Solving Extended Regular Constraints Symbolically
Microsoft Research Technical Report MSR-TR-2009-177

Margus Veanes
Nikolaj Bjgrner
Leonardo de Moura
Microsoft Research
Redmond, WA, USA
{margus,nbjorner,leonard@microsoft.com

Abstract—Constraints over regular expressions are common in In particular, solving the select condition il (1) corresgs to
programming languages, often in combination with other costraints solving the formula,
involving strings. Efficient solving of such constraints ha many useful
applications in program analysis and testing. We introducea method Ace?n (c, k) A —Accdr (k) NkE<d+e 2

for symbolically expressing and analyzing regular constrats using
state of the art SMT solving techniques. The method is impleented modulo the theoriesTh(A,,), Th(A,,) and linear arithmetic. A
using the SMT solver Z3 and is evaluated over a collection of solutionof () is a mapping of particular values fer k, d, ande
benchmarks. . . - T

which makes[{R) true (modulo the given theories).

Keywords-regular expressions; subset constraints; finite automata In applications such ag[1][[2][[3], that build on the SMT

satisfiability modulo theories; strings technology, a fundamental aspect is that new theories g@irbe
available for expanding the scope of the analysis, can bedadd
I. INTRODUCTION seamlessly and work in combination with existing theoriesather
words, extensibilityis a must.

The construction of symbolic language acceptors uses the
generic theory olgebraic data typesn particularlists. Algebraic
data types are supported by the SMT solver Z3 [5], [6] that we
use as the underlying SMT solver in our implementation.nggi
are represented by lists aharacters Characters are represented
by n-bit-vectors of a fixedn > 1, provided that the size of the
vocabulary is2™. For examplen = 16 for representing Unicode
SELECT % FROM T B characters. The represenFation of strings as lists is coenefor

the purpose of our encoding of language acceptors.
WHERE C' LIKE r1 AND NOT C' LIKE r2 AND LEN(C) < D + E The construction offh(A) builds on automata theory that offers
a choice between various logically equivalent forms of mat-
zation and composition techniques for performance corsiidas.
For example, an encoding fdrl(1) that is equivalent to theadir
encoding [(R) has the form

Regular expressions are used in different applicationxpoess
validity constraints over strings. In our case, the origmativation
for supporting regular expression constraints comes frem t
particular applications: program analys|s [1]] [2], andatiase
query analysis [3]. In the latter cadike-patternsare special kinds
of regular expressions that are common in SQL select-statem
consider for example the query:

that selects all rows from a tablE having columnsC, D and E,
where theC-value matches the like-pattern, does not match the
like-patternr, and whose length is less than the sumidfvalue
and E-value. The analysis discussedlih [3] aims at generatiriggab

that satisfy a test condition, e.qg., that the resul{®f (Indaempty. Acc?m XE(Q YAk <d+e @)
A core part of that analysis is to find solutions to selectetibons _
of the above form. where A denotes the complement ol and A x B denotes

We introduce a technique that allows conditions such as thdh€ product of A and B. Since complementation may cause
select condition of[{1) to be expressed and analyzed usitigfisa €xPonential blowup in the size of an automaton, it may beulsef
ability modulo theories (SMT) solving in a way that is extiafes to use an encoding that combines product with complementati
with other constraints and theories. The central idea ketie ~ @sdifference
technique is the no_tion of aympolic (Iangl_Jage) acceptdor a AceAri\Arg (k) Ak <d+e 4)
language (set of stringd), as a binary predicatdcc” (w, k) that
is true modulo a theoryTh(L) iff w € L and k is the length Note that if L(r1) C L(r2) in @), i.e., L(r1) \ L(r2) = 0
|w| of w. For a regular expression the symbolic acceptor for then the query[{l) isnfeasible Since our use of the SMT solver
L(r) is constructed from a symbolic finite automatoh. that is optimized for satisfiability checking rather than unsgiility
acceptsL(r); the symbolic acceptor is denoted bycc”~ and checking, it can beneficial to udg (4) instead[df (2). Indepety,
the theory is denoted byl'h(A,). The automatonA, is itself difference checking provides a way to chesubsetconstraints,
symbolic in the sense that its moves are labeled by formatdeer that has other useful applications.
than individual characters, which provides a more succarad Although the current application context of the paper angl th
convenient way to represent automata for like-patterns orem experiments we show in the paper focus on regular languadjes,
generally forregexed4] involving complex character ranges. the definitions for symbolic language acceptors and algmstare

given forsymbolic push down automaés a generalization of sym-
bolic finite automata. We prove a theorem about the compdsten
and the soundness of the axiomatization.

Combination of regular constraints on strings with quaetifi
free linear arithmetic and length constraints is known todee
cidable [7], [8]. One can effectively compute an upper boond
the length of all strings. We recall how this is done in Appai&l
By using these bounds to restrict the maximum length of gérin
in solutions of acceptor formulas, one obtainscampletedecision
procedure for solving linear arithmetic with regular coastts and
length constraints with the approach described in this pdper
context free languages the approach gives a complete sagisiiah
procedure.

We describe a specialized algorithm for constructing tHfedi
enceA\ B between a symbolic PDAl and a symbolic FAA. This
algorithm is of interest independently from the main aplion
context; one use of the algorithm is for checking subsettcaimts
of the form L, C L. whereL; is context free and.. is regular.

range sort. Using model theoretic terminology, these nawbsys
expandthe signature. Aconstantis a nullary function symbol.

Termsandformulas(or Boolean terms) are defined by induction
as usual and are assumed to be well-sorted. We #ititdgt) for
the set of free variables in a term (or formula) A term or
formula without free variables islosed Let F¢ denote the set
of all quantifier-free formulas with at most one fixed freeiahte
of sort C. Throughout the paper, we denote that variable »ay
Given ¢ € F¢, and a character or termof sort C, we write p|t]
for the formula where each occurrencepfs replaced byt.

A modelis a mapping from function symbols to their inter-
pretations (values). The built-in function symbols have game
interpretation in all models, keeping that in mind, we mayitom
them from the model. Amodel for a formulay provides an
interpretation for all the uninterpreted symbolsgn A model M
for a closed formulay satisfiesp, M = ¢, if the interpretations
provided by M make true. A closed formulap is satisfiableif
it has a model. A formulay with FV (¢) = z is satisfiableif its

We evaluate the performance of the different approaches thaexistential closurédzy is satisfiable. We writé= ¢, if ¢ is valid

have been implemented in a prototype tool by the authors.

The rest of the paper is structured as follows. Sedfibn Hoint
duces some background material to keep the paper selficedta
and to explain the notational conventions. Section Il defin
symbolic automata. Sectidn IV introduces symbolic languag-
ceptors. SectiohV describes an algorithm for differencestroic-
tion. Section[Vl discusses some aspects of the implementati
and Sectiof V]I provides some benchmarks. Finally, Sed{dh
describes related work, and Sectibnl IX states some comgudi
remarks.

(true in all models fory).

For example, the character range §et- z\ d] in a regex is
translated into the formuld = (*a’ < xAx<'z")V (0 <
xAx < 9") with x as the single free variable if. The formula
is satisfiablez)[' b’] is true;+[* a’] is false. Note thata’ ,‘ z’ ,
‘0’ and' 9’ in ¢ stand for terms that use only built-in function
symbols and denote the bit-vector encodings of the correlipg
characters and digits.

Il1. SYMBOLIC AUTOMATA

We use a representation of finite automata where several tran
Il. PRELIMINARIES sitions from a source state to a target state are combined int
We assume that the reader is familiar with classical autamat@ Single symbolic move. Formally, a collection of transiso
theory, we follow [[9] in this regard. We also assume elemgnta (P, a1,4),-- -, (p,an,q) are represented by a singlsymbolic)
knowledge about logic and model theory, our terminology isMove(p, ¥, q) fromp to g, wherep € F¢, such that

consistent with[[10] in this regard.

We are working in a fixed multi-sorted univergeof values. For
each sorto, U° is a separate sub-universe W@f The basic sorts
needed in this paper are the Boolean $bri/® = {true, false},
and the sort of:-bit-vectors for a given numbern > 1; an n-bit-
vector is essentially a vector of Booleans. We also need other
sorts but they are introduced at the point when they are used.

Charactersare represented by-bit-vectors of a fixed length
n, assuming that the alphabet of all characters has ZizeFor
example,n = 7 (n = 8) for representing the standard (extended)
ASCII character set, and = 16 for representing the full range of
Unicode characters. We I€t stand for a fixed character sort for
some fixedn, and the complete alphabet is thuS. Without loss
of generality, assume for example that= 7 and that standard
ASCII encoding is used to represent the characters. Kedpisg
intuition in mind, we write for exampléa’ to denote a character.

There is auilt-in (predefinedkignatureof function symbols and
a built-in theory (set of axioms) for those symbols. Eachcfiom
symbol f of arity n > 0 has a given domain sosty x - - - X o —1,
whenn > 0, and a given range sa#t, f : oo X+ --X0pn—1 — 0. FOr
example, there is a built-irelation or predicate(Boolean function)
symbol<: C x C — B that provides a strict total order of all the
characters. One can also decl&esh(new) uninterpretedfunction
symbols f of arity n > 0, for a given domain sort and a given

[¢] ={a1,...,an},
where] £ {a | a € U, = pla]}. Let also
[(p. 0. 0)] = {(pa,q) | a € [¢]},
and, given a sef\ of moves, let
[A] E{r |6 €A, 7€ 0]}
Note that[(p, ¢, q)] = 0 iff ¢ is unsatisfiable. Define also

def

Source((p,¢,q)) = p,
Target((p,0,q)) = g,
Cond((p,¢,q)) £ .

For example, the move
(p'a <xAx<'2,9)

represents the set of all transitio(s ¢, ¢) wherec is a character
between' a’ and‘ z’' . The symbolic representation of conditions
is convenient and fits well with the encoding of the symbolic
acceptors for automata discussed below. Formally, we tefsuch
a representation of a finite automata (FA) as follows.

Definition 1: A Finite Symbolic Automatoor SFA A is a tuple
(Q,q0, F,A), whereQ is a finite set ofstates go € Q theinitial

state F C Q is the set offinal statesandA : Q x F¢ x Q is the x>=' 0 &x<='9’

move relation Ko=t 0 8x<=' O R
We sometimes usd as a subscript to identify its components. @ _ ° @
We also use the following notations. - E om ' &x<m 2 .
Aa(q) £ {t|teAa,Source(t) = q} :
Aa(q) £ U{Aa(g)|gea}

Figure 1. SampleSFA generated from the reg&xl+| [a- z] . The initial
state is gray, the epsilon moves are dashed. The syd@hsl used for
conjunction.

Target(t) = U{Target(t) |t € t}

Just as with finite automata, it is useful to agjasilon moveso
an SFA. Consider a special symhothat is not in the background
universe. A. Symbolic Push Down Automata

Definition 2: An SFA with epsilon movesr eSFA is a tuple

Similar to SFAs we use a representation of PDAs where moves
(Q,qo0, F, A), where @, qo and F are as above, andh : @Q X P

o are labeled by formulas fromf¢ that represent sets of characters
(Fc U{e}h) x Q. rather than individual characters.

The term SFA without the additional qualification allowing Definition 7: A Symbolic Push Down Automatan SPDA A is
epsilon moves implies that epsilon moves do not occur. (Qisly, a tuple(Q, Z, qo, 20, F, A), whereQ is a finite set ofstates Z is

. def

any SFA is also anSFA.) Let [(p,€,q)] = (p,€,9). An eSFA 4 finite et ofstack symbolsgo € Q is theinitial state, zo € Z

A =(Q,A,q, F') denotes the finite automatd] with epsilon s 0 initial stack symbgl F C @ is the set offinal statesand

moves [9], where A:QxZxFcxQxZ* is themove relation

[4] det (QMC’ [A], qo, F). Similar toeSFAs ancSPDA may have moves where the condition is

e. Each move = (q, z, o, p, 2) of aneSPDA, wherex € FcU{e},

We write A% for the set of all epsilon moves ilh4 and Af‘ denotes the set of transitiofi] def {(g,2,a,p,%) | a € [a]}. The

for Aa\ A%. Epsilon elimination foreSFAs is a straightforward underlying PDA is denoted bjA] (with the alphabets®). The

extension of epsilon elimination of finite automata and hasar languagel(A) accepted by is the languagd.([A]) accepted by

time complexity in the size of the automata, seel[11]. If thethe PDA[A]. We reuse the definitions ofource(t), Target(t),

input eSFA is clean then so is the resulting SFA, since theand Cond(t) also for movest of an eSPDAs and introduce the
only combination of move conditions performed during epsil additional definitions

elimination is disjunction. .
Definition 3: An eSFA A is normalizedif there are no two Pop((q, 2, a,p,2))

distinct moves(p, ¢1, q), (p, ¥2,¢q) in Ai. Push((q,z,a,p, 2)) &z
It is clear that for any:SFA A there is a normalized SFA’ such

that [A] = [A']: for all statesp andq in Q 4, make a disjunction

o of all the conditions of the moves from to ¢ in Af, and let

(P, ,g) be the single move im},, that goes fromp o g. Elimination of epsilon moves from aaSPDA corresponds to

A move is satisfiableif its condition is satisfiable. Note that transforming the corresponding context free grammar ii&ch
unsatisfiable moves are clearly superfluous and can always %ormal Form (GNF), which can be done in polynomial time. Move

def
= Z7

An ¢SPDA A is clean if all moves in A4 have satisfiable
conditions, andnormalizedif there are no two movesg; and to
in A4 that differ only with respect t@ond(t).

omDitt?d..t. 4 An <SFA A is ¢l it all in AY conditions play no active role in the algorithm. (Terminate in
sati;i:lzl)llgn SAN e IS clean IT all moves in A are general treated as black boxes in normal form transformatif

grammars.) We use a variation of the Blum-Koch algorithm] [12

for GNF transformation that has worst case time complexity
Note that everyeSFA A can be trivially transformed into an

eSPDA: letZ4 = {z}, z0a = 2, and for each move € A4 let

Definition 5: An SFA A is deterministic calledDSFA if [A] is
deterministic.
The following proposition follows easily from the definitis and

is used in characterizing DSFAs. _ Pop(t) = z and Push(t) = z. We say that the resultingSPDA
Proposition 1: The following statements are equivalent. representsan eSFA
1) A is deterministic. 1) Product with SFA:The classical construction of the product
2) For any two movesp, @1, q1) and(p, p2,q2) in Aa, if g1 # of a PDA with an FA has a corresponding version for a product
g2 then 1 A 2 is unsatisfiable. of an SPDA with an SFA. The key madification is the use of

Definition 6: The language (set of stringagceptedby an SFA satisfiability checking of conditions in order to keep thestouc-
A, L(A), is the language accepted by the finite automdtai. tion clean. The input to the algorithm is an SPDWand an SFA
Two SFAs areequivalentif they accept the same language. B and the output is an SPDA’ that is theproduct of A and

We use [[4] as the concrete language definition of regularB, also denoted byd x B, such thatL(C) = L(A) N L(B). It
expression patterns oegexesn this paper. The translation from a iS convenient to describe the algorithm as a depth-firsteeafion
regex to aneSFA follows very closely the standard algorithm, see algorithm using a stack as a frontier, a sét’ C (QaxQp)XZa
e.g., [9, Section 2.5], for converting a standard regulgression ~ Of already visited elements, and a sEtof moves. Initially, let
into a finite automaton with epsilon moves. A sample regex andl’ = 0, S = ({(qoa,qo5), 204)), andV = {((goa, qoB), 204) }-
corresponding:SFA are illustrated in Figurg] 1. (i) If S is empty go to (iii) else pof(p, ¢), z) from S.

(i) For each(p,z,p,p’,2) € Aa and(q,v,q') € Ap. If o A9
is satisfiablethen
— add (<p7 q>7 Z, 0 N P, <p,7 q,>7 E) to T,
— for eachz’ in 2, if v = ((p',¢),2") ¢ V then addv
to V, and if there ist € A4 with Source(t) = p’ and
Pop(t) = 2’ then pushw to S.
Go to (i).
(i) Let C = (m1(V),m2(V),{q0a,qoB), 204,71 (V) N (Fa X
Fg),T).
(iv) Eliminatedead statesrom C' (states from which no final state
is reachable).

Note that|Q¢| is at most|Q 4| * |@Qz|. The satisfiability check in
(ii) is important. It prevents unnecessary exploratiommieachable
states, and may avoid a quadratic blowup @f, whereas (iv)
avoids introduction of useless “dead end”-axioms in the t®ylin
language acceptor far'.

Note also that ifA represents an SFA then so daés

IV. SYMBOLIC LANGUAGE ACCEPTORS

To encode language acceptors, we use particular kinds arfexi
all of which are equations of the form

V‘i'(tlhs = trhs) (5)

where FV (tms) = & and FV (trns) C Z. When tins and trns
are formulas, we often write<’ instead of ='. The left-hand-
side t,s of (B) is called thepattern of (5). While SMT solvers
support various kinds of patterns in general, in this paper use
the convention that the pattern of an equational axiom isagiv
the left-hand-side of the equation.

B. Construction ofTh(A)

Let A be a giveneSPDA. AssumeA is normalized. LetN be
a built-in non-negative numeral sort such as a bit-vectantager
sort restricted to non-negative integers. We Nsfor representing
the length|!| of a list!, i.e., the number of elements inLetZ be
a sort for representing.4 and assume that, C U%. With slight
abuse of notation, we also use stack symbols as terms. We may
assume, without loss of generality ttiais a fixed numeral sort as
well. We represent atackas an element of soft = L.(Z). A stack
is denoted by(z1, ..., z2x), k > 0, wherez; is the top element on
the stack. We writgz1, ..., 2x) - (Zrt1,...,21) for (z1,...,z1).
The empty stack is denoted hy

For all ¢ € Q 4, declare the predicate symbol

Accl :-WxNxS—B

An ID of [A] is a triple(q, w, s) whereq € Qp4), w is a string and

s is a stack([9]. For defining the axioms it is more convenienide
acceptance by the empty staeither than final states, the language
accepted by the empty stack is denoted\bif A]) in [9l page 112].
The transformation ofd to an equivalenteSPDA A’ such that
L([A]) = N([A']) is straightforward. We therefore assume that
Fa=0.

The idea behind the axioms defined below is that the formula
Acci(w,n, s) holds iff [w| = n and (g, w, s) Flag (p," "5 €) for
somep € Qaj, Wheret 4] is the step relation ofA] as defined
in [9, page 112]. Declare also

Acc® :WxN— B
The intuition is thatAce” (w, n) holds iff w| = n andw € L(A).

Axioms are asserted to the SMT solver as macros that aréorg € Q4 andz € Z4 let Aa(q, z) be

expanded during proof search. It is not easy to expand thialini
goal formula outside the solver and to assert only quantifiss
formulas to the solver. The reason is that it is hard to knoverwh

to expand a pattern and when not to expand a pattern. Moreover

axioms that are introduced for automata are typically mliyjtua
recursive and a naive a priori exhaustive expansion of ipette
would in most cases not terminate.

The overall idea behind the axioms is as follows. For a given
eSPDA A we construct a theoryf'h(A) that includes a particular
axiom with lhs Acc” (w, k). The main property ofh(A) is that
it precisely characterizes the language acceptedi by

L(A) = {w™ | M |= Th(A) A Acc™ (w, k)}

and if M = Acc®(w, k) then k™ = |w™|, wherew is a list of
characters antw| denotes the length ab, as explained below.

A. Lists

Lists are built-in algebraic data-types and are accomplawith
standard constructors and accessors. For eachrsdr{o) is the
list sort with element soriz. For a given element sott there is
an empty listnil (of sortL{(c)) and if e is an element of sor&
and! is a list of sortlL{(c) then cons(e,l) is a list of sortL(o).
The accessors are, as usual, (head) andd (tail).

Strings are represented by lists of characters; we Wifitéor
the sortL(C). The empty string is abbreviated By and a string
cons(* @', cons(* b’ , cons(* ¢’ ,nil))) is abbreviated by abc",
e.g., hd("abc")="a’ andti("abc")="bc".

{(g,2,0i,6i,2:) | 1 <i <mPU{(q, 2,6, 4, Zi) | m <i <k}

Define the following axioms.

az® £ Vwn (Acc* (w,n) & AcchOA (w,n, cons(zoa,€)))
a:th & an(Accf?(w,n,a) S (w=""An=0))
aty , £ Vwns (Accf?(w,n, cons(z,8)) <
(w#""An>0A
(V (ilhd(w)] A Ace, (t(w), n—1,Z - 5))))
i=1
k
v\ Al (o 5)
Jj=m+1
Th(A) £ {az*}U {azl, azl. | g € Qa2 € Za}.

The set of formulasT’h(A) (or equivalently\ Th(A)) is asserted
to the solver as théheory of A.

The following theorem can be generalized to a class of well-
behavedeSPDAs but does not hold for ailSPDAs, i.e., when
arbitrary epsilon moves are allowed.

Theorem 1:Let A be an SPDA or an epsilon-loop-freSFA.
Letw:W, n:N. ForallM, M = A\ Th(A)AAcc® (w, n) iff w™ €
L(A) and jw™| = n™M.

Proof outline: For the case whem is an epsilon-loop-
free eSFA the proof is similar to the proof of [11, Theorem 1].
AssumeA is an SPDA. Since epsilon moves are not present, the

following statement follows by induction over the lengthtefs;- a sub-termu and there exists a substitutignsuch thatu = 40,
computations. For all ID$q, w, s) of [A]: i.e.,u matches the patteraf the axiom. If [%) is triggered, then the

. . current goal is replaced by tHegically equivalentformula where
I € Qallg,w,s) Fiag (", €)) = Th(A) = Aceg (w, |w],5) has been replaced liy,6.

The theorem follows, by letting = goa ands = (z04). n Thus, equational axioms can be viewed as “rewrite rulest, an
The theorem fails in general when epsilon moves are allowed a€ach application of an axiom preserves the logical equizaleo
illustrated by the following example. the original goal. Termination is in general not guarantgethe

Example L1:Let A = ({g},{z},q,2,0,{(q, 2 € q,(z))}). For Presence of (mutually) recursive axioms. Note that, unifkesrm
example(q," ", (2)) Frap (¢," ", (2)). The language accepted by rewrite systems, there is no notion of term orderings or-aefined

A is empty. The theoryT'h(A) for A includes the axiomuz?:.: customizable strategies (at least not |n_ the current \AerefoZS_)
that could be used to guide the triggering process of thenaxio

Vwn s (Ace (w,n, cons(z,s)) & Acc(w,n, cons(z, s
(Aceq (w, n, (z9)) 2 (wm, (2 9)) V. DIFFERENCE CONSTRUCTION

This axiom is a useless tautology Consider for example aeind We describe an algorithm that is used below for encoding
with an interpretation fordcc;' SUCh thatM = Accg(v?v"(z)) difference constraints. The input to the algorithm cossisf
and expand\/ so thatM |= az* Aazy'. ThenM = Acc?("",0) a clean SPDAA and a clean SFAB, and the output of the

but"" ¢ L(A).)) & algorithm is a clean SPDAC that is equivalent tad x B, i.e.,
For all ¢SPDAs there is an equivalent loop-fre€PDA that 1) = ,(A)\ L(B). Thus,L(C) = 0 iff L(A) C L(B).

can be computed effectively, e.g., the GNF normal form foG8F The general idea behind the algorithm is to incrementally de

implies that. terminize and complemert, and simultaneously compose it with
For aneSFA (or aneSPDA that represents afSFA) the axioms 4 \hile keeping the construction clean. During this proctes

can be simplified, by omitting the stack variable. We illagtrthis SMT solver is used to generate all solutionsctdeformulas that

with an example that also shows the application of the axioms represent satisfiable combinations of move conditionslfenaves
Example 2:Let A be theeSFA in Figure 1. The axiomdh(A) from subsets of states @ that arise during determinization 6.

for A are as follows, wherep = (x > *a’) A (x <*2z") and Gijven a finite sequence of formulas = (¢;);<n from Fc, and

p=Kx2>2"0)A(x<'9)andg € Qa: distinct Boolean constanis= (bi)i<n define
azg:Vwn (Acc(w,n) < (Acer(w,n) V Acesz(w, n))) Cube(F,b /\ 0i & b
az:Ywn (Acey(w,n) < (w#£"" An>0A i<n
Plhd(w)] A Aces(l(w),n —1))) Recall that the variable is shared in all thep;. A solution of
aza:Vwn (Acca(w,n) & ((w#"" An>0Aphd(w)]A Cube(@,b) is a model M such thatM |= JxCube(F,b). In
Accy(tl(w),n = 1))V (w="" An=0))) particular,M provides a truth assignment to all thés. Given a set
azxz:Ywn (Accs(w,n) < (w#"" An>0A@[hd(w)]A G of formulas we write\/ G for the formula\/ ., ¢, similarly for
Acey(tl(w),n — 1))) A\ G. The following property follows by using basic model theory
ary:Vwn (Acey(w,n) & (w="" An=0))

. Proposition 2: If M is a solution of Cube(,b) then A{e; |
Declare fresh constants: W, k: N and assert the axiom®h(A) i <n,M [b;)} is satisfiable.

and the goalAcc(s,k) to the solver. We describe a plausible Giyen a solutiond of Cube (3,)' let g2 denote the formula
scenario for the resulting model generation process. ,Fihst

axioms are triggered, we indicate the selected sub-terteofjbal /\({bi | M Ebi}U{=b; | M E —b;})

by underlying it We use the following iterative model generation procedorgetn-

az g

Acc(s, k) “F Acci(s, k) V Accs(s, k) erate the seSolutions(Cube (@, b)) of all solutions ofCube (g, b).
T ey e 1) Initially let M = 0.
~ Aeer(s k) V(s £ AR>0 2) Keep adding solutions of Cube(@,6) to M until
Ap[hd(s)] A Accy(tl(s),k — 1)) Cube(,b) A \ yen —r i unsatisfiable.
%a Acei(s,k)V (s £"" Ak>0 3) Let Solutions(Cube(F,b)) = M.
Aplhd(s)]Atl(s)="" ANk—1=0) The procedure is still exponential in theorst case but seems to

work well in practice. It is also better than creating all sets of
The triggering process may continue, but the conjunct ofgibe ¢ and filtering out all combinations that are unsatisfiableictvlis
that does not include patterns enables a concrete model to kmwaysexponential.

generated using built-in theories. For example, there isodain The following property is used in the difference constroicti

M such thats™ ="a" andk™ = 1. X algorithm for generating all satisfiable subsets of moveditions
) for a given set of moves.

C. E-matching Proposition 3: Let ¢ and b be as above. For all subsets

During proof search in an SMT solver, axioms are triggered byof g, A G is satisfiable if and only if there existd/ €
matching sub-expressions in the goal. The high-level idelaow Solutions(Cube (g,)) such thatM = b; for all p; € G.
an SMT solver uses an axiom such as (5) is as follows. The axiom Proof: The direction< follows from Propositioi 2. For the
@) is triggered by the current goaly of the solver, ify) contains direction = assume/ G is satisfiable and lefi/ be such that

M = b; for all ¢; such thatp; is a logical consequence 6f. Let that M = a, do the following. Let
M = Soluti Cube(F,b)). ThenM € M or elseCube(F,b) A

olutions(Cube(3, b)) S ube (5, b) 7,: 0i ANN{W; | M = b} U{=; | M |= —b;}),
qa' ={q | M b}

Anem ~n would be satisfiable, contradicting the construction of

. m

Definition 8: An SFA A is total if for all ¢ € Q 4, the formula Add the move({p,q), 2,7, (p:,q’), %) to T. Foreachz’ €
Vx V{Cond(t) | t € Aa(q)} is valid. Z, if v = ({pi,q’),2’) ¢ V then addv to V and if there

In order to make an SFA that is not total into an equivalent existst € A4 such thatSource(t) = p" and Pop(t) = 2’
total SFA, one can add a nedead stated to it with the move then pushv to S.

(d, true, d), and a new moveq, ¢, d) from each state; where (i) Go to (i). .
¢ is satisfiable andp = A{—-Cond(t) | t € A(q)}. Clearly, (iv) Compute the set of final states:

determinism is preserved by this transformation. F— c V)peF AN Fg =0
Definition 9: Given a total DSFAA, the complementd of A is () | (pra) €m(V),p € Fa,an Fis = 0.

the DSFA(Q4,qoa, Qa \ Fa,Aa). If F=0let C = ({qoc}, {204}, q0c, 204,0,0), else let
It is easy to see that for a total DSFA, L(A) = L(A). C = (m(V),m(V),q0c, 204, F, T).

We use the following property of regular languages to speedrhe complementation oB in the algorithm is reflected in the
up the difference construction in some cases, with a lowainit computation ofF" where a state of’ is final if its first component
overhead. For regular languages it is a well-known fact thatis a final A-state and its second component, that is a sét-states,
reversing the language preserves regularity. includes no finalB state

Definition 10: Given aneSFA A with nonempty L(A4) and a The totality of B is assumed in the computation dfl, where
stateq ¢ Q., thereverseA”™ of A with initial stateq is theeSFA each solution will make at least ong and at least ong; true. The

totality assumption can be avoided by representing a “déaté”s

(QaU{a},q,{qoa}, implicitly in the algorithm. The presentation of the alghrn gets
{(Target(t), Cond(t), Source(t)) | t € Aa} technically more involved in this case.
U{(g,€,p) | p € Fa}) To see thatB is indeed incrementally determinized, consider any
Given a strings let s” denote the string that is in reverse and two moves
let L™ denote the languaggs”™ | s € L}. (Note thatL = (L")".) ti = (q /\ b A /\ —pj, {q; | M1 = b;})
It follows that L(A™) = L(A)". We make use of the following M b, My mb;
property. _ v L)
Proposition 4: Let A be aneSFA, L(A) = L(A7)". tz = (a M/‘\b i A M‘/\ , i i [Mz = bs})
20, 2705

The point of reversing is that complementation of an SEA
requires determinization that may cause exponential kjoiwithe that are composed with moves df and added td" in Step (ii),
size of the automaton, which can be avoided ffis deterministic. = where M1, M> € M. By using Propositiof]1, we need to show
A classical example is the SFA for the regeX ab] =a[ab] {n} ~ that if Target(t1) # Target(t2) (i.e., for someb;, M = b; and
wheren is a positive integerA hasn + 2 states and the size of M2 | —b;), then Cond(t1) A Cond(t2) is unsatisfiable, which
the minimum DSFA for this regex has'*! states, wheread” is ~ holds because there is at least afpesuch thaty; is a conjunct
deterministic. of Cond(t1) and —; is a conjunct ofCond(t2).

We are now ready to describe the algorithm. Kebe an SPDA The property that all possible satisfiable combinationsiof

and B an SFA. Assume that is clean andB is normalized, clean, Moves are considered in Step (ii) and that the compositidh wi
and total. A-moves preserves satisfiability of the conditions of the esov

Check the special cases first: added toT, follows from Propositio 13 and the added constraint
that\/ @ is true in the computation dvI.

» If Bis deterministic le”’ = A x B. Finally, note that ifA represents an SFA then so dagés

« Else, if A represents an SFA and” is deterministic leC' =
(A" x B™)". A. Difference checking

General case. We describe the algorithm as a depth-first- The above algorithm has also a more efficient version in the
exploration algorithm using a stackas a frontier, a set’ : (Qa x case whenA represents an SFA and the purpose is to decide (in
20B) x Z4 of visited elements, and a s&tof moves. Initially, let isolation) if L(C) = L(A) \ L(B) is empty, and to provide a
qgoc = {qoa,{qoB}), S = ({(goc,204)), V = {{qoc,204)}, and single witness inL(C) otherwise. For this version, the explicit

= construction of the moves af' is not needed. The checking of

(i) If S is empty go to (iv) else pog(p,q), z) from S. finallstates can be dong when an element is pppped Foamd

(i) Let Aa(p,z) = (p,2 0i,pi,Zi)icm: Ap(q) = a “W|tnes_s tree” can be incrementally updated (msteaff))thgt

(i@)iem. Let @ = (@)iem andb — (b;)ien be fresh ~ ecords links backwards from newly found target states tr th

Boolean constants. Compute source states.

M = Solutions(Cube((:)i<m - (1)icn, d@-) VI IMPLEMENTATION
The algorithms discussed in Section Il and Secfidn V and the

with the additional constraint thaf @ is true. For each move axiom generation discussed in Section IV have been implesden
(p, 2, vi,pi, Z;) of A and for each solutior/ in M such in a prototype tool for analyzing regular expressions ancted

free grammars. The SMT solver Z3 is used for satisfiabilityatta

ing and model generation. We use some features that areispeci

to Z3, including the integrated combination of decisiongadures
for algebraic data-types, integer linear arithmetic, Vaittors and
quantifier instantiation. We also make use of incrementafuies
so that we can manipulate logical contexts while exploriifigicnt
combinations of constraints. Use of algebraic data-typesentral
in the construction of the language acceptors, as wasraligest in
SectionIV. The definitions of the axioms match very closelthw
the actual implementation.

Working within a context enableéscrementaluse of the solver.
A context includes declarations for a set of symbols, aisserfor a
set of formulas, and the status of the last satisfiabilitickH{# any).

There is acurrent contextand a backtrack stack of previous con-

texts. Contexts can be saved throymfshingand restored through

2) Generate a modél/ for the assertions and extract a witness
in L(A).

The experiment illustrates that the use of axioms scales. Fo
example, the automaton constructed #7 \ #8 has almost 5k
sates (and around 14k moves, the automata are typicallgegpand
the size of the theory is proportional to the size of the aatiom
that has in the order of 10k axioms that are created on-thé&diy
checkingL(r9) C L(r9) the algorithm did not terminate (using a
timeout of > 10 min). Overall, the whole experiment took around
1 minute to complete (if the case= j = 9 is excluded).

B. Experiment 2

What is the payoff (if any) in using the difference constioict
algorithm as opposed to a direct encoding using a Boolean com
bination of the acceptor formulas? We conducted the folgwi

popping The use of contexts is illustrated in Figlide 2 that showsexperiment for each pair of sample regexesandr;.
a simplified code snippet from Rex responsible for computing 1) Construct the automatd and B for r; andr;, respectively

-

Solutions(Cube(F, b)) in the difference construction algorithm in
Section[Y, where the solutions are generated incrementsilyg

a context, and thenodel generatiorfeature is used to extract the
actual solutions from Z3.

z3. Push(); //push a new context for collecting solutions
Tern{] b = . /1 fresh Bool ean constants for B-noves
Tern{] a = . //fresh Bool ean constants for A-noves
Tern{] cube = ... //correspondi ng cube equations

z3. AssertCnstr(z3. MkAnd(cube)); //assert the cube formula
z3. AssertCnstr(z3.kOr(a)); //at least one a[i] must hold
Model M

whi | e (z3. CheckAndGet Mbdel (out M != LBool .False) //get M

AddToSol utions(M;
z3. AssertCnstr(Negate(M a, b));

/lrecord M
/1 exclude M

z3.Pop(); //return to the previous context

Figure 2. Computation of solutions for cubes.

VIl. EXPERIMENTS

and assert the theorie®h(A) and Th(B). (For the case
wheni = 5 we modify B slightly but keep it equivalent to
A, so the theories fod and B are disjoint. If we use the
same theory and acceptor predicate, the problem becomes

trivial).
2) Assert the goalcc” (s, k) A =Acc® (s, k) with freshs: W

andk:N.
3) Check and generate a model for the goal.

Table 1l
RESULTS OF EXPERIMENT2.
1 B2 W3 W4 W5 W6 [Hr [H8 W9 [#10

#1 |? 109 U7 (124 (78 [156 |78 |141 |171 [2746
#2 |16 [? 15 |16 [15 (16 [31 [31 |[110 31
#3 [<1 [16 [78 [16 |<1 {15 [47 [31 [109 [16
#4 156 [296 (110 |? 78 (156 [202 [156 ({172 |171
#5 31 32 {15 63 [? 62 (94 W47 140 @47
#6 |16 [31 (16 [<1 |<1 [? 47 31 (109 |16
#7 194 78 62 (140 |78 2 |? 141 203 (93
#8 171 [141 {140 [219 [249 RB75 [670 [? 1061 671
#9 172 [171 [156 [187 [188 [172 [327 [281 [? 203
#10 [172 |46 (141 [v8 [327 [r8 [297 [171 203 |?

We conducted several experiments where we evaluated the

performance of the difference algorithms and the axioratibn

approach on a collection of sample regexes shown in Table 1.

These are typical examples of concrete regexes appeangigus
practical contexts. The regexes are taken froml [13], whbee t

The result of the experiment is somewhat surprising. See Ta-
ble[In the case when the difference is nonempty, theatlire
encoding clearly outperforms the difference constructromany

analysis is not able to handle several of the regexes for reemb cases. In contrast, the experiments done_in [11] indicdtedit is

generation. In all caseb(r;) Z L(r;) for regexes andj, @ # j.

A. Experiment 1

TablelTl shows the time it took with the difference construction
algorithm (Sectio V) to construct the automaton fd;) \ L(r;)
and to generate a witness using the axioms of the automat@rew
1 is the row number ang is the column number in the table. The
table also shows the number of states of the constructednateo
For every (nonempty) automatohthat was constructed fdr(r;)\
L(r;) we performed anember generatiosheck as follows.

1) Declare fresh constants: W, k:N, and assertl’h(A) and

Acc’ (s, k).

1Al experiments were executed on a Lenovo T61 laptop witkelldual
core T7500 2.2GHz processor.

beneficial to candidefTh(A x B) rather thanTh(A) U Th(B).
However, fori = 7, the direct encoding only terminates when the
automaton has no loops (which is the case whes j = 3).
Overall, the experiment took around 15 seconds to compléte (
the non-terminating cases are excluded).

C. Experiment 3

For each pair of regexes; andr;, 1 < i,5 < 10, Table[TM
shows the time it took with the difference checking algarith
(SectiorV=A) to decide if.(r;) C L(r;) and to generate a witness
in L(r;) \ L(r;) if L(r;) € L(r;), wherei is the row number and
j is the column number in the table.

As expected, the full construction of the difference auttama
and member generation for it takes more time than generating
single witness. The total time of the experiments (exclgdine

Table |
SAMPLE REGEXES

HL [Vwr([-+ 1\ W) * @ ([-.]\ W) #\ AW ([-2 VW) * ([, 1\ S*\wr([-+.]\ W)« @W([-.]\ wk) *\ .\ w([-.]\ w) %) *
#2 | $2(\d{1,3},2(\d{3},2)*\d{3}(\.\d{0, 2})?|\d{1, 3} (\.\d{0, 2})?[\.\d{1, 2} ?)
#3 | (IA-ZI{2}[a-2z]{2} \d{2} [A-Z]{1 2}|[a-2]{1,2} \d{1,4})?([AZ]{3}[[a-2z]{3} \d{1,4})?
#4 | [A-Za-z0-9] (([\.\-]1?[a-zA-Z0-9] +)*) @[A Za-20-9] +) (([\.\-]?[a-zA-Z0-9]) *)\. ([A- Za-z][A- Za-z]+)
#H | (W) +@(\w-) A) +(\w-) +
#6 | [+12([0-9]*\.2[0-9]+[[0-9] +\.2[0-9]*) ([eE][+-]?[0-9]+) ?
#O| (W dIV-[V) @1 (AW NVIV-) {1, 673) [(AW Vd-) A (W N dV-) {1, 673))V . ((([a-z] [[A-Z][\d){2,4}) (\. ([a-2]

[[AZ][\d){2})?)
#8 | (([A-Za-20-9]+ +) | ([AZa-20-9] +\-+) | ([A-Za-z0- 9] +\. +) | ([A- Za- 20- 9] +\ ++)) *[A- Za- z0- 9] +@ (\ wW+\ - +) | (\w+\ .)) x\w

{1,63}\.[a-zA-Z] {2, 6}
#9 | (([a-zA-20-9 \-\.]H) @[a-zA-20-9 \-\.]H)\.([a-zA Z]{2,5}){1,25})+([;.1(([a-zA-Z0-9 \-\.|+) @[a- zA- Z0-9 \-\.

I\ ([a-zA-Z]{2,5}){1, 25}) +) *
#10 | (Owr([-+]\ wh)+@war([-. T\ w) s\ A wk([- J\wh) »)\ s+,]{0, 1}\s%) +

Table I
RESULTS OF EXPERIMENTL.
#1 #2 #3 #4 #5 #6 #1 #8 #9 #10

t tates t tates t tates t tates t tates t tates t tates t states t states t tates
#1 93 [1 125 [33 62 [24 [110 W2 [327 |45 63 [26 |64 [604 [p15 [283 [452 |40 [2091 [103
#2 W6 34 32 |1 15 25 7 34 31 31 31 [34 47 34 63 34 405 (34 31 34
#3 |32 29 31 29 15 1 31 35 16 29 16 |29 31 29 94 35 374 35 31 29
#4500 29 [156 22 [156 [22 31 [1 125 [27 249 19 005 [373 [437 [154 [3432 279 [265 [39
#5 63 [24 Bl [T B1I |7 U7 23 15 1 16 9 234 [237 296 [208 [406 |8 125 |41
#6 [31 [12 Bl 5 (16 |8 31 [16 16 M1 |15 [1 31 [12 |7 18 P75 [A5 [15 [12
#7 687 [B64 [156 (160 [156 (147 686 499 (312 [298 140 153 [|172 [1 6583 4784 640 |170 (1419 [760
#8 [515 [430 [749 [127 [1030 [260 |[1201 [307 [2215 [294 [640 [108 [4804 [5023 [203 [1 4275 [241 [3198 [573
#9 (1061 (532 998 |30 [983 [B27 1295 668 (1029 526 [967 [529 [1248 697 [1170 623 |oco ? 999 [542
#10 483 [78 [78 [38 63 [29 140 [51 [406 |57 |140 [31 |I311 [823 (1029 {418 [53 |49 [265 [1

RESULTS (Iibeli;\émwms. the end isa. Consider an SQL select condition of the fBrm

I v S 1 A s rrre N3 0 s LIKE 71 AND NOT s LIKE ro AND 3 *LEN(s) > 2xn (6)
pL 78 15 <1 Bl <1)16 Bl 16 P59 124 Let A and B be eSFAs such thaf.(A) = L(r1) and B = L(r>).
H2 |<1 32 [15 |<1 ({16 [|<1 31 16 405 (16 .
T 5 Bz 5 =T 16 15 16 B =1 The sample vyas chosen for se\lleral reason;. (;omplemenpitmn
7 16 16 |15 Bl |<I <L Bl 16 B30 15 B would require a DFA with2" ™! states. Unlike in the previous
B5 16 |<1 |15 |16 |16 |<1 |15 |31 359 |<1 experiments, the difference algorithm reduces in this tasthe
#6 <1 |15 |<1 16 |<1 [16 [15 [16 [359 [i5 second special case whel¥ (acceptingL(rz)") in the algorithm
z; ig 151 161 i’é 12 i’é ;'172 (15287 Zzg ig is deterministic. We can systematically increasand compare the

<1 |< ; : :

#9 374 [359 [359 [359 [359 [343 [359 (390 | [359 performance of airect enCOdmg)f @
#I0 16 [15 |<1 |16 |16 |<1 |31 |16 374 [265 Acc?(s,k) A =Acc® (s, k) A3k > 2n,

case fori = j = 9 that did not terminate) was around 10 sec

for this experiment and around 1 min for the first experiment.

The performance is the same in the case when the difference
empty. The immediate advantage over the direct encoding inse
the second experiment is the case when the difference isyempt

D. Experiment 4

We consider an experiment that combines regex constraints

with length constraints on strings. Let and r» be the regexes
“.{n}a.*"and “. xa. { n}", respectively, where: is a positive
integer. Thus, requires that th€n + 1)’st character from the
beginning isa, andr, requires that thén + 1)’st character from

against thedifference encodingf (6):
Acc™ B (s,k) A 3k > 2n,

wheres: W and k : N are fresh constants. For both encodings, we
jgeasured model generation time for= 1...100. The result

of the experiment is shown Figufd 3. In both cases the trend-
line is polynomial O(n?) for the direct encoding an®(n?) for
the difference encoding). Thus, even though the acceptorBfo
occurs negatively in the direct encoding [of (6), this doesaanise
exponential behavior during model generation.

E. Comparison with Hampi

of ours is the open source string constraint solver Hamgli. (A

2The LI KE-pattern corresponding tes is “%_. .. ", and for ry is

“_..._a% with n occurrences of ‘.

To our knowledge, a system that comes closest to the scope

3500
3000 *®
[]
[J
2500 20
Fad
— 2000 P
£
+ 1500
1000 4-! -
- R
500 o
0 : :
0 20 40 60 80 100
n
® Direct Encoding = Difference Encoding
Figure 3. Experiment 4 model generation times.

conducted an experiment similar to Experiment 1 using Hafiripe
following experiments were run on a desktop with an Intelldoae
E8300 2.8GHz processor. Given the regexgsr;, i # j, from
Table[l, Hampi input corresponding to the membership cairstr
x € L(r;) \ L(ry) is:

var z:l;rega:= R;; regb:= Ry;
assert zina; assert xnot inb;

whereR; is a Hampi representation of the regexThe declaration
var z : [l constrains the length of to be l. Altough Hampi
supports length rangesar : ljpwer - lupper the range declaration
caused segmentation faults in the underlying STP [15] sob@
we resorted to using the more restricted case. The experiwitn

if L(G)N L(R) is empty for a given regek representing “bad”
strings (strings that may cause a security risk). This teglnis
used to check for SQL injection vulnerabilities of Web apations.
The HAMPI [14] tool, that is string constraint solver, has an
additional advantage that it can produce a witness(i&) N L(R)

if it is nonempty, provided that7 is first finitized. HAMPI turns
string constraints over fixed-size string variables intougrg to
STP [15] that is a solver for bit-vectors and arrays. The irgize
needs to be fixed, since STP neither supports lazily instesati
quantifiers nor the theory of algebraic data types. The ambro
described here is capable of performing the same task withou
requiring G to be finitized first, and can moreover be combined
with other constraints.

A connection between logic and automata has been studied
for over fifty years ago[[19],[[20], and revived about decade
ago [21] in the context of symbolic reasoning with Binary 3&m
Diagrams (BDDs)[[22]. With BDDs, rather dense automata over
large alphabets can be represented compactly and reasboet a
efficiently. However, with BDDs all characters must be erezbds
strings over Boolean variables, while our approach alloesssition
predicates over variables that belong to any theory supgdsty
the underlying (SMT) solver.

Several program analysis techniques for programs with
strings [7], [23], [24], [25] build on automata libraries1p [26]
that efficiently handle transitions over sets of characésr8DDs
and interval constraints. Most of those program analysisaaches
suffer from the separation of the decision procedures, astints
over strings are decided by one solver, while constraintsr ov
other domains are decided by other solvers, and the sprsdali
solver usually cannot be combined in a sound or completédiash
Our approach avoids this problem by building on top of an SMT
solver which has decision procedures for a variety of thesori

using! = 10 took a toal of 2min to complete for the 90 cases. By In particular, symbolic analysis of SQL queries with an SMT
setting! = 15, the experiment took 4min 30sec to complete. Forsolver is discussed in_[3]. Another instance is the analysSET
values ofl < 10, several of the membership constraints becomeprograms|[l], which use a rich set of string operatians [28]]

unsatisfiable and fail to detect nonemptinesd.6f;) \ L(r;). For

A decision procedure for subset constraints over regufeyuage

example, forl = 3, the experiment took 1min and 30sec, but for variables is introduced in_[27] by reasoning over depenglenc

most of the constraints the result was unsat.

VIII. RELATED WORK

The work presented here is a nontrivial extension of the work

started in [[11] where differen¢éSFA algorithms and their effect
on language acceptors faiSFAs (including minimization and
determinization) are studied. The experiments [in| [11]efhiin
determinization, which needed the idea of solvingeformulas.
Moreover, the approach of language acceptors presentetilin [
does not support precise length constraints, and the axioans

graphs. In contrast, we showed how finite pushdown autonzata c
be generalized by making transitions symbolic, and how #sitet
procedures can be embedded into a logic of an SMT solver.

In [28] several decision problems related to CFGs are studie
and depth-bounded versions thereof are mapped to SAT golvin
particular, an algorithm is provided for checking boundedlsion
of ambiguity (whether a string has more than one parse tree) o
CFGs. A particular advantage of the approachlin| [28] over the
algorithm in [29] is that avitnesscan be produced when a grammar
G is ambiguous. As an interesting direction for future worle w

not studied foreSPDAs. Theoreril1 strengthens a similar statementan approach the same problem by extending symbolic aagsepto

for eSFAs in [11].

with an argument that captures a parse tree of a string; wdere

Although, an extension of FAs with predicates has been sugparse tree can be represented with an algebraic data-tyee loa

gested earlief [16], and later formalized and implementerolog
as an automata library [17], we are not aware of similar tesol
PDAs that make the difference algorithm possible. We are adg
aware of symbolic analysis with SMT being studied, baseduah s
extensions.

the productions of5. This approach avoids the need to provide a
priori depth-bounds.

IX. CONCLUSION
We believe that the use of symbolic language acceptors as a

A tool developed in[[18] is used to compute a context freepurely logical description of formal languages and theippiag to
grammar G as a conservative approximation of possible stringstate of the art SMT solving techniques opens up a new approac

values of variables of a given PHP Web application, and telche

to analyzing and solving language theoretic problems. Wee ha

demonstrated the scalability of the technique on solvingreed
regular constraints, that have direct applications inicsttalysis,
testing, and database query analysis. We have also expeeide
with symbolic language acceptors for CFGs. In this contéxt i
is not clear if the normal forms that are important for effitie
implementation, play the same role for efficient symbolialgsis.
For example, epsilon elimination fromBFAs or unit production
elimination from CFGs may eliminate sharing and increase th
complexity of symbolic analysis.

ACKNOWLEDGEMENT

The experiments in Sectign VIIE would not have been possibl
without the help ofPieter Hooimeijerwho set up the whole
environment for the experiments and provided scripts foveding
the regex expressions to Hampi format.

REFERENCES

[1] N. Tillmann and J. de Halleux, “Pex - white box test gentiera
for .NET,” in Proc. of Tests and Proofs (TAP’Q&er. LNCS, vol.
4966. Prato, Italy: Springer, April 2008, pp. 134-153.

N. Bjgrner, N. Tillmann, and A. Voronkov, “Path feasilyj anal-

ysis for string-manipulating programs,” ifools and Algorithms

for the Construction and Analysis of Systems (TACAS'66).

LNCS, vol. 5505. Springer, 2009, pp. 307-321.

M. Veanes, P. Grigorenko, P. de Halleux, and N. Tillmatgym-

bolic query exploration,” iINCFEM’'09, ser. LNCS, K. Breitman

and A. Cavalcanti, Eds., vol. 5885. Springer, 2009, pp. 89-6

MSDN, “NET Framework Regular Expressions,” 2009,

http://msdn.microsoft.com/en-us/library/hs60031@2xas

Z3, http://research.microsoft.com/projects/z3.

L. de Moura and N. Bjgrner, “Z3: An efficient SMT solver,”

in Tools and Algorithms for the Construction and Analysis of

Systems, (TACAS'Q83er. LNCS. Springer, 2008.

F. Yu, T. Bultan, M. Cova, and O. H. Ibarra, “Symbolic sigi

verification: An automata-based approach,” SRIN 2008, pp.

306-324.

F. Yu, T. Bultan, and O. H. Ibarra, “Symbolic string vec#ition:

Combining string analysis and size analysis,”TACAS 2009,

pp. 322-336.

[9] J. E. Hopcroft and J. D. Ullmarintroduction to Automata Theory,
Languages, and ComputationAddison Wesley, 1979.

[10] W. Hodges,Model theory Cambridge Univ. Press, 1995.

[11] M. Veanes, P. de Halleux, and N. Tillmann, “Rex: Symboli

Regular Expression Explorer,” if€ST'1Q |EEE, 2010.

N. Blum and R. Koch, “Greibach normal form transfornoati

revisited,” Inf. Comput, vol. 150, no. 1, pp. 112-118, 1999.

N. Li, T. Xie, N. Tillmann, P. de Halleux, and W. Schulte,

“Reggae: Automated test generation for programs using t®mp

regular expressions,” ifProceedings of the 24th IEEE Interna-

tional Conference on Automated Software Engineer2@p9.

[14] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. En<E,
“Hampi: a solver for string constraints,” itSSTA '09 New
York, NY, USA: ACM, 2009, pp. 105-116.

[15] V. Ganesh and D. L. Dill, “A decision procedure for bigators

and arrays,” inCAV, 2007, pp. 519-531.

B. W. Watson, “Implementing and using finite automatalkds,”

pp. 19-36, 1999.

G. V. Noord and D. Gerdemann, “Finite state transduceith

predicates and identitiesrammars vol. 4, p. 2001, 2001.

G. Wassermann and Z. Su, “Sound and precise analysisebf w

applications for injection vulnerabilities,” iRPLDI'07: Proceed-

(2]

(3]
(4]
[5]
(6]
(7]

(8]

[12]

(13]

[16]
[17]

(18]

ings of the 2007 ACM SIGPLAN conference on Programming

language design and implementationACM, 2007, pp. 32-41.

10

[19] J. Buchi, “Weak second-order arithmetic and finite audta,”
Zeit. Math. Logik und Grundl. Mathvol. 6, pp. 66-92, 1960.
[20] C. Elgot, “Decision problems of finite automata desigu aelated
arithmetics,"Trans. Amer. Math. Socvol. 98, pp. 21-52, 1961.
21] N. Klarlund, “Mona & fido: The logic-automaton connemti in
practice,” inCSL, 1997, pp. 311-326.
[22] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient itep
mentation of a BDD package,” iDAC '90: Proceedings of the
27th ACM/IEEE conference on Design automatioNew York,
NY, USA: ACM Press, 1990, pp. 40-45.
A. S. Christensen, A. Mgller, and M. |. Schwartzbachretise
analysis of string expressions,” BAS 2003, pp. 1-18.
D. Shannon, S. Hajra, A. Lee, D. Zhan, and S. Khurshidy-“A
stracting symbolic execution with string analysis,”TAICPART-
MUTATION '07: Proceedings of the Testing: Academic and
Industrial Conference Practice and Research TechniquesJ- M
TATION Washington, DC, USA: IEEE Computer Society, 2007,
pp. 13-22.
G. Wassermann, C. Gould, Z. Su, and P. Devanbu, “Stagclc
ing of dynamically generated queries in database appbicsti
ACM Trans. Softw. Eng. Methodplol. 16, no. 4, p. 14, 2007.
“Brics finite state automata utilities,”
http://www.brics.dk/automaton/.
P. Hooimeijer and W. Weimer, “A decision procedure fobset
constraints over regular languages,’RhDI, 2009, pp. 188-198.
[28] R. Axelsson, K. Heljanko, and M. Lange, “Analyzing cert-free
grammars using an incremental SAT solver,”I@®ALP’08, Part
I, ser. LNCS, vol. 5126. Springer, 2008, pp. 410-422.
[29] S. Schmitz, “Conservative ambiguity detection in @xtifree
grammars,” inlCALP’07. Springer, 2007, pp. 692—703.

(23]

(24]

(25]

(26]

(27]

APPENDIX

To capture the essence of the combination of length andaegul
constraints we consider formulas of the form:

(/\si €ri> ANF(|s1],-.-,]|sn])

where eachy;, i = 1,...,n is a variable ranging over strings, each
r; iS a regular expression, anfl is a quantifier-free Presburger
formula. We will show that the formula is equisatisfiable to

(/\ s € ri) ANE(Is1],. o lsnl) AN Isil < [raf - 2767

wherep(sz) is a polynomial andz is the size of formulaF'.

Let § denote the product string obtained from,...,s, by
aligning the character positions from eagh We can also assume
that there is a special end-of-string charactedQ0, so that the
product construction does not need to worry about missiatig
strings (string lengths are still computed up to, but exclgd
the end-of-string character). We will make use of propertid
guantifier-free Presburger formulas and Hilbert bases. prbper-
ties have been previously used for checking satisfiabilitgnolti-
sets with cardinality bounds by Piskac and Kuncak(liinear
Arithmetic with Stars, CAV 2008)

Lemma 1:Let F(z1,...,zn) be a quantifier-free Presburger
formula. Then there is a collectiod and , A;, B; for j € J,
where | J| < 2P(**) and eachA;, B, is a set ofn-dimensional
vectors, such that

F(z1,...,20) © (z1,...,20) € | J(4; + B;)

jeJ

where + is extended to sets (it is also known as the Minkowski

sum) andB7 is a linear combination of vectors from;.
Furthermore, there is a polynomia(sz), wheresz is the size

of F, such thatl|A,||; + ||B;||1 < 2P(2).

We can then derive the following equivalences:

(/\si eri)ANF(ls1|,...,|snl])

Let R be the product automata of

FERANF(s1),...,|sn)
Let A; and B; be as in lemma&]l
FeRA(s1],---,|sal) € J(A; + B))

J
Let Ar; the automata encoding of the semi-linear sets
FeRA\/ Fe A,
jeJ
By basic properties of products
\/ §€ R x Ap,
jeJ
By downwards pumping
\/ §€Rx Ap, A|5] < |R x Ap)|
jeJ
By a size estimate ol r,

\/ §€Rx Ap; A|5| < |R| - 2709

jeJ
By replacingAr; by F'
€ RAF(|s1,...,|snl) A5 < |R| - 2P0

11

	Introduction
	Preliminaries
	Symbolic automata
	Symbolic Push Down Automata
	Product with SFA

	Symbolic language acceptors
	Lists
	Construction of Th(A)
	E-matching

	Difference construction
	Difference checking

	Implementation
	Experiments
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Comparison with Hampi

	Related work
	Conclusion
	References
	Appendix

