Observing and Preventing Leakage in MapReduce’

Olga Ohrimenko
Microsoft Research
oohrim@microsoft.com

Christos Gkantsidis
Microsoft Research

ABSTRACT

The use of public cloud infrastructure for storing and pro-
cessing large datasets raises new security concerns. Cur-
rent solutions propose encrypting all data, and accessing it
in plaintext only within secure hardware. Nonetheless, the
distributed processing of large amounts of data still involves
intensive encrypted communications between different pro-
cessing and network storage units, and those communica-
tions patterns may leak sensitive information.

We consider secure implementation of MapReduce jobs,
and analyze their intermediate traffic between mappers and
reducers. Using datasets that include personal and geo-
graphical data, we show how an adversary that observes the
runs of typical jobs can infer precise information about their
input. We give a new definition of data privacy for MapRe-
duce, and describe two provably-secure, practical solutions.
We implement our solutions on top of VC3, a secure imple-
mentation of Hadoop, and evaluate their performance.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
Systems]: Security and Protection.

Keywords

Map-reduce; traffic analysis; oblivious shuffle; oblivious load
balancing.

1. INTRODUCTION

The use of shared cloud infrastructure for storing and
processing large structured datasets has gained widespread
prominence. In particular, the MapReduce framework is
routinely used to outsource such tasks in a simple, scalable,
and cost-effective manner. As can be expected, reliance on
a cloud provider for processing sensitive data entails new
integrity and privacy risks.

Several recent works explore different trade-offs between
performance, security, and (partial) trust in the cloud. Most
proposals involve protecting data at rest—using some form
of authenticated encryption—and protecting data in use with
either advanced cryptography or secure hardware. Although
homomorphic encryption [12] may address our privacy con-
cerns, it remains impractical for general processing of large

*This is an extended version of the work to appear in the
proceedings of the 22nd ACM Conference on Computer and
Communications Security (CCS 2015).

TWork done at Microsoft Research.

Manuel Costa
Microsoft Research
manuelc@microsoft.com

Markulf Kohlweiss
Microsoft Research
christos.gkantsidis@microsoft.com markulf@microsoft.com

Cédric Fournet
Microsoft Research
fournet@microsoft.com

Divya SharmaT
Carnegie Mellon University
divyasharma@cmu.edu

data, in particular when they involve complex, dynamic in-
termediate data. Conversely, limited trust assumptions on
the cloud infrastructure may lead to efficient solutions, but
their actual security guarantees are less clear.

As a concrete example, VC3 [26] recently showed that,
by relying on the new Intel SGX infrastructure [19] to pro-
tect local mapper and reducer processing, one can adapt
the popular Hadoop framework [2] and achieve strong in-
tegrity and confidentiality for large MapReduce tasks with
a small performance overhead. All data is systematically
AES-GCM-encrypted, except when processed within hard-
ware-protected, remotely-attested enclaves that include just
the code for mapping and reducing data, whereas the rest of
the Hadoop distributed infrastructure need not be trusted.
They report an average 4% performance overhead for typical
MapReduce jobs. Trusting Intel’s CPUs may be adequate
for many commercial applications, and yields a much smaller
TCB than the whole cloud infrastructure. Similar practical
solutions may rely instead, for instance, on a hypervisor and
simple virtual machines dedicated to the MapReduce job.

Even if we assume perfect encryption for all data and per-
fect isolation for all local processing, mappers and reducers
still need to access shared resources (the memory, the data
store, the network) thereby opening as many side channels.
Their access patterns to memory, storage, and network—
such as for instance the data volume of map and reduce
jobs—are visible to the cloud provider and, to a lesser ex-
tents, to its other tenants. Revealing this information may
be justified by the practical performance one gains in re-
turn. However, there are circumstances where observing the
encrypted traffic of MapReduce jobs on a sensitive dataset
reveals much more information than may be expected.

A first, important insight is that observing access to in-
termediate data structures is more informative than just ob-
serving inputs and outputs. In the case of MapReduce, for
instance, observing and correlating intermediate key-value
pairs exchanged between every mapper and every reducer
for a series of typical jobs, each using a different field of the
input records as key for mapping—say the age, the place of
birth, and the place of work—enables us to label each input
record with precise values for all these fields. What we learn
from such a ‘job composition’ attack is much more detailed
than what we would learn even by accessing the job results
in plaintext. This may come as a surprise for data owners,
who reason about which MapReduce job to authorize, and
which results to declassify, but usually not about leakage in
their distributed execution.

To support our claim, we demonstrate information leaked
from two sample datasets (900MB and 24GB, respectively)
that include personal and geographical attributes. We as-
sume an honest-but-curious adversary that observes the vol-
ume of encrypted communications between long-term stor-
age, mappers, and reducers. (Other lower-level side chan-
nels may be available, such as precise timings, page faults,
cache misses, etc, but they seem harder to exploit in gen-
eral, and may not reveal much more information on the in-
put datasets.) Our attacks suggest that, even with the use
of encryption and secure hardware, stronger methods are
required to avoid leakage through traffic analysis.

To remedy this problem, we propose a new definition of
data privacy for MapReduce—essentially, that observable
1/0 should look independent of the input dataset—and we
describe two practical solutions that meet this definition,
and thus prevent our attacks.

As a trivial solution, we may pad all accesses and com-
munications to their potential maximal lengths. Similarly,
we may apply generic oblivious RAM techniques [13] and
oblivious sorting on top of a MapReduce implementation.
However, such solutions would incur a polylogarithmic over-
head, and they would preclude any speedups enabled by the
parallel nature of MapReduce. We further discuss related
baseline solutions in §9.

Intuitively, many existing mechanisms already in place in
MapReduce frameworks to achieve good performance should
also help us for privacy. Mappers and reducers often use
large I/0 buffers, making it harder to track individual records
within large, encrypted batches of data. Similarly, for jobs
with adequate load balancing, one would expect mappers
and reducers to exchange roughly the same amount of data
with one another, thereby limiting that side channel. Our
solutions take advantage of these mechanisms to provide
strong, provable security, while respecting the simple, uni-
form, parallel data flow in MapReduce jobs.

In summary, we contribute:

1. an empirical analysis of ‘MapReduce leakage’ on two
sample datasets—a sample of the 1990 US Census and
a log of taxi rides in New York—showing that one
can reliably infer (or even extract) precise information
about these datasets by simply observing the volume of
encrypted communications between the mappers and
reducers that perform a few typical jobs on their data;

2. a model of information leakage in MapReduce jobs,
against an adversary that observes all encrypted inter-
mediate traffic between Map and Reduce nodes;

3. two practical solutions that provably limit leakage to
essentially the total volume of their I/O, relying on
shuffling, sampling, and a carefully-chosen amount of
padding, with different performance trade-offs.

4. an implementation of these solutions, embedded as
auxiliary MapReduce jobs for Hadoop and VC3, and
their performance evaluation on our sample datasets.
Our results suggest that information security can be
achieved for typical MapReduce jobs with a reason-
able overhead (7% on average for our most secure so-
lution, depending on the distribution of intermediate
key-value pairs) and in some cases can outperform the
baseline solution due to internal grouping of key-value
pairs.

Although we focus on MapReduce, and sometimes on the
details of the VC3 secure implementation of Hadoop, our
results may be of interest for a larger class of data-intensive
applications, such as SQL and semi-structured databases.

2. PRELIMINARIES

Notations. We use A = {a1,az,...y to denote a list with
records a1, a2 etc, and A|B to denote list concatenation.

If record a; is a key-value pair then a;.key and a;.val
denote the key and value of the pair, respectively. We
let Aj; denote the pairs of A with the same key, k, i.e.,
Al = {a; | ai.key = k). For a set K of keys, we write erK to
denote concatenation of lists indexed by k, e.g., erKAlk de-
notes the list of records of A ordered and grouped by k € K.
We also sometimes split A into M batches A,, such that

A= Hme[l’M]Am. M(a;) applies an operation M on a;, while

M(A) applies the operation element-wise on A.

Cryptographic Primitives. Our solutions rely on seman-
tically secure encryption, pseudo-random permutations, and
pseudo-random functions. We use the usual cryptographic
notions of negligibility and indistinguishability. As we treat
cryptographic schemes as abstract building blocks, we avoid
committing to either an asymptotic or a concrete security
model. Similarly we keep cryptographic keys and their sizes
implicit.

Semantically secure encryption [14] guarantees that every
encryption of the same message is very likely to map to a
different ciphertext. That is, given two ciphertexts the ad-
versary cannot distinguish whether they correspond to two
encryptions of the same message or encryptions of two dif-
ferent messages. This strong security property is possible
due to a probabilistic encryption algorithm that uses a ran-
dom nonce every time an encryption algorithm is invoked.
We use [p] to denote a semantically secure encryption of a
plaintext p. We sometimes overload this notation, using [D]
to denote an encrypted dataset D, where each record may
be encrypted separately.

The second primitive, a pseudo-random permutation 7 [16],
is an efficiently computable keyed permutation function. Its
security property is expressed as indistinguishability from a
truly random permutation. That is, if an adversary observes
an output of 7 and a truly random permutation, he is not
able to distinguish the two. We use 7(¢) to denote the lo-
cation of the ith record according to 7 and, again overload
notations, use 7(D) to denote a dataset that contains the
records of D permuted according to 7.

The third primitive, a pseudo-random function f [16], is a
keyed cryptographic primitive that is indistinguishable from
a truly random function with the same domain and range.

Secure Regions/Hardware. Our solutions rely on the abil-
ity to protect local processing inside secure regions. Secure
regions are trusted containers of code and data that are iso-
lated from other code in a system. Secure regions may be
implemented as trusted physical machines, trusted virtual
machines, or other forms of trusted execution environments
such as SGX enclaves [19]. While our solutions apply inde-
pendently of the specific implementation of secure regions,
we outline an implementation based on SGX processors and
used in our experiments. In this case, secure regions are im-

plemented as ranges of virtual memory addresses that are
protected by secure SGX processors using three mechanisms.

First, processors control memory accesses to the secure re-
gions. Code inside the region may be invoked only through a
call-gate mechanism that transfers control to an entry point
inside the region. Code inside the region has full access to
the data inside the region, but external read, write, and
execute accesses to the memory region are blocked by the
processor, even if they originate from code running at a high
level of privilege. Thus, the software TCB in our solutions
is just the code inside secure regions and, in particular, does
not include the operating system or the hypervisor.

Second, processors encrypt and protect the integrity of
cache lines when they are evicted to system memory (RAM).
This guarantees that the data in the regions is never in the
clear outside the physical processor package. This removes
a broad class of hardware attacks, such as cold boot attacks,
and limits our hardware TCB to only the processor.

Finally, processors support remote attestation. When a
region is created, the processor computes a cryptographic
digest of the region and signs it with a secret key available
only to the processor. This allows an external entity to verify
that data originated from a specific secure region. We use
this mechanism to establish secure channels between regions
and remote systems.

3. MAPREDUCE
3.1 MapReduce

Let D be a dataset that contains n records of equal size.
Let (M,R) be a pair of map and reduce functions defining
a MapReduce job on D. Let X be a list of intermediate
key-value pairs and O be the output of the MapReduce job
executed on D, as explained below. Lower-case subscript for
each of the datasets denotes a record of the dataset in the
corresponding position (e.g., d; is the ith record of D).

e M takes a record d; as input and outputs a list of key-
value pairs X;. Let X collect the key-value pairs pro-
duced by M on every record of D: X = Hiel,...,\D|M(di)'

¢ R takes as input records X |, with key k, and outputs
a list of values. Hence, the output of MapReduce is
O = erKR(X|k) where K is the set of keys in X.

In cloud deployments, a user uploads D to a cloud data-
center and later requests that the cloud provider executes
jobs on D by sending pairs (M, R). The MapReduce frame-
work (e.g., Hadoop) is responsible for invoking M on every
record of D in parallel and obtain X as a result; grouping
key-value pairs in X by keys; and calling a reduce function
R on each resulting group.

3.2 MapReduce on Secure Hardware

We now describe adaptations to the MapReduce frame-
work when executed on secure hardware. The high-level
idea of such systems (e.g., VC3) is to store the data, inter-
mediate key-value pairs, and output in encrypted form, and
run the map and reduce functions within secure regions (see
e.g., §2).

The system is set up with the following changes. The user
uploads an encrypted dataset [D] to the cloud. Whenever
she needs to request a run of a MapReduce job, she uses a

[43301: 4]
>Ca

Batch 1

‘B

N [10005: 2]
£ o —
O =

g /Ji

J 6__

. & [94131]
L @ 7
..% Js - o> 5]
m fr [94523: 2]

tsr
(D U

Count #records
per zip code

Extract zip code

Figure 1: Example of MapReduce on secure hard-
ware (see §3.2) with three Mappers and three Reducers.
Dashed lines indicate intermediate traffic observable
by an adversary (see §4).

secure channel with the secure regions to provide binaries
for functions M and R, numbers M and R, and keys for pro-
tecting the data as well as for evaluating a pseudo-random
function f : K — [1, R]. The key for accessing the dataset is
reused across computations but crucially every MapReduce
job uses a fresh pseudo-random function.

The MapReduce framework then executes the job by in-
voking M Mappers and R Reducers. At a high level, map-
pers and reducers execute M and R within a secure region,
respectively. We describe their functionality in more detail.

The MapReduce framework splits the records of D into M
batches; we write D, for the mth batch. Each batch is
processed as follows: given the mth encrypted batch D],
a mapper decrypts it and executes M on each of its records.
For every key-value pair x; with key x;.key = k produced
by M, Mapper outputs a tuple (r,[z;]), where r = f(k) is
the index of a reducer. Every mapper evaluates the same
pseudo-random function and thus assigns a record with the
same key to the same value of r. Hence, more than one key
may be assigned to the same r. The input of the rth Reducer
is (r, [X)-]) for X, = ”kEf*l('r)Xlk' The index r hides the
exact x;.key and the ordering of the z;, but still allows the
MapReduce framework to group tuples by keys.

The rth Reducer is responsible for decrypting key-value
pairs it receives, grouping them according to keys, executing
R on each group, and outputting the encrypted results [O,].

In the rest of the paper, we refer to the implementation
of MapReduce based on secure hardware described in this
section, simply as MapReduce framework. Figure 1 shows an
example of the system with mappers processing batches of
three records and three reducers, where two keys happened
to be mapped to the last reducer.

The batch size an adversary can observe varies from sys-
tem to system and may be deliberately chosen by its design-
ers or may depend on the contingent nature of its perfor-
mance characteristics. For instance, when running Hadoop
unmodified in a secure region, an adversary can delay in-
puts to mappers to observe batches of a single record. On
the other hand VC3 enforces a pre-configured batch size.

4. TRAFFIC ANALYSIS

In the previous section, we described MapReduce on secure
hardware using the storage and compute infrastructure of
an untrusted cloud provider. By encrypting data stored or
exchanged between mappers and reducers, and by executing
mappers and reducers within secure regions, it makes an
important step towards protecting the privacy of outsourced
data and MapReduce computation.

However, there are many aspects of this system that are
still observable in the environment where MapReduce is run
and, as we show, lead to information leakage.

4.1 What’s the adversary?

We first consider a wide range of attacks, and then narrow
it down to the main channels we consider in the rest of the
paper. (These channels suffice for our attacks, and they are
simple enough to yield analytical results for our solutions.)
Basically, our adversary observes runs of MapReduce jobs:

At the system level, he may record the exchange of en-
crypted data, either between every node in the system (net-
work traffic analysis) or between every node and storage
(storage traffic analysis). The volume of data exchanged
may be measured in bytes, pages, packets, or records. Some
batching and padding may blur this side channel.

In our examples, we suppose that the number of records
can be accurately observed (or deduced) from network traf-
fic. Within one job, as further explained in §4.2, the granu-
larity of each observation may range from individual records
to large batches. Conversely, we do not consider cache, tim-
ing and other low-level side channels against local runs of
the map and reduce functions; devising countermeasures for
them is an independent problem.

Instead we focus on higher-level side-channels at the level
of the MapReduce framework, namely on network inter-
action with the outside environment, e.g., reading/writing
from/to the long-term storage provided by the cloud data
center, or receiving/sending packets from/to another secure
region.

At the application level, the adversary may have back-
ground knowledge about the job, its input, and its output.
Information about the job itself may be readily available, or
may be inferred from the shape of the traffic data. (In VC3,
for instance, the code for M and R is encrypted; still, the
adversary may use, e.g., their data-exchange profile, binary
code size, and runtimes to guess the job being executed.)

Statistical information about the input and output data
may also be common knowledge, e.g., the adversary may
know the distribution of marital status.

In our attacks, unless explicitly mentioned, we assume
that the adversary knows the job and some statistics about
the data, but not the content of its input and output—except
for their total sizes. (Such aggregate information is in gen-
eral hard to hide.)

In our security definition, we model arbitrary background
knowledge by letting the adversary choose two input datasets
for which the background knowledge is the same while data
contents may differ; the adversary is then challenged to infer
which dataset was computed on. This more demanding def-
inition lets us capture that the adversary cannot learn any-
thing besides his background knowledge by observing traffic.

Our adversary may also actively interfere with job runs:

At the system level, an active adversary may control re-
sources and scheduling, e.g., feeding a Mapper one record at
a time. However, as discussed in §2, we assume he cannot
directly alter encrypted traffic or break into secure regions.

At the application level, he may partly choose his own
input, or even his own jobs, to mount adaptive attacks. Our
security definition reflects such capabilities by letting the
adversary adaptively choose the jobs as it is trying to use
traffic analysis to learn information about the dataset.

Our adversary may observe a sequence of jobs, on the
same datasets, or related datasets. MapReduce implemen-
tations re-use inputs for multiple jobs, inasmuch as they
co-locate the input batches and the mappers on the same
nodes. They also avoid costly re-encryption of data between
jobs. As a qualitative example, assume the adversary ob-
serves runs of a job before and after adding a single, target
record in the dataset. If the job splits on an attribute with
few keys and a known distribution, then the attribute for
the new record can be precisely inferred.

In practice, the more selective the jobs are, the more pre-
cise information we can extract (assuming we know, or we
can guess, what the job is). In the following, we mostly focus
on observing jobs that split all input records depending on
some of their attributes. More generally, MapReduce jobs
may first filter out parts of the input records before split-
ting. Our attacks would similarly apply to those jobs (in
particular to multiple jobs with the same filter), except that
we would learn information specific to the smaller, filtered
collection of inputs, rather than the whole dataset.

Intermediate Traffic. Our examples primarily target traf-
fic from mappers to reducers and how it can be combined
with background information about the data to infer the
content of the data. Observing the reducer outputs can also
be informative, in particular for selective jobs known to the
adversary (e.g. “Does the dataset contain this record?”).
However, reducers must usually wait till they have seen all
intermediate key-value pairs for any given key, thereby leak-
ing relatively little traffic information.

Example: Attacking VC3. In VC3, an adversary may gain
full control of the Hadoop scheduler, enabling it, for ex-
ample, to send the same input batch to multiple mappers,
or to send a single input batch to a mapper; it may even
cause mappers to fail or restart, enabling it to improve
the accuracy of his network traffic measurements. On the
other hand, the input batches (and their sizes) are GCM-
protected, so the adversary cannot change them. VC3 re-
ducers also incorporate integrity checks against any input-
batch replication: a reducer that receives intermediate key-
value pairs from different mappers processing the same input
batch will detect the attack and safely stop processing data.

Hadoop tries to keep nodes stateless, hence they rarely de-
lay sending data between batches. In VC3, mapper-reducer
communications rely on stateful secure channels for the whole
job; however, the adversary may send input batches one at
a time, and measure how many bytes are communicated as
a result of their processing.

Overall, we can thus conservatively model this adversary
as ‘passive’, but able to collect precise network traffic at the
granularity of individual input batches.

Example: Attacking Unmodified Hadoop. An adversary
against unmodified Hadoop (running in secure regions, and
encrypting all data, but without the VC3 countermeasures)
may have finer control of its scheduling, for example by de-
laying packets in data streams, or exploiting failure-recovery
to observe multiple runs of the same jobs with a different
assignment of inputs to mappers, thereby collecting traffic
information at a finer granularity, possibly for each record.

4.2 Observing Intermediate Traffic

We model the data collected by an adversary observing
MapReduce traffic, then we explain how he can use it to
trace information from the output of a MapReduce job back
to individual input records and how, as he observes runs of
multiple jobs on the same input records, he can correlate
this information between jobs.

Data dependent intermediate traffic. We model observa-
tions of intermediate traffic using a matrix A with dimen-
sions M x R where M is the number of mappers and R is the
number of reducers. A[m,r] is the number of intermediate
key-value pairs sent from mapper m to reducer r. Since an
adversary observes input and output of every mapper and
reducer, he can easily construct this matrix.

Before analyzing how he can use A to learn more about
the input dataset, we give an intuition with an aggregate
MapReduce job in Figure 1. The matrix A for this job is
shown below, with aggregate volumes of data sent by each
mapper (right) and received by each reducer (bottom).

m/r[1 2 3
113 0 0]3
211 1 1]3
310 1 2|3

4 2 3

Every Mapper reads three encrypted records, extracts a zip
code and each Reducer counts the number of records per zip
code. In the matrix, each entry A[m,r] indicates how many
intermediate key-value pairs produced by the mth mapper
have zip code that was returned by the rth reducer. In
particular, the adversary sees that the first three records
have the same zip code (43301) and the last three records
do not have this zip code. Given background knowledge of
the distribution of zip codes, the adversary can thus, in this
case, label each column of A with a zip code. Abusing our
notation, we refer to the cell A[1,1] as A[1, ‘43301].

The example illustrates that matrix A lets the adversary
correlate input and output of a MapReduce job as long as
(1) records read by a mapper can be correlated with in-
termediate key-value pairs in A, and (2) there is variation
between values in each row and column. The first condition
depends on how mappers read and write their input and
output, while the second condition depends on the data.

Network traffic from two or more jobs can easily be com-
bined and lead to a ‘job composition’ attack. The adver-
sary observes a matrix A from each job and, as long as the
same input data is used, he can label each input batch with
the results of such inferences. For example, he can observe
jobs on zip code, gender and data of birth. Sweeney [27]
showed that combinations of such simple demographics of-
ten already identify people uniquely. In the rest of this sec-

tion we show how the adversary can still correlate mapper’s
inputs and outputs for less trivial input datasets.

Granularity: observing traffic on input batches. In gen-
eral a mapper can process a sequence (or batch) of records
(to amortize the cost of encryption, for example). If the
mapper reads a batch, there are several ways in which it
could control its I/O. For example, it could sequentially
read a record and immediately return the corresponding key-
value pair; it could buffer key-value pairs for several records
and return all of them when the buffer is full (as in the
VC3 implementation); or start reading the next sequence of
records while still processing the first sequence.

Different I/O processing creates noise in the signal of the
adversary when he tries to correlate the input and the out-
put of a mapper. For example, this noise does not allow
the adversary to precisely determine which record resulted
in which key-value pair. However, the adversary can still
correlate a batch of input records with key-value pairs, i.e.,
by using a time window for when records are read and inter-
mediate key-value pairs are returned. Similar I/O buffering
can be done on the reducer side. However, due to the func-
tionality of the reducer, in some cases it has to read all its
input records before returning the output.

In our examples of information leakage, we assume that
the mapper would try to protect the correlation between
records it reads and intermediate key-value pairs it returns.
In particular, we assume that the mapper puts a threshold
on how many records it has to process in a batch before
returning the output. He further permutes the intermediate
key-value pairs to break I/O correlation. However, as we
illustrate below, this is only a partial remedy.

4.3 Exploiting Intermediate Traffic

We give concrete evidence of information leakage, both
when records are processed one at a time and when they are
processed in batches. In the latter case, although it is more
difficult to extract information about individual records, we
show that it remains possible when the input records are
somewhat sorted, and that MapReduce traffic still leaks in-
formation about many statistics in the input data.

Our goal is not to uncover new facts about these datasets,
readily available from their plaintext, but to show that, more
surprisingly, those facts are also available to an adversary
that merely observes encrypted traffic. Our experiments also
suggest that naive techniques based on padding inputs and
outputs would be of limited value for these datasets.

Our experiments are based on two datasets:

e U.S. 1990 Census Sample [18] (900 MB). The
dataset contains 2.5 million personal records. Every
record has 120 attributes, including the Age, Gender,
POW (place of work), POB (place of birth), MS (marital
status), etc. Some attributes have been discretized: for
instance, Age ranges over 8 age groups, such as 20-29.

e New York 2013 Taxi Rides [28] (24 GB). This
dataset contains records for all the taxi rides (yellow
cabs) in New York city in 2013. It is split in 12 monthly
segments, and each segment contains approximately
14 million records. The records have 14 attributes and
describe trip details including the hashed license num-
ber, pickup date and time, drop off date and time, and
number of passengers.

The first dataset is representative of personal data com-
monly stored in the databases of medical institutions, in-
surance companies, and banks. The second dataset contains
sensitive information and, despite some basic anonymiza-
tion, is susceptible to inference attacks [23, 30]. Some of
these attacks use MapReduce [23] to extract correlation be-
tween the rides (in plaintext). We show that the same kind
of information can also be extracted by traffic analysis.

In this section, the adversary is assumed to have the fol-
lowing subset of the capabilities described in §4.1. He ob-
serves only basic aggregate jobs, which all go as follows: M
splits the records, with the attribute used for aggregation
(e.g., the Age) as key; hence R receives all records with the
same attribute value; it may return their count, or any other
function of their contents. He is also assumed to have sta-
tistical information on the attribute values used for splitting
(e.g., distribution of age and marital status in the U.S. and
popular destinations in New York). This allows him to label
columns of A with the corresponding attribute values.

4.3.1 Individual records

Our first attacks are based on observing mappers, as they
consume one record at a time and immediately produce in-
termediate data. Hence, the intermediate-traffic matrixes
have one row for each individual record and, at least for
basic aggregate jobs, each row has exactly one non-zero en-
try. To illustrate the correlation of observations across jobs,
we show that, after observing aggregate jobs on distinct at-
tributes, the adversary is able to answer specific queries on
any combination of these attributes, such as

1. Given the index of a record in a dataset, return the
values of these attributes;

2. Test if the dataset contains a record that matches par-
ticular values for some of these attributes; and

3. Given the values of some of these attributes, infer the
possible values of the others in the dataset.

Census Data. For these attacks, we observe three aggre-
gate jobs, one for the age group, one for the place-of-birth,
and one for marital status. This yields three intermediate-
traffic matrixes: Ajge, Apgs and Ays with 2.5M rows each.

Figure 2 displays aggregate counts for the three jobs, i.e.,
the number of key-value pairs assigned to each attribute
value. Up to a permutation of the columns, this is the same
information as the sums of the columns in Axge, Apos and Ays.
The adversary can determine the key processed by every re-
ducer in these matrices (i.e., label the columns of A) using
auxiliary public information on the distribution of, for ex-
ample, the age of the U.S. population.

Let us analyze the information in each matrix individually.
Ayg. gives a precise age group for every record, Apgs gives a
geographical region for a place of birth for every record,
and Ays gives the marital status for every record. As long
as all jobs processed the same dataset, the adversary can
combine the information he learns across all jobs. That is
if, Apgeli, ‘1-12'] = 1 (overloading the reducer key with the
label it processed) and Apgs[i, ‘Africa’] = 1, then the ith
record is in the age group “1-12” and was born in Africa.

Thus, the adversary can directly answer queries such as

4

ll|I ...
-—m .

2832 %0° %

. P
82538484 <T£EQ 2w
oOCNO OO O S + E ok O g2 s 2 8 &
= N®Mm S O < Qwn 5] ss 228 &
dNnNo oo o~>w £ oz o
- N M T ;N < =4 K

Figure 2: Distribution of Census records across age
groups (left), place of birth (center) and marital sta-
tus (right), where U.S. count is trimmed.

1. What is the marital status of person #1,326,457 in the
census? Never married, since
Aps[1326457, ‘Never Married’] = 1.

2. Is there a person with {Age: 13-19, POB: Oceania, Mar-
ital Status: Divorced} in the dataset? Yes, since
there is (exactly, in this case) one index i = 1,005, 243
such that Apge[i, ‘13-19], Apgs[i, ‘Oceania’] and Awslz,
‘Divorced’] are all equal to 1.

Taxi Data. Our sample attack is based on observations of
aggregate job on the pickup day, pickup location, and drop-
off location. Suppose an adversary saw a person getting
in a taxi on a corner of Linden Blvd and 221st Street in
Queens on January 13, 2013. The adversary then looks at
row indices in Ap;ckupp and Apickupr that have non-zero entries
for ‘Linden Blvd and 221st Street, Queens’ and ‘January 13,
There is exactly one such index in our dataset, 13,484, 400.
The drop-off location is the non-zero entry in Aproporse[]
row, that is, ‘1053 Atlantic Ave, Brooklyn’.

4.3.2 Batch records

Our second series of attacks apply against mappers that
securely process large batches of records at a time. We as-
sume that each mapper reads all records in a batch assigned
to him, applies M on each record, and returns permuted
key-value pairs. Hence, observing an aggregate job yields
an intermediate-traffic matrix A with fewer rows (only one
for each batch). Since each job we consider has only a few
keys (at most 50) we still assume that there is a reducer
for every key. Hence, the adversary knows precisely which
intermediate keys in the columns of matrix A produced a
given output value. Thus, each row provides a histogram of
the values of the attribute for all the records in the batch.

Though intuitively, batching makes it harder to extract
precise information from the dataset, we show that it does
not always suffice. In particular, if the data is ordered by
some attribute, the information about a batch will provide
information conditional on values of that attribute.

In the following experiments, our sample datasets are split
into batches, sequentially, as follows: each batch of Census
data contains ~240K records (90Mb), with 10 batches in
total; each batch of New York taxi rides contains ~147K
records (24KDb), with 100 batches per monthly segment.

In both cases , an adversary that observes an aggregate job
on some arbitrary attribute (attr) recorded in the dataset
can reliably perform the following tasks:

1. Given an aggregate count of the values of attr over
the whole dataset, he can infer precise counts of attr

values over smaller batches of data (for each U.S. state
in the Census, andfor each day of the year for the taxi
rides).

2. Given prior information about a specific record, such
as its location in a dataset or the value of its attribute,
he can infer other attributes for that record (i.e., the
place of birth for a personal record, and the pick up
day for a taxi ride.)

Census Data. Assume the adversary observes two aggre-
gate jobs for POW (place of work) and POB (place of birth)
and is given access to their aggregate counts. Hence, he
is also given the two intermediate-traffic matrixes Apgy and
Apgs of these jobs. Instead of linking only one record location
in the dataset to a row in A (as in our simpler attacks), the
adversary has to link a batch of records to a row. Hence, he
infers a (weighted) set of attribute values for their records,
instead of one exact value.

Let us first look closer at Apgy. Apgy has 10 rows (since
there are 10 batches) and 54 columns, one for each value
of POW: fifty states, one district, and three special values
‘abroad’, ‘non-specified’, and ‘not-a-worker’.

The distribution of data across the columns varies as ex-
pected. The top four values are 1,339,590, 134,913, 85,000
and 76,766 (recall that this is the number of key-value pairs
processed by the corresponding reducers). We can assume
that the output of this job is available in the clear and the ad-
versary learns the key processed by each reducer. However,
this may not be necessary if auxiliary information is used.
Using data available online, one can easily infer that the
first group is for ‘not-a-worker’s, and the next three groups
correspond to California, New York and Texas. (In 1990 the
population of New York was larger than in Texas or Florida.)

In Figure 3 we plot the number of records assigned from
each batch to 53 reducers (we omit ‘not-a-worker’ option
since every batch contributed ~134K records to it).! In
other words, Figure 3 is a graphical representation of Apgy
where x-axis displays reducer keys (i.e., attribute values of
POW) and bars show the distribution of batches (rows) in each
column (i.e., number of key-value pairs from every batch
assigned to a specific attribute value). For example, the
fifth bar indicates that there is an attribute value (reducer)
that received most of its records from Batch 1 (red) and
Batch 2 (green).

From Figure 3, it is evident that records from 10 batches
are not assigned uniformly across values of POW field (except
for ‘not-a-worker’ option). Moreover, if we assume that most
people live and work in the same state, then the plot suggests
that the original data was sorted by the state of residence of
the survey participants (note that this field is not part of the
available dataset and we did not sort the data). That is, the
red batch, first five columns, stores data from participants
living in states Alabama through California.

Apgs has the same information in its columns as those in
Figure 2 (center). However, rows, instead of representing a
specific record, show the distribution of a batch of records
across values for place of birth. In Figure 4 we illustrate
graphical representation of Apgs: x-axis are the attribute
values for POB and the bars show how many intermediate
key-value pairs assigned to each of them from all batches.

!These figures are best viewed in color.

120000
80000

40000

p.Clp |
)
0 l-ll ,,,,, .-II----, ,,,,,,,,,,,,,,,,,,, N

o =2 E o> @ X =
<E6u-<—t<§t§zoi—§

Figure 3: Distribution of records from 10 batches
across reducers for “Aggregate by place of work
(state)” MapReduce job. The plot suggests that
records in the dataset are sorted according to resi-
dence state of census participants.

Since the adversary inferred that batches are split by state,
Figure 4 uses state names for the batch names.

Given Apgy and Apgg of the network traffic, we show how
the adversary is able to answer each question below:

o What is the distribution of place-of-residence for em-
ployees of Washington D.C.? Figure 3 contains pre-
cisely this information. Given a place-of-work state,
the adversary looks at the x-axis (ninth bar) to learn
precise POW counts: 2,321 from green batch, 2,839 from
orange batch, 1,682 from the last batch. Since each
batch contains only few states, combining this infor-
mation with the map of the U.S. indicates that the
corresponding states of residence are Delaware, D.C.,
Maryland and Virginia.

o What is the distribution of place-of-birth for residents
of California? Figure 4 contains this information and
lets the adversary compare how these numbers differ
from the average and between states. As can be seen,
these counts differ significantly from the aggregate val-
ues that the adversary learns by looking at the output
of the aggregate job for POB in Figure 2 (left).

o What are the likely residence state and place of birth
for person 1,721,803 in the Census? The adversary
finds the batch that includes record #1,721,803 (light
green batch in Figure 3) and looks up where this batch
appears in Figure 4. (In other words, he finds the row
of the corresponding job in the matrices and checks
the distribution of values in this row across attribute
values.)

Finally, we note that anonymity in the Census data is frag-
ile. For example, there are 238 responses with ‘non specified’
option for POW. Who refused to reply? Combining Apgy and
the guess that the dataset is sorted by residence state, the
adversary infers that these participants live either in Maine,
Maryland, Massachusetts, Michigan, or Minnesota (since all
records that were aggregated for the option ‘non-specified’
were from the orange batch).

WAL-CA HCA-FL EFL-IL WIL-ME W ME-MN MN-NY
“NY-OH ©OH-PA PA-TX ~ “TX-TY MExpected

16000
12000 i
8000
4000 & L i

0 e e R b .m0

UST Europe Asia S.A.

Africa Oceania

Figure 4: Distribution of records from all batches
across reducers for “Aggregate by place of birth”
MapReduce job. Batch names are derived from Fig-
ure 3. Distribution of batches for “U.S.” is omit-
ted for readability. Expected values (black bars) are
computed using batch size and distributions in Fig-
ure 2 (center).

Taxi Data. Consider a curious adversary who observes in-
termediate traffic for two aggregate jobs, on PickUpD (pick-
up day of a taxi ride) and PassenN (number of passengers
in a taxi ride).

Let us first describe the information available in Ap;cxupp
and Apasseny. Since it is known that the data in every 100
batches corresponds to a month of the year, we look at the
rows that correspond to January. In particular, we consider
the same 31 rows of Apickupp and Apasseny (since there are 31
days in January). For each row, we consider its distribu-
tion across attribute values (i.e., the days of the year). As
expected, there are only 31 non-zero counts in each row.

We plot the number of key-value pairs assigned from each
batch to 31 reducers in Ap;cxupo in Figure 5 (top) (i.e., similar
to Figure 3 for Census dataset). For example, 31% of the
records for day ‘Jan 1, 2013’ came from the dark-blue batch.
It is evident that the data is not uniformly distributed. For
comparison, the bottom half of Figure 5 plots the attacker’s
guess on batches distribution if he knew only the aggregate
counts for day, i.e., the column sums of Ap;icwpp. It appears
that the data is sorted according to individual days and the
100 batch split divides some of the days in several batches.
Furthermore, we note that the original dataset was probably
slightly shuffled, however, the day order is still preserved.
In particular we see that 98% of Batch 7 (purple batch) was
assigned to Jan 3.

In Figure 6 we capture the distribution of some of the rows
across all values in Apasseny. Since we know that each batch
contains rides of only a few days, we label the batches with
the day that is represented the most in that batch. There are
6 passenger counts (there are 0, 9, 208, 255 counts that we
ignore since they are also under represented and suggest an
error in the dataset). If the adversary sees the output of the
aggregate job for PassenN, he knows precisely the passenger
count. If not, some of the labels are easily inferable (e.g., 4
passenger rides are the most rare while 1 person ride is most
popular).

Given Apickupp and Apasseny, the adversary can thus answer
the following queries:

e What is the number of passengers on Friday nights?

This information is available in Figure 6 (or the full
version for all days). The adversary simply looks up

9 11 13 15 17 19 21 23 25 27 29 31

Figure 5: Distribution of taxi records from 100
batches across reducers for “Aggregate by pickup
day” job (top) vs. uniform, i.e., attacker’s guess
without observing network traffic (bottom).

H] E) 3 W4 W5 l
|)

Fr| Jan28 Mon Expected
Jan18 Fn Jan27 Sun Jan30 Wed

Figure 6: Passenger counts across six days and the
expected count if the attacker observed only aggre-
gates (bars for single passenger rides are trimmed).

the bars that corresponds to Fridays. Note that this in-
formation is more precise than what the adversary can
learn from aggregate information for passenger num-
ber (i.e., the last bars of Figure 6). If the adversary
is a competitive taxi company these counts could be
used for better scheduling of own cars across the week.

e Did someone take a tazxi ride from Canarsie Park in
Brooklyn in January? When exactly?

The adversary uses combined traffic from the two ag-
gregate jobs. Luckily, there is only one record assigned
to pick up location in Canarsie Park in the 100 batches
of January. Moreover, the batch that includes the
record has most of its taxi rides from January 19 (79K),
January 18 (39K), January 20 (24K), and January 6
(6K), with only 11 rides left over 6 other days. Hence,
it is most likely that this ride happened on January 19
(and in fact, it did).

Finally, we point out that the difference in the distribution
of keys in batches is high (e.g., a batch for January 1 vs. a

batch for January 30 differ by 20K rides for 5 and 6 pas-
sengers). Similarly, the number of key-value pairs processed
by reducers is also different (e.g., reducers that count rides
with one passenger vs. five passengers). Hence, padding the
inputs to some number of keys to protect the identity of
each reducer may become very expensive for long tail distri-
butions. Even for the taxi dataset it would require mappers
to pad their traffic to each reducer to 125K key-value pairs.
Moreover, it is not clear how mappers can fix this level of
padding without communicating with each other.

We note that our examples did not consider filter jobs,
i.e., those that select records based on some filter. Such jobs
reveal even more information since they give precisely the
number of records in each batch that satisfy the filter.

S. SECURITY DEFINITIONS

How can we design systems that are resilient to such traffic
analysis attacks? To be able to evaluate protection mecha-
nisms, this section brings forward different security notions
for MapReduce on secure hardware. We use the notation of
§3.2 and in the following, relate the adversaries that we are
considering to the discussion of attacks in §4.1. To protect
the input dataset D, we wish MapReduce computations to
appear data independent according to the observed traffic
and depend only on (1) the M and R functions being com-
puted, (2) the input size |D|, and (3) output size |O|. This
corresponds to an adversary that has some knowledge about
the code of M and R and is able to observe some basic per-
formance characteristics.

Ideally, traffic observed from the same MapReduce com-
putation for any two datasets D° and D' should appear
to be the same and not reveal anything about the data.
Certainly if |[D°| > |D*|, or vice versa, such an adversary
can trivially distinguish the two cases. The same holds
for the output of the computation. We thus require that
D] = [D*] and 0] = |O']:

This requirement is, however, still too strict. The reason
being that any solution with such a property has to hide the
worst case: consider two databases Do and D; and a map
function M, such that M maps each record of D° to many
records in X© all with the same key k, i.e., HZ'M(D?)Ik =

X0 At the same time M may map each record of D! to
records in X! with mutually distinct keys. To distribute the
computation among R reducers, any secure solution has to
send | X°| records to all R reducers. This largely destroys
any advantage initially gained through distribution.

We propose two definitions that avoid this dilemma. The
first guarantees indistinguishability only for databases D°
and D' that result in distributed MapReduce computations
with the same input and output characteristic for mappers
and reducers. Each Mapper must produce same sized output
for both DY and D}, and each reducer (up to a permutation
on reducers) must take same sized input and produce same
sized output for both D° and D'. We do however hide
the amount of data |M(D;)x| that flows between each map
and reduce job. In terms of observed intermediate traffic,
this corresponds to the adversary learning only the row and
column sums for the matrix A of §4.2. This appears to be
the best we can do without a large amount of padding.

For our second definition, we look at the maximum num-
ber of records maxiex (|M(D)|x|) that a function R has to
process and require that our solution does not reveal any-

thing more than that. This corresponds to revealing only
the maximum column sum of matrix A.

5.1 Formal definitions

Our definitions are defined as games between a challenger
and an adversary: the adversary chooses two datasets that
share some arbitrary background information available to
the adversary, the challenger chooses one of them and lets
the adversary adaptively request jobs on it. (For instance,
arbitrary background information may include “knowledge”
of the output of a job computation; this is captured by the
adversary choosing two inputs that yield this output.)

DEFINITION 1 (MAPREDUCE GAME). At the start of the
game, the adversary picks two datasets D° and D' and fizes
the number M and R of mappers and reducers. He is then
given access to [D], where D = D° or D = D', and can
observe the run of multiple MapReduce jobs (M,R) of his
choice. He observes their full network traffic to guess whether
D =D or D = D'. The adversary’s advantage of winning

the game is his probability of guessing correctly minus %

The MapReduce game models that the traffic observed for
any two datasets D° and D! should appear to be the same
and not reveal anything about the input data. As argued
in §4.1, the integrity checks of secure MapReduce systems
such as VC3 prevent active interference of the adversary on
the network; this enables us to model their adversaries as
passive in that sense.

As stated, the MapReduce game is trivial to win, e.g., if
[[D°]| # |[D']|, and, as discussed in §4.1, it is reasonable
to assume that the adversary may learn the size of D and
a few other aggregate values. We give two variants of our
definition, of increasing strength, that specify what each job
is allowed to leak about the data as requirements on D° and
D', expressed on their matrices A and A'. Recall that we
associate the matrix A to a dataset D and a MapReduce job
(M, R) such that each cell represents the number of interme-
diate key-value pairs from the mth batch to key k, that is,
Alm, k] = IM(Du) x| (using notations from §3).

DEFINITION 2. CORRELATION HIDING requires that no ef-
ficient adversary has more than a negligible advantage in
winning the MapReduce game as long as |D°| = |D*| and,
for every MapReduce job (M, R) the adversary picked during
the game, the following holds:

1. Mappers produce the same amount of output, i.e.,
for allm € [1, M], we have Y, A°[m, k] = X, A'[m, k].

2. Reduce functions take the same amount of input, i.e.,
there exists a permutation o on the keys such that, for
all keys k € K, we have Y, A°[m, k] =3 A'[m,a(k)].

3. The output size of the reduce function R is constant.

The permutation in Requirement 2 accounts for the fact
that the adversary only observes encrypted keys. The def-
inition does not leak the details of A[m, k], hence it hides
which records have common keys, preventing the composi-
tion attack in §4.3. It is applicable to map functions M that
project a key and a value from a record; typically to allow a
reducer function R to then compute some aggregate statistic
about the values grouped by the key: Requirement 1 and 3
are clearly met by such functions, and Requirement 2 is a

statistic, such as those in Figure 2, about the distribution of
keys in D that may often already be publicly known.

For example, a solution meeting this definition protects
against the composition attack based on {Age: 13-19, POB:
Oceania, Marital Status: Divorced} in §4.3. The only in-
formation leaked is how many people are aged 13-19, how
many people live in Oceania and how many people are di-
vorced.

MapReduce jobs for which this definition does not do well
are functions (M, R) that perform filtering. A map function
M that discards all people living in Oceania from processing
leaks this attribute value trivially if no record was returned.
Our second definition protects even against such attacks.

DEFINITION 3. STRONG HIDING requires that no efficient
adversary has more than a negligible advantage in winning
the MapReduce game as long as |D°| = |D'| and, for every
MapReduce job (M, R) the adversary picked during the game,
the following holds:

1. The volume of intermediate data is the same: |X°| =
| X|; and the number of keys is the same: |K°| = |K'|;

2. The number of records for the most popular key is the
same: maxy (Y, A°[m, k]) = maxy (Y, A'[m, k]).

8. The output size of the reduce function R is constant.

We give intuition behind each condition. Requirement 1
states that the size of network traffic at each stage of MapRe-
duce has to be the same. That is, the output size and the
number of intermediate key-value pairs is the same between
two challenge datasets, since otherwise they are trivially dis-
tinguishable. Requirement 2 states that the number of inter-
mediate key-value pairs that correspond to the most popular
key is the same for both datasets.

The two security definitions differ in their requirements on
DP and D!, which restricts the type of data and sequence of
(M, R) computations the definition can protect. The latter
definition is strictly stronger, since agreement on the cardi-
nality of keys implies agreement for the most popular key,
as well as on the sizes of |O] and | X|. Requirement 2 allows
us to leak the number of records for the most popular key,
which is a lower bound on the traffic received by the reducer
that must process all these records.

6. SHUFFLE-IN-THE-MIDDLE SOLUTION

Our first solution prevents intermediate traffic analysis on
a job by securely shuffling all the key-value pairs produced
by the Mappers and consumed by the Reducers. Hence, the
adversary may still observe volume of intermediate traffic
for each mapper and for each reducer, but it cannot trace
traffic from reducers back to individual mappers.

We present our solution using a data shuffle algorithm
as a black box that, given [X] and a pseudo-random per-
mutation 7 on 1...|X]|, returns [7(X)]. We then describe
our implementation of the Melbourne Shuffle algorithm [22]
using MapReduce jobs (§6.1). We finally show that our so-
lution meets Definition 2 (§6.2).

Let Xwm be the output of the mappers, and Xr the output
of the shuffle passed to the reducers. Xy and 7 are given
as input to a data shuffle job to permute the records. The
output Xgr of the shuffle is then grouped and sent to the
Reducers by the MapReduce framework, as before.

10

B
=5 (M-

7 Mmoo B2

] B |, A=
= = e

&7 Hieoper)o 5 € | Seaueer] e

T it

‘ﬁh () g ,"_‘_\ Reducer|

£ HimoB| 3

ﬁ’_ L

Figure 7: Overview of the Shuffle-in-the-Middle so-
lution (see §6) where all data elements are encrypted
and Mapper and Reducer code is executed inside of
the secure region. In our solution the shuffle is im-
plemented as two MapReduce jobs.

In more details, each Mapper proceeds similarly to §3.2,
except for the content of its output. Recall that a mapper
in §3.2 returned a tuple (r,[z;]) where r is the index of
the Reducer that processes records with keys k£ such that
f(k) = r. Instead, we modify Mapper to return ([r], [z;]),
so that [Xwu] now consists of pairs of ciphertexts.

Then, the data shuffle is invoked on [Xm] with a small
adaptation: instead of simply outputting [m(Xm)], the last
step is modified to return the decrypted value of r, while
re-encrypting [z;]. Hence, the output of the data shuffle is
a list of tuples (r, [x;]) that is a random permutation of the
intermediate key-value pairs of the original MapReduce job.

The rest of the protocol is the same as the one for MapRe-
duce on Secure Hardware in §3.2. The MapReduce frame-
work (e.g., Hadoop) groups key-value pairs according to
their reducer index r and invokes Reducer on each group.

An illustration of the Shuffle-in-the-Middle solution is given
in Figure 7.

6.1 Data Shuffle

Given an encrypted dataset [D] as input, the shuffle yields
some permutation [7(D)] as output. Since D can be large,
we want an efficient implementation of the shuffle within
a secure MapReduce framework. Moreover, we want to en-
sure that the observations about the network traffic that the
adversary can make (as described in §4.2) do not leak any
information about the data (except its size) and the shuf-
fle permutation 7. Hence, an adversary that observes a job
implementing either 7° and 7!, should not be able to say
whether the output is an encryption of 7°(D) or 7' (D).

Sorting networks [5, 1] provide the security guarantees
above: their network traffic is independent of the data. How-
ever, since these algorithms perform sorting, they incur a
logarithmic depth computational overhead (plus additional
constants). Instead, for our solutions, we choose the parallel
version of the Melbourne Shuffle [22], which offers the same
security guarantees, and we implement it as two successive
runs of the MapReduce job described below. We refer to
[22] for a detailed analysis of the algorithm.

Algorithm 1 Melbourne Shuffle Mapper: Mapper([d;, .. .,
dit+s]) with 7, R, max included, for example, in the binary.

1: Let d;,...,d;+» be input records in a batch of size b.
Let 7 be the target secret permutation.

Let R be the number of reducers.

Let max be the max number of records to be sent from
a mapper to a reducer.

5: for r e {1... R}: bin[r] <[]

6: for je {i...i+b}:

7. id < (7(j) mod R) +

8: bin[id].append((7(4), d;))

9: for re {1...R} do

10: if len(bin[r]) > max abort.

11: while (len(bin[r]) < max): bin[r].append(dummy)
12: end for

13: forre {1...R} do

14: output r,bin[r]

15: end for

Each mapper takes as input a permutation 7 (e.g., it
takes a key to a pseudo-random permutation) and a batch
of b records, and outputs a bin of max records (for some
fixed number max > b/R) for each reducer, that is, R bins
in total. The mapper assigns each record d; (where j is
the index of the record in D) in the batch to one of the R
bins according to its permutation tag: record d; goes to bin
r = [n(§)/R]. If a bin is assigned more than max records,
the algorithm aborts. Otherwise, the mapper pads each bin
to max records, by adding dummies with the same size as
genuine records, then it encrypts and outputs each bin as
a single intermediate value with key r. Pseudocode for the
mapper is given in Algorithm 1.

Each reducer takes a list of bins (one from each mapper),
removes the dummies, sorts the remaining records by their
permutation tags, removes the tags, and outputs the result.
Pseudocode for the reducer is given in Algorithm 2.

The security of the shuffle relies on the deterministic traf-
fic that the job above produces: each mapper produces
the same number of bins and the size of each bin is the
same. Hence, every reducer also receives the same traffic.
Its output size is always |D|/R (ensured by how mappers
distributed their input).

A single run of the MapReduce job above will fail on some
permutations, namely those where a mapper assigns more
than max records to the same reducer. For example, if 7 is
the identity function, the job will fail unless max > b. To
remedy this while keeping max small, two successive MapRe-
duce jobs are invoked: the first job is for a uniformly random
permutation p and the second one is for the target permuta-
tion w. Although these invocations may still fail, this hap-
pens rarely. Moreover, the analysis of [22] shows that success
and failure of the shuffles depends only on p, hence, it leaks
no information about the actual input and output of the
algorithm. Besides, max can be carefully chosen to control
the probability of failure: on average, each bin should get
b/R records, and balls-and-bins analysis tells us how much
to over-provision as we choose max.

6.2 Analysis

THEOREM 1. If [] is a semantically secure encryption
scheme, f is a pseudo-random function and 7 is a pseudo-

11

Algorithm 2 Melbourne Shuffle Reducer: Reducer(r, [X|,])

: Let r be this reducer’s index.
Let X|,, be input values with key r (i.e., all bins with r).
vals « []
for val € X|, do

if val # dummy: vals.append(val)
end for
Sort vals by 7 tag, strip off tags and output the result.

{val is 7(j),d;}

random permutation, then the Shuffle-in-the-Middle solution
is correlation hiding (Definition 2).

For the proof, we instantiate our solution with the Mel-
bourne Shuffle algorithm. However, it is easy to see that
our solution is secure as long as it relies on any shuffling
technique that produces data-independent traffic.

Relying on the semantic security of encryption, the Mel-
bourne Shuffle guarantees that its network traffic (i.e., A
matrices) for the two MapReduce jobs implementing 7 de-
pend only on the size of the dataset and the number of map-
pers and reducers performing each job. Hence, an observer
of network traffic does not learn anything about 7. For our
solution that means that the observer cannot trace which
records of Xr correspond to records in Xm.

We now consider the network traffic of the Shuffle-in-the-
Middle solution in the Correlation Hiding game as described
in Definition 2 for both datasets D° and D' picked by the
adversary. Once one fixes the size of the dataset, M and
R and the output size of every map function M (Require-
ment 1), the traffic produced by the Mappers is deterministic
and protected by a semantically secure encryption scheme.
Similarly, recall that the traffic produced by the Melbourne
Shuffle is deterministic once these values are fixed.

The only possible difference in the observations between
D and D' are the r = f(k) indexes in (r,[x;]) records
in Xg. Requirement 2 of the game guarantees there ex-
ists a o permutation on the keys such that, for all keys
k € K, we have Y, A°[m, k] = 3, A'[m,o(k)]. Relying
on the pseudo-randomness of f, the probability that a ran-
domly picked function equals either f or o o f is the same.
Consequently, the count of reducer indexes in X is equally
distributed for both datasets.

We are left to argue that the difference in locations of re-
ducer indexes reveals nothing about the underlying records
and hence does not help the adversary win the game. Re-
lying on the pseudo-randomness of m, this follows trivially
from the fact that the Melbourne Shuffle can be seen as
picking a random permutation 7 to shuffle the data and this
permutation is thus independent of the dataset.

7. SHUFFLE & BALANCE SOLUTION

The Shuffle-In-The-Middle described in §6 prevents the
adversary from observing the volume of data exchanged be-
tween individual Mappers and Reducers (the matrix A). How-
ever, the adversary still observes the number of records each
Mapper produces and the distribution of encrypted keys.

Our second solution meets our stronger Definition 3 by
evenly distributing the intermediate traffic sent from each
mapper to each reducer. It preserves the data parallelism of
MapReduce, and may even improve its performance by facil-
itating resource allocation and scheduling. But it requires a

more precise load-balancing than what is typically achieved
by MapReduce implementations.

7.1 Overview

We are seeking solutions that fit into existing MapRe-
duce implementations, which precludes a complete redesign
of mappers with better balancing properties. Instead, we
use preliminary MapReduce jobs to plan how to balance
(and pad) the intermediate key-value pairs for the ‘main’
job. We split this pre-processing into offline and online jobs.
(In Figure 8 we give an illustration of the Shuffle & Balance
solution.)

The offline stage runs on the input data (once for all jobs)
and randomizes the ordering of the input records. This
erases any correlations between the ordering of inputs and
the values of their attributes (as those exploited in §4.3.2),
and ensures that all mappers produce the same distribu-
tion of key-value pairs. This stage may be implemented by
a shuffle (§6.1) or, pragmatically, as the user uploads her
input data to the cloud.

The online stage is job specific; it samples the input data
to collect statistics about the keys produced by mappers, in
order to balance them evenly between reducers and to esti-
mate (with high probability) an upper bound on the number
of key-value pairs sent by each mapper to each reducer. Let
M and R be the map and reduce functions of the job and
R its number of reducers. For the following discussion, re-
call that we refer to real keys produced by M as a “key” or a
“real key”, while we refer to one of R reducers using “reducer
index” notation.

1. We first run M and R on a fixed sample of the ran-
domized input. We collect statistics on its interme-
diate keys: a list of pairs (ki, f1), (k2, f2),..., (ki f1)
where k; ranges over the sampled keys and f; is the
fraction of key-value pairs in the sample with key k;.
This list enables us to estimate the distribution of keys
for the whole input dataset, notably its most popular
key.

We also determine the total number of key-value pairs
returned for the sample size and the constant output
size ¢ of R.

This task is easily expressed as a small job whose traf-
fic pattern depends only on the size of the sample.
The statistics we collect are reminiscent of those main-
tained in databases to optimize, for instance, joins on
record fields; they may similarly be cached and shared
between jobs that map data on the same attributes.

2. We generate a key assignment for the job: a function
from all (potential) intermediate keys to 1..R, intended
to balance A[m,r] by grouping keys so that every re-
ducer gets roughly the same number of records, as de-
tailed in §7.3.

We also estimate a safe upper bound on the fraction
of traffic sent from any mapper to reducer r and an
upper bound on the number of different keys assigned
per reducer. Our algorithms are detailed in §7.3.

The ‘main’ job then runs, essentially unchanged, except that
(1) every mapper uses the resulting assignment to map keys
to reducers, instead of the random, uniform intermediate
partition in the base solution; (2) every mapper finally sends

12

Offline Phase Online Phase

Balance and pad key-value
pairs across reducers

Clean up

dummies
= m
E r [
7 [

&
T
&
T
&
g

GH5S55S
GBHGH55S

(

Input batch is a
random data sample

Job has 3 keys:
Oomom

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Figure 8: Overview of the Shuffle & Balance solu-
tion (see §7) where all data elements are encrypted
and Mapper and Reducer code is executed inside
of the secure region. Colored boxes represent three
different keys; the size of each box represents the
number of key-value pairs with this key.

dummy key-value pairs to every reducer, up to its upper
bound estimate; and (3) every reducer silently discards in-
termediate dummies, and pads its output with dummy val-
ues up to its upper bound estimate.

As an optional, post-processing stage, we may use a shuffle
on the reducer outputs, to discard their dummy values and
erase any correlation between key frequencies and output
ordering, or pragmatically leave this simple task to the user.

Definition 3 leaks the exact values of max (>} A[m,k]),
| X, and the number of keys in the dataset, whereas our solu-
tion leaks these values as observed in a random sample. How
do our estimates relate to the exact values for the dataset?
An estimate, with certain confidence, yields a range in which
the exact value lies. Since our sample is chosen at random,
the estimates depend on these three values and our target
confidence level, but also on the actual records in the sample.
To meet the definition, we formally require that statistics to
be collected on the whole input dataset. We note, however,
that for large shuffled datasets, even relatively small samples
already provide excellent estimates.

7.2 Parameter Estimation

Sampling phase enables us to estimate parameters of the
job that we are willing to reveal as per Definition 3 and which
are not known in advance. These parameters are the number
of key-value pairs | X|, the frequency of the most popular key
in X (the maximal value of the fractions f; above, written
a in the following) and the number of keys |K]|.

Estimating |X| and a. The relation between |D| and | X]|
can be described as | X| = om|D| where m is the maximum
number of pairs that M can return and o is the fraction that
is actually returned on this dataset. Then, | X x| = o|X]|,
where k is the most popular key. Using a sample of D we
can estimate o as & and « as &. We note that for jobs that
always return one record (i.e., | X| = |D| and o = 1) we only
need to estimate a.

In order to estimate o, we model number of intermediate
key-value pairs produced by a mapper on a sample of size s

as a Binomial random variable with parameters ms and o.
Let X° be intermediate key-value pairs from the sample of
size s and |X°| be the number of pairs. From the sample
we get the empirical fraction & = |X?*|/(ms) which is our
guess at o. Intuitively, the larger the sample, the better is
our guess of . Parameter estimation using the Chernoff
Bound [20, Chapter 4.2] gives us exactly this relation be-
tween the sample size, an upper bound on a parameter and
the probability that the parameter exceeds this bound. In
particular, if
2 1

sz —1In—
me2 0

then o0 > & + € with probability at most §. Once we choose
parameters § and €, we choose a sample of size s, compute
its & and set 6 to & + €.

The process for estimating e can be modeled as a Binomial
random variable with parameters |X°| and a. Again using
the Chernoff bound, if

2 1

then o > & + € with probability at most 6 where & is the
fraction of key-value pairs with the most popular key in X°.
Once we fix € and § we can set & = a + €. If | X°] is
small, as a result, our error estimate ¢ may be too high.
For example, even if s is large enough for a good estimate
of o, the resulting | X °| may not be enough for estimating «
well (e.g., consider a map function with a very restrictive
filter). In this case, we may need to increase s to get a
higher number of sampled intermediate key-value pairs.

We note that in both cases we chose to overestimate our
parameters. Overestimation leads to higher padding cost
but lower probability of failure of the mapper protocol.

Estimating |K|. Given the output of a map function on a
sample we wish to estimate the number of distinct keys in
the output the MapReduce job will produce on the whole
dataset D. To this end, we use the estimation technique
from [9] to set our estimate to an upper bound on |K|:

Zei—l- |D‘

i>1 |XS

€1
|

where e; is the number of distinct keys in X° that occur
exactly ¢ times in X°. We note that better estimates can be
achieved if prior information on distribution of K is known
in advance.

7.3 Mapping vs. Bin Packing

In this section, we explain how we use the statistics col-
lected in the online stage to produce a secure balanced
assignment. In particular, we explain how to allocate suffi-
cient bandwidth between mappers and reducers to fit any
distribution with the same a. (Recall that Definition 3 en-
ables us to leak only the maximal frequency, not the de-
tailed key distribution.) The algorithms are explained using
a, while in the instantiation of these algorithms we use our
estimate & where & > o with carefully chosen parameters
(Section 7.2).

Our problem, at heart, is an instance of bin packing, so we
first review bin packing basics before giving our algorithm.

Bin packing. The (offline) bin packing instance is expressed
in terms of a fixed bin capacity ¢ and a list of items, each

13

with a weight at most ¢. (In our case, a key is viewed as an
item and its frequency as its weight.) The goal of bin pack-
ing algorithms is to minimize the number of bins N needed
to allocate all items without an overflow. Since the offline
bin-packing problem is NP-hard, approximation algorithms,
such as First Fit Decreasing (FFD) [10], return both a num-
ber of bins and a guarantee on how far it can be from the
optimum in the worst case. The FFD algorithm places items
in decreasing weight order, allocating new bins on demand:
it places the heaviest item in the first bin, then proceeds
with the next item and tries to place it into one of the open
bins (i.e., the bins that already have items) without exceed-
ing its capacity. If there is no space left in any open bin, it
places the item in a new bin.

Bin Packing, Obliviously. Our problem is more general:
given only some maximal item weight a, we must find a bin
capacity ¢ and an upper bound on the number of bins N so
that FFD packing will succeed on any weighted list of items
with maximal weight . That is, N and ¢ depend only on «
and not the distribution of the rest of the elements.

In the general case, we choose N = % —landc=a. In
the next section we prove that such N and c are enough to
pack any sequence of items with maximal weight of a using
FFD. Since the weights of all items sum up to 1, Nc— 1 is
the overhead of the solution in terms of dummy key-value
pairs that have to be added to fill in the bins. Hence, the
values of N and ¢ above yield an overhead of 1 — a. We
can reduce the overhead above in several special cases; for
example:

o If o < %,thenwemaypickN:Randc=%—l—a7

which yields a low overhead of aR.

o If a > %, we have at least one very large reducer of
capacity a and everything else will fit into a second,
smaller reducer of capacity 1 — «. In this special case,

there is no actual need for FFD.

The general and special cases of fixing N and c ensure that,
from a traffic analysis viewpoint, the number and capacities
of bins (which, as described next, entirely determine the
matrix A for the job we protect) depend only on a.

Bin Packing Keys to Reducers. Once c is fixed, we are
ready to bin-pack the distribution of keys we have sampled,
and to generate our (secret) assignment for the main job.
To this end, we add two dummy keys with weight 0, for
the smallest and largest keys (if not already present in the
sample). We partition the domain of all intermediate keys
into intervals, such that the total weight of all the keys in any
given interval is bounded by «. Hence, there is at least one
interval that contains one single key, with maximal weight a.
The inclusion of dummy keys ensures that assignment is a
total function, even on keys that we have not sampled. We
then sort these intervals by decreasing weight and run the
FFD algorithm on them (assured that at most N bins will
be used) to get a mapping between key intervals and bins.
We independently distribute N bins between our R reduc-
ers, such that each reducer gets at most [N/R] bins. Hence,
some reducers may get less than [N/R] bins, or no bins at
all if N < R. We denote the capacity level of rth reducer
as ¢r. Finally, we use this (public) mapping and the (secret)
FFD output to produce an assignment that maps each key
interval to the reducer of the bin it has been placed into.

7.4 Padding Traffic to Fixed Sizes

Intermediate Key-Value Pairs. We select a level of padding
for the traffic sent from each mapper to each reducer based
on two considerations: we must hide the actual number of
key-value pairs received by each reducer—that is, the actual
usage of each bin we have allocated—Dby filling those bins
with dummies; and we must over-provision to accommodate
(with high probability) for any difference in key distribu-
tion between the dataset and the output of each mapper.
To this end, the assignment is supplemented with padding
target, to be used by every mapper to compute the appar-
ent number of intermediate key-value pairs it must send to
every reducer (as a function of the size of its input). In par-
ticular, given a capacity level ¢, for rth reducer, a mapper
with batch size b sends Padded(c,,b) key-value pairs to rth
reducer. We describe how Padded is computed below.

Given a capacity level ¢, and mapper’s batch size b, i, =
¢r X 0 X m X b is the number of key-value pairs with reducer
index r expected to be returned by a mapper on the input
size b. (Recall that ¢, is expressed as a proportion of the
intermediate key-value pairs and b X o x m is the expected
number of pairs to be produced from a batch of size b.)
Since mapper’s batch is only a sample of the dataset, the
actual number of key-value pairs with index r, X, p, may
differ from p,;,. However, since the sample is a random
sample of the dataset (due to randomization during the of-
fline phase) it will not “lie too far” from the mean. To this
end, Padded(c,,b) returns a bound on how many key-value
pairs with index r a random sample may contain with prob-
ability 0, i.e.,

Pr(X,,, > Padded(c,, b)) < 6.

This bound is determined as follows. We treat the number
of intermediate records (mapper’s output) with index r as
a Binomial random variable X, with expected value p, .
Then, using the Chernoff bound [20, Chapter 4.2]:

e€ Hor, b
Pr(Xr,b = (1 + G)Mr,b) < (m) = 0.

Once the desired failure probability is fixed, we can rear-
range the above formula to express € in terms of 6 and fir s,
and then set Padded(c;,b) to (1 + €)prp.

So far we considered only the event that a particular map-
per does not exceed the padded level with probability more
than 6. In the algorithm we wish to bound that no map-
per sends more than a bounded number of key-value pairs
to any of the R reducers. We can do so by applying the
union bound to M x R possible events and bound first the
probability 6 x M x R and only then fix 6.

Interestingly, the resulting matrix of observable interme-
diate traffic A for the main job is not necessarily uniform, as
mappers may process batches of different sizes and reducers
may process different numbers of bins, but this matrix de-
pends only on « (recall that ¢, is determined using «), R,
and the sizes of the mapper inputs.

Reducer Output. Preventing traffic analysis on the job out-
put is simpler. We set rkey to bound the maximum number
of keys that may be allocated to a single reducer given R,
|K| and a. We count the maximum number of rare keys
that may be assigned to any single bin, assuming that large
keys are distributed elsewhere. In particular, we set it to

14

rkey = |K| — [1/a] + 1. Then, for every bin assigned to a
reducer, the reducer output is padded up to rkey x £ where ¢
is the output size of R on a list of values with the same key.

7.5 Analysis

We first prove that NV and ¢ we chose in §7.3 for computing
assignment does not lead to an overflow for any distribution
with a fixed . Then we argue that the Shuffle & Balance
solution is secure.

LEMMA 2. FFD uses at most N = 2/a. — 1 bins, each
with capacity ¢ = a, when packing any sequence of items
with item weight at most «.

PROOF. Let us compute values of N that lead to an over-
flow if FFD is used with bin capacity ¢ = a. Since we know
there is at least one item of weight o we assume that FFD
assigns it to the first bin.

Let 8 be the weight of the item that cannot fit in the first
N bins and, hence, N + 1th bin has to be opened. Then the
following constraints should hold:

1. <1 —a—(N—1) x ¢ where ¢ < cis the minimum
weight among N open bins. This constraint ensures
that the total weight of leftover items (i.e., items not
assigned to the first NV bins) is at least f3.

2. a—c < f3, since a new bin has to be opened the leftover
space in any of the open bins must be less than .

3. B < ¢, since FFD orders items in descending order, 3
has to be less than an item weight placed before.

Let us combine constraints 1 and 2:
a-cd<l—a-(N-1)xc
(N-1)xcd —cd <1—-2a

d < (1-2a)/(N-2) (1)

Then combining constraints 2 and 3 gives us «/2 < ¢’. Fi-

nally we can combine result of Equation (1) and 2a < ¢’ to
get a bound on N in terms of a:

a/2 < (1-2a)/(N —2)
N <2(1 -2a)/a+2=(2—4a+2a)/a =
(2-2a)/a=2/a—2

Hence, to avoid overflow we need to set IV to a value at least
2/a—1. O
1

LEMMA 3. Let R be the number of reducers. If a << 5,
then FFD uses at most N = R bins each of capacity ¢ =
% + a, when packing any sequence of items with item weight
at most «.

PROOF. Assume there is an item with weight [that does
not fit in the first N bins. Let ¢’ be the minimum bin weight
across all N open bins. Then it must be the case that (1)
B < 1—c'R, since there is at least one item with a non-zero
weight 3 left to pack, and (2) ¢’ +8 > 1/R+ «, since there is
no room for the item with weight 8 among open bins. From
(2) we get ¢’ > 1/R since a — 3= 0. Then 1 — ¢'R < 0 and
using (1) 8 < 0. Hence, there cannot be a leftover item with
positive weight. [

THEOREM 4. If [-] is a semantically secure encryption
scheme and the permutations m and 7’ used in pre- and (op-
tional) post-processing are pseudo-random, then the Shuffle
& Balance solution is strongly hiding (Definition 3).

We show that if mappers do not fail (i.e., do not send
more traffic that what they padded for), then the traffic
generated by Shuffle & Balance depends only on constraints
on the two databases that the adversary is allowed to pick.
We then show that the failure probability — the probability
that a mapper has to output more traffic than predicted —
is low. Our proof is by construction.

In Lemmas 2 and 3 we showed that our choices for the
number of bins N and their capacity c are sufficient for bin-
packing any sequence with maximal key weight o. This
ensures that bin packing always produces a valid key-reducer
assignment. Furthermore, N and ¢ depend only on a.

Given key-reducer assignment, a mapper reads a batch
of size b and sends Padded(c,,b) key-value pairs to rth re-
ducer. The value Padded(c,,b) depends on ¢, b, m and o
and the failure probability #. The values b, m and 0 are
public, while ¢, depends on ¢, N (both depend on «) and
public parameter R and ¢ depends on |X|. Since a and | X]|
are constraints of Definition 3, traffic sent from mappers to
reducers is not revealing anything about the data in D.

A mapper can fail with probability @ if there is a reducer r
s.t. the mapper needs to send it more traffic than allocated
by Padded. The choice of 6 determines the probability of a
random sample diverging from the padded schedule it has
to fit to (we treat mapper’s batch as a random sample due
to the offline shuffle of D). Hence, it can be set arbitrarily
low by increasing the padding level as returned by Padded.

Now consider reducers. Let b,, be the batch size of mth

mapper. A reducer with index r reads)3, _, _,, Padded(c:, by)

key-values pairs and returns output of size rkey x £ for every
bin assigned to it. Hence, the output size of the reducer
depends only on ¢, N, |K| and a.

Observing the optional cleanup phase (relying on 7') or
the size of the output (if the user performs it herself) shows
the reduction from size rkey x £ x N to |O|, which is again a
restriction in the adversarial game.

Our proof assumes that the parameter «, the number of
key-value pairs |X| and the number of keys | K| are precise.
In our instantiation we use estimates of these values from a
random sample which, with high probability, give us upper
bounds on each of these parameters (Section 7.2). Using
upper bounds ensures that our algorithms do no fail with
high probability, while revealing values of these parameters
in a chosen random sample.

Our solution hides any distribution of keys with maximum
frequency «, but it does reveal a. This is justified, because
at least one reducer must process all the key-value pairs
for the most frequent key. However, this can be mitigated
(notably when a <<) by increasing a before computing c.

8. EVALUATION

We have evaluated our framework using a local Hadoop clus-
ter of 8 workstations connected with a Netgear GS108 1Gbps
switch. Our nodes ran under Microsoft Windows Server
2012 R2 64-Bit on workstations with a 2.9 GHz Intel Core
i5-4570 (Haswell) processor, 8 GB of RAM, and a 250 GB
Samsung 840 Evo SSD. We implemented our solutions in
Java for experiments on plain Hadoop and in C++ for VC3
experiments, which use AES-GCM encryption implemented
with AES-NI instructions and a software emulator for SGX.

We perform experiments on the two datasets presented in
§4.3: a census data sample (900 MB) and the New York taxi

15

Table 1: Run times for Shuffle-in-the-Middle (S).

DataSet/Job Base | Run time (Shuffle)
Census/Age grouped | 20 91 (25)
Taxi Jan/PassenN 39 122 (38)
Taxi Jan/PickupD 40 131 (43)

Table 2: Run times for Shuffle & Balance (S) where
PassenN-1 aggregates passenger counts without the
most popular key.

Taxi Jan (2.5 GB) Taxi Jan-Apr (10 GB)

Attrib o K| Run time o K| Run time
(><Base) (XBase)

PassenN .71 6 (1 01) I .71 6 1 (0.93)
PickUpD | .038 | 31 | 48 (1.12) | .01 | 120 | 78 (1.21)
PassenN-1 | .47 5 3(1.09) || 45| 5 5 (1.06)

rides (2.5 GB per month). We perform two types of jobs:
aggregate and aggregate-filter, where the latter is an aggre-
gate over records filtered by some parameter. The baseline
run times correspond to the initial job on Hadoop without
protection. The reported numbers are averaged over 5 runs.

The run times for the Shuffle-in-the-Middle solution in
Java are summarized in Table 1. This experiment involves
4 MapReduce jobs: for mapping, shuffling twice, and reduc-
ing. Hence, no batching and parallelization is enabled and
all jobs are treated sequentially. In contrast, in the base ex-
ecution of this job, grouping of intermediate pairs by keys
starts as soon as mappers produce some output. Starting
the shuffle as soon as the map job outputs its first key-
value pairs may reduce the I/O overhead (similarly starting
sorting keys before the last shuffle finishes). Shuffling costs
highly depend on the size of the data; for passenger count a
value is simply a number vs. a date for pickup date job.

Next we measure the run times of our Java implemen-
tation for the Shuffle & Balance solution on several at-
tributesof the Taxi dataset of size 2.5 GB (Jan) and 10 GB
(Jan-Apr) with R = 15. The results for the online phase
for a randomized taxi dataset are presented in Table 2. For
each job we show the frequency of the most popular key
and the number of keys. Shuffle & Balance is more efficient
than our first solution, assuming one can run the jobs on
shuffled data: performance overhead increases on average
by 7%. In one example, our solution even outperforms the
baseline. This is due to the smaller number of key-value
pairs returned to the system by the mappers and, hence,
lower overhead for the framework to group them together.
Recall that our solution pre-groups values with the same key
during bin packing, thereby using a smaller number of keys
but larger values.

Finally, we implemented the Melbourne Shuffle as two
runs of the MapReduce job presented in §6.1, both in Java
and in C4++ for VC3. Table 3 gives the run times for the of-
fline phase of our Shuffle & Balance solution on two datasets.
Recall that this phase is run once per dataset, and not once
per every job.

Discussion. From the experiments we can see that the Shuf-
fle & Balance solution (§7) has a much better performance
than the Shuffle-in-the-Middle solution (§6). The additional
padding produced by the former does not affect the per-
formance as much as two additional MapReduce jobs for

Table 3: Run times for Melbourne Shuffle in offline
phase (in seconds).

DataSet | Java | VC3
Census 76 122
Taxi Rides Jan | 160 153

performing the shuffle do. The Shuffle-in-the-Middle may
still be of interest if one cannot perform the offline phase
(shuffling) of the Shuffle & Balance solution before running
MapReduce jobs.

We also note that if hiding key distribution is not required,
the Shuffle & Balance solution can perform a “lighter” ver-
sion of the online phase and reduce the amount of padding.
In this case, one pads only to hide the difference between
mappers’ inputs without executing bin packing.

9. RELATED WORK

Several systems protect confidentiality of data in the cloud.
CryptDB [24] and MrCrypt [29] use partial homomorphic
encryption to run some computations on encrypted data;
they neither protect confidentiality of code, nor guarantee
the integrity of results. On the upside, they do not use
trusted hardware. TrustedDB [4], Cipherbase [3], and Mon-
omi [31] use trusted hardware to process database queries
over encrypted data, but do not protect the confidential-
ity and integrity of all code and data. Haven [6] can run
databases on a single machine.

All systems above are vulnerable to side-channel attacks.
For example, Xu et al. [33] show how side-channel attacks
can be exploited in systems such as Haven where an un-
trusted operating system controls page faults. We also refer
the reader to [33] for an overview on side-channel attacks.

Several security-enhanced MapReduce systems have been
proposed. Airavat [25] defends against possibly malicious
map function implementations using differential privacy. Se-
cureMR [32] is an integrity enhancement for MapReduce
that relies on redundant computations. Ko et al. propose a
hybrid security model for MapReduce where sensitive data
is handled in a private cloud while non-sensitive processing
is outsourced to a public cloud provider [17]. PRISM [7] is a
privacy-preserving word search scheme for MapReduce that
utilizes private information retrieval methods.

Nayak et al. [21] propose a programming model for se-
cure parallel processing of data represented as a graph us-
ing oblivious sorting and garbled circuits. Goodrich and
Mitzenmacher [15] describe a simulation of MapReduce that
resembles a sequential version of our Shuffle-in-the-Middle
solution using a sorting network instead of a shuffle to pro-
tect against traffic analysis. This method can be paral-
lelized using a step from §6 where oblivious sorting uses a
reducer number (computed as a pseudo-random function of
each key) to sort key-value pairs and returns reducer keys in
the clear. In independent parallel work, Dinh et al. [11] also
consider securing MapReduce using a mix network to shuffle
traffic between mappers and reducers. The three solutions
above rely either on oblivious sort or mix network, and thus
incur a logarithmic depth overhead. In comparison, our use
of the Melbourne Shuffle in our first solution, Shuffle in the
Middle, requires only two additional map-reduce jobs, and
incurs a constant depth overhead. Besides, our second solu-
tion, Shuffle & Balance, dominates the first, even with the

16

Melbourne Shuffle: the security guarantees are stronger (it
hides key distributions, mapper output sizes, and reducer
input sizes) and incurs a much smaller overhead (§8).
Oblivious RAM (ORAM) [13] is a general, well-studied
technique for protecting computations against memory traf-
fic analysis. Though ORAMSs are becoming more efficient,
they incur a logarithmic overhead on every access and do
not hide I/O volume. Moreover most ORAMSs, except for
the recent theoretical work by Boyle et al. [8] with polylog-
arithmic access overhead, are intrinsically sequential.

10. REFERENCES

[1] M. Ajtai, J. Komlds, and E. Szemerédi. An O(nlogn)
sorting network. In Proceedings of the Fifteenth
Annual ACM Symposium on Theory of Computing,
STOC 83, pages 1-9, New York, NY, USA, 1983.
ACM.

[2] Apache Software Foundation. Hadoop.
http://wiki.apache.org/hadoop/, 15/05/15.

[3] A. Arasu, S. Blanas, K. Eguro, R. Kaushik,

D. Kossmann, R. Ramamurthy, and R. Venkatesan.
Orthogonal security with Cipherbase. In Conference
on Innovative Data Systems Research (CIDR), 2013.

[4] S. Bajaj and R. Sion. TrustedDB: A trusted
hardware-based database with privacy and data
confidentiality. Knowledge and Data Engineering,
IEEE Transactions on, 26(3):752-765, March 2014.

[5] K. E. Batcher. Sorting networks and their
applications. In Proc. 1968 Spring Joint Computer
Conf., pages 307-314. AFIPS Press, 1968.

[6] A. Baumann, M. Peinado, and G. Hunt. Shielding
applications from an untrusted cloud with haven. In
USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2014.

[7] E.-O. Blass, R. Di Pietro, R. Molva, and M. Onen.
Prism—privacy-preserving search in MapReduce. In
S. Fischer-Hiibner and M. Wright, editors, Privacy
Enhancing Technologies, volume 7384 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg,
2012.

[8] E. Boyle, K.-M. Chung, and R. Pass. Oblivious
parallel RAM. Cryptology ePrint Archive, Report
2014/594, 2014. http://eprint.iacr.org/.

[9] M. Charikar, S. Chaudhuri, R. Motwani, and

V. Narasayya. Towards estimation error guarantees for
distinct values. In Proceedings of the Nineteenth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS 00, pages 268279, New
York, NY, USA, 2000. ACM.

E. Coffman Jr., J. Csirik, G. Galambosa, S. Martello,
and D. Vigo. Bin packing approximation algorithms:
Survey and classification. In P. M. Pardalos, D.-Z. Du,
and R. L. Graham, editors, Handbook of
Combinatorial Optimization, pages 455-531. Springer
New York, 2013.

A. Dinh, P. Saxena, C. Ee-chien, Z. Chunwang, and
O. B. Chin. M2r: Enabling stronger privacy in
mapreduce computation. In 24th USENIX Security
Symposium (USENIX Security 15), Washington, D.C.,
Aug. 2015. USENIX Association.

C. Gentry. Fully homomorphic encryption using ideal
lattices. In Proceedings of the Forty-first Annual ACM

(10]

(1]

(12]

23]

[24]

[27]

Symposium on Theory of Computing, STOC ’09, pages
169-178, New York, NY, USA, 2009. ACM.

O. Goldreich and R. Ostrovsky. Software protection
and simulation on oblivious RAMs. J. ACM,
43(3):431-473, 1996.

S. Goldwasser and S. Micali. Probabilistic encryption.
J. Comput. Syst. Sci., 28(2):270-299, 1984.

M. Goodrich and M. Mitzenmacher.
Privacy-preserving access of outsourced data via
oblivious RAM simulation. In L. Aceto, M. Henzinger,
and J. Sgall, editors, International Colloquium on
Automata, Languages and Programming (ICALP),
volume 6756 of Lecture Notes in Computer Science,
pages 576-587. Springer Berlin Heidelberg, 2011.

J. Katz and Y. Lindell. Introduction to Modern
Cryptography. Chapman and Hall/CRC Press, 2007.
S. Y. Ko, K. Jeon, and R. Morales. The Hybrex model
for confidentiality and privacy in cloud computing. In
USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud), 2011.

M. Lichman. UCI machine learning repository, 2013.
F. Mckeen, I. Alexandrovich, A. Berenzon, C. Rozas,
H. Shafi, V. Shanbhogue, and U. Savagaonkar.
Innovative instructions and software model for isolated
execution. In Workshop on Hardware and Architectural
Support for Security and Privacy (HASP), 2013.

M. Mitzenmacher and E. Upfal. Probability and
Computing: Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press, New York, NY,
USA, 2005.

K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg,

N. Taft, and E. Shi. GraphSC: Parallel secure
computation made easy. In IEEE Symposium on
Security and Privacy, 2015.

O. Ohrimenko, M. Goodrich, R. Tamassia, and

E. Upfal. The melbourne shuffle: Improving oblivious
storage in the cloud. In J. Esparza, P. Fraigniaud,

T. Husfeldt, and E. Koutsoupias, editors,
International Colloquium on Automata, Languages
and Programming (ICALP), volume 8573 of Lecture
Notes in Computer Science, pages 556—-567. Springer
Berlin Heidelberg, 2014.

V. Pandurangan. On taxis and rainbows: Lessons
from NYC’s improperly anonymized taxi logs, 2014.
R. A. Popa, C. M. S. Redfield, N. Zeldovich, and

H. Balakrishnan. CryptDB: Protecting confidentiality
with encrypted query processing. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems
Principles, SOSP ’11, pages 85-100, New York, NY,
USA, 2011. ACM.

I. Roy, S. T. Setty, A. Kilzer, V. Shmatikov, and

E. Witchel. Airavat: Security and privacy for
MapReduce. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2010.

F. Schuster, M. Costa, C. Fournet, C. Gkantsidis,

M. Peinado, G. Mainar-Ruiz, and M. Russinovich.
VC3: Trustworthy data analytics in the cloud using
SGX. In IEEE Symposium on Security and Privacy,
2015.

L. Sweeney. Simple demographics often identify people
uniquely. Carnegie Mellon University, Data Privacy
Working Paper 3, 2000.

17

(28]

29]

(30]

(31]

32]

(33]

NYC taxi trips. www.andresmh.com/nyctaxitrips/,
16/05/15.

S. D. Tetali, M. Lesani, R. Majumdar, and

T. Millstein. MrCrypt: Static analysis for secure cloud
computations. SIGPLAN Not., 48(10):271-286, Oct.
2013.

A. Tockar. Riding with the stars: Passenger privacy in
the NYC taxicab dataset, 2014.

S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich.
Processing analytical queries over encrypted data.
Proc. VLDB Endow., 6(5):289-300, Mar. 2013.

W. Wei, J. Du, T. Yu, and X. Gu. SecureMR: A
service integrity assurance framework for mapreduce.
In Proceedings of the 2009 Annual Computer Security
Applications Conference, ACSAC ’09, pages 73-82,
Washington, DC, USA, 2009. IEEE Computer Society.
Y. Xu, W. Cui, and M. Peinado. Controlled-channel
attacks: Deterministic side channels for untrusted
operating systems. In IEEE Symposium on Security
and Privacy, 2015.

