Microsoft:

Research

Diversely Enumerating System-Level Architectures

MSR Technical Report MSR-TR-2013-56

Diversely Enumerating System-Level Architectures

Ethan K. Jackson
_Microsoft Research, USA
ejackson@microsoft.com

ABSTRACT

Embedded systems are highly constrained. System-level
constraints, such as task partitioning problems and com-
munication scheduling problems, are common, combinato-
rial, and fundamentally intractable. Though modern con-
straint solvers can help to synthesize constrained architec-
tures, the architect’s troubles do not end here: There may be
(infinitely) many architectures satisfying system-level con-
straints. Multiple candidates must be examined and this is
often infeasible for large solution spaces.

In this paper we describe an improved enumeration scheme,
which still reaps the benefits of modern constraint solvers.
The idea is to build a diverse enumerator around an un-
modified constraint solver. A diverse enumerator uniformly
draws equivalence classes of solutions. Such an enumera-
tor is powerful because it allows unbiased enumeration of
the space and can be used to make inferences about the
space as a whole. This paper presents the theory, practice,
and algorithms for diverse enumeration of architectures with
system-level constraints.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques

Keywords

Architectures, constraints, diverse enumeration, symmetry
directed randomized partitioning, synthesis

1. INTRODUCTION

Embedded systems are highly constrained. System-level
constraints, such as task partitioning problems [20, 11] and
communication scheduling problems [12, 9, 8], are common,
combinatorial, and fundamentally intractable. Fortunately,
system-level constraints are often solvable using modern con-
straint solvers, such as SAT [21] or SMT [16] solvers, to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Gabor Simko
Vanderbilt University, USA

gabor.simko@
isis.vanderbilt.edu

Janos Sztipanovits
Vanderbilt University, USA
janos.sztipanovits@
vanderbilt.edu

compute reasonable architectures. Yet, the architect’s trou-
bles do not end here [22]: There may be (infinitely) many
architectures satisfying system-level constraints, so the ar-
chitect must examine many candidates to decide upon the
most reasonable design. For large solutions spaces it may be
infeasible to (automatically) examine and rank all solutions.
Also, it may be computationally difficult to determine if one
solution is equivalent to another.

In this paper we describe an improved enumeration scheme,
which still reaps the benefits of modern constraint solvers.
The idea is to build a diverse enumerator around an unmodi-
fied constraint solver. We formally define a diverse enumera-
tor to be a stochastic process uniformly drawing equivalence
classes of solutions. This is a stringent definition and dra-
matically different from other definitions of diversity [22, 16,
18, 4]. A diverse enumerator is powerful, because it allows
the architect to treat enumeration as a random sampling of
non-equivalent architectures. A diverse enumerator can be
used to infer statistics about a whole solution space, or for
examining a fraction of the space without fearing selection
bias.

In this paper we develop a general theory and practice of
diverse enumeration applicable to a wide range of engineer-
ing problems. This approach has been implemented in the
FORMULA framework [13], built on top of the Z8 SMT solver
[5]. Our contributions are:

e General Theory. We develop a general theory for
modeling enumerators and quantifying their diversity.
We formalize biased enumerators using a novel applica-
tion of Wallenius Urns. The ideal diverse enumerator
is a special-case of a Wallenius Urn where equivalence
classes are drawn with equal probability. Divergence
from the ideal can be precisely quantified.

e Practical Problem Class. We identify a broad class
of enumeration problems called constrained graphs. Con-
strained graphs are a unifying representation for ex-
pressing mapping, allocation, and configuration prob-
lems. We fix the equivalence relation on graphs to be
graph isomorphism, which provides a strong notion of
equivalence.

e Effective Algorithm. We present an algorithm, called
Symmetry Directed Randomized Partitioning (SDRP)
for diverse enumeration of non-isomorphic constrained
graphs. SDRP uses state-of-the-art techniques to effi-
ciently drive solvers into diverse regions of the search
space. It handles the notoriously tricky task of encod-
ing isomorphism classes.

e Experimental Results. We quantitatively compare
SDRP with other approaches to diverse enumeration,
and show its superiority. We experimentally show that
unmodified solvers are highly-biased enumerators. Also,
increasing randomization in low-level solver algorithms
does little to correct this problem.

To our knowledge this is the first attempt to systemati-
cally define, quantify, and compare a probabilistically strong
notion of diversity. For the architecture enumeration prob-
lems we consider here, there can be exponentially many
equivalent architectures that would be judged as maximally
diverse according to other approaches.

This paper is structured as follows: Section 2 presents
enumeration problems and our general theory of enumera-
tors. Section 3 introduces constrained graph problems using
a software/hardware co-design example. Section 4 describes
the SDRP algorithm for diverse enumeration of constrained
graphs. Section 5 tests SDRP against several other enumer-
ation algorithms. Finally, we conclude with related work
and discussion in Sections 6 and 7.

2. A THEORY OF ENUMERATORS

2.1 Enumeration Problems

We begin with some basic definitions for discussing enu-
meration problems: Let £ be a logic and ¢[Z] a well-formed

formula of £ with free variables ¥ def (1, ... y2n). A valu-
ation 0 is a function from variables to values. A valuation
satisfies @, written 6 = ¢[Z], if replacing every z; by 6(z;)
in ¢ results in a valid formula of £. A constraint solver for
L finds satisfying valuations to well-formed formulas.

Definition 1 (Enumeration Problem). An enumeration prob-
lem is a quadruple 7 = (C, o[Z], decide, ~) where:

1. C is a set of concrete outcomes.

2. ¢[Z] is a constraint over variables Z.

3. decide : © — C maps valuations of & to outcomes.

4. ~ is an equivalence relation on outcomes.

A solution is an outcome obtained from a valuation that
happens to satisfy the constraints. The solution space is all

the solutions: space(Z) “f {decide(0) | 0 = ¢[Z]}.

For convenience, we have factored enumeration problems
into a constraint formula ¢ and a decider that chooses out-
comes by how the constraints were satisfied. For example, a
task partitioning problem is an enumeration problem where:

e C is all possible functions from tasks onto processors.

e [Z] are resource constraints among tasks and proces-
sors.

e decide maps a valuation of variables to a placement
function.

A candidate architecture is one the satisfying resource con-
straints. These solutions are usually found by solving ¢
with a constraint solver and then reconstructing the map-
ping from tasks onto processors (which is the job of decide).
If CPUs are homogeneous, then many placements are be-
haviorally equivalent. Table 1 describes several architecture
enumeration problems and highlights common equivalence
relations.

2.2 Enumeration Processes

An enumeration algorithm takes as input an enumeration
problem and then outputs a sequence of non-equivalent so-
lutions. Our first goal is to construct stochastic models of
non-ideal enumerators such that diversity can be defined,
measured, and quantitatively compared. This approach is
desirable, because constraint solvers are complex pieces of
software employing heuristics, guesses and random restarts
[2]. Tt is impractical to compare enumerators by examin-
ing their implementations. These definitions take into ac-
count the behavior of practical enumerators, but are solver-
independent.

We model an enumeration algorithm as a function from
enumeration problems to stochastic processes. Each stochas-
tic process summarizes the search behavior of the algorithm
on a given problem. We apply probabilistic urns to model
complex search behaviors, and then use these urns to mea-
sure proximity to the ideal. To perform quantitative com-
parisons of real enumerators we shall fit urn models to ob-
served search behaviors (as detailed in Section 2.4).

Probabilistic urns are rich, well-studied stochastic pro-
cesses for modeling many phenomena [14]. An urn contains
a finite set of elements X, which have attributes such as
color or weight. Elements are sequentially drawn from the
urn according to probabilities derived from the elements’ at-
tributes. If each element is put back in the urn after it is
drawn (called with replacement), then this is a sequence of
independent events. Otherwise, if elements are drawn with-
out replacement, then this is a sequence of dependent events.

We use urns to model the search behavior of an enumer-
ator on a problem Z as follows:

e The elements in the urn are the equivalence classes

x {[s]~ | s € space(Z)}. Enumerating m solutions
is modeled by drawing m elements, in sequence, from
the urn.

e The enumerator may be biased; it may prefer to enu-
merate some elements over others. Bias is captured
by a weight function w assigning a positive real weight
to every element. If w(e) > w(e’) then e has a higher
probability of being drawn than e’.

e Constraint solvers use backtracking to incrementally
search for the next solution. This means the same so-
lution will not be returned again and the next solution
is dependent on the current state of the search. There-
fore, we assume elements are drawn without replace-
ment; enumeration is a sequence of dependent events.

The qualities of our urns are a special case of a model due to
Wallenius, which gives rise to Wallenius’ Multivariate Non-
central Hypergeometric distribution [14]. The conditional
probability distribution of Definition 2 is a specialization of
the Wallenius distribution.

Definition 2 (Problem Urn). A problem urn U(Z,w) is an

urn with elements X </ {[s]~ | s € space(Z)}, weight func-
tion w : X — R4, and the following conditional probability
distribution: Let e be the event of drawing an element from
U(Z,w) when it contains only the elements Y C X:

Pr(e:e|e¢Y)d§f0.

Pr(e=e|eeY)d§f&

decide

Problem C ol
Task Partitioning Deployments Resp}lrce and .
20, 11] of tasks onto schedulability constraints.
’ processors.

Feature selection Trees of Feature interaction
(17, 19] features. constraints.
Distributed controller Automata An (CTL*) invariant the
synthesis connected by controller must satisfy.

[24, 15] channels.

Produces deployments
from placements encoded
as 0-1 variables.

Maps feature selection
variables to a sub-tree of
features.

Reconstructs automata /
topology from encoding of
synthesis problem.

Deployments differ only by
processor identities.

Feature trees differ only by
ordering.

Synthesized automata are
isomorphic.

Table 1: Several kinds of architecture enumeration problems with system-level constraints.

We simply write &/ when the context is clear. (For the re-
mainder of this paper we assume all enumeration problems
have a finite number of equivalence classes.)

The power of the Wallenius model is its ability to capture
bias and competition between elements. The probability of
drawing an element depends on its weight, but also on the
weights of all the elements remaining in the urn. For exam-
ple, if search is heavily biased towards a few solutions, then
we expect to draw these early. After a few draws the bias
vanishes because the remaining elements compete with sim-
ilar weights. Thus, Wallenius urns can model various search
dynamics through weight functions. To our knowledge this
is the first time Wallenius urns have been used to model
heuristic search.

The unbiased urn is a special case where every element
has the same weight. In this case elements will always be
drawn with equal probability.

Lemma 1 (Unbiased Urn). An urn is unbiased if the prob-
ability of drawing any element in the urn is ﬁ, where Y is
the set of elements currently in the urn. An urn is unbiased
iff it has a constant weight function.

An enumeration process models an entire algorithm by
associating every problem with a problem urn.

Definition 3 (Enumeration Process). An enumeration pro-
cess II is a function from problems to urns such that:

II(Z) — U(Z,w), for some w.

The ideal diverse enumeration process Il;geq: maps every
problem to an unbiased urn.

For an ideal diverse enumeration process the probability
of drawing an equivalence class is the same for all classes.
This is a statistically strong property guaranteeing unbiased
sampling of the space.

2.3 Defining Bias

It is unlikely that any reasonable algorithm behaves ide-
ally. In this case, its urn models can be used to compare with
the ideal enumeration process. There are many techniques
for comparing stochastic processes with uniform distribu-
tions, e.g. entropy or x? statistics. However, these values
are difficult to compute for Wallenius urns, because the un-
derlying PMF's have exponential support in the size of the
urn. Instead, we compute a simpler and intuitive likelihood
ratio. Let Ppa (U) be the probability of the most likely se-
quence of draws, when drawing all elements from U{. Our

bias number reflects how many times more likely P (U)
is compared to the unbiased urn. Computing P (U) is a
simple polynomial-time operation as shown below:

Lemma 2 (Most Likely Sequence). Consider the event of
drawing all | X| elements from U. Let e1, ..., e, be a order-
ing of elements such that i < j implies w(e;) > w(e;). Then
the most probable sequence of |X| draws has the probability
Prgz(w):

Pryea(w) = H Pr(e; | e;€ X —{e1,...,ei—1}).

1<i<n

Lemma 2 observes that the sequence of draws with highest
probability is any sequence which draws elements in non-
increasing order of their weights.

Corollary. If U is unbiased then every sequence of draws
has mazimal probability equal to Pu»(|X]), where

def 1

Py (n) e

The likelihood ratio % indicates how many times
more likely it is to draw a maximal sequence from U(Z,w)
compared to an unbiased urn with the same number of ele-
ments. Because this ratio can be large, we define the bias to

be the log-likelihood ratio normalized to the interval [0, 1].

Definition 4 (Urn Bias). The bias of ¢/ is the normalized
log-likelihood ratio:

def . In(Praz (w))
P = P (X))

The larger the value of 8 the more biased the urn. Fig-
ure 1 shows several weight functions and their biases. Each
function defines an urn with 32 elements labeled 1, ..., 32.
Function 1.1 describes an unbiased urn; it has the smallest
possible bias of 0. Functions 1.II/1.III have elements with
decreasing exponentially/linearly spaced weights. The de-
creasing exponential has the largest bias, because the max-
imal sequence of draws is exponentially preferred. The step
function 1.IV splits the elements into classes of high and
low preference. Note that bias is a normalized log-likelihood
ratio, so small differences in 8 correspond to exponential
differences in the likelihood ratios.

2.4 Comparing Enumeration Algorithms

Suppose a process 11 accurately models the behavior of an
enumeration algorithm A. Then, the proximity to the ideal

1 L. =0
i y =025
09 o= B=0347
0.877 y=e 32
i ML = B =0.229
0.7 y=1-33
06T V.- [=0.241
: [tifa<is,
05T Y=\ 0.01 otherwise.
0.4]
03[
02
0.1]
0 15 19 13 7 a1 125 129 132
Figure 1: Several examples of weight functions

and their bias. X-axis indicates element labeled
1,2,...,32; y-axis is w(e).

is reflected in the average urn bias. (Recall for IT;geq; this
average is zero.)

Definition 5 (Process Bias). The process bias G(II) is the
average of its urn biases.

The main challenge is accurately constructing I1 by observ-
ing some runs of A. In practice, we can only construct a
partial specification of II from a finite set of benchmark
problems.

The overall bias of A is estimated by inferring urns from
the search behavior of A on some problem instances. Unfor-
tunately, the relationship between urn weights and probabil-
ities is complex, but approximate inference of w is possible.
Suppose urns U and U’ have weight functions w = k - w’ for
some k > 0, then the urns define the same stochastic pro-
cess. In other words, urn weights can be rescaled without
consequence. Let uj* be the expected number of times e; is
drawn from U after m draws, then U can be reconstructed
from the first-draw expectations ui, ..., puh.

Lemma 3 (First-Draw Correspondence). Suppose U(Z,w)
has first-draw expectations ui,...,pn. Let U'(T,w’) have

weight function w'(e;) def pt. ThenU' is the same stochastic
process as U.

Proor. For all e, the expected number of times e is drawn
after one draw is just the probability Pr(e = ele € X).
Therefore:

1

w'(e) =k -w(e) fork:m.

a

If the draw expectations for the first draw are known, then
the urn weights can be reproduced (up to an inconsequen-
tial scaling factor). In practice, m should be larger than 1
to observe the search behavior of an algorithm. However,
since even our smallest benchmarks contain thousands of
non-equivalent solutions, Lemma 3 can be generalized for
large urns:

Proposition 4 (Small-Draw Proposition). Given U(Z,w),
m < |X|, and expectations pi*,...,un. Then U (Z,w’) ap-

prozimates U(Z,w), where w'(e;) s it

The Small-Draw Proposition states that if m is much smaller
than | X|, then the expectations ui, ..., un serve as a rea-
sonable approximation of w. We shall apply the proposition
without reservation, but check that inferred weights are good
approximations of A’s search behavior.

The Small-Draw Proposition reduces the problem of weight
inference to estimating draw expectations. Algorithm 1 per-
forms this task. The input is an enumeration algorithm A,
a problem Z, a draw size m, and a number of repetitions r.
InferUrn(A, Z, m, r) repeatedly samples m non-equivalent
solutions to Z by Enumerate(A, m). A is “reset” between
each repetition, meaning all state stored by A is reset to
initial conditions and new random number seeds are ran-
domly chosen. The observations are stored in 0-1 matrix S
where rows are labeled by repetition number and columns by
equivalence classes. Initially S contains 0 at every position.
The output is a vector & estimating each p;* by averaging
the number of times e; was observed per repetition.

Algorithm 1 InferUrn(A, Z, m, r)

Require: 0 <m < |X| and r > 0,
: S < ZeroMatrix([1,...,7],X)
s for1 <i<rdo
Reset(A)
draw < Enumerate(A, m)
for s € draw do
S[i, GetClass(s, X)] + 1
end for
end for
@ + 1-SumColumns(S)
: return @

L RXTDD I W

Ju—

Due to finite sampling many elements may not be ob-
served within r repetitions. The estimated weight for an un-
observed element is zero, so the bias for @ must be corrected
to account for zero-weight elements. We employ the follow-
ing correction, which penalizes for zero-weight elements:

Definition 6 (Estimated Bias).

- 1 Pra (604
(P (min(r - m, X))

5 def

plw) =1

The numerator is computed for & restricted to elements with
non-zero weight estimates (w4). It penalizes for unobserved
elements, because maximal sequences have higher probabil-
ities when fewer weights are considered. The denominator
rescales the penalty to the maximum number of elements
that could have been observed: r-m unless r - m > |X]|.
In the interest of space, we shall not discuss the statistical
properties of this estimator or the mechanisms to check the
Small-Draw Proposition.

3. CONSTRAINED GRAPHS PROBLEMS

We now present a practical class of enumeration problems
called constrained graphs. Constrained graphs are simple to
define, yet general enough to unify many enumeration prob-
lems. They are implemented in the FORMULA framework
[13]. Let G be the set of all finite graphs with labels as
vectors of values.

Definition 7 (Constrained Graph). A constrained graph
Ty is a enumeration problem where:

(D) Q=
@G 6

=0 © ©
@ OO ROIEROSIVERE)
Q<> Q2O ®Q @
Figure 2: Top: Constrained graph for SW/HW co-

design. Bottom: Examples of non-equivalent archi-
tectures.

o H Y (Vu, Enm) is a finite graph labeled by vectors of

variables.
e Qutcomes are graphs in G and ~ is graph isomorphism.
o decide(0) yields a graph (6(Vu),0(EH)),

where 6(Vg) replaces each vertex label ¢ with 6(%); 6(Ex)
is similarly defined.

The graph H captures the structure of the enumeration
problem. A concrete outcome is constructed by substitut-
ing the variables appearing in vertex labels with constants
according to a valuation 6. This replacement may cause
several nodes to receive the same final label, thereby fold-
ing H. A solution is an image of H formed by a satisfying
valuation. We now illustrate constrained graphs for a soft-
ware/hardware co-design problem.

3.1 Enumerating Bus Topologies

Consider the problem of designing a bus topology that can
support the communication requirements of a set of tasks. In
this simplified version of the problem, we desire a task par-
titioning and bus topology such that no bus is overloaded by
the communication of requirements of the tasks place on it.
Though this is clearly an NP-complete problem, it simpli-
fies away many of the details of a complete communication
scheduling problem. See [12, 8] for detailed investigations
of the problem. We now give the complete encoding of this
problem as a constrained graph.

Example 1 (Enumerating Bus Topologies). The graph H
has vertices representing tasks, buses, and placements, as
shown in the top of Figure 2. The vertices labeled by vari-
ables b; stand for names of buses, which are connected in a
tree topology. Deciding that two buses have the same name,
e.g. O(ba) = 6(b3), changes the structure of the final topol-
ogy. The variables p; decide where to place tasks t;. For
instance, if 6(71) = 6(b1) then task ¢, is placed at the root
bus.

The constraint formula ¢ limits the legal bus topologies
and the placements of tasks onto buses. First, we shall con-
strain buses to always form a tree topology of depth 3. This
imposes the following constraints on bus labels: Buses at
different depths in H (Figure 2, top) cannot have the same

name:
def - —
p1 = A bi 7 b;.

depth(b;,H)#depth(b;,H)

The function depth(l_;, H) is the depth of vertex bin H. For

example, depth(iﬁ, H) — 0. Buses with same names must
have the same parents, otherwise the topology is not a tree:

2 def /\l;Z ~ l_;j = parent(l;i, H) = parent(gj, H).

The function parent(l;, H) is the parent vertex in H. For
example, parent(l;s,H) — by. Every task is distinct and
must be assigned to a bus, which means every placement
receives a valid bus label:

def N T
ws Z N[Voimb | A N\ti#t.
B \ 5 i

Suppose each task t; uses band(t;) percent of the bandwidth
on the bus where it is placed. Then the sum of the utiliza-

tions on every bus must be less than 100:
os = N\ util(b;,n) < 100.

The function util(g, j) produces a formula summing the bus
utilization:
util(b, j) <
{ ite(py ~ b, band(t1),0) ifj =1,
ite(p; = b, band(t;),0) + util(b,j — 1) otherwise.

The if-then-else expression ite(i1, 12, 1¥3) is the usual short-
hand for a fresh variable z and a side constraint (1 = = ~
Y2)A(—1 = x = 3). Collecting together these constraints,
the final constraint formula is:

de
® :fsm N2 N p3 A pg.

The bottom of Figure 2 shows several complete architec-
tures resulting from satisfactory decisions. For example, the
leftmost architecture was produced by decide(0) for:

0(f1) = a, 0(F2) = b, 0(br) = 0(71) =0, 0(b2) = 0(bs) = 1,
0(bs) = 0(bs) = 0(bs) = 0(br) = O(p2) = 2.

The solution space of this problem contains many isomorphic
architectures, but these can be filtered out by fixing the
equivalence relation to be graph isomorphism. The examples
in the Figure 2 are all non-isomorphic.

4. SYMMETRY-DIRECTED RANDOMIZED
PARTITIONING

We now describe the Symmetry-Directed Randomized Par-
titioning (SDRP) algorithm for reducing search bias on con-
strained graphs instances, where graph isomorphism is the
equivalence relation ~. SDRP does not require any modifi-
cation to the underlying constraint solver. SDRP assumes
constraints can be built from the usual boolean connectives
(A, V,—) and equality (/). The basic ideas of SDRP are:

e Force the solver into random regions of the solution
space by asserting random partitions of variables.

e Use symmetries in the input problem to avoid jumping
into isomorphic regions of the solution space.

e Provide a throttling mechanism that adjusts degree of
randomization based on problem difficulty.

Through experimentation we found these three ingredients
essential to reduce search bias without sacrificing perfor-
mance.

4.1 Isomorphisms and Partitions

Before describing SDRP, we examine the problem of enu-
merating non-isomorphic solutions in more detail. Given a
constrained graph instance Zy and a valuation 6; then there
exists a formula iso(01, H) that is satisfied by all isomorphic
valuations 6’:

0'(H) ~ 6:1(H) if and only if 6" |=iso(61, H).

With this constraint in hand, a new non-isomorphic solution
can be found by searching for a valuation 0y satisfying ¢ A
—is0(61, H). This process can be repeated to enumerate the

i*" non-isomorphic solution from ¢ — 1 solutions:

0; = oA /\ —iso(0;, H).

1<5<i

Unfortunately, the best techniques for computing iso(6, H)
have worst-case exponential time complexity and iso(0, H)
may be exponentially large [1, 2]. Thus, we shall work with
simpler formulas called partition constraints.

Definition 8 (Partition). A partition of H with vertices

v e {#1,...,Yn} is a set of non-empty disjoint sets P def
{Bu,...,Bn} satisfying V = B1U...UB,,. Each B; is called
a block.

Given the graph H in Figure 2, this partition places the root
bus and its left and right subtrees into different blocks:

Poo ™ {{ba,b4, b5}, {b1}, {bs, bs, br}, {E1, 10, P, P} }-

Alternatively, a partition can be phrased as a constraint
among vertex labels.

Definition 9 (Partition Constraint). The partition con-

straint of P is a formula ¢ (P) = Y (P) Az (P) where:

def = > def S o
b=(P)E N\ GrZ Yu(P) = AL
y,Z€B; ¥ € B, 7€ Bj
and 7 # j

For example,

b;zb_;zb}:/\b_‘z_éz ;/\
Y(Pez) = t1 = t2 = p1 = paA
b1 % ba A b1 £ b3 Abi £ bs A bibsA....

Notice the partition constraint has no more than O(|H|?)
conjuncts, so it can be computed efficiently.

Every valuation 6 can be generalized to a partition called
the kernel partition.

Definition 10 (Kernel Partition). The kernel partition of
6 is a partition Ker(f) such that ¢ and 2 are in the same
block if and only if 8(y) = 0(Z).

Recall the earlier valuation:

— —

0(f) = a, 0(f2) =b, 0(b1) = (1) =0, 0(b2) = 0(b3) =1,
0(bs) = 0(bs) = 8(bs) = O(b7) = 0(j2) = 2

Its kernel partition is:
Ker(@) = {{Fl}v {52}7 {51751}7 {52’ 53}’ {54’ 555 565 57752}}

Combining these ideas leads to an polynomial-sized ap-
proximation of isomorphism classes:

Lemma 5. If 0' = 1 (Ker(0)) then 0’ |=iso(6, H).

PrOOF. We must show that whenever two valuations 6
and 6’ have the same kernel, then the graphs 0(H) and 6’ (H)
are isomorphic. Recall, §(H) and 6'(H) are isomorphic if
there is a bijection f between their vertices such that (u,v)
is an edge in O(H) if and only if (f(u), f(v)) is an edge in
0'(H).

Assume 0" = 1)(Ker(6)) and define the function f(6(%)) ef
0' (7). If f is not well-defined then there exists i and Z such
that 6(7) = 6(2) but (7)) # 0'(Z). This is impossible be-
cause 6’ has the same kernel as 6. By construction, f is onto.
Assume it is not one-to-one, then there exists § and Z' such
that (%) # 0(2) but 6'(§) = 6’'(). Again this is impossible
because 0 has the same kernel as ¢’. Thus, f is a bijection.

Suppose (0(7),0(%)) is an edge of O(H), then (¥, Z) is an
edge of H and (¢'(y),6'(2)) is an edge of ¢'(H). Applying
the function f to this edge:

FO@),0(2)) = (F(0), F(0(2))) = (¢ (5),0' ().

Thus, f is homomorphism from 0(H) to ¢'(H). Applying
the same argument for f~' establishes that f is an isomor-
phism. []

Using Lemma, 5, the i solution is approximated by blocking
the previous ¢ — 1 kernel partitions:

0iEen [\ —v(Ker(9))).

1<j<i

In the worst case, this procedure may return an exponential
number of solutions before leaving the isomorphism class.

4.2 Symmetries and Randomization

The partition blocking algorithm ensures that all isomor-
phism classes are eventually visited, but it does not reduce
bias introduced by the size of the isomorphism classes and
the intrinsic bias of the solver. We shall augment this algo-
rithm by asserting random partitions, forcing the solver to
visit new equivalence classes:

0 = @ AY(Prna) A [\ —0(Ker(6;)).

1<j<i

where P is a random partition not currently blocked.
Because partitions approximate isomorphism classes, a
random partition might force the solver back into an old iso-
morphism class or into an unsatisfiable region of the space.
We address the first problem by recognizing that the ini-
tial graph H contains information about the isomorphism
classes. This information shall be extracted and used to di-
rect the randomization, thereby decreasing the probability
that a random partition describes an old isomorphism class.

Definition 11 (Automorphism). An automorphism a of Zg
is a bijection from variables « : & — & satisfying a(H) = H
and 0 |= ¢[Z] iff (0 0 a) E p[Z]. Let aut(Zn) be the set of
all such automorphisms.

As before, aut(Zx) may be exponentially large, but there
is a polynomial-sized subset gen(Zy) C aut(Zy) that gen-
erates all automorphisms through sequential composition.
This set is called the generator set of the automorphism
group of Tgr. State-of-the-art techniques for isomorphism de-
tection and symmetry breaking efficiently compute the gen-
erators of various automorphism groups [1]. For example,
the generators for H in Figure 2 are:

P v by if &= bs,
= — e — -

; Tff_tf’ ar(®) = Q by if &= by,

n def 2 ! E 1) Z otherwise.
(@ = p T = Be if & — by
p- lf f: D1 n d A - 2 bl

b2 P ag@) Y b iz = b

I otherwise. 07 o 6

i otherwise.

aa(b2) € B, cu(bs) < b,

0s(Z) 2 ax(as(D)) if 7 ¢ {b2, b3}

The generators reveal the symmetries of the input problem
and will be used rewrite random partitions. If a random
partition P is rewritten into a blocked partition P’, then
P is just a different name for the isomorphism class named
by P’. In this case P can be ignored and another partition
guessed. Let a(P) be the partition formed by applying a to
every element in every block of P.

Lemma 6. If P’ = a(P) then all valuations satisfying 1(P)
and all valuations satisfying ¥(P') are in the same isomor-
phism class.

PROOF. Pick any 6 = ¢(P) and any ¢’ = ¢(a(P)). De-

fine f(6(%)) = 0'(a()). Following the logic of Lemma 5, f

must be a bijection otherwise « is not a bijection or 8’ does
satisfy ¥(a(P)).

Suppose (0(%),0(%)) is an edge of 6(H), then (¥, Z) and
(a(7), a(2)) are edges of H and (0'(a(%)), 0 (a(2))) is an
edge of ¢'(H). Applying the function f to this edge:

FO@),0(2) = (F(0D), F(0(2))) = (6" ((7)), 0" (e(2))).
Thus, f is homomorphism from 6(H) to 6'(H). Applying
the same argument for f~! and o~ ! establishes that f is an
isomorphism. [J

4.3 The Algorithm

SDRP uses gen(Zm) to avoid redundant random parti-
tions. However, Lemma 6 requires searching for the auto-
morphism « witnessing the redundancy of P. We implement
this search by a minimization procedure that repeatedly
rewrites partitions into minimal partitions via generators.
If two partitions have the same minimum partition then «
exists. First, observe that every partition can be uniquely
labeled by the bit vector label(P).

Definition 12 (Partition Label). Every P can be described
by a bit-vector containing |H|? bits.

label(P) d;f b171 b172 . bl,n bg,g b273 e

bn—l,n bn,n,

where b; ; “ryif ¥; and ¢; are in the same block B.

Partition labels are ordered by the usual total order < on
bit vectors.

Corollary (Automorphism Witness). There ezists an o €
aut(Zg) such that P' = a(P) if and only if

min){label(o/(P)) mir(lIH){label(a/(Pl))}o

o’ €aut(Ty } a’€au

Algorithm 2 SDRP(Zy, m, co)

b+ {} // Set of blocked partitions
s+ {} // Set of solutions
c4 o // Initial value of PDF parameter

. Qeaum < ¢ // Initial constraint formula
: gen < ComputeGen(Zg)
while |s|] < m do
repeat
P + DrawPartition(H, c)
Prin < GreedyMinimize(P, gen)
10: until —IsBlocked (b, Prun)
11: if IsSat(@ewm A Y~ (Pmin)) then

©RAD T @

12: 0 < Solve(pemm A Y (Prmin))
13: s «+—sU{0(H)}

14: Peman < Peman N P (Ker(0))
15: c <—c+e

16: else if |Puwn| < |H| then

17: b+ bU {Pmm}

18: c<—c—€

19: else

20: return s

21: end if

22: end while
23: return s

Minimization is implemented by repeatedly applying gen-
erators to labels. This allows the search effort to be tuned.
For instance, search can be terminated after finding a locally
minimal label as opposed to the globally minimum label. It
also simplifies data structures; the key data structure is a
database of minimized partition labels.

We are now ready to present the SDRP algorithm. Its
input is a constrained graph Zy, an integer m > 0 and an
initial condition cg. It assumes a solver provides the methods
IsSat and Solve. Solve returns a valuation whereas IsSat
only returns true/false. The algorithm returns m solutions
from distinct partition classes, or as many as can be found if
there are fewer than m satisfiable partition classes. The m
solutions are not guaranteed to be non-isomorphic, because
isomorphism testing is approximated by greedy minimiza-
tion of partitions.

The algorithm keeps track of the search state through four
variables. The solution set s contains the current set of solu-
tions. The constraint formula @euwm is the current constraint
based on previously enumerated solutions; it is strengthened
as more solutions are enumerated. The variable ¢ adjusts
how partitions are randomly selected. Finally, the blocked
partition set b contains a partition P if it is known that:

e The equality fragment of the partition constraint, ¥~ (P),
is unsatisfiable, and

e Every partition P’, for which 1~ (P’) implies ¥ (P),
is unsatisfiable.

Intuitively, if P is in the blocked partition set, then all par-
titions with at least the same equalities as P must also be
unsatisfiable. Initially the constraint formula is just ¢ and
the sets s, b are empty.

The algorithm repeatedly generates and minimizes ran-
dom partitions (Lines 7 - 10). The DrawPartition method
implements a family of probability distributions on parti-
tions with a single parameter c. The larger the value of this

Random Constrained Graphs (Dense)

1.0

0.8
|

0.6

bias

0.0
|

T T T T T T
0 20 40 60 80 100

experiment number

Random Constrained Graphs (Sparse)

0.0
|

T T T T T T
0 20 40 60 80 100

experiment number

Figure 3: Random Graphs; SDRP with Z3 (A), LIB with Z3 (e), LIB with OpenSMT (x), LIB-RS with

OpenSMT (+).

parameter, the higher the probability of drawing partitions
with larger blocks; its initial condition is cy. GreedyMin-
imize minimizes a partition P by repeatedly applying gen-
erators. These methods can be implemented in different
ways. In our implementation, DrawPartition exponen-
tially favors small block sizes and GreedyMinimize em-
ploys a beam search. The blocked partition set b remembers
unsatisfiable partitions. If a random partition is blocked,
then it is discarded and another is chosen (Line 10).

Once a feasible partition is generated, it is checked for sat-
isfiability against the current constraint formula (Line 11).
Importantly, only the equality fragment of the partition is
enforced. This allows the solver to search over many parti-
tions with a single call, and provides a simple termination
condition for the algorithm. If Yaum AV~ (P) is satisfiable,
then a satisfying valuation 6 is extracted and s is updated
(Lines 12 - 13). Next, the constraint formula is updated to
block the kernel partition of 6. At this point, no valuation
with the same kernel partition as # can be enumerated. Fi-
nally, the parameter c is updated to increase the likelihood
of partitions with larger blocks (harder partitions).

If the equality fragment of the random partition is unsat-
isfiable, then all partitions with at least the same equalities
as Py, are unsatisfiable. This scheme allows the algorithm
to generalize one instance of unsatisfiability to many par-
titions. If P, contains only trivial equalities, then it has
|H| blocks and all remaining partitions are unsatisfiable. In
this case the algorithm terminates (Line 20). Otherwise, the
partition is added to b and the parameter c is decremented
to favor easier partitions (Lines 16 -18).

In summary, the SDRP algorithm uses the parameter c
to throttle the difficulty of random partitions. It constrains
the solver with ¢~ to search over many partitions at once,
and to generalize unsatisfiability to many partitions. We

found these ingredients crucial for introducing randomiza-
tion without over-constraining the search problem. We now
present experimental results.

S. EXPERIMENTS

We now compare several enumeration algorithms on con-
strained graph problems by inferring urn models using Al-
gorithm 1 and then computing bias. The backend solvers
selected for comparison were state-of-the-art satisfiability
modulo theories (SMT) solvers, which are now routinely
used to solve hard enumeration problems in software en-
gineering. We limited our comparisons to two solvers, Z3
[5] and OpenSMT [3], based on a common input language
and ease-of-modification of the solvers’ source. Z3 is cur-
rently the fastest industrial SMT solver. We tested it on
its own and as the backend solver to our SDRP algorithm.
OpenSMT is an open source SMT solver. Its search engine
is based on the popular MiniSAT solver [7], so evaluation
of OpenSMT on purely boolean constraints gives a reason-
able approximation of MiniSAT’s search behavior. Because
OpenSMT is open source, we also developed a modified ver-
sion of OpenSMT that maximizes randomization within the
solver’s kernel. This allows us to test the affects of low level
randomization on search bias.

Using these solvers we developed two additional enumer-
ation algorithms:

1. Lazy isomorphism blocking (LIB): This algorithm
maintains a database of non-isomorphic solutions. It

draws solutions from the solver until a new non-isomorphic

solution is discovered and then returns this solution.
Each time a solution is found that specific solution is
blocked. LIB tests the baseline affects of isomorphism
classes on search bias.

2. LIB with randomized solver (LIB-RS): The LIB
algorithm with a modified solver that makes random
search decisions with maximum probability. This algo-
rithm tests if increasing randomization in the solver’s
core reduces search bias.

Testing enumerations algorithms required benchmark prob-
lems where we could count the number of satisfiable iso-
morphism classes and correctly label solutions by isomor-
phism classes. Due to the combinatorics of search problems
this limits the size of benchmark problems. Our random
graph benchmarks were problem instances made of a ran-
dom graph and a random hard boolean constraint. The
graph component was an Erdos-Renyi random graph of 15
vertices, 60 propositional variables, and four variables per
vertex label. The hard constraint component was gener-
ated by randomly generating 3-CNF problems with a ratio
of clauses to variables around the phase transition of 3-CNF
[6]. The resulting problem instances were small enough to
allow for explicit enumeration (via careful implementation),
but still large enough to exercise the solvers. The first set of
random graph benchmarks were on dense random graphs,
where there are many small isomorphism classes. These
problem instances had 5,000 to 20,000 equivalence classes.
The second set of random benchmarks were on sparse ran-
dom graphs, which have a few thousand large isomorphism
classes. On average it was harder to eliminate bias from the
sparse case.

The third benchmark consisted of enumerating bus topolo-
gies according to Example 1. Each problem instance had 13
bus / placement variables, 10 task variables, and a set of
random bandwidth requirements. Typical random problem
instances were highly constrained. Up to several hundred
thousand isomorphism classes could exist for easy band-
width requirements, but small changes in bandwidth re-
quirements could shrink the solution space to several dozen
classes. Unlike the sparse graph instances, the equivalence
classes were both few in number and contained few solutions.
The baseline algorithms showed less bias for these instances.
Our hypothesis is that highly constrained problem instances
resulted in significant backtracking within the solver thereby
enhancing diversity. This benchmark also tests the integer
arithmetic subsolvers of Z3 and OpenSMT.

Each benchmark consisted of 100 random experiments
(problem instances). Each experiment consisted of drawing
20 non-isomorphic solutions and repeating this 50 times with
different random seeds. After 50 repetitions an urn model
was built for the experiment and bias estimated. These
benchmarks took several weeks to run on a 3.16 GHz In-
tel Core 2 Duo with 4 GB of memory; Figures 3 and 4 show
the results. In order to improve readability, the experiments
were a posteriori numbered in ascending order using their
SDRP bias. The y axis shows the estimated bias § for each
experiment. Grey lines show the average bias for each algo-
rithm on the benchmark.

The results show solvers are highly biased in their search.
They return a few solutions with very high probability, re-
gardless of their initial conditions and with mild sensitivity
to the structure of equivalence classes. Increasing random-
ization in the solver’s core yields some improvement, but
not dramatically so. Also, this approach has negative side
effects on the solver’s performance. The SDRP algorithm
significantly reduces solver bias using detailed information
about the symmetries present in problems. It has the best

average behavior and the best absolute behavior on 97.6%
of all experiments.

Deploying Onto Bus Topologies

0.8
|

0.6

bias
0.4

0.2
|

0.0

T T T T T T
0 20 40 60 80 100

experiment number

Figure 4: Bus topologies; Same legend as Figure 3.

6. RELATED WORK

At first glance, many synthesis problems appear to be op-
timization problems. Theoretically, there is a best solution;
examining multiple candidates should be unnecessary. In
practice, competing optimization goals (energy vs. speed,
throughput vs. cost, etc...) correspond to multi-criteria
optimization problems [16, 10]. These problems result in
a Pareto front of non-dominated solutions that must be ex-
plored. Recent approaches to diversity incorporate solution-
wise distance measures into evolutionary search. The enu-
merator should return a subset of the Pareto front where
elements are maximally distant [22].

The work of [16] shows that optimization problems can be
approximated with constraint solvers. Similarly, distance
measures can also be pushed into constraint solvers using
easily defined distance measures. For example, the work
of [18] uses Hamming distance over an ordering of propo-
sitional variables. The solver then repeatedly queries for
solutions with large Hamming distances from previous solu-
tions. Other approaches force the solver to frequently make
random decisions. We experimentally showed that this ap-
proach improves diversity somewhat.

Distance-based definitions of diversity require selecting a
meaningful measure on the solution space. For example,
Hamming distance is simple to define, but it may not be
meaningful. Our examples would require a distance measure
that closely groups isomorphic solutions; it is certainly non-
trivial to construct such a measure. We dispense with dis-
tances and opt for random sampling over equivalence classes.
Our definition of diversity is w.r.t. the enumeration process,
i.e. its proximity to a uniform sampler of equivalence classes.

Diversity is becoming increasingly important in the field
of information retrieval. Given a query, the goal is to find
a set of highly relevant documents matching the query. In
this field, diversity is a measure of the number of documents
that can be included in the results without significantly re-
ducing the relevance of the results [23, 4]. Though similar
ideas could be useful for exploring solution spaces in em-
bedded systems, it is unclear how these algorithms can be
applied to solution spaces that are implicitly defined by hard
constraints.

7.

CONCLUSION AND FUTURE WORK

‘We presented a novel theory to model and measure diver-
sity in enumeration algorithms using Wallenius Urns. Next,
we developed a broad class of enumeration problems, called
constrained graphs, that unify many enumeration problems.
We presented the SDRP algorithm for increasing diversity
when enumerating solutions to constrained graphs. Finally,
we reported experimental results showing that SDRP sig-
nificantly reduces search bias on several benchmarks. This
algorithm has been implemented in the FORMULA framework
using the state-of-the-art SMT solver Z3.

Extensions to this work include development of more bench-

marks with other types of constraints and subsolvers. More
generally, we would like to understand how diversity corre-
lates with problem structure. This would be useful to throt-
tle generation of partition constraints and to notify the engi-
neer early about the expected difficulty of extracting diverse

solutions. Finally, we plan to study a deeper integration of

diverse enumerators with optimization techniques.

We believe that our approach to diverse enumeration syn-
ergizes with the types of (evolutionary) search techniques
commonly employed for non-linear optimization, e.g. for
the purposes of generating optimized mappings and sched-
ules [10]. Evolutionary techniques benefit from smooth fit-
ness landscapes, but use biologically inspired techniques to
jump across poorly performing regions of the space. On the
other hand, constraint solvers typically do not incorporate
fitness functions, but are a proven technology for solution
spaces where most choices are maximally bad (i.e. unsat-
isfiable). A diverse enumerator may be useful for sampling
and seeding other search algorithms with initially satisfiable
point designs for spaces governed by difficult constraints.

8.
1]

2]

REFERENCES

F. A. Aloul, I. L. Markov, and K. A. Sakallah.
Shatter: efficient symmetry-breaking for boolean
satisfiability. In DAC, pages 836—839, 2003.

A. Biere, M. Heule, H. van Maaren, and T. Walsh,
editors. Handbook of Satisfiability, volume 185 of
Frontiers in Artificial Intelligence and Applications.
10S Press, 2009.

R. Bruttomesso, E. Pek, N. Sharygina, and

A. Tsitovich. The OpenSMT Solver. In TACAS, pages
150-153, 2010.

C. L. A. Clarke, M. Kolla, G. V. Cormack,

O. Vechtomova, A. Ashkan, S. Biittcher, and

I. MacKinnon. Novelty and diversity in information
retrieval evaluation. In SIGIR, pages 659-666, 2008.
L. M. de Moura and N. Bjgrner. Z3: An Efficient SMT
Solver. In TACAS, pages 337-340, 2008.

[6]

[7]

[9]

(10]

(11]

(14]
(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

(23]

24]

O. Dubois. Upper bounds on the satisfiability
threshold. Theor. Comput. Sci., 265(1-2):187-197,
2001.

N. Eén and N. Sérensson. An Extensible SAT-solver.
In SAT, pages 502-518, 2003.

S. Fischmeister, O. Sokolsky, and I. Lee. A verifiable
language for programming real-time communication
schedules. IEEE Trans. Computers, 56(11):1505-1519,
2007.

G. Giannopoulou, K. Lampka, N. Stoimenov, and

L. Thiele. Timed model checking with abstractions:
towards worst-case response time analysis in
resource-sharing manycore systems. In EMSOFT,
pages 63-72, 2012.

A. Hamann and R. Ernst. Tdma time slot and turn
optimization with evolutionary search techniques. In
DATE, pages 312-317, 2005.

C. Hang, P. Manolios, and V. Papavasileiou.
Synthesizing cyber-physical architectural models with
real-time constraints. In CAV, pages 441-456, 2011.
T. A. Henzinger, C. M. Kirsch, E. R. B. Marques, and
A. Sokolova. Distributed, modular htl. In RTSS, pages
171-180, 2009.

E. K. Jackson, E. Kang, M. Dahlweid, D. Seifert, and
T. Santen. Components, Platforms and Possibilities:
Towards Generic Automation for MDA. In EMSOFT,
pages 39-48, 2010.

N. Johnson, S. Kotz, and N. Balakrishnan. Discrete
Multivariate Distributions. Wiley-Interscience, 1996.
O. Kupferman and M. Y. Vardi. Synthesizing
distributed systems. In LICS, pages 389-398, 2001.

J. Legriel, C. L. Guernic, S. Cotton, and O. Maler.
Approximating the pareto front of multi-criteria
optimization problems. In TACAS, pages 69-83, 2010.
R. Lotufo, S. She, T. Berger, K. Czarnecki, and

A. Wasowski. Evolution of the linux kernel variability
model. In SPLC, pages 136-150, 2010.

A. Nadel. Generating Diverse Solutions in SAT. In
SAT, pages 287-301, 2011.

S. Neema, J. Sztipanovits, G. Karsai, and K. Butts.
Constraint-based design-space exploration and model
synthesis. In EMSOFT, pages 290-305, 2003.

F. Reimann, M. Lukasiewycz, M. Glaf}, C. Haubelt,
and J. Teich. Symbolic system synthesis in the
presence of stringent real-time constraints. In DAC,
pages 393-398, 2011.

E. Torlak and D. Jackson. Kodkod: A relational
model finder. In TACAS, pages 632—647, 2007.

T. Ulrich and L. Thiele. Maximizing population
diversity in single-objective optimization. In GECCO,
pages 641-648, 2011.

D. Vallet and P. Castells. Personalized diversification
of search results. In SIGIR, pages 841-850, 2012.

H. Yu, J.-P. Talpin, L. Besnard, T. Gautier,

H. Marchand, and P. L. Guernic. Polychronous
controller synthesis from marte ccsl timing
specifications. In MEMOCODE, pages 21-30, 2011.

