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Abstract

Lazy Annotation is a method of software model checking that performs
a backtracking search for a symbolic counterexample. When the search
backtracks, the program is annotated with a learned fact that constrains
future search. In this sense, the method is closely analogous to conflict-
driven clause learning in SAT solvers.

In this paper, we develop several improvements to the basic Lazy An-
notation approach. The resulting algorithm is compared both concep-
tually and experimentally to two approaches based on similar principles
but using different learning strategies: unfolding-based Bounded Model
Checking and Property-Driven Reachability.
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1 Introduction

Lazy Annotation is a method of software model checking motivated by conflict-
driven clause learning (CDCL) in Boolean satisfiability (SAT) solvers. It per-
forms a backtracking search for a symbolic execution of a program that violates
a safety property. When the search reaches a conflict, it backtracks, annotating
the program with a learned fact that constrains future search. As in CDCL, the
learned fact is derived as a Craig interpolant.

In this paper, we develop several improvements to the basic Lazy Annota-
tion approach. Among other things, we adapt Lazy Abstraction to large-block
encodings [6], allowing us to exploit the power of modern satisfiability modulo
theories (SMT) solvers. We compare the resulting algorithm to unfolding-based
Bounded Model Checking and to Property-Driven Reachability. These methods
share the general approach of conflict-driven learning, but differ in their search
and learning strategies. Our goal will be to clarify these distinctions conceptu-
ally, and to test empirically the relative strengths of the different strategies. In
particular, we will try to answer two questions:

1. Whether structured or unstructured search is more effective, and

2. What characterizes an effective conflict learning strategy, in terms of re-
ducing bounded search and converging to an unbounded solution.

Related work. The basic idea of Lazy Annotation was introduced by
Jaffar et al. [17] in the context of Constraint Logic Programming (CLP). A
more general approach, handling richer theories and recursive procedures, was
introduced by the author [21], along with the name Lazy Annotation. Here,
we adopt the latter approach, in particular its use of proof-based interpolants
and its method of inferring unbounded proofs from bounded proofs. Following
Jaffar et al., we work within the CLP framework, but generalize from simple
linear arithmetic constraints to constraints in full first-order logic, exploiting the
strength of modern SMT solvers. Moreover, we will allow clauses with multiple
sub-goals (called the nonlinear case in [16]). Thus we can verify, for example,
recursive procedural programs.

The IC3 method of Bradley [9] is similar at a high level to Lazy Annota-
tion. Both methods perform bounded verification for increasing bounds, until
an inductive invariant can be inferred from the bounded proof. Both methods
generate symbolic goal states that are known to reach an error. These are re-
futed in a bounded sense by computing interpolants (in a sense we will define).
Apart from various optimizations, the primary difference is in the particular
strategy for computing these interpolants, an issue we will study in detail.

The class of algorithms based on IC3 has been called Property-Driven Reach-
ability [12]. Although PDR originally applied only to propositional logic and the
linear case, the approach was later extended to the non-linear case and richer
logics [16] making it suitable for software model checking. Cimatti and Griggio
give a hybrid approach applying PDR to software model checking [10]. Propo-
sitional PDR can also be applied to software via predicate abstraction [16, 11].



Another related approach was introduced recently by Bayless et al. [5] for
the propositional linear case. In addition, there are various other CDCL-like
methods [15, 23] to which the conclusions of this study may be relevant.

2 Informal discussion of Lazy Annotation

To give an intuitive explanation of the basic search and learning strategy of
Lazy Annotation (LA in the sequel) we first consider the special case of transi-
tion systems (equivalently, imperative programs with a single loop). This will
allow us to use the familiar vocabulary of transition systems, and to compare
approaches more easily.

We model a transition system using the following constrained Horn clauses:

I(z) = R(z) (1)
R(Z)ANT(z,7') = R(T) (2)

Here, Z is a vector of variables representing the program state. The free variables
are considered to be universally quantified in these clauses (a convention we
will use in the remainder of the paper). The predicate I is a fixed set of initial
states, while T is a fixed transition relation. Predicate R represents an unknown
inductive invariant for which we wish to solve. The solution must satisfy the
query formula R(Z) = S(Z), where S is a fixed set of safe states. Any such R
constitutes a proof that our transition system is safe (that is, no initial state
can reach a non-safe state via any sequence of transitions).

Our strategy for finding a solution for R will be to search for a refutation. A
refutation takes the form of path in the transition system from an initial state to
a non-safe state. As we will see, such a path corresponds to a ground derivation
of a contradiction using our clauses.

As in bounded model checking, we search for a refutation path by unwinding
the system k steps. This gives the following set of clauses:

Ro(Z) AT (2,7') = Ri(T)

R 1(Z)AT(z,7') = Rip(z)
Rp(z) = S(z)

A refutation for this acyclic (or non-recursive) set of clauses is a transition
sequence that violates safety after exactly k steps. Correspondingly, a solution
for Ry ... Ry represents a proof that there is no such path. If we find a solution
of the k-step unwound system, we can then attempt to derive from it a solution
for the original cyclic system.

During our search for a refutation path, we maintain a candidate solution for
Ry ... Ry called the annotation. The annotation of R; is an over-approximation
of the set of reachable states of the system after i steps. We require that the



annotation be inductive. That is, it must satisfy all the Horn clauses, but not
necessarily the query (unlike in PDR, we don’t require that the annotation be
an expanding chain).

Our search takes the unsafe states as an initial goal and symbolically executes
the system backward from this goal. At each step we narrow the search by
making a decision. A decision is simply an arbitrary constraint on our symbolic
path. The search reaches a conflict when the goal (the symbolic path) becomes
unsatisfiable. In this case, we backtrack, undoing the most recent decision. In
the process we learn an annotation that prevents us from making the same
decision in the future. The learned annotation is computed as an interpolant.

A search goal is a conjunction of facts to be derived and constraints to be
satisfied. Our initial goal is Ry(Zr) A —S(Z). That is, we wish to derive an
unsafe state reachable in k steps. A backward step in the search corresponds
to resolution of the goal with a clause. Thus, in the first step, we resolve
the goal with the clause Ry_1(Z) A T(Z,z") = Ry(Z') to obtain the new goal
Ry 1(Zg—1) AN T(Zg—1,Zx) A =S(Zx). This goal represents a state reachable in
k —1 steps that can reach an unsafe state in one step. As we perform resolution
steps, our goal represents execution paths of increasing length.

Now suppose a goal is satisfiable in the current annotation. That is, when we
substitute the annotation for R; into the goal, the resulting formula is satisfiable.
This means we can reach the error from R;. We then make a decision, adding
an arbitrary constraint to the goal. Decisions prevent the goal from becoming
overly complex as we perform resolution steps. A decision typically constrains
the most recent execution step. Thus, if our goal is R;(Z;) A T(Zi,Zir1) N

. —|S(1_71§), it becomes Rz(fz) A Di(i‘i, i‘i+1) A T(fi, ZEZ‘_;,_l) VAR ﬁS(f}g). Here Di
is a fixed predicate representing the i-th decision. The choice is D; is arbitrary,
but we require that the goal remain satisfiable.

Because decisions constrain the search, we may find after making a resolution
step that the goal is unsatisfiable. At this point we are in conflict, and must
backtrack to the previous goal, undoing one resolution step and one decision.
In the process, we strengthen the annotation so that the last decision becomes
infeasible. Our strengthening must be a value of R;;1 such that the resolved
clause is true, that is,

Ri(2:) ANT(Zi, Zig1) = Rig1(Tit1) (3)
and such that the prior decision is infeasible, that is, such that
Rit1(Zis1) A Dig1(Tig1, Tig2) AT (Zig1, Tigo) A -+ S (2) (4)

is unsatisfiable. The reader may recognize that the formula R;11(Z;41) is an
interpolant between two parts of the infeasible goal. We can compute such
an interpolant from a proof of unsatisfiability of the goal, provided the proof
system admits feasible interpolation [20]. The new annotation forces a different
decision after backtracking.

LA can terminate in one of two ways. After resolving on Ry, the goal contains
no facts to derive. In this case, it is a feasible BMC formula representing a path



from initial to unsafe states. On the other hand, if the initial goal becomes
unsatisfiable (that is, if Ry implies S under the annotation) then we have a
proof that no unsafe state is reachable in k steps.

We can then use the annotation of the bounded unwinding as a hint in
constructing a solution of the original cyclic problem. We will will refer to this
as the convergence phase. In [21], the convergence approach was to start with
all of the conjuncts of annotations R; of the bounded problem and apply the
Houdini algorithm [13] to reduce these to their maximal inductive subset. If this
yields a solution, we are done, otherwise we increase the unfolding depth k. The
convergence phase in PDR is similar: annotations are propagated forward until
a fixed point is reached. There are many other possibilities, however, including
Lazy Abstraction with Interpolants (LAWT) and predicate abstraction. Here, we
will focus on solving the bounded problem and leave aside the largely orthogonal
question of convergence.

3 Formal description of Lazy Annotation

We will now formalize LA as an algorithm, extending it from simple transition
systems to the general case of constrained Horn clauses.

We use standard first-order logic over a signature ¥ of function and predi-
cate symbols of defined arities. We use ¢, for formulas, P, @, R for predicate
symbols, z,y, z for individual variables ¢, u for terms and Z for a vector of vari-
ables. Truth of a formula is relative to a background theory 7. A subset of
the signature Xy C X is interpreted by the theory. We assume the symbol =
has the usual interpretation. We assume theory 7 is complete in that it has at
most one model. Thus, every sentence over X; has a defined truth value. This
assumption can be removed, in which case many of the definitions that follow
become relative to a choice of theory model. Unless otherwise stated, we assume
that 7 is decidable.

The wvocabulary of ¢, denoted L(¢), consists of its free variables and the
subset of ¥\ ¥ occurring in ¢. An interpolant for A A B is a formula I such
that A = I and B = —I are valid, and L(I) C L(A) N L(B). We will write
@|X] for a formula with free variables in X. A P-fact is a formula of the form
P(t1,...,tn). A formula or term is ground if it contains no variables. When a
set of formulas appears as a formula, it represents the conjunction of the set.
If ¢ is a formula and ¢ a symbol substitution, ¢o is the result of performing
substitution ¢ on ¢.

Definition 1 Relative to a vocabulary of predicate symbols R, we say
1. A fact is a P-fact for some P € R,
2. A constraint is a formula ¢ s.t. L(¢)NR =0,

8. A goal is a set of facts and constraints.



4. A rule is a sentence of the form VX.B[X| = H[X] where the body B[X]
is a goal and the head H[X] is a fact.

We will also write goals in the form F[X] | C[X] and rules in the form F[X] =
H[X] | C[X], where F[X] is the set of facts (the subgoals) and C[X] is the set

of constraints.

Definition 2 A ground instance of a rule F[X] = H[X] | C[X] (respectively
a goal F[X] | C[X]) is Fo = Ho (respectively Fo ) for any ground substitution
o on X such that Co is true in T .

Definition 3 A ground derivation from a set of rules C is a sequence of ground
instances of rules in C in which each subgoal is the head of a preceding clause.
A ground derivation of a goal G is a ground derivation of all the subgoals of
some ground instance of G.

Definition 4 A Horn reachability problem is a triple (R,C,G) where R is a
vocabulary of predicate symbols, C is a set of rules over R and G is a goal over
R. It is satisfiable if there is a ground derivation of G from C. A dual solution
of the problem is a model of C in which G is unsatisfiable.

Definition 5 A Horn reachability problem (R,C,G) is acyclic if there is a total
order < on R such that for all rules F = P(Z) | C in C and all subgoals Q(Y)
inF, Q< P.

A set of Horn clauses has a least model, which is the set of derivable facts.
Thus, a Horn reachability problem has a dual solution iff it is unsatisfiable.

We assume that the predicates in R occur only in the form P(Z) where Z is
a vector of distinct variables. We can enforce this by introducing new variables
and equalities, for example rewriting B[X]| = P(f(z)) to B[X| Ay = f(z) =
P(y). We represent the interpretation of a predicate P(Z) symbolically by a
characteristic formula ¢[Z]. We write a(P) = AZ. ¢[Z] to mean that, in the
interpretation «, P(Z) holds iff ¢ holds. Given relations P and Q, we write
P A Q for the intersection of P and @ and PV @ for their union. Further,
we will write T for AZ. TRUE and L for AZ. FALSE (where the arity of T is
understood from context).

The procedure maintains a model « of the rules C called the annotation. This
model over-approximates the derivable facts (i.e. reachable program states).
Initially, a(P) = T for all P € R. The LA procedure is shown in Figure 1.
As Jaffar et al. observe [17], it is essentially Prolog execution with a form of
tabling using interpolants. We assume a procedure Itp(A, B) that takes two
inconsistent formulas A and B and returns an interpolant for A A B.

The main procedure is SEARCH, which takes a goal G and searches for a
ground derivation of it. It assumes that the goal is satisfiable in the current an-
notation, that is, Ga is satisfiable. If not, the problem is trivially unsatisfiable.
If there are no subgoals in G, the problem is trivially satisfiable, and we return
SaT. Else we arbitrarily choose a subgoal P(Z) to derive. We then loop over



all rules C' with head matching P(Z). For each such C, we call the procedure
RSTEP to continue the search using C' to derive P(Z) (procedure REN renames
the variables in C to avoid clashes with the goal). If the search succeeds, we
return SAT. Else RSTEP returns a value for P that contains all facts derivable
using C' and rules out the goal. After the loop, the disjunction of the returned
values over-approximates P. Thus, we strengthen «(P) by this disjunction,
maintaining « as a model of C and making Ga unsatisfiable.

Procedure RSTEP takes a goal G, a subgoal P(Z) of G to be satisfied, and a
rule C of the form B = P(g) to be used to derive the subgoal (where the free
variables of the goal G and clause C' are distinct). First we resolve the rule with
the goal. Since ¢ is a vector of variables, the most general unifier is trivial: we
just map gy to . We produce the prefiz by applying the unifier to the body of
the rule and the suffiz by removing the subgoal from G. The resolvent G’ is
the union of the prefix and suffix. This is our new goal.

Now we test whether the new goal G’ is satisfiable in the current anno-
tation, using decision procedure for theory 7 (for example, an SMT solver).
If it is unsatisfiable, we compute an interpolant ¢[Z] between the prefix and
suffix. Because ¢[Z] is implied by the prefix, we know that the assignment
P = A\Z. ¢ satisfies rule C in the current annotation. Moreover, since ¢[Z]
is inconsistent with the suffix, we know that this interpretation is inconsistent
with the original goal G. We therefore return the symbolic relation AZ. ¢ as an
over-approximation of P showing that the subgoal cannot be derived using rule
C.

On the other hand, suppose the new goal is satisfiable in the current anno-
tation. We now make a decision. The decision is chosen from a finite language
Lp(G') using only the variables of the new goal G’. Though the decision is
arbitrary, it must at least be consistent with G’ so that the resulting goal is
satisfiable. This means that the disjunction of formulas in language L£p(G’)
must be valid. In our implementation, our decision language is the set of truth
assignments to the atoms of G’. Thus, we can construct a decision consistent
with G’ by using the satisfying assignment returned by our decision procedure.
Having made a decision, we now have a satisfiable goal, which we attempt to
solve by calling the main procedure SEARCH recursively.

Theorem 1 (Total correctness) Given an acyclic Horn reachability problem
I = (R,C,G), such that G is satisfiable, SEARCH(G) terminates and:

o if it returns SAT, 11 is satisfiable

o if it returns UNSAT, II is unsatisfiable and o is a dual solution of 11.

The proof can be found in Appendix D. We can also extend this procedure to
generalized Horn clauses as in [19]. In this case, the body of a rule can be a
combination of subgoals and constraints using both conjunction and disjunction.
This extension, along with some discussion of implementation issues, can be
found in Appendix A.



Procedure RSTEP(G, P(z),C = (B = P(3)))
Input: goal G, subgoal P(Z), rule C
Output: SAT, or a bound on P refuting the goal
Let pref = B(Z/y) and suff = G\ {P(Z)}
Let G’ = pref U suff
While TRUE do:
if G’ is unsatisfiable, return AZ. Itp(pref, suff)
choose D in Lp(G’) s.t. (D AG)a is satisfiable
if SEARCH(G' U {D}) = SAT return SAT
Done.

N O Uk W N

Procedure SEARCH(G = (F' | C))
Input: goal G s.t. Ga satisfiable
Output: SAT or UNSAT and G« unsatisfiable
If F' (the subgoal set) is empty, return SAT
Choose a subgoal P(Z) in F'
Let R=1(
For each rule C' = (B = P(y)) in C do:
Let Rc = RsTEP(G, P(z), REN(C))
If R = SAT return SAT
Let R=RU{Rc}
Done
Let a(P) = a(P) A (VR)
Return UNSAT.

© 00 O Tk W wN -

Figure 1: Basic unwinding algorithm.

3.1 Comparison to BMC

We will use BMC to refer to Bounded Model Checking by unfolding and applying
a decision procedure, as in [7]. In the transition system case, a completed
search goal in LA is precisely a k-step BMC formula. If we make no decisions,
LA reduces to BMC followed by interpolation. The difference between BMC
and LA is therefore in the decision and learning strategies. Decision-making
in BMC is unstructured in the sense that the decision procedure may make
decisions on any variables in the goal formula in any order. In LA, decision
making is structured. That is, we alternate resolution (unfolding) and decision
steps. Similarly, learning in BMC is unstructured. The decision procedure may
learn clauses that span the entire BMC formula. In LA, learning is structured.
Each learned annotation is a set of facts describing a single program state.

It is not clear a priori what the most effective strategy is. The unstruc-
tured approach allows greater flexibility and more opportunities for heuristic
optimization. On the other hand, a more structured approach may guide us to
learn more general facts, reducing the search space more rapidly. In section 5.2
we will try to resolve this question empirically.



3.2 Comparison to PDR

Like LA, PDR has structured search and learning strategies. The fundamental
differences are in the form of the goals and the interpolation approach.

The variable elimination trade-off. In PDR, the goal is restricted to
the form R(Z) A C(z) where R(Z) is an atom to be derived, and the constraint
C(z) is a (quantifier-free) conjunction of literals. Thus, after resolving we must
approximate the goal in some way that uses only the variables . For example,
suppose we resolve the goal Ry (Zy) A Ci(2) with the clause Rx_1(Zr—1) A
T(i’k_l, i’k) = Rk(i'k) to obtain Rk_l(ik_l) /\T(J_S‘k_l, fk) A Ck(i'k). To obtain
a new goal, we must somehow eliminate ;. The weakest such goal would be
equivalent to 3Z. Rg—1(Tg—1) AT (Tx—1,Zx) A Cr(Zr). However, it may not be
possible or desirable to eliminate this quantifier precisely.

Instead, we may compute a stronger goal in the right vocabulary. This is, in
effect, decision making. As an example, if we constrain each unwanted variable
to have a specific concrete value, then eliminating those variables becomes triv-
ial. However, this may result in too-specific goal, and hence weak or irrelevant
annotations. An alternative would be to use quantifier elimination for those
variables for which it is inexpensive, and to use concrete values otherwise. In
any event, there is an inherent trade-off to be made between the generality of
a goal and its cost. We will refer to this as the variable elimination trade-off.
LA avoids this trade-off by simply not eliminating variables from the goals. A
disadvantage of this as that the goals grow syntactically larger as the search
deepens.

Interpolation in PDR. The most important difference between PDR and
LA is in the computation of interpolants. For simplicity, consider the transition
system case. In LA, the interpolant is computed by dividing the goal into two
parts (Equations 3 and 4). The prefix is a single step from R; to R;;1, while
the suffix is a path from R;;; to a safety violation at Rj. By contrast, in PDR
the interpolant is between a prefix path from Ry to R;+1 and a cube Cj1[Ti41]
(a conjunction of literals). In other words, the clause learned by PDR is an
interpolant for A A B, where

A = I(zp) A /\ T(Zg, Tps1)
k=0...1
B = CiTiy]

In fact, it is not any such interpolant, but an interpolant that is inductive
relative to the current annotation. This means that if P is the interpolant,
we have Ry (Zp) A P(Zy) AT(ZTg, Tr41) = P(Tgy1), for k = 0...4i. Intuitively,
a simple relatively inductive interpolant might be likely to participate in an
eventual inductive invariant. We may construct such an interpolant as a clause
using a subset of (the negations of) the literals in the goal. Bradley gives an
approach to finding such a clause that is relative inductive [9]. We may also
apply generalization rules specific to theories [16].

This approach to interpolation has advantages and disadvantages. The form
of the goal makes it possible to search effectively for a relatively inductive in-



terpolant. On the other hand, because of the variable elimination trade-off, the
goal may be more specialized than necessary. The resulting weak or irrelevant
annotation may provide little reduction in the search space. This is another
question that must be answered empirically, and we will attempt to do this in
Section 5.1.

Goal preservation. Implementations of PDR typically carry the refutation
of each goal all the way to the depth bound, prioritizing goals by depth. We
will call this method “goal preservation”. This tends to speed the bounded
refutation process and also can produce counterexamples longer than the depth
bound [9]. Goal preservation is equally applicable to LA, though we will not
use it here.

4 Improvements to Lazy Annotation

In this section, we introduce a number of improvements within the basic LA
framework, relative to the implementation described in [21]. In Appendix C.2,
we evaluate these improvements experimentally to show their individual effect
on performance.

Decision space. In the implementation of [21], a decision is simply a choice
of basic block exiting a control location in the control-flow graph. This is effec-
tive for simple basic blocks, but in a “large block” encoding [6] the resulting goals
are too complex. We require a more fine-grained decision space to sufficiently
narrow the search. To achieve this, we use truth assignments to the atomic
formulas of the goal (i.e., minterms) as decisions. Such a minterm is easily ex-
tracted from a satisfying assignment. In a large-block encoding, a minterm of
the transition relation corresponds roughly to an execution path. If the code has
disjunctive guards, a minterm also fixes a disjunct that is true. However, we do
not fix the values of data variables. This reduces the combinatorial complexity
of the problem while allowing a large space of data values.

Back-jumping. In a CDCL SAT solver, many decisions are not actually
used in the proof of a conflict. In such a case, we backtrack over the decision to
an earlier decision that is actually used, and learn an interpolant at that point.
The same situation can occur in LA in the case of multiple sub-goals. It will
help to think of a goal in LA as a tree in which the leaves are sub-goals and the
interior vertices are constraints. Each resolution step expands one leaf of the
tree. Now suppose we expand leaf @), followed by leaf R on a different branch,
and reach a conflict. Suppose further that the proof of unsatisfiability does not
use any formulas introduced in the expansion of ). After backtracking from
the expansion of R (strengthening R using an interpolant) we can immediately
backtrack from the expansion of @ without any additional annotation (put
another way, since this step is not used in the proof, its interpolant is TRUE).
We may continue to back-jump in this way until we reach an expansion that
is in the proof core of the conflict, eliminating unneeded calls to the decision
procedure.

Resolution heuristic. Each time we make a resolution step, we must



choose a sub-goal to expand and a rule to derive it. We can use a heuristic for
this choice that is closely related to variable scoring heuristics in CDCL SAT
solvers. We maintain a relevance score for each rule, initially zero. When we
backtrack from a resolution without strengthening the annotation (for example,
by back-jumping) we decrement the relevance score of the rule. When choosing
a rule to resolve with, we select first the rule with the highest score.

Interpolant generalization. Given a proof of a conflict produced by an
SMT solver, we can compute an interpolant for the resolution step using meth-
ods of feasible interpolation [20]. However, these interpolants may be both
syntactically complex and weaker than necessary, depending on the proof actu-
ally obtained by the decision procedure. We can borrow an idea from PDR to
improve the result. First, notice the asymmetry between the prefix and suffix
in the interpolation. The suffix has fixed truth values assigned to each atom by
decision making. The prefix on the other hand contains propositionally complex
formulas from the annotation and the transition relation. The interpolant thus
tends to be a disjunction at the top level, as most case splitting in the proof
will occur on the prefix side. We therefore attempt to strengthen it by greedily
dropping disjuncts as long as it remains implied by the prefix. Often this leads
to a simple interpolant in clause form. If the interpolant is still syntactically
complex, we can use more aggressive interpolation methods as in [2]. A simple
approach is to sample prime implicants of the prefix. The interpolant is the
disjunction of the interpolants for the prime implicants. Empirically, general-
ization of interpolants is crucial to performance of the algorithm for large-block
encodings (see Appendix C.2).

Eager propagation. In IC3, before increasing the unwinding depth, an-
notations are propagated forward. That is, we copy annotations from earlier to
later predicates in the unwinding while the annotation remains a model of the
rules. More frequent propagation is also possible and was found to be effective
by Suda [24]. In experiments with LA, propagation after completing a bound
was found to strengthen the annotation infrequently. A somewhat more effec-
tive approach is to propagate eagerly, during the search. When backtracking
to a sub-goal with predicate R; that is an instance of R in the unwinding, we
attempt to propagate annotations of earlier instances of R. If any propagation
succeeds in strengthening the annotation of R, we backtrack again, in the hope
that the strengthening will rule out an earlier sub-goal.

5 Experiments

We will now consider some experiments comparing the performance of PDR,
traditional BMC and our improved LA for large-block encodings. We wish to
determine experimentally (1) whether structured or unstructured search is more
effective, and (2) which interpolation approach is more effective in reducing the
bounded search and in converging to an unbounded solution.

As a representative implementation of PDR, we will use the PDR engine
implemented in the Z3 theorem prover [16]. This implementation supports lin-
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ear integer arithmetic (LIA) and has limited support for other theories, such
as the theory of arrays. Z3/PDR computes interpolants for linear arithmetic
using Farkas’ lemma and inductive generalization. To represent BMC, we will
use Stratified Inlining (SI) in Corral [18]. This tool inlines procedures until
either a complete error path is found (using Z3), or the problem becomes un-
satisfiable (indicating the program is safe) or until a given recursion bound is
reached (in which case the result is inconclusive). Inlining a procedure is equiv-
alent to performing a resolution step on the procedure’s summary. The author
has implemented LA within Z3. It is used as a non-recursive Horn solver in
Duality [19]. Bounded solving is done using LA, while convergence is achieved
using LAWI. Duality supports full (quantified) first-order logic with linear in-
teger arithmetic and arrays using an interpolation procedure for proofs in this
theory implemented in Z3 [22]. Neither Z3/PDR nor Duality use goal preserva-
tion in the experiments. This is the default setting in Z3/PDR, as the authors
report the method does not produce a clear benefit [8].
Details of the experimental setup can be found in Appendix B.

5.1 First experiment

Our first experiment uses benchmark problems from the SV-COMP 2013 soft-
ware model checking competition. We use an encoding of these problems into
a Horn clause representation available in the SV-COMP repository, provided
by Gurfinkel [14]. These are linear cyclic problems that are obtained by inlin-
ing all procedures. For the experiment, two subsets of the benchmark problems
were chosen: the “Control Flow and Integer Variables” subset and the “Product
Lines” subset. These were chosen because they do not rely on complex pointer
reasoning and can be encoded using only the theory of linear arithmetic, allow-
ing them to be handled by PDR. This choice was made in advance and was not
expanded after obtaining and analyzing data to avoid the possibility of bias due
to “benchmark shopping”.

For additional context, we include the tool UFO [1]. This tool was the
winner of the SV-COMP 2013 in both of the chosen categories. Fortuitously, the
Horn clause versions of the problems were generated by UFO. Thus we can be
fairly confident that UFO, Z3/PDR and Duality /LA are using the same logical
representation of the problem, giving a direct comparison. On the other hand,
since Corral cannot use this problem representation (and thus would require a
different language front-end) we omit it from this experiment. An additional
difficulty in comparison arises because the competition version of UFO is not
a single algorithm, but a portfolio of seven algorithms run in parallel. To make
a fair comparison against the other algorithms, we use the two most successful
of these seven (those that most frequently had the least run time). The first we
will call BoxXes. It augments LAWI with a multiple-interval abstract domain.
The second we will call CPRED. It augments LAWI with a Cartesian predicate
abstraction domain.

The four chosen tool configurations were run on a 4-core 64-bit 2.67GHz Intel
Xeon CPU with 24GB of main memory. The tools were run on all benchmark
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Figure 2: Cactus plot of run times on SV-COMP 2013 problems

problems with a time-out of 180 seconds. Time for compilation and optimiza-
tion of the C language source code is not included. The benchmark problems
completed by all tools in under one second were discarded. The run times for
the remaining problems are plotted in Figure 2. Each line shows the run times
for all completed benchmarks sorted in increasing order. Thus, a lower line is
better. We observe that overall CPRED and Z3/PDR are roughly comparable,
while Duality solves a larger subset of problems (in fact, all but one).

The are several possible reasons for the difference between LA and PDR.. One
possibility is that the outer convergence loop is generating different unwindings.
To eliminate this possibility, we will focus on the subset of benchmarks in the
“ssh” and “ssh-simplified” sub-categories. These benchmarks are simple loops
(i.e. transition systems) and therefore have only one possible unwinding. For
simple loops, we may compare the quality of the annotations generated by
the two methods in terms of the number of resolutions and the depth of the
unwinding at convergence.

Figure 3 shows scatter plots comparing the unwinding depth at convergence
and the number of resolutions steps for Z3/PDR and Duality /LA. Points on the
boundary are time-outs. Both measures are substantially lower for Duality /LA,
indicating more effective conflict learning. The greater convergence depth for
Z3/PDR could be explained by learning many annotations that are true only
to a bounded depth. To obtain an inductive invariant in PDR, the search must
exceed the depth at which these annotations fail to propagate. The greater
search depth may be sufficient to explain the higher number of resolution steps.

From this, it appears that inductive generalization is not able to fully remedy
the over-specialization resulting from the variable elimination trade-off in PDR,
though it is crucial to the performance of PDR (see Appendix C.1). We may
conjecture two possible reasons for the greater convergence depth in PDR: over-
specialization producing irrelevant learned clauses or too-aggressive propagation
of these clauses. In Appendix C.2 we observe that propagation only weakly
affects performance while generalization strongly affects convergence, providing
some evidence for the former hypothesis.

12
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Figure 3: Comparison of Duality /LA and PDR on SV-COMP 2013 ssh bench-
marks

5.2 Second experiment

In our second experiment, we consider a broader class of Horn reachability
problems. We use procedural programs modeled using unknown relations as
procedure summaries. Each procedure is represented by a single rule. For
example, procedure P that calls @) twice on its input and then increments the
result would be modeled by the clause Q(z,y) AQ(y,2) A’ = z+1 = P(x,z’).
Because one procedure may call many procedures, we will have multiple sub-
goals. Further, we expand the constraint language to include uninterpreted
function symbols (UIF’s), arrays and quantifiers, and we allow user-specified
background axioms.

Our benchmark examples come from the Static Device Driver (SDV) tool [3].
They are safety properties of example device drivers for the Microsoft Win-
dows kernel. SDV translates these problems into the Boogie programming lan-
guage [4]. Corral then checks the required properties using a field abstrac-
tion. Global variables and fields of structures are added to the abstraction on
a counter-example driven basis until the property is proved, or a counterexam-
ple is successfully concretized. We translate the verification of each abstract
model into a Horn reachability problem using the Boogie verification condition
generator, after converting program loops into tail-recursive procedures.

We compare the performance of SI with Stratified Inlining (SI). To make a
fair comparison, we check only bounded safety properties (that is, we assume
each loop is executed up to k times for fixed k). We effect this bound in Duality
by simply terminating the unwinding if and when it reaches the recursion bound
(as it happens, such termination does not occur, so Duality /LA performs un-
bounded verification).

The benchmark problems in Boogie use UIF’s to model operations on heap
addresses. Universal quantifiers occur both in the background axioms that de-
fine these functions and in “assume” statements in the program code (assump-
tions about the initial state of the heap). Since Z3/PDR does not support
uninterpreted function symbols and quantifiers in constraints, we are unable to
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apply it to this benchmark set. This shows a significant disadvantage of the
interpolation strategy of PDR. That is, it is not obvious how to resolve the
variable elimination trade-off in this case because UIF’s do not admit quantifier
elimination. Thus, it would be necessary to fall back on decision making, but
in this case the decisions would have to be made on models of the UIF’s, which
could lead to significant problems of over-specialization. LA’s strategy avoids
this problem by exploiting feasible interpolation.

Both LA and SI may fail due to the undecidability of the theory. This
means that both methods may produce “false alarms” caused by a failure of
Z3’s quantifier instantiation heuristics. The comparison is fair, however, since
the correctness of counterexamples is in both cases determined by Corral, using
Z3 for concretization (in no case did either tool produce a counterexample that
Corral determined to be incorrect).

A scatter plot comparing the run times of LA and SI is shown in Figure 4.
Each point represents the full verification time for one property, including the
time for Corral to compute abstraction refinements. We observe that in some
cases Sl is approximately two times faster. This can be accounted for by the
overhead of running Z3 in proof-generating mode in order to produce inter-
polants. On the other hand, on a significant number problems LA is substan-
tially faster, by up to two orders of magnitude.

We note several important over-
heads in LA relative to SI. First,
the learning phase in LA is orders- 1000
of-magnitude more costly than clause
learning in an SMT solver. Further,
because of backtracking, LA may add
and remove a given constraint in the
goal many times (while ST never re-
moves constraints). Thus we must
attribute the overall better perfor-
mance of LA on bounded problems to J
more effective learning. In fact, in- ol 1 b b 1000
spection shows that LA often learns g g
concise and relevant procedure sum- o4
maries, even in the presence of quanti- Stratified Inlining run time (s)
fiers. For example, we see summaries
of the form Vi.a'[i] = ali] V p(a'[i]), Figure 4: Lazy Annotation vs Stratified
where p is a simple predicate. This Inlining
says the procedure preserves elements
of array a except where it establishes property p.

An aspect of these problems that may help to explain better learning perfor-
mance of LA is the fact that some procedures are called at many sites. Whenever
an annotation of such a procedure is learned, it simultaneously strengthens the
summaries of all of the instances of the procedure in the current goal. Thus the
learned annotations are re-usable in a way that is not possible in an unstructured
search.

100

10 .

Lazy Annotation run time (s)
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Finally, we consider the effects of the individual improvements to LA intro-
duced here. To briefly summarize, minterm decision making may help or hurt,
but with interpolant generalization it helps significantly. Generalization seems
to be needed in the case when convergence depth is an issue. The heuristic
for sub-goal choice is not very effective, while back-jumping provides a modest
speed-up. Eager propagation is effective in the limited case (simple loops) for
which it was implemented. Details of the experiments supporting these conclu-
sions can be found in Appendix C.2.

6 Conclusion

We have observed that traditional BMC, LA and PDR can all be viewed as back-
tracking search with conflict-driven learning. The methods differ fundamentally
in two aspects: search strategy (structured vs. unstructured) and interpolation
strategy (relative induction vs. proof-based). Comparing LA with PDR on soft-
ware model checking problems, we found that PDR’s interpolation strategy as
implemented in Z3 produced less effective learned annotations. We conjectured
that this is due to over-specialized goals resulting from the variable elimination
trade-off. This is illustrative of a general tension in CDCL-like methods relat-
ing the generality and cost of decisions and interpolants. Comparing LA with
BMC, we found that structured conflict learning in LA was more effective than
unstructured learning in an SMT solver, even on bounded problems (consistent
with the results of [5] in the propositional case). The high overhead of learning in
LA was more than compensated by the resulting reduction in search. We found
that decision making does in fact lead to improved performance for large-block
encodings by reducing the decision problems. However, it requires some form
of interpolant generalization to prevent over-specialized goals from producing
weak annotations. An interesting remaining question is whether some form of
inductive generalization would helpful in LA, or whether the cost outweighs the
benefit.
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A Extension and implementation issues

A.1 Additional implementation details

Most of the cost of the algorithm is incurred at line 4 of RSTEP, where G’
is tested for satisfiability (using the Z3 SMT solver in our implementation).
Successive goals change incrementally, thus it is helpful to use the SMT solver
incrementally. The procedure adds and remove some formulas in a resolution
step (lines 1-2), and reverts to a previous goal on backtracking. Moreover, new
conjuncts are added to G'a when we strengthen the annotation at line 8 of
SEARCH. Unfortunately, this means that formulas are not removed in a strictly
first-in first-out manner, as required by incremental solving in Z3. In practice,
to remove an assertion we “pop” the solver context until it is removed and
then reassert any formulas that were incorrectly removed as a side effect. As a
result we may lose some useful learned clauses in the solver. There is also some
significant inefficiency in restarting the solver, as as much decision-making and
propagation may be repeated from the previous run. We do not attempt to
remedy this.

When the constraints contain quantifiers, the satisfying assignment may not
be sufficient to determine the truth value of quantified subformulas. In this
case we do not attempt to decide the truth value of these subformulas, and
our decisions are incomplete. If a decision implies a given constraint (which is
usually the case, since a minterm is an implicant of the formula) we could in
principle remove the constraint from the solver as it is redundant. We do not do
this, however, as we wish to retain learned clauses inferred from the constraint.

A.2 Generalized Horn clause extension

It is useful to extend the language of rules to allow disjunctions in the body. In
particular, the verification conditions for procedures contain such disjunctions
arising from control flow branching.

Definition 6 A generalized rule over a predicate vocabulary R is a formula of
the form VX. B[X| = H[X], where
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e The head H[X] is a fact, and

e The body B[X] is a formula of the form 3Y. ¢[X,Y] where ¢[X,Y] is
quantifier-free, and symbols in R occur only positively in ¢[X,Y].

Because the unknown predicates occur only positively in the body of the rule,
we could in principle convert the body to disjunctive normal form, obtaining an
equivalent set of rules of exponential size. Instead, we can encode the problem
into Horn clauses by adding adding a condition parameter to each predicate.
Let F; stand for the i-th subgoal P;(Z;) in the body B, and let the head H be
Q(g). We substitute a fresh Boolean variable b; for each subgoal, obtaining a
new Horn rule

{Pi(bi, Z:)} A (c = B(bi/Fi)) = Q(c, )

where c is a fresh Boolean variable. The new Boolean parameter represents the
condition under which a goal is actually required. With this encoding, we need
never expand sub-goals whose condition is false in a chosen satisfying assign-
ment. When all remaining sub-goals have false conditions, we can immediately
return SAT.

B Details of experiments

B.1 First experiment

The benchmarks in this experiment use the Horn logic specification for SMT-
LIB and were generated by Arie Gurfinkel using UFO [14]. These are a subset
of the problems in the “Control Flow and Integer Variables” subset and the
“Product Lines” from the benchmark set of the SV-COMP 2013 competition.
One problem was omitted because the tools disagree on the result (the original
C program is unsafe, but the translation to Horn format appears to be safe).
In the conversion to Horn format by UFO, integer variables were converted to
real type. Since Duality does not support real arithmetic, these variables were
converted back to integer type before running the tools.

The commands to run the tools in the four selected configurations are shown
in Table 1. The two UFO configurations are run not on the Horn representation,
but on the compiled and optimized LLVM bitcode, as generated by the script
used in the competition. Time to read and process the bitcode is generally
negligible, as we omit problems requiring less than one second to solve. All the
tools are run under Ubuntu Linux 2.04 LTS on a 4-core 64-bit 2.67GHz Intel
Xeon W3520 CPU with 24GB of main memory.

B.2 Second experiment

The input files for this experiment are in the Boogie language as generated by
the Microsoft Static Driver Verifier (SDV) tool. These files are processed by Cor-
ral. For each benchmark, Corral generates a sequence of verification problems
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lde ‘ Command

Duality /LA | 23 fixedpoint.engine=duality

Z3/PDR z3 fixedpoint.engine=pdr

BoxESs ufo --lawi --ufo-post=BOXES --ufo-widen-step=17
--ufo-use-ints --ufo-increfine=REF5 --ufo-consrefine=true
--ufo-dvo=true --ufo-simplify=false --ufo-false-edges=true

CPRED ufo --lawi --ufo-post=CPRED --ufo-use-ints
--ufo-increfine=REF5 --ufo-consrefine=true --ufo-dvo=true
--ufo-simplify=false --ufo-false-edges=true

Table 1: Commands to run tools in the first experiment

| Method [ Command

LA corral /useDuality /k:1 /main:main /useProverEvaluate
/catchAll /recursionBound:3 /timeLimit:3000 /sdv /cloops
/ann:PruneCounterLoop:15 /memLimit:1000

SI corral /k:1 /main:main /useProverEvaluate

/catchAll /recursionBound:3 /timeLimit:3000 /sdv /cloops
/ann:PruneCounterLoop:15 /memLimit:1000

Table 2: Commands to run Corral with LA and SI

using successively refined abstractions. These problems are solved by either Du-
ality /LA or Stratified Inlining as implemented in the Boogie tool. In the former
case, verification conditions are generated by Boogie and passed to Duality /LA
in the Z3 fixed point format. We report the cumulative time needed to solve all
of the successive refinements for each problem (including VC generation). We
do not use the Houdini-style inference of invariants implemented in Corral. The
specific Corral command lines needed to solve each problem are generated by
SDV. Basic command lines needed to run Corral in the two configurations are
shown in Table 2. The experiment was run under Microsoft Windows 8.1 on a
3.6 GHz Intel Xeon ES-1620 CPU with four cores and 64GB of RAM.

B.3 Data and software

A package containing the Horn clause representations of the benchmarks and
instructions for reproducing the results can be obtained by contacting the au-
thor. The version of Z3 used here, including Duality /LA, is avaible in source
form at z3.codeplex.com. Corral is available at corral.codeplex.com.
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Figure 5: Run times of PDR with and without inductive generalization in the
first experiment.

C Additional data

C.1 Effectiveness of inductive generalization

Figure 5 shows a scatter plot comparing run times of Z3/PDR on the full bench-
mark set of the first experiment, with and without inductive generalization
(again points on the boundary are time-outs). Without inductive generaliza-
tion, the interpolant prefix for PDR is similar to that for LA, though the suffix
differs. It can be seen that inductive generalization strongly contributes to the
performance of PDR.

C.2 Evaluation of improvements

Figures 6 and 7 show the performance obtained in the two experiments using
the LA algorithm, successively adding the features we introduced in this paper.
The configurations we test are as follows:

e Mark I: baseline with no improvements. Since there is no decision-making,
this version is simply a slightly inefficient version of LAWI that computes
sequence or tree interpolants one step at a time.

e Mark II: Add minterm decisions to Mark I.

e Mark III: Add interpolant generalization to Mark II. Note interpolant
generalization is not effective in Mark I because the interpolants are not
usually disjunctive.

e Mark IV: Add the decision heuristic to Mark III. Scores of clauses are
reduced if backtracking does not strengthen the annotation. This is only
effective in the non-linear case.

e Mark V: Add back-jumping to Mark IV. This is only effective in the non-
linear case.
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Figure 6: Comparing successive improvements in the first experiment.

e Final: Add eager propagation to Mark V. This is only implemented for
simple loops.

Performance is shown for both the first and second experiments. For the second
experiment we run all configurations on the same sequence of refinements (thus
producing a different counterexample cannot affect the sequence of problems
solved). In both figures we leave out the configurations that represent no change
from the previous configuration on the given benchmark. Thus, Marks IV and
V are not shown in the first experiment since the problems are linear while Final
is not shown in the second experiment since there are no simple loops (loops
were converted to tail recursions).

Notice that in the first experiment Mark II performs worse than Mark I.
That is, by making decisions, we make the satisfiability problems easier, but
the goals become more specialized, leading to too-weak interpolants. Adding
interpolant generalization in Mark III, however, overcomes this problem to yield
a significant improvement over Mark I. There is no visible improvement from
adding eager propagation (Final in the first experiment). We note, though, that
in the implementation this optimization is applied only to simple loops. In the
“ssh” and “ssh-simplified” sub-categories, which are simple loops that require
deep unfolding, we do see a benefit as shown in the scatter-plot in Figure 8.

In the second experiment, we see a significant improvement from decision
making (Mark II) but not from interpolant generalization. This indicates that
generalization may only be useful when convergence depth is a factor (not the
case in these bounded problems). The decision heuristic produces no visible
improvement, but the addition of back-jumping gives a modest improvement.
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Figure 7: Comparing successive improvements in the second experiment.
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Figure 8: Effect of eager propagation on run time for simple loops.
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D Proofs

Theorem 1 (Total correctness) Given an acyclic Horn reachability problem
IT = (R,C,G), such that G is satisfiable, SEARCH(G) terminates and:

o if it returns SAT, 11 is satisfiable

o if it returns UNSAT, II is unsatisfiable and « is a dual solution of 1.

Proof. Sketch. The procedure maintains the invariants that « is a model of
C and if the goal at any level of recursion is satisfiable then the original goal is
satisfiable. It follows that if SEARCH returns SAT, goal G is in fact satisfiable.
If RSTEP returns an interpretation I for P, the interpolant properties guarantee
that a strengthened by I models C'. From this it follows that on UNSAT return
from SEARCH, « is a model of C. Thus « is always an upper bound on the
ground-derivable facts (since it is greater than the least model). Moreover since
all the values of P returned by RSTEP are inconsistent with goal G, it follows
that « is inconsistent with the goal. Thus if SEARCH returns UNSAT, « is
inconsistent with goal G.

Because the language £Lp(G’) is finite, RSTEP cannot loop infinitely. Further
because the number of rules is finite and the problem is acyclic, the recursion
depth and the loop in SEARCH are bounded. Thus the procedure terminates
(but note it is assumed that the theory is decidable). O
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