
Solving Extended Regular Constraints Symbolically
Microsoft Research Technical Report MSR-TR-2009-177

Margus Veanes
Nikolaj Bjørner

Leonardo de Moura
Microsoft Research
Redmond, WA, USA

{margus,nbjorner,leonardo}@microsoft.com

Abstract—Constraints over regular expressions are common in
programming languages, often in combination with other constraints
involving strings. Efficient solving of such constraints has many useful
applications in program analysis and testing. We introducea method
for symbolically expressing and analyzing regular constraints using
state of the art SMT solving techniques. The method is implemented
using the SMT solver Z3 and is evaluated over a collection of
benchmarks.
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I. I NTRODUCTION

Regular expressions are used in different applications to express
validity constraints over strings. In our case, the original motivation
for supporting regular expression constraints comes from two
particular applications: program analysis [1], [2], and database
query analysis [3]. In the latter case,like-patternsare special kinds
of regular expressions that are common in SQL select-statements,
consider for example the query:

SELECT ∗ FROM T (1)

WHERE C LIKE r1 AND NOT C LIKE r2 AND LEN(C) < D + E

that selects all rows from a tableT having columnsC, D andE,
where theC-value matches the like-patternr1, does not match the
like-patternr2 and whose length is less than the sum ofD-value
andE-value. The analysis discussed in [3] aims at generating tables
that satisfy a test condition, e.g., that the result of (1) isnonempty.
A core part of that analysis is to find solutions to select-conditions
of the above form.

We introduce a technique that allows conditions such as the
select condition of (1) to be expressed and analyzed using satisfi-
ability modulo theories (SMT) solving in a way that is extensible
with other constraints and theories. The central idea behind the
technique is the notion of asymbolic (language) acceptorfor a
language (set of strings)L, as a binary predicateAccL(w, k) that
is true modulo a theoryTh(L) iff w ∈ L and k is the length
|w| of w. For a regular expressionr the symbolic acceptor for
L(r) is constructed from a symbolic finite automatonAr that
acceptsL(r); the symbolic acceptor is denoted byAccAr and
the theory is denoted byTh(Ar). The automatonAr is itself
symbolic in the sense that its moves are labeled by formulas rather
than individual characters, which provides a more succinctand
convenient way to represent automata for like-patterns or more
generally forregexes[4] involving complex character ranges.

In particular, solving the select condition in (1) corresponds to
solving the formula,

Acc
Ar1 (c, k) ∧ ¬Acc

Ar2 (c, k) ∧ k < d+ e (2)

modulo the theoriesTh(Ar1
), Th(Ar2

) and linear arithmetic. A
solutionof (2) is a mapping of particular values forc, k, d, ande
which makes (2) true (modulo the given theories).

In applications such as [1], [2], [3], that build on the SMT
technology, a fundamental aspect is that new theories that become
available for expanding the scope of the analysis, can be added
seamlessly and work in combination with existing theories.In other
words,extensibilityis a must.

The construction of symbolic language acceptors uses the
generic theory ofalgebraic data types, in particularlists. Algebraic
data types are supported by the SMT solver Z3 [5], [6] that we
use as the underlying SMT solver in our implementation. Strings
are represented by lists ofcharacters. Characters are represented
by n-bit-vectors of a fixedn ≥ 1, provided that the size of the
vocabulary is2n. For examplen = 16 for representing Unicode
characters. The representation of strings as lists is convenient for
the purpose of our encoding of language acceptors.

The construction ofTh(A) builds on automata theory that offers
a choice between various logically equivalent forms of axiomati-
zation and composition techniques for performance considerations.
For example, an encoding for (1) that is equivalent to the direct
encoding (2) has the form

Acc
Ar1

×Ar2 (c, k) ∧ k < d+ e (3)

where A denotes the complement ofA and A × B denotes
the product ofA and B. Since complementation may cause
exponential blowup in the size of an automaton, it may be useful
to use an encoding that combines product with complementation
asdifference:

Acc
Ar1

\Ar2 (c, k) ∧ k < d+ e (4)

Note that if L(r1) ⊆ L(r2) in (1), i.e., L(r1) \ L(r2) = ∅
then the query (1) isinfeasible. Since our use of the SMT solver
is optimized for satisfiability checking rather than unsatisfiability
checking, it can beneficial to use (4) instead of (2). Independently,
difference checking provides a way to checksubsetconstraints,
that has other useful applications.

Although the current application context of the paper and the
experiments we show in the paper focus on regular languages,all
the definitions for symbolic language acceptors and algorithms are



given forsymbolic push down automataas a generalization of sym-
bolic finite automata. We prove a theorem about the completeness
and the soundness of the axiomatization.

Combination of regular constraints on strings with quantifier
free linear arithmetic and length constraints is known to bede-
cidable [7], [8]. One can effectively compute an upper boundon
the length of all strings. We recall how this is done in Appendix A.
By using these bounds to restrict the maximum length of strings
in solutions of acceptor formulas, one obtains acompletedecision
procedure for solving linear arithmetic with regular constraints and
length constraints with the approach described in this paper. For
context free languages the approach gives a complete semi-decision
procedure.

We describe a specialized algorithm for constructing the differ-
enceA\B between a symbolic PDAA and a symbolic FAA. This
algorithm is of interest independently from the main application
context; one use of the algorithm is for checking subset constraints
of the formL1 ⊆ L2 whereL1 is context free andL2 is regular.

We evaluate the performance of the different approaches that
have been implemented in a prototype tool by the authors.

The rest of the paper is structured as follows. Section II intro-
duces some background material to keep the paper self-contained
and to explain the notational conventions. Section III defines
symbolic automata. Section IV introduces symbolic language ac-
ceptors. Section V describes an algorithm for difference construc-
tion. Section VI discusses some aspects of the implementation
and Section VII provides some benchmarks. Finally, SectionVIII
describes related work, and Section IX states some concluding
remarks.

II. PRELIMINARIES

We assume that the reader is familiar with classical automata
theory, we follow [9] in this regard. We also assume elementary
knowledge about logic and model theory, our terminology is
consistent with [10] in this regard.

We are working in a fixed multi-sorted universeU of values. For
each sortσ, Uσ is a separate sub-universe ofU . The basic sorts
needed in this paper are the Boolean sortB, UB = {true , false},
and the sort ofn-bit-vectors, for a given numbern ≥ 1; ann-bit-
vector is essentially a vector ofn Booleans. We also need other
sorts but they are introduced at the point when they are used.

Charactersare represented byn-bit-vectors of a fixed length
n, assuming that the alphabet of all characters has size2n. For
example,n = 7 (n = 8) for representing the standard (extended)
ASCII character set, andn = 16 for representing the full range of
Unicode characters. We letC stand for a fixed character sort for
some fixedn, and the complete alphabet is thusUC. Without loss
of generality, assume for example thatn = 7 and that standard
ASCII encoding is used to represent the characters. Keepingthis
intuition in mind, we write for example‘a’ to denote a character.

There is abuilt-in (predefined)signatureof function symbols and
a built-in theory (set of axioms) for those symbols. Each function
symbolf of arity n ≥ 0 has a given domain sortσ0 ×· · ·×σn−1,
whenn > 0, and a given range sortσ, f : σ0×· · ·×σn−1 → σ. For
example, there is a built-inrelation or predicate(Boolean function)
symbol< : C × C → B that provides a strict total order of all the
characters. One can also declarefresh(new)uninterpretedfunction
symbolsf of arity n ≥ 0, for a given domain sort and a given

range sort. Using model theoretic terminology, these new symbols
expandthe signature. Aconstantis a nullary function symbol.

Termsandformulas(or Boolean terms) are defined by induction
as usual and are assumed to be well-sorted. We writeFV (t) for
the set of free variables in a term (or formula)t. A term or
formula without free variables isclosed. Let FC denote the set
of all quantifier-free formulas with at most one fixed free variable
of sort C. Throughout the paper, we denote that variable byχ.
Givenϕ ∈ FC, and a character or termt of sort C, we writeϕ[t]
for the formula where each occurrence ofχ is replaced byt.

A model is a mapping from function symbols to their inter-
pretations (values). The built-in function symbols have the same
interpretation in all models, keeping that in mind, we may omit
them from the model. Amodel for a formulaϕ provides an
interpretation for all the uninterpreted symbols inϕ. A modelM
for a closed formulaϕ satisfiesϕ, M |= ϕ, if the interpretations
provided byM makeϕ true. A closed formulaϕ is satisfiableif
it has a model. A formulaϕ with FV (ϕ) = x̄ is satisfiableif its
existential closure∃x̄ϕ is satisfiable. We write|= ϕ, if ϕ is valid
(true in all models forϕ).

For example, the character range set[a-z\d] in a regex is
translated into the formulaψ = (‘a’ ≤ χ∧χ ≤ ‘z’)∨ (‘0’ ≤
χ∧χ ≤ ‘9’) with χ as the single free variable inψ. The formulaψ
is satisfiable;ψ[‘b’] is true;ψ[‘a’] is false. Note that‘a’, ‘z’,
‘0’ and‘9’ in ψ stand for terms that use only built-in function
symbols and denote the bit-vector encodings of the corresponding
characters and digits.

III. SYMBOLIC AUTOMATA

We use a representation of finite automata where several tran-
sitions from a source state to a target state are combined into
a single symbolic move. Formally, a collection of transitions
(p, a1, q), . . . , (p, an, q) are represented by a single(symbolic)
move(p, ϕ, q) from p to q, whereϕ ∈ FC, such that

[[ϕ]] = {a1, . . . , an},

where[[ϕ]]
def
= {a | a ∈ UC, |= ϕ[a]}. Let also

[[(p, ϕ, q)]]
def
= {(p, a, q) | a ∈ [[ϕ]]},

and, given a set∆ of moves, let

[[∆]]
def
= {τ | δ ∈ ∆, τ ∈ [[δ]]}.

Note that[[(p, ϕ, q)]] = ∅ iff ϕ is unsatisfiable. Define also

Source((p,ϕ, q))
def
= p,

Target((p,ϕ, q))
def
= q,

Cond((p,ϕ, q))
def
= ϕ.

For example, the move

(p,‘a’ ≤ χ ∧ χ ≤ ‘z’, q)

represents the set of all transitions(p, c, q) wherec is a character
between‘a’ and‘z’. The symbolic representation of conditions
is convenient and fits well with the encoding of the symbolic
acceptors for automata discussed below. Formally, we referto such
a representation of a finite automata (FA) as follows.

Definition 1: A Finite Symbolic Automatonor SFAA is a tuple
(Q, q0, F,∆), whereQ is a finite set ofstates, q0 ∈ Q the initial
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state, F ⊆ Q is the set offinal states, and∆ : Q×FC ×Q is the
move relation.

We sometimes useA as a subscript to identify its components.
We also use the following notations.

∆A(q)
def
= {t | t ∈ ∆A, Source(t) = q}

∆A(q)
def
= ∪{∆A(q) | q ∈ q}

Target(t)
def
= ∪{Target(t) | t ∈ t}

Just as with finite automata, it is useful to addepsilon movesto
an SFA. Consider a special symbolε that is not in the background
universe.

Definition 2: An SFA with epsilon movesor εSFA is a tuple
(Q, q0, F,∆), whereQ, q0 and F are as above, and∆ : Q ×
(FC ∪ {ε}) ×Q.

The term SFA without the additional qualification allowing
epsilon moves implies that epsilon moves do not occur. (Obviously,
any SFA is also anεSFA.) Let [[(p, ε, q)]]

def
= (p, ε, q). An εSFA

A = (Q,∆, q0, F ) denotes the finite automaton[[A]] with epsilon
moves [9], where

[[A]]
def
= (Q,UC, [[∆]], q0, F ).

We write ∆ε
A for the set of all epsilon moves in∆A and ∆ 6 ε

A

for ∆A \ ∆ε
A. Epsilon elimination forεSFAs is a straightforward

extension of epsilon elimination of finite automata and has linear
time complexity in the size of the automata, see [11]. If the
input εSFA is clean then so is the resulting SFA, since the
only combination of move conditions performed during epsilon
elimination is disjunction.

Definition 3: An εSFA A is normalized if there are no two
distinct moves(p, ϕ1, q), (p,ϕ2, q) in ∆ 6 ε

A.
It is clear that for anyεSFAA there is a normalized SFAA′ such

that [[A]] = [[A′]]: for all statesp andq in QA, make a disjunction
ϕ of all the conditions of the moves fromp to q in ∆ 6 ε

A and let
(p, ϕ, q) be the single move in∆ 6 ε

A′ that goes fromp to q.
A move is satisfiable if its condition is satisfiable. Note that

unsatisfiable moves are clearly superfluous and can always be
omitted.

Definition 4: An εSFA A is clean if all moves in ∆ 6 ε
A are

satisfiable.
Definition 5: An SFAA is deterministic, calledDSFA, if [[A]] is

deterministic.
The following proposition follows easily from the definitions and

is used in characterizing DSFAs.
Proposition 1: The following statements are equivalent.

1) A is deterministic.
2) For any two moves(p, ϕ1, q1) and(p, ϕ2, q2) in ∆A, if q1 6=

q2 thenϕ1 ∧ ϕ2 is unsatisfiable.

Definition 6: The language (set of strings)acceptedby an SFA
A, L(A), is the language accepted by the finite automaton[[A]].
Two SFAs areequivalentif they accept the same language.

We use [4] as the concrete language definition of regular
expression patterns orregexesin this paper. The translation from a
regex to anεSFA follows very closely the standard algorithm, see
e.g., [9, Section 2.5], for converting a standard regular expression
into a finite automaton with epsilon moves. A sample regex and
correspondingεSFA are illustrated in Figure 1.

0

1

3

2

x>=‘0’&x<=‘9’

4

x>=‘0’&x<=‘9’

x>=‘a’&x<=‘z’

Figure 1. SampleεSFA generated from the regex\d+|[a-z]. The initial
state is gray, the epsilon moves are dashed. The symbol& is used for
conjunction.

A. Symbolic Push Down Automata

Similar to SFAs we use a representation of PDAs where moves
are labeled by formulas fromFC that represent sets of characters
rather than individual characters.

Definition 7: A Symbolic Push Down Automatonor SPDAA is
a tuple(Q,Z, q0, z0, F,∆), whereQ is a finite set ofstates, Z is
a finite set ofstack symbols, q0 ∈ Q is the initial state, z0 ∈ Z
is the initial stack symbol, F ⊆ Q is the set offinal statesand
∆ : Q× Z × FC ×Q× Z∗ is themove relation.
Similar toεSFAs anεSPDA may have moves where the condition is
ε. Each movet = (q, z, α, p, ~z) of anεSPDA, whereα ∈ FC∪{ε},
denotes the set of transitions[[t]]

def
= {(q, z, a, p, ~z) | a ∈ [[α]]}. The

underlying PDA is denoted by[[A]] (with the alphabetUC). The
languageL(A) accepted byA is the languageL([[A]]) accepted by
the PDA [[A]]. We reuse the definitions ofSource(t), Target(t),
and Cond(t) also for movest of an εSPDAs and introduce the
additional definitions

Pop((q, z, α, p, ~z))
def
= z,

Push((q, z, α, p, ~z))
def
= ~z.

An εSPDA A is clean if all moves in ∆A have satisfiable
conditions, andnormalized if there are no two movest1 and t2
in ∆A that differ only with respect toCond(t).

Elimination of epsilon moves from anεSPDA corresponds to
transforming the corresponding context free grammar into Greibach
Normal Form (GNF), which can be done in polynomial time. Move
conditions play no active role in the algorithm. (Terminalsare in
general treated as black boxes in normal form transformations of
grammars.) We use a variation of the Blum-Koch algorithm [12]
for GNF transformation that has worst case time complexityn4.

Note that everyεSFA A can be trivially transformed into an
εSPDA: letZA = {z}, z0A = z, and for each movet ∈ ∆A let
Pop(t) = z and Push(t) = z. We say that the resultingεSPDA
representsan εSFA.

1) Product with SFA:The classical construction of the product
of a PDA with an FA has a corresponding version for a product
of an SPDA with an SFA. The key modification is the use of
satisfiability checking of conditions in order to keep the construc-
tion clean. The input to the algorithm is an SPDAA and an SFA
B and the output is an SPDAC that is theproduct of A and
B, also denoted byA × B, such thatL(C) = L(A) ∩ L(B). It
is convenient to describe the algorithm as a depth-first-exploration
algorithm using a stackS as a frontier, a setV ⊆ (QA×QB)×ZA

of already visited elements, and a setT of moves. Initially, let
T = ∅, S = (〈〈q0A, q0B〉, z0A〉), andV = {〈〈q0A, q0B〉, z0A〉}.

(i) If S is empty go to (iii) else pop〈〈p, q〉, z〉 from S.
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(ii) For each(p, z, ϕ, p′, ~z) ∈ ∆A and (q, ψ, q′) ∈ ∆B . If ϕ ∧ ψ
is satisfiablethen

– add (〈p, q〉, z, ϕ ∧ ψ, 〈p′, q′〉, ~z) to T ;
– for eachz′ in ~z, if v = 〈〈p′, q′〉, z′〉 /∈ V then addv

to V , and if there ist ∈ ∆A with Source(t) = p′ and
Pop(t) = z′ then pushv to S.

Go to (i).
(iii) Let C = (π1(V ), π2(V ), 〈q0A, q0B〉, z0A, π1(V ) ∩ (FA ×

FB), T ).
(iv) Eliminatedead statesfromC (states from which no final state

is reachable).

Note that|QC | is at most|QA| ∗ |QB |. The satisfiability check in
(ii) is important. It prevents unnecessary exploration ofunreachable
states, and may avoid a quadratic blowup ofQC , whereas (iv)
avoids introduction of useless “dead end”-axioms in the symbolic
language acceptor forC.

Note also that ifA represents an SFA then so doesC.

IV. SYMBOLIC LANGUAGE ACCEPTORS

To encode language acceptors, we use particular kinds of axioms,
all of which are equations of the form

∀x̄(tlhs = trhs) (5)

where FV (tlhs) = x̄ and FV (trhs) ⊆ x̄. When tlhs and trhs

are formulas, we often write ‘⇔’ instead of ‘=’. The left-hand-
side tlhs of (5) is called thepattern of (5). While SMT solvers
support various kinds of patterns in general, in this paper we use
the convention that the pattern of an equational axiom is always
the left-hand-side of the equation.

Axioms are asserted to the SMT solver as macros that are
expanded during proof search. It is not easy to expand the initial
goal formula outside the solver and to assert only quantifierfree
formulas to the solver. The reason is that it is hard to know when
to expand a pattern and when not to expand a pattern. Moreover,
axioms that are introduced for automata are typically mutually
recursive and a naive a priori exhaustive expansion of patterns
would in most cases not terminate.

The overall idea behind the axioms is as follows. For a given
εSPDAA we construct a theoryTh(A) that includes a particular
axiom with lhsAccA(w, k). The main property ofTh(A) is that
it precisely characterizes the language accepted byA:

L(A) = {wM |M |= Th(A) ∧ Acc
A(w, k)}

and if M |= AccA(w, k) then kM = |wM |, wherew is a list of
characters and|w| denotes the length ofw, as explained below.

A. Lists

Lists are built-in algebraic data-types and are accompanied with
standard constructors and accessors. For each sortσ, L〈σ〉 is the
list sort with element sortσ. For a given element sortσ there is
an empty listnil (of sort L〈σ〉) and if e is an element of sortσ
and l is a list of sortL〈σ〉 then cons(e, l) is a list of sortL〈σ〉.
The accessors are, as usual,hd (head) andtl (tail).

Strings are represented by lists of characters; we writeW for
the sortL〈C〉. The empty string is abbreviated by"" and a string
cons(‘a’, cons(‘b’, cons(‘c’,nil))) is abbreviated by"abc",
e.g.,hd("abc") = ‘a’ and tl("abc") = "bc".

B. Construction ofTh(A)

Let A be a givenεSPDA. AssumeA is normalized. LetN be
a built-in non-negative numeral sort such as a bit-vector orinteger
sort restricted to non-negative integers. We useN for representing
the length|l| of a list l, i.e., the number of elements inl. Let Z be
a sort for representingZA and assume thatZA ⊆ UZ. With slight
abuse of notation, we also use stack symbols as terms. We may
assume, without loss of generality thatZ is a fixed numeral sort as
well. We represent astackas an element of sortS = L〈Z〉. A stack
is denoted by(z1, . . . , zk), k ≥ 0, wherez1 is the top element on
the stack. We write(z1, . . . , zk) · (zk+1, . . . , zl) for (z1, . . . , zl).
The empty stack is denoted byε.

For all q ∈ QA, declare the predicate symbol

Acc
A
q : W × N × S → B

An ID of [[A]] is a triple(q, w, s) whereq ∈ Q[[A]], w is a string and
s is a stack [9]. For defining the axioms it is more convenient touse
acceptance by the empty stackrather than final states, the language
accepted by the empty stack is denoted byN([[A]]) in [9, page 112].
The transformation ofA to an equivalentεSPDA A′ such that
L([[A]]) = N([[A′]]) is straightforward. We therefore assume that
FA = ∅.

The idea behind the axioms defined below is that the formula
AccA

q (w,n, s) holds iff |w| = n and (q, w, s) `∗
[[A]] (p,"", ε) for

somep ∈ Q[[A]], where`[[A]] is the step relation of[[A]] as defined
in [9, page 112]. Declare also

Acc
A : W × N → B

The intuition is thatAccA(w,n) holds iff |w| = n andw ∈ L(A).
For q ∈ QA andz ∈ ZA let ∆A(q, z) be

{(q, z, ϕi, qi, ~zi) | 1 ≤ i ≤ m} ∪ {(q, z, ε, qi, ~zi) | m < i ≤ k}.

Define the following axioms.

ax
A def

= ∀wn (Acc
A(w,n) ⇔ Acc

A
q0A

(w,n, cons(z0A, ε)))

ax
A
q

def
= ∀wn (Acc

A
q (w,n, ε) ⇔ (w = "" ∧ n = 0))

ax
A
q,z

def
= ∀wns (Acc

A
q (w,n, cons(z, s)) ⇔

((w 6= "" ∧ n > 0 ∧

(

m
∨

i=1

(ϕi[hd(w)] ∧ Acc
A
qi

(tl(w), n−1, ~zi · s))))

∨
k
∨

j=m+1

Acc
A
qj

(w,n, ~zj · s)))

Th(A)
def
= {axA} ∪ {axA

q , ax
A
q,z | q ∈ QA, z ∈ ZA}.

The set of formulasTh(A) (or equivalently
∧

Th(A)) is asserted
to the solver as thetheory ofA.

The following theorem can be generalized to a class of well-
behavedεSPDAs but does not hold for allεSPDAs, i.e., when
arbitrary epsilon moves are allowed.

Theorem 1:Let A be an SPDA or an epsilon-loop-freeεSFA.
Letw:W, n:N. For allM ,M |=

∧

Th(A)∧AccA(w,n) iff wM ∈
L(A) and |wM | = nM .

Proof outline: For the case whenA is an epsilon-loop-
free εSFA the proof is similar to the proof of [11, Theorem 1].
AssumeA is an SPDA. Since epsilon moves are not present, the
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following statement follows by induction over the length of`[[A]]-
computations. For all IDs(q, w, s) of [[A]]:

∃p ∈ QA((q, w, s) `∗
[[A]] (p,"", ε)) ⇐⇒ Th(A) |= Acc

A
q (w, |w|, s)

The theorem follows, by lettingq = q0A ands = (z0A).
The theorem fails in general when epsilon moves are allowed as

illustrated by the following example.
Example 1:Let A = ({q}, {z}, q, z, ∅, {(q, z, ε, q, (z))}). For

example(q,"", (z)) `[[A]] (q,"", (z)). The language accepted by
A is empty. The theoryTh(A) for A includes the axiomaxA

q,z :

∀wns (Acc
A
q (w,n, cons(z, s)) ⇔ Acc

A
q (w,n, cons(z, s)))

This axiom is a useless tautology. Consider for example a modelM
with an interpretation forAccA

q such thatM |= AccA
q ("", 0, (z))

and expandM so thatM |= axA∧axA
q . ThenM |= AccA("", 0)

but "" /∈ L(A). �

For all εSPDAs there is an equivalent loop-freeεSPDA that
can be computed effectively, e.g., the GNF normal form for CFGs
implies that.

For anεSFA (or anεSPDA that represents anεSFA) the axioms
can be simplified, by omitting the stack variable. We illustrate this
with an example that also shows the application of the axioms.

Example 2:Let A be theεSFA in Figure 1. The axiomsTh(A)
for A are as follows, whereϕ = (χ ≥ ‘a’) ∧ (χ ≤ ‘z’) and
ψ = (χ ≥ ‘0’) ∧ (χ ≤ ‘9’) andq ∈ QA:

ax 0: ∀wn (Acc(w,n) ⇔ (Acc1(w,n) ∨ Acc3(w,n)))

ax 1: ∀wn (Acc1(w, n) ⇔ (w 6= "" ∧ n > 0∧
ψ[hd(w)] ∧ Acc2(tl(w), n− 1)))

ax 2: ∀wn (Acc2(w, n) ⇔ ((w 6= "" ∧ n > 0 ∧ ψ[hd(w)]∧
Acc2(tl(w), n− 1)) ∨ (w = "" ∧ n = 0)))

ax 3: ∀wn (Acc3(w, n) ⇔ (w 6= "" ∧ n > 0 ∧ ϕ[hd(w)]∧
Acc4(tl(w), n− 1)))

ax 4: ∀wn (Acc4(w, n) ⇔ (w = "" ∧ n = 0))

Declare fresh constantss : W, k : N and assert the axiomsTh(A)
and the goalAcc(s, k) to the solver. We describe a plausible
scenario for the resulting model generation process. First, the
axioms are triggered, we indicate the selected sub-term of the goal
by underlying it:

Acc(s, k)
ax

0
 Acc1(s, k) ∨ Acc3(s, k)
ax

3
 Acc1(s, k) ∨ (s 6= "" ∧ k > 0

∧ϕ[hd(s)] ∧ Acc4(tl(s), k − 1))
ax

4
 Acc1(s, k) ∨ (s 6= "" ∧ k > 0

∧ϕ[hd(s)] ∧ tl(s) = "" ∧ k − 1 = 0)

The triggering process may continue, but the conjunct of thegoal
that does not include patterns enables a concrete model to be
generated using built-in theories. For example, there is a model
M such thatsM = "a" andkM = 1. �

C. E-matching

During proof search in an SMT solver, axioms are triggered by
matching sub-expressions in the goal. The high-level idea of how
an SMT solver uses an axiom such as (5) is as follows. The axiom
(5) is triggered by the current goalψ of the solver, ifψ contains

a sub-termu and there exists a substitutionθ such thatu = tlhsθ,
i.e.,u matches the patternof the axiom. If (5) is triggered, then the
current goal is replaced by thelogically equivalentformula where
u has been replaced bytrhsθ.

Thus, equational axioms can be viewed as “rewrite rules”, and
each application of an axiom preserves the logical equivalence to
the original goal. Termination is in general not guaranteedin the
presence of (mutually) recursive axioms. Note that, unlikein term
rewrite systems, there is no notion of term orderings or well-defined
customizable strategies (at least not in the current version of Z3)
that could be used to guide the triggering process of the axioms.

V. D IFFERENCE CONSTRUCTION

We describe an algorithm that is used below for encoding
difference constraints. The input to the algorithm consists of
a clean SPDAA and a clean SFAB, and the output of the
algorithm is a clean SPDAC that is equivalent toA × B, i.e.,
L(C) = L(A) \ L(B). Thus,L(C) = ∅ iff L(A) ⊆ L(B).

The general idea behind the algorithm is to incrementally de-
terminize and complementB, and simultaneously compose it with
A, while keeping the construction clean. During this processthe
SMT solver is used to generate all solutions tocubeformulas that
represent satisfiable combinations of move conditions for all moves
from subsets of states ofB that arise during determinization ofB.
Given a finite sequence of formulas~ϕ = (ϕi)i<n from FC, and
distinct Boolean constants~b = (bi)i<n define

Cube(~ϕ,~b)
def
=
∧

i<n

ϕi ⇔ bi.

Recall that the variableχ is shared in all theϕi. A solution of
Cube(~ϕ,~b) is a modelM such thatM |= ∃χCube(~ϕ,~b). In
particular,M provides a truth assignment to all thebi’s. Given a set
G of formulas we write

∨

G for the formula
∨

ϕ∈G ϕ, similarly for
∧

G. The following property follows by using basic model theory.

Proposition 2: If M is a solution ofCube(~ϕ,~b) then
∧

{ϕi |
i < n,M |= bi} is satisfiable.
Given a solutionM of Cube(~ϕ,~b), let ϕM denote the formula

∧

({bi |M |= bi} ∪ {¬bi |M |= ¬bi})

We use the following iterative model generation procedure to gen-
erate the setSolutions(Cube(~ϕ,~b)) of all solutions ofCube(~ϕ,~b).

1) Initially let M = ∅.
2) Keep adding solutions ofCube(~ϕ,~b) to M until

Cube(~ϕ,~b) ∧
∧

M∈M
¬ϕM is unsatisfiable.

3) Let Solutions(Cube(~ϕ,~b)) = M.

The procedure is still exponential in theworst case, but seems to
work well in practice. It is also better than creating all subsets of
~ϕ and filtering out all combinations that are unsatisfiable, which is
alwaysexponential.

The following property is used in the difference construction
algorithm for generating all satisfiable subsets of move conditions
for a given set of moves.

Proposition 3: Let ~ϕ and ~b be as above. For all subsetsG
of ~ϕ,

∧

G is satisfiable if and only if there existsM ∈
Solutions(Cube(~ϕ,~b)) such thatM |= bi for all ϕi ∈ G.

Proof: The direction⇐= follows from Proposition 2. For the
direction =⇒ assume

∧

G is satisfiable and letM be such that

5



M |= bi for all ϕi such thatϕi is a logical consequence ofG. Let
M = Solutions(Cube(~ϕ,~b)). ThenM ∈ M or elseCube(~ϕ,~b)∧
∧

N∈M
¬ϕN would be satisfiable, contradicting the construction of

M.
Definition 8: An SFA A is total if for all q ∈ QA, the formula

∀χ
∨

{Cond(t) | t ∈ ∆A(q)} is valid.
In order to make an SFA that is not total into an equivalent

total SFA, one can add a newdead stated to it with the move
(d, true , d), and a new move(q, ϕ, d) from each stateq where
ϕ is satisfiable andϕ =

∧

{¬Cond(t) | t ∈ ∆(q)}. Clearly,
determinism is preserved by this transformation.

Definition 9: Given a total DSFAA, thecomplementA of A is
the DSFA(QA, q0A, QA \ FA,∆A).

It is easy to see that for a total DSFAA, L(A) = L(A).
We use the following property of regular languages to speed

up the difference construction in some cases, with a low initial
overhead. For regular languages it is a well-known fact that
reversing the language preserves regularity.

Definition 10: Given an εSFA A with nonemptyL(A) and a
stateq /∈ QA, the reverseAr of A with initial stateq is theεSFA

(QA ∪ {q}, q, {q0A},
{(Target(t),Cond(t),Source(t)) | t ∈ ∆A}
∪{(q, ε, p) | p ∈ FA})

Given a strings let sr denote the string that iss in reverse and
let Lr denote the language{sr | s ∈ L}. (Note thatL = (Lr)r.)
It follows that L(Ar) = L(A)r. We make use of the following
property.

Proposition 4: Let A be anεSFA,L(A) = L(Ar)r.
The point of reversing is that complementation of an SFAA

requires determinization that may cause exponential blowup in the
size of the automaton, which can be avoided ifAr is deterministic.
A classical example is the SFAA for the regex[ab]*a[ab]{n}
wheren is a positive integer.A hasn + 2 states and the size of
the minimum DSFA for this regex has2n+1 states, whereasAr is
deterministic.

We are now ready to describe the algorithm. LetA be an SPDA
andB an SFA. Assume thatA is clean andB is normalized, clean,
and total.

Check the special cases first:

• If B is deterministic letC = A×B.
• Else, ifA represents an SFA andBr is deterministic letC =

(Ar ×Br)r.

General case. We describe the algorithm as a depth-first-
exploration algorithm using a stackS as a frontier, a setV : (QA×
2QB )×ZA of visited elements, and a setT of moves. Initially, let
q0C = 〈q0A, {q0B}〉, S = (〈q0C , z0A〉), V = {〈q0C , z0A〉}, and
T = ∅.

(i) If S is empty go to (iv) else pop〈〈p,q〉, z〉 from S.
(ii) Let ∆A(p, z) = (p, z, ϕi, pi, ~zi)i<m, ∆B(q) =

( , ψi, qi)i<n. Let ~a = (ai)i<m and~b = (bi)i<n be fresh
Boolean constants. Compute

M = Solutions(Cube((ϕi)i<m · (ψi)i<n,~a ·~b))

with the additional constraint that
∨

~a is true. For each move
(p, z, ϕi, pi, ~zi) of A and for each solutionM in M such

thatM |= ai do the following. Let

γ = ϕi ∧
∧

({ψj |M |= bj} ∪ {¬ψj |M |= ¬bj}),
q′ = {qj |M |= bj}.

Add the move(〈p,q〉, z, γ, 〈pi,q
′〉, ~zi) to T . Foreachz′ ∈

~zi, if v = 〈〈pi,q
′〉, z′〉 /∈ V then addv to V and if there

exists t ∈ ∆A such thatSource(t) = p′ and Pop(t) = z′

then pushv to S.
(iii) Go to (i).
(iv) Compute the set of final statesF :

F = {〈p,q〉 | 〈p,q〉 ∈ π1(V ), p ∈ FA,q ∩ FB = ∅}.

If F = ∅ let C = ({q0C}, {z0A}, q0C , z0A, ∅, ∅), else let
C = (π1(V ), π2(V ), q0C , z0A, F, T ).

The complementation ofB in the algorithm is reflected in the
computation ofF where a state ofC is final if its first component
is a finalA-state and its second component, that is a set ofB-states,
includes no finalB state.

The totality ofB is assumed in the computation ofM, where
each solution will make at least oneai and at least onebj true. The
totality assumption can be avoided by representing a “dead state”
implicitly in the algorithm. The presentation of the algorithm gets
technically more involved in this case.

To see thatB is indeed incrementally determinized, consider any
two moves

t1 = (q,
∧

M1|=bj

ψj ∧
∧

M1|=¬bj

¬ψj , {qj |M1 |= bj})

t2 = (q,
∧

M2|=bj

ψj ∧
∧

M2|=¬bj

¬ψj , {qj |M2 |= bj})

that are composed with moves ofA and added toT in Step (ii),
whereM1,M2 ∈ M. By using Proposition 1, we need to show
that if Target(t1) 6= Target(t2) (i.e., for somebj , M1 |= bj and
M2 |= ¬bj ), then Cond(t1) ∧ Cond(t2) is unsatisfiable, which
holds because there is at least oneψj such thatψj is a conjunct
of Cond(t1) and¬ψj is a conjunct ofCond(t2).

The property that all possible satisfiable combinations ofB-
moves are considered in Step (ii) and that the composition with
A-moves preserves satisfiability of the conditions of the moves
added toT , follows from Proposition 3 and the added constraint
that

∨

~a is true in the computation ofM.
Finally, note that ifA represents an SFA then so doesC.

A. Difference checking

The above algorithm has also a more efficient version in the
case whenA represents an SFA and the purpose is to decide (in
isolation) if L(C) = L(A) \ L(B) is empty, and to provide a
single witness inL(C) otherwise. For this version, the explicit
construction of the moves ofC is not needed. The checking of
final states can be done when an element is popped fromS and
a “witness tree” can be incrementally updated (instead ofT ) that
records links backwards from newly found target states to their
source states.

VI. I MPLEMENTATION

The algorithms discussed in Section III and Section V and the
axiom generation discussed in Section IV have been implemented
in a prototype tool for analyzing regular expressions and context
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free grammars. The SMT solver Z3 is used for satisfiability check-
ing and model generation. We use some features that are specific
to Z3, including the integrated combination of decision procedures
for algebraic data-types, integer linear arithmetic, bit-vectors and
quantifier instantiation. We also make use of incremental features
so that we can manipulate logical contexts while exploring different
combinations of constraints. Use of algebraic data-types is central
in the construction of the language acceptors, as was illustrated in
Section IV. The definitions of the axioms match very closely with
the actual implementation.

Working within a context enablesincrementaluse of the solver.
A context includes declarations for a set of symbols, assertions for a
set of formulas, and the status of the last satisfiability check (if any).
There is acurrent contextand a backtrack stack of previous con-
texts. Contexts can be saved throughpushingand restored through
popping. The use of contexts is illustrated in Figure 2 that shows
a simplified code snippet from Rex responsible for computing
Solutions(Cube(~ϕ,~b)) in the difference construction algorithm in
Section V, where the solutions are generated incrementallyusing
a context, and themodel generationfeature is used to extract the
actual solutions from Z3.
...
z3.Push(); //push a new context for collecting solutions
Term[] b = ... //fresh Boolean constants for B-moves
Term[] a = ... //fresh Boolean constants for A-moves
Term[] cube = ... //corresponding cube equations

z3.AssertCnstr(z3.MkAnd(cube)); //assert the cube formula
z3.AssertCnstr(z3.MkOr(a)); //at least one a[i] must hold
Model M;
while (z3.CheckAndGetModel(out M) != LBool.False) //get M
{

AddToSolutions(M); //record M
z3.AssertCnstr(Negate(M,a,b)); //exclude M

}
z3.Pop(); //return to the previous context
...

Figure 2. Computation of solutions for cubes.

VII. E XPERIMENTS

We conducted several experiments where we evaluated the
performance of the difference algorithms and the axiomatization
approach on a collection of sample regexes shown in Table I.1

These are typical examples of concrete regexes appearing invarious
practical contexts. The regexes are taken from [13], where the
analysis is not able to handle several of the regexes for member
generation. In all casesL(ri) 6⊆ L(rj) for regexesi and j, i 6= j.

A. Experiment 1

Table II shows the timet it took with the difference construction
algorithm (Section V) to construct the automaton forL(ri)\L(rj)
and to generate a witness using the axioms of the automaton, where
i is the row number andj is the column number in the table. The
table also shows the number of states of the constructed automata.
For every (nonempty) automatonA that was constructed forL(ri)\
L(rj) we performed amember generationcheck as follows.

1) Declare fresh constantss : W, k : N, and assertTh(A) and
AccA(s, k).

1All experiments were executed on a Lenovo T61 laptop with Intel dual
core T7500 2.2GHz processor.

2) Generate a modelM for the assertions and extract a witness
in L(A).

The experiment illustrates that the use of axioms scales. For
example, the automaton constructed for#7 \ #8 has almost 5k
sates (and around 14k moves, the automata are typically sparse) and
the size of the theory is proportional to the size of the automaton
that has in the order of 10k axioms that are created on-the-fly. For
checkingL(r9) ⊆ L(r9) the algorithm did not terminate (using a
timeout of> 10 min). Overall, the whole experiment took around
1 minute to complete (if the casei = j = 9 is excluded).

B. Experiment 2

What is the payoff (if any) in using the difference construction
algorithm as opposed to a direct encoding using a Boolean com-
bination of the acceptor formulas? We conducted the following
experiment for each pair of sample regexesri andrj .

1) Construct the automataA andB for ri andrj , respectively
and assert the theoriesTh(A) and Th(B). (For the case
when i = j we modifyB slightly but keep it equivalent to
A, so the theories forA andB are disjoint. If we use the
same theory and acceptor predicate, the problem becomes
trivial).

2) Assert the goalAccA(s, k) ∧ ¬AccB(s, k) with fresh s : W
andk : N.

3) Check and generate a model for the goal.

Table III
RESULTS OF EXPERIMENT2.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
#1 ? 109 47 124 78 156 78 141 171 2746

#2 16 ? 15 16 15 16 31 31 110 31

#3 <1 16 78 16 <1 15 47 31 109 16

#4 156 296 110 ? 78 156 202 156 172 171

#5 31 32 15 63 ? 62 94 47 140 47

#6 16 31 16 <1 <1 ? 47 31 109 16

#7 94 78 62 140 78 62 ? 141 203 93

#8 171 141 140 219 249 375 670 ? 1061 671

#9 172 171 156 187 188 172 327 281 ? 203

#10 172 46 141 78 327 78 297 171 203 ?

The result of the experiment is somewhat surprising. See Ta-
ble III. In the case when the difference is nonempty, the direct
encoding clearly outperforms the difference constructionin many
cases. In contrast, the experiments done in [11] indicated that it is
beneficial to candiderTh(A × B) rather thanTh(A) ∪ Th(B).
However, fori = j, the direct encoding only terminates when the
automaton has no loops (which is the case wheni = j = 3).
Overall, the experiment took around 15 seconds to complete (if
the non-terminating cases are excluded).

C. Experiment 3

For each pair of regexesri and rj , 1 ≤ i, j ≤ 10, Table IV
shows the time it took with the difference checking algorithm
(Section V-A) to decide ifL(ri) ⊆ L(rj) and to generate a witness
in L(ri) \L(rj) if L(ri) 6⊆ L(rj), wherei is the row number and
j is the column number in the table.

As expected, the full construction of the difference automata
and member generation for it takes more time than generatinga
single witness. The total time of the experiments (excluding the
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Table I
SAMPLE REGEXES.

#1 \w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*([,;]\s*\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*)*
#2 $?(\d{1,3},?(\d{3},?)*\d{3}(\.\d{0,2})?|\d{1,3}(\.\d{0,2})?|\.\d{1,2}?)

#3 ([A-Z]{2}|[a-z]{2} \d{2} [A-Z]{1,2}|[a-z]{1,2} \d{1,4})?([A-Z]{3}|[a-z]{3} \d{1,4})?

#4 [A-Za-z0-9](([ \.\-]?[a-zA-Z0-9]+)*)@([A-Za-z0-9]+)(([\.\-]?[a-zA-Z0-9]+)*)\. ([A-Za-z][A-Za-z]+)

#5 (\w|-)+@((\w|-)+\.)+(\w|-)+

#6 [+-]?([0-9]*\.?[0-9]+|[0-9]+\.?[0-9]*)([eE][+-]?[0-9]+)?

#7 ((\w|\d|\-|\.)+)@{1}(((\w|\d|\-){1,67})|((\w|\d|\-)+\.(\w|\d|\-){1,67}))\.((([a-z]|[A-Z]|\d){2,4})(\.([a-z]
|[AZ]|\d){2})?)

#8 (([A-Za-z0-9]+ +)|([A-Za-z0-9]+\-+)|([A-Za-z0-9]+\.+)|([A-Za-z0-9]+\++))*[A-Za-z0-9]+@((\w+\-+)|(\w+\.))*\w
{1,63}\.[a-zA-Z]{2,6}

#9 (([a-zA-Z0-9 \-\.]+)@([a-zA-Z0-9 \-\.]+)\.([a-zA-Z]{2,5}){1,25})+([;.](([a-zA-Z0-9 \-\.]+)@([a-zA-Z0-9 \-\.
]+)\.([a-zA-Z]{2,5}){1,25})+)*

#10 ((\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*)\s*[,]{0,1}\s*)+

Table II
RESULTS OF EXPERIMENT1.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
t states t states t states t states t states t states t states t states t states t states

#1 93 1 125 33 62 24 110 42 327 45 63 26 764 604 515 283 452 40 2091 103
#2 46 34 32 1 15 25 47 34 31 31 31 34 47 34 63 34 405 34 31 34
#3 32 29 31 29 15 1 31 35 16 29 16 29 31 29 94 35 374 35 31 29
#4 500 29 156 22 156 22 31 1 125 27 249 19 905 373 437 154 3432 279 265 39
#5 63 24 31 11 31 7 47 23 15 1 16 9 234 237 296 208 406 8 125 41
#6 31 12 31 25 16 8 31 16 16 11 15 1 31 12 47 18 375 15 15 12
#7 687 564 156 160 156 147 686 499 312 298 140 153 172 1 6583 4784 640 170 1419 760
#8 515 430 749 127 1030 260 1201 307 2215 294 640 108 4804 5023 203 1 4275 241 3198 573
#9 1061 532 998 530 983 527 1295 668 1029 526 967 529 1248 697 1170 623 ∞ ? 999 542
#10 483 78 78 38 63 29 140 51 406 57 140 31 1311 823 1029 418 453 49 265 1

Table IV
RESULTS OF EXPERIMENT3.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
#1 78 15 <1 31 <1 16 31 16 359 124

#2 <1 32 15 <1 16 <1 31 16 405 16

#3 <1 15 32 15 <1 16 15 16 374 <1

#4 16 16 15 31 <1 <1 31 16 359 15

#5 16 <1 15 16 16 <1 15 31 359 <1

#6 <1 15 <1 16 <1 16 15 16 359 15

#7 16 15 16 31 16 31 172 62 390 16

#8 16 <1 <1 16 15 16 31 187 483 16

#9 374 359 359 359 359 343 359 390 ∞ 359

#10 16 15 <1 16 16 <1 31 16 374 265

case fori = j = 9 that did not terminate) was around 10 sec
for this experiment and around 1 min for the first experiment.
The performance is the same in the case when the difference is
empty. The immediate advantage over the direct encoding used in
the second experiment is the case when the difference is empty.

D. Experiment 4

We consider an experiment that combines regex constraints
with length constraints on strings. Letr1 and r2 be the regexes
“.{n}a.*” and “.*a.{n}”, respectively, wheren is a positive
integer. Thus,r1 requires that the(n + 1)’st character from the
beginning isa, andr2 requires that the(n+ 1)’st character from

the end isa. Consider an SQL select condition of the form2

s LIKE r1 AND NOT s LIKE r2 AND 3 ∗ LEN(s) > 2 ∗ n (6)

Let A andB be εSFAs such thatL(A) = L(r1) andB = L(r2).
The sample was chosen for several reasons. Complementationof
B would require a DFA with2n+1 states. Unlike in the previous
experiments, the difference algorithm reduces in this caseto the
second special case whereBr (acceptingL(r2)

r) in the algorithm
is deterministic. We can systematically increasen and compare the
performance of adirect encodingof (6):

Acc
A(s, k) ∧ ¬Acc

B(s, k) ∧ 3k > 2n,

against thedifference encodingof (6):

Acc
A\B(s, k) ∧ 3k > 2n,

wheres : W andk : N are fresh constants. For both encodings, we
measured model generation time forn = 1 . . . 100. The result
of the experiment is shown Figure 3. In both cases the trend-
line is polynomial (O(n3) for the direct encoding andO(n2) for
the difference encoding). Thus, even though the acceptor for B
occurs negatively in the direct encoding of (6), this does not cause
exponential behavior during model generation.

E. Comparison with Hampi

To our knowledge, a system that comes closest to the scope
of ours is the open source string constraint solver Hampi [14]. We

2The LIKE-pattern corresponding tor2 is “%a_..._”, and for r1 is
“_..._a%” with n occurrences of ‘_’.
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Figure 3. Experiment 4 model generation times.

conducted an experiment similar to Experiment 1 using Hampi. The
following experiments were run on a desktop with an Intel dual core
E8300 2.8GHz processor. Given the regexesri, rj , i 6= j, from
Table I, Hampi input corresponding to the membership constraint
x ∈ L(ri) \ L(rj) is:

var x : l; reg a := Ri; reg b := R2;
assert x in a; assert x not in b;

whereRi is a Hampi representation of the regexri. The declaration
var x : l constrains the length ofx to be l. Altough Hampi
supports length rangesvar x : llower .. lupper the range declaration
caused segmentation faults in the underlying STP [15] solver, so
we resorted to using the more restricted case. The experiment with
using l = 10 took a toal of 2min to complete for the 90 cases. By
setting l = 15, the experiment took 4min 30sec to complete. For
values ofl < 10, several of the membership constraints become
unsatisfiable and fail to detect nonemptiness ofL(ri) \L(rj). For
example, forl = 3, the experiment took 1min and 30sec, but for
most of the constraints the result was unsat.

VIII. R ELATED WORK

The work presented here is a nontrivial extension of the work
started in [11] where differentεSFA algorithms and their effect
on language acceptors forεSFAs (including minimization and
determinization) are studied. The experiments in [11] failed in
determinization, which needed the idea of solvingcube formulas.
Moreover, the approach of language acceptors presented in [11]
does not support precise length constraints, and the axiomswere
not studied forεSPDAs. Theorem 1 strengthens a similar statement
for εSFAs in [11].

Although, an extension of FAs with predicates has been sug-
gested earlier [16], and later formalized and implemented in Prolog
as an automata library [17], we are not aware of similar results for
PDAs that make the difference algorithm possible. We are also not
aware of symbolic analysis with SMT being studied, based on such
extensions.

A tool developed in [18] is used to compute a context free
grammarG as a conservative approximation of possible string
values of variables of a given PHP Web application, and to check

if L(G) ∩ L(R) is empty for a given regexR representing “bad”
strings (strings that may cause a security risk). This technique is
used to check for SQL injection vulnerabilities of Web applications.
The HAMPI [14] tool, that is string constraint solver, has an
additional advantage that it can produce a witness inL(G)∩L(R)
if it is nonempty, provided thatG is first finitized. HAMPI turns
string constraints over fixed-size string variables into a query to
STP [15] that is a solver for bit-vectors and arrays. The input size
needs to be fixed, since STP neither supports lazily instantiated
quantifiers nor the theory of algebraic data types. The approach
described here is capable of performing the same task without
requiringG to be finitized first, and can moreover be combined
with other constraints.

A connection between logic and automata has been studied
for over fifty years ago [19], [20], and revived about decade
ago [21] in the context of symbolic reasoning with Binary Decision
Diagrams (BDDs) [22]. With BDDs, rather dense automata over
large alphabets can be represented compactly and reasoned about
efficiently. However, with BDDs all characters must be encoded as
strings over Boolean variables, while our approach allows transition
predicates over variables that belong to any theory supported by
the underlying (SMT) solver.

Several program analysis techniques for programs with
strings [7], [23], [24], [25] build on automata libraries [21], [26]
that efficiently handle transitions over sets of charactersas BDDs
and interval constraints. Most of those program analysis approaches
suffer from the separation of the decision procedures, as constraints
over strings are decided by one solver, while constraints over
other domains are decided by other solvers, and the specialized
solver usually cannot be combined in a sound or complete fashion.
Our approach avoids this problem by building on top of an SMT
solver which has decision procedures for a variety of theories.
In particular, symbolic analysis of SQL queries with an SMT
solver is discussed in [3]. Another instance is the analysis.NET
programs [1], which use a rich set of string operations [2], [13].

A decision procedure for subset constraints over regular language
variables is introduced in [27] by reasoning over dependency
graphs. In contrast, we showed how finite pushdown automata can
be generalized by making transitions symbolic, and how a decision
procedures can be embedded into a logic of an SMT solver.

In [28] several decision problems related to CFGs are studied
and depth-bounded versions thereof are mapped to SAT solving. In
particular, an algorithm is provided for checking bounded version
of ambiguity (whether a string has more than one parse tree) of
CFGs. A particular advantage of the approach in [28] over the
algorithm in [29] is that awitnesscan be produced when a grammar
G is ambiguous. As an interesting direction for future work, we
can approach the same problem by extending symbolic acceptors
with an argument that captures a parse tree of a string; wherea
parse tree can be represented with an algebraic data-type based on
the productions ofG. This approach avoids the need to provide a
priori depth-bounds.

IX. CONCLUSION

We believe that the use of symbolic language acceptors as a
purely logical description of formal languages and their mapping to
state of the art SMT solving techniques opens up a new approach
to analyzing and solving language theoretic problems. We have
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demonstrated the scalability of the technique on solving extended
regular constraints, that have direct applications in static analysis,
testing, and database query analysis. We have also experimented
with symbolic language acceptors for CFGs. In this context it
is not clear if the normal forms that are important for efficient
implementation, play the same role for efficient symbolic analysis.
For example, epsilon elimination fromεSFAs or unit production
elimination from CFGs may eliminate sharing and increase the
complexity of symbolic analysis.
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APPENDIX

To capture the essence of the combination of length and regular
constraints we consider formulas of the form:

(

∧

i

si ∈ ri

)

∧ F (|s1|, . . . , |sn|)

where eachsi, i = 1, . . . , n is a variable ranging over strings, each
ri is a regular expression, andF is a quantifier-free Presburger
formula. We will show that the formula is equisatisfiable to

(

∧

i

si ∈ ri

)

∧ F (|s1|, . . . , |sn|) ∧
∧

i

|si| ≤ |ri| · 2
p(sz)

wherep(sz) is a polynomial andsz is the size of formulaF .
Let ~s denote the product string obtained froms1, . . . , sn by

aligning the character positions from eachsi. We can also assume
that there is a special end-of-string character,\000, so that the
product construction does not need to worry about miss-aligned
strings (string lengths are still computed up to, but excluding
the end-of-string character). We will make use of properties of
quantifier-free Presburger formulas and Hilbert bases. Theproper-
ties have been previously used for checking satisfiability of multi-
sets with cardinality bounds by Piskac and Kuncak in(Linear
Arithmetic with Stars, CAV 2008).

Lemma 1:Let F (x1, . . . , xn) be a quantifier-free Presburger
formula. Then there is a collectionJ and ,Aj , Bj for j ∈ J ,
where |J | ≤ 2p(sz) and eachAj , Bj is a set ofn-dimensional
vectors, such that

F (x1, . . . , xn) ⇔ (x1, . . . , xn) ∈
⋃

j∈J

(Aj +B∗
j )
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where+ is extended to sets (it is also known as the Minkowski
sum) andB∗

j is a linear combination of vectors fromBj .
Furthermore, there is a polynomialp(sz), wheresz is the size

of F , such that||Aj ||1 + ||Bj ||1 ≤ 2p(sz).
We can then derive the following equivalences:

(
∧

i

si ∈ ri) ∧ F (|s1|, . . . , |sn|)

≡ Let R be the product automata ofri

~s ∈ R ∧ F (|s1|, . . . , |sn|)

≡ Let Aj andBj be as in lemma 1

~s ∈ R ∧ (|s1|, . . . , |sn|) ∈
⋃

j

(Aj +B∗
j )

≡ Let AFj the automata encoding of the semi-linear sets

~s ∈ R ∧
∨

j∈J

~s ∈ AFj

≡ By basic properties of products
∨

j∈J

~s ∈ R×AFj

≡ By downwards pumping
∨

j∈J

~s ∈ R×AFj ∧ |~s| ≤ |R× AFj |

≡ By a size estimate onAFj
∨

j∈J

~s ∈ R×AFj ∧ |~s| ≤ |R| · 2p(sz)

≡ By replacingAFj by F

~s ∈ R ∧ F (|s1|, . . . , |sn|) ∧ |~s| ≤ |R| · 2p(sz)
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