choose among four 
encoded bitstreams {direct L-R, mapped M-D, sorted L-R, or sorted M-D}, so the selection flag 
now has two bits. The sorting indices are determined by sorting xS(k) in order of decreasing 
values; the goal is to map the original MLT vectors into vectors with a more rapid decay in 
magnitudes, which compress better. Note that no side information on the sorting indices is 
needed; the decoder can compute them because xS(k) is available at the decoder. For that, the 
encoder and decoder update xS(k) by the simple filtering equations: 

• bi-directional smoothing: 
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• spectral estimate update: 

 ( ) ( ) ( ) ( )1 , 0,1,..., 1S Sx k x k v k k Mβ β= + − = −  (3) 

The bi-directional smoothing equations run a left-to-right followed by a right-to-left first-
order infinite impulse response (IIR) filter, with an effective zero phase response (and hence 
zero delay), controlled by the smoothing parameter α. The spectral estimate is updated via a 
first-order IIR filter controlled by β. In our implementation we found that for most audio tracks 
best compression is achieved with α = 0.25 and β = 0.55. The computations in (2) are scaled so 
that they’re performed in integer arithmetic. Note that for the decoder to run the update 
equations in (2), it needs the current spectral magnitude estimate xS(k), which assumes that all 
previous frames were decoded. Therefore, to allow for efficient seeking in the encoded 
bitstream, we reset xS(k) to predetermined values (e.g. xS(k) = M – k) at regular intervals of L 
blocks. Thus, frames of L blocks can be independently decoded. In our implementation we 
choose L = 94, so that frames have a length of about 2 seconds at sampling rates of 44.1kHz or 
48 kHz. 



4. Performance 

We implemented our STAC codec as a Matlab script, with C modules for the MLT transform, 
RLGR encoding, and spectral magnitude estimation. In Table 1 we compare the compression 
performance and encoding times for STAC, with respect to other popular codecs: Shorten [8], 
FLAC [9], OptimFROG [12], Monkey’s Audio (MAC [10]), MPEG-4 ALS [13], and MPEG-4 
SLS [14]. For each codec, encoding options were chosen for either fast execution or highest 
compression, as indicated in Table 1. We ran our tests on a PC with a Core Duo 2.4 GHz 
processor, and the encoding times are for all 15 tracks in the MPEG-4 48 kHz stereo test set for 
lossless audio codecs, for a total of 450 seconds of audio. The encoding times for STAC are 
estimated; they include actual processing times for all modules except for the MLT, for which 

codec/ 
option 

track 

Shorten FLAC 
-5 

Optim 
Frog 

MAC
-c2000

MAC
-c5000

MPEG4
ALS 
-default

MPEG4
ALS 
-max 

MPEG4
SLS 
noncore

STAC STAC 
with 
sorting 

STAC
near 
lossless

avemaria 41.9 40.8 37.4 37.9 36.7 38.7 36.6 37.2 37.4 36.86 16.9 

blackandtan 60.2 57.2 54.4 54.7 53.4 55.8 54.1 54.6 54.8 54.29 32.3 

broadway 54.3 51.2 47.6 47.9 46.9 49.3 47.7 48.8 49.2 48.76 26.2 

cherokee 56.9 54.5 52.1 52.4 51.8 53.3 52.1 52.6 52.7 52.42 31.2 

clarinet 50.3 49.4 46.2 46.6 45.0 47.3 45.0 46.1 46.1 45.29 22.4 

cymbal 33.1 29.5 25.9 28.7 27.4 27.5 25.7 29.0 27.2 26.28 20.8 

dcymbals 66.3 61.8 59.5 60.0 57.7 60.9 59.2 60.2 60.1 59.40 49.0 

etude 46.0 44.1 40.6 41.0 39.7 41.9 39.6 40.2 40.5 39.88 18.8 

flute 43.9 42.4 39.0 39.8 36.9 40.2 36.7 38.0 39.0 37.47 20.0 

fouronsix 50.3 48.3 45.2 45.6 44.3 46.3 44.9 45.7 45.7 45.25 28.4 

haffner 58.3 57.3 53.9 54.4 52.7 55.0 52.5 53.8 53.7 52.91 28.1 

mfv 34.9 33.4 28.7 29.2 27.8 30.1 27.8 28.2 29.0 27.98 9.4 

unfo 56.4 53.6 50.3 50.9 48.6 51.7 49.3 50.0 50.3 49.30 29.3 

violin 51.7 50.2 47.3 47.8 45.5 48.5 45.3 46.7 46.8 45.56 23.8 

waltz 57.5 55.0 52.0 52.4 50.7 53.2 51.3 52.1 52.2 51.51 30.6 

Average 50.8 48.6 45.3 46.0 44.3 46.7 44.5 45.5 45.6 44.9 25.8 

Enc. time, 
seconds 

5.6 29.2 23 7.1 56 11 433 – 12 * 20 * 13 * 

Enc. speed, 
Mbytes/sec 

15 3.0 3.7 12 1.6 7.9 0.2 – 7.2 4.3 6.6 

(*) estimated 

Table 1. Lossless compression ratios in %, encoding times, and encoding speed for the MPEG-4 48 
kHz test set. The last column also shows the results for STAC in near-lossless mode. 



the processing time is estimated by increasing by 40% the actual running time of our optimized 
MLT implementations (the 40% is based on estimates for integer versions of the MLT [4][5]). 
No code optimization to take advantage of dual-core was performed. For our STAC codec the 
decoding times are similar to the encoding times, because the decoder has to compute inverse 
MLTs (which take most of the processing time in simple mode). For the prediction-based 
decoders usually decoding times are much shorter, because the predictor coefficients can be 
read directly from the encoded bitstream and the predictor orders are usually very low (much 
lower than the MLT lengths). 

For the entries in Table 1, we define the compression ratio, as usual, as the ratio of the size 
of the encoded bitstream to the original file size, in percent. We see that all codecs produce a 
similar performance, with compression ratios varying from 44.3% to 50.8%, that is, a reduction 
in files size from 1.97x to 2.25x. As it is typical with lossless codecs, small compression ratio 
improvements come with a significant penalty in speed. For Monkey’s Audio, for example, 
changing from default to maximum compression modes increases complexity by ~ 8x, for a 
3.8% reduction in compressed file size. For MPEG-4 ALS, a ~ 5% compression improvement 
comes with a jump in encoding time by almost 40x. For STAC, the sorting mode leads to a 
modest compression improvement of 1.6%, but with less than 2x increase in encoding time. 

We see that STAC in simple mode achieves the same compression performance of the 
MPEG-4 SLS in “noncore” mode, slightly surpassing that of MPEG-4 ALS, at about the same 
encoding speed as MPEG-4 ALS. In sorting mode, STAC achieves a compression performance 
that’s within 1.3% of Monkey’s audio and 0.9% of MPEG-4 ALS in maximum compression, 
but STAC is about 2.8x faster than Monkey’s and 22x faster than MPEG-4 ALS. 

We should note that the relative results in Table 1 show very small differences among all 
codecs (except for Shorten and FLAC). In fact, those differences are not statistically 
significant; we have tested the codecs with several additional audio file sets, and the relative 
performances of the codecs do change slightly among different sets. Thus, we see that the main 
advantage of STAC over MPEG-4 ALS or Monkey’s Audio (in default mode) is not a small 
gain in compression, but rather a frequency-domain representation that enables additional 
processing without full decompression, especially fast transcoding. For example, if music is 
ripped from CDs to a personal library in a predictive format and then transferred to a music 
player that uses a transform-based lossy format, the full encoder for the player format has to be 
run. If that encoder uses an MLT front-end, as it is the case for many formats, then transcoding 
from STAC would save on MLT computation time, which usually accounts for half the lossy 
encoding time. Thus, transcoding would be sped up roughly by a factor of two. 

5. Near-lossless encoding 

In some scenarios, true lossless encoding may not be needed. A 5,000-song music library takes 
about 100GB using lossless coding. That would not fit on a device with 50GB memory, for 
example, so a user may be willing to use lossy encoding for an additional factor of two in 
compression, as long as the encoding is “near lossless,” that is, the errors are truly 
imperceptible. That would be very easy to achieve with lossy codecs such as MP3 or AAC, 
because at a compression factor of only 4:1 they produce a very high fidelity output, making 
them truly transparent. However, the high transcoding time would still be an issue. 



With our STAC it is easy to achieve near-lossless encoding for an additional improvement of 
about 2xin compression. For that, during encoding we right-shift all transform coefficients of 
each block by b bits, where b is small enough so that quantization errors are not noticeable. For 
blocks with lower energy, it is important to reduce b to maintain a high signal-to-noise ratio. 
One way to achieve that is to vary b for each frame according to 
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where ⎣⋅⎦ denotes the floor operator, B is the quantization parameter that controls the maximum 
amount of shift for high-amplitude coefficients, and δ is parameter that controls how quickly b 
is reduced as a function of the block root-mean-square value. This strategy can be seen as an 
extension of the data shifting strategy used in SHORTEN [8], with the advantage that adaptive 
quantization (shifting) in the frequency domain produces much less noticeable noise than 
quantization in the time domain. 

In Table 1 we also show typical results for STAC in near-lossless mode, obtained with B = 
4.8 and δ = 11. The average compression ratio achieved for the MPEG-4 test set was 25.8%, 
that is, a reduction in file size of about 4x when compared with the original data, or about 2x 
when compared to the output of STAC in lossless mode. In all those cases, the decoded output 
was indistinguishable from the original, through informal listening tests with high-end 
headphones. Although formal evaluation tests were not performed, we measured the average 
segmental signal-to-noise ratio (SegSNR) to be about 50 dB, and the average noise-to-masking 
ratio (NMR) [18] to be about –5.1 dB; both are good indicators of near transparency. 

In the scenario discussed above, assuming that the music library is stored in true lossless 
format with STAC in simple mode, transcoding to near-lossless can be done very quickly: for 
each block, the transform domain data is recovered by RLGR decoding, then all coefficients in 
the block are shifted right by b bits according to (4), and then re-encoded with RLGR (of 
course, no re-encoding is needed for blocks for which b = 0). For the data set in Table in, the 
time required for such transcoding would be on the order of 5 seconds on a Core Duo 2.4 GHz 
PC, which corresponds to a processing speed of about 17 megabytes/sec, which is about 5x 
faster than the typical data transfer speeds for digital audio players. Therefore, in that case the 
transcoding time is essentially negligible. 

6. Conclusion 

We have presented a simple transform-domain audio codec (STAC), which can operate in 
lossless or near-lossless mode. In lossless mode it achieves the same compression performance 
of state-of-the-art lossless audio codecs, and slight compression gains can be achieved via an 
inter-block spectral estimation and data sorting strategy. In near-lossless mode STAC can 
achieve an extra factor of two in bit rate reduction, while maintaining perceptual transparency. 
The codec’s simplicity comes from the use of a fixed integer modulated lapped transform 
(MLT) and simple to implement backward-adaptive run-length/Golomb-Rice (RLGR) entropy 
coders [7]. Compression in the transform domain allows the bitstream to be quickly decoded to 



obtain frequency-domain data, which can speed up applications such as search, identification, 
visualization, and transcoding. 
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