
Open-World Logic Programs:
A New Foundation for Formal Specifications

MSR Technical Report MSR-TR-2013-55

Open-World Logic Programs:
A New Foundation for Formal Specifications

Ethan K. Jackson, Wolfram Schulte, and Nikolaj Bjørner

Microsoft Research, Redmond, WA
{ejackson, schulte, nbjorner}@microsoft.com

Abstract. Recent advances in decision procedures and constraint solvers
can enable a new generation of formal specification languages. In this
paper we present a new semantic foundation for formal specifications,
called open-world logic programming, which integrates with state-of-the-
art solvers. Analysis, verification, and synthesis problems on open-world
logic programs can be converted to constraints by a quantifier-elimination
scheme using symbolic execution. This paper presents the features, se-
mantics, and algorithms of open-world logic programs. We have imple-
mented this approach in the FORMULA specification language, which
has been used for production-quality specifications and models.

1 Introduction

Formal specification languages rely on automated theorem provers [1], constraint
solvers [2], and model checkers [3, 4] for analyzing specifications. Recent advances
in decision procedures and constraint solvers [5] can enable a new generation of
formal specification languages offering powerful analyses. To this end, we present
a new semantic foundation for formal specifications, called open-world logic pro-
gramming, which integrates with state-of-the-art solvers. Analysis, verification,
and synthesis problems on open-world logic programs can be converted to con-
straints by a quantifier-elimination scheme using symbolic execution. This paper
presents the features, semantics, and algorithms of open-world logic programs
(OLPs). We have implemented this approach in the FORMULA specification
language, which has been used for complex specifications and models [6–8]. The
contributions of this paper are:

1. Formal Semantics. We describe the static, logical, and execution semantics
of OLPs based on the well-founded semantics for closed-world logic programs
[9]. We generalize execution to symbolic exection for programs with symbolic
values.

2. Analysis. We show that analysis problems can be specified using OLPs.
They can be solved using a quantifier elimination scheme implemented by
symbolic execution. The output of symbolic execution is a formula that can
be dispatched to state-of-the-art constraint solvers.

3. Comparisons. We provide detailed comparisons with the dominant logic
programming paradigms. We examine their methods of integrating decision
procedures.

This paper is structured as follows: Section 2 explores closed-world and open-
world logic programs; it details previous attempts to integrate LP with decision
procedures. Section 3 presents the syntax and static semantics of a core open-
world language. Section 4 gives the logical semantics of OLPs and Section 5
formalizes execution and symbolic execution. We conclude in Section 6.

2 Extending LP Paradigms With Decision Procedures

Logic programming (LP) has long been used for formal specifications. It is attrac-
tive because it is precise, declarative, executable, and expressive (corresponding
to various classes of fixpoint logic). Its usefulness for formal specifications is
still vigorously researched, e.g. in the context of distributed systems [10], ac-
cess control logics [11, 12], and declarative databases [13]. However, existing LP
paradigms do not integrate well with the powerful decision procedures arising
from constraint solving. The problems are as follows: Prolog extended with con-
straints requires users to syntactically schedule constraint introduction. Conse-
quently, two specifications that appear equivalent may exhibit very different exe-
cutions. The Answer Set Programming (ASP) paradigm, based on stable models,
performs searches over finite groundings of programs. ASP makes only limited
use of decision procedures, and lacks generic support for infinite domains even
when decision procedures for these domains are available.

We now introduce closed-world and open-world logic programming, and give
a detailed account of existing LP paradigms and their integration with decision
procedures. In the interest of space, we shall study a small problem that chal-
lenges these paradigms. In the text to follow t is a vector of terms and ti is the
ith term of t. We write t[x\t] for the simultaneous replacement of variables xi
with terms ti in t.

2.1 A Brief Summary Of Closed-World Logic Programs

A closed-world logic program contains a fixed set of rules. Each rule has the form
R(t) :- body. R(t) is called the head of the rule. R is a relation symbol called
a program relation. The body is a conjunction of constraints possibly containing
other program relations. Informally, whenever the body of a rule is satisfied for
some substitution of variables body[x\t′], then the relation R must be true for
all elements of the form t[x\t′]. Negation is the ability to test ¬R(t) in the body
of a rule. A fact is a rule whose body is empty; such a body is treated as true.
The exact semantics of programs vary between paradigms. We shall discuss this
in more detail in the following sections.

Program execution determines members of a relation R by applying rules. In
forward chaining the rules are repeatedly applied, starting from facts, building
up the elements of R. Execution terminates when no rule extends any relation
further, i.e. a least fixpoint is reached. Backwards chaining tries to prove that
some element of the form t is in R by working backwards through the rules,
from heads to bodies until reaching facts. A query operation on a closed-world

program decides whether a relation contains some element. Query operations
can be evaluated by either forward or backwards chaining.

2.2 The Challenge Problem

In order to place OLP in context of various LP paradigms, we will specify and
decide the following property:

Is every list of four integers sortable by adjacent compare-and-swap operations?

More precisely, let l be a quadruple of integers 〈x1, x2, x3, x4〉 and the ith compare-
and-swap operation yi be:

yi (〈x1, . . . xi, xi+1 . . . , xn〉)
def
=

{
〈x1, . . . xi+1, xi . . . , xn〉, if xi+1 < xi,
〈x1, . . . xi, xi+1 . . . , xn〉, otherwise.

Does the following hold?

∀l ∈ Z4. ∃σ1, . . . , σk ∈ {y1,y2,y3}. sorted(σk(. . . σ1(l) . . .)).

The answer is clearly ‘yes’, but our goal is to specify and prove it with a logic
program. If the property were false the LP engine should construct a counterex-
ample, i.e. a quadruple which can never be sorted using these operations. Though
deceptively simple, this problem has three sources of difficulty: (1) The integers
are unbounded; a decision procedure for linear inequalities is required. (2) The
number k of compare-and-swaps is unknown; the reachable configurations must
be stated recursively1. (3) The reachability relation must be negated to check
for a counterexample. In other words, constraints, recursion, and negation are
three sources of expressiveness and challenges in logic programs.

2.3 Open-World Logic Programming

Open-world logic programming removes the closed-world assumption. It allows
some parts of programs to be unspecified or open. This generalization enables
OLPs to succinctly specify complex analysis problems while utilizing decision
procedures to solve them. Here are the key attributes of OLPs:

– Negation. The use of negation is restricted. Consequently, OLPs can be
formalized in a straightforward manner.

– Closure. A closure of a program is an extension of it by ground facts. After
a program is closed, nothing is assumed to be open. Closed programs are
well-behaved: they have unique and finite least fixpoints.

– Query. A query operation on an OLP searches for a closure where the goal
is satisfied.

1 There is an obvious upper-bound on k, but we expected the underlying proof ma-
chinery to happen upon this fact.

input ::= new (Integer, Integer, Integer, Integer).
trace ::= (Integer, Integer, Integer, Integer).
cntrexmp ::= (Integer, Integer, Integer, Integer).

cntrexmp(W, X, Y, Z) :- input(W, X, Y, Z),
no { A, B, C, D | trace(A, B, C, D), A <= B, B <= C, C <= D }.

trace(W, X, Y, Z) :- input(W, X, Y, Z).
trace(X, W, Y, Z) :- trace(W, X, Y, Z), W >X.
trace(W, Y, X, Z) :- trace(W, X, Y, Z), X >Y.
trace(W, X, Z, Y) :- trace(W, X, Y, Z), Y >Z.

Fig. 1. formula OLP: Deciding a sorting property.

We demonstrate these ideas by solving the sorting problem with an OLP.
Figure 1 shows the open-world specification of the sorting problem written in our
formula language. The first three lines of the program are type declarations
for input, trace, and cntrexmp. The keyword ‘new’ marks input as an open
type. A closure of this program can contain some input facts, but not trace or
cntrexmp facts. The trace rules compute the traces generated by sorting the
input fact of a closure. For instance, if input(v1, v2, v3, v4) is in the closure, then
so is trace(v1, v2, v3, v4). The following three trace rules compute new traces by
applying compare-and-swap operations to the current traces. These are called
recursive rules, because they compute trace by examining trace. The cntrexmp
rule is triggered if there is an input list that never generates a sorted trace. This
rule uses negation to check that no sorted traces exists. formula negations
appear as set expressions. The negation is true if the set expression evaluates to
the empty set.

A closure is called a model in formula. Each model has: (1) a name, (2) a
reference to the OLP it closes, (3) and a list of facts that close the program. For
example:

model M of Sort { input(3, 2, 6, 5). }

Given a closure, a unique least fixpoint can be computed by applying rules. The
least fixpoint of model M contains the following:{

input(3, 2, 6, 5), trace(3, 2, 6, 5),
trace(2, 3, 6, 5), trace(3, 2, 5, 6), trace(2, 3, 5, 6)

}
. (1)

Open-world queries. An open-world query searches for a closure where a
goal is true. For instance, the sorting problem can be decided by the following
query: “Find a closure containing exactly one input term whose least fixpoint
contains a cntrexmp term.” The algorithms presented here solve such a query
as follows: First, the program is closed with symbolic facts, e.g.:

input(?1, ?2, ?3, ?4).

Each ?i is a symbolic value; its exact value is unknown at the time of execution.
Symbolic values can be substituted by values from infinite domains, e.g. the set of
all integers. Next, program execution is generalized to handle symbolic values.
Symbolic execution accumulates quantifier-free constraints, which encode how
choices for symbolic values influence the least fixpoint. Finally, the quantifier-
free constraint for the goal is solved using a collection of decision procedures.
formula uses the Z3 SMT solver [14], which soundly combines a variety of
decision procedures. If a solution is found, then a concrete closure is constructed
by substituting symbolic values, otherwise the goal is unsatisfiable. The time
to solve the sorting problem is dominated by symbolic execution, which takes
a fraction of a second. Our technique does not require bounding the range of
integers, nor does it rely on users writing the rules in a particular fashion. These
desirable properties do not hold for traditional approaches.

2.4 The Classical Approach: Prolog With Constraints

The most classical of LP paradigms is Prolog, which implements a backwards
chaining engine. SWI Prolog is an implementation of Prolog that can be extended
with constraint solvers [15], so it is suitable for specifying and proving the sorting
property. SWI Prolog illustrates a standard proof strategy: (1) Represent a trace
of the sorting algorithm as a sequence of lists, (2) use rules to specify all such
traces, (3) and perform a backwards search for a counterexample. The difficulty
will be that backwards chaining must consider an infinite number of traces.
Figure 2 shows the specification in SWI Prolog. The syntax [e1, . . . , en|T] is a
sequence whose first n elements are e1, . . . , en and whose remaining elements are
the (possibly empty) sub-sequence T .

Recursion. As before, the last four rules compute a trace relation, where
each element of trace is a sequence of swaps applied to some initial list. The
first trace rule admits every possible list as an initial trace, and the following
three trace rules describe how to apply the compare-and-swap operations to a
sub-trace. Table 1 shows a few elements of the trace relation starting from the
list 〈3, 2, 6, 5〉.

Negation. As before, negation permits a rule to test absence of some el-
ements from a program relation. In SWI Prolog, negation is indicated by the
operator ‘\+’. The first rule uses negation to find counterexamples. Some list

l
def
= 〈w, x, y, z〉 (somelist(W,X, Y, Z)) is a counterexample if it is not eventu-

ally sorted. A list l is eventually sorted (evntsorted(W,X, Y, Z)) if there is a
trace starting from l that contains a sorted list. Formalizing negation in LP is
non-trivial because of recursion. Informally, this negation tests for membership
in the least fixpoint of trace, which contains all possible sorting traces.

Constraints. To prove the sorting property, we ask Prolog to find an element
in the cntrexmp relation via a query with the goal cntrexmp(W,X, Y, Z). If a
counterexample can be found, then the variables will be replaced with values
giving a member of cntrexmp. If cntrexmp is empty then we would like the
query operation to terminate with the result false. Prolog starts from the goal

cntrexmp(W,X,Y,Z) :- somelist(W,X,Y,Z), \+evntsorted(W,X,Y,Z).
evntsorted(W,X,Y,Z):- sorted(A,B,C,D), trace([[A,B,C,D] |], [W,X,Y,Z]).
sorted(W, X, Y, Z) :- {W =< X}, {X =< Y}, {Y =< Z}.
somelist(W, X, Y, Z).

trace([[W,X,Y,Z]], [A,B,C,D]) :- {W = A}, {X = B}, {Y = C}, {Z = D}.
trace([[X,W,Y,Z], [W,X,Y,Z] |T], [A,B,C,D]):- {W >X}, trace([[W,X,Y,Z] |T], [A,B,C,D]).
trace([[W,Y,X,Z], [W,X,Y,Z] |T], [A,B,C,D]):- {X >Y}, trace([[W,X,Y,Z] |T], [A,B,C,D]).
trace([[W,X,Z,Y], [W,X,Y,Z] |T], [A,B,C,D]):- {Y >Z}, trace([[W,X,Y,Z] |T], [A,B,C,D]).

Fig. 2. SWI Prolog: Deciding a sorting property.

Swap Applications LP Representation

initial list l
def
= 〈3, 2, 6, 5〉 trace([[3, 2, 6, 5]], [3, 2, 6, 5])

y1 (l) trace([[2, 3, 6, 5], [3, 2, 6, 5]], [3, 2, 6, 5])
y3 (l) trace([[3, 2, 5, 6], [3, 2, 6, 5]], [3, 2, 6, 5])
y3 (y1 (l)) trace([[2, 3, 5, 6], [2, 3, 6, 5], [3, 2, 6, 5]], [3, 2, 6, 5])
y1 (y3 (l)) trace([[2, 3, 5, 6], [3, 2, 5, 6], [3, 2, 6, 5]], [3, 2, 6, 5])

Table 1. Members of trace generated from the list 〈3, 2, 6, 5〉.

and works backwards to find a member of cntrexmp. In doing so, it encounters
the negated membership test of evntsorted for every possible list. Standard
backwards chaining cannot terminate for this query because it must consider an
infinite number of traces.

Non-termination can be overcome by extending Prolog with other kinds of
constraints and using decision procedures to prune many subgoals at once. In
this example, the constraints are solved by a decision procedure for linear in-
equalities over the rationals [16]. Users write these extra constraints in curly
braces, e.g. {W > X}. They are accumulated in left-to-right order as Prolog at-
tempts to prove the subgoals of a body. If the current set of constraints becomes
unsatisfiable, then backwards chaining can terminate the current subgoal and
backtrack. In our example all branches of the proof tree become unsatisfiable
after a few steps, and so the query operation can terminate without explicitly
considering every concrete trace.

Prolog as a specification language. This approach is fast and general,
but it comes at a cost: Prolog fixpoints are often infinite, so the user must
guide proof search carefully. This is accomplished by the syntactic placement of
constraints within rules, and rules within programs. This placement schedules
the introduction of constraints and satisfiability checks. For example, if any of
the trace rules had their constraints placed later in the body, then the query
operation would no longer terminate:

trace([[X,W,Y,Z], [W,X,Y,Z] |T], [A,B,C,D]) :-
trace([[W,X,Y,Z] |T], [A,B,C,D]), {W >X}.

Backwards chaining would forever expand the trace subgoal before accumulating
the additional constraint {W > X}.

In summary, classical Prolog extended with constraints utilizes many solvers
and incorporates many extensions, such as constraint handling rules [17], to
dispatch constraints. However, it relies on the user to carefully construct the
search strategy within the operational semantics of Prolog. Similar programs
can be constructed in the Ciao [18] system and the ECLiPSe language [19].
These features make Prolog less attractive for formal specifications, because
small syntactic perturbations can dramatically affect execution / analysis [20].
In addition, the closed-world assumption of Prolog requires traces to be specified
in a more complicated manner, i.e. sequences of lists.

2.5 Answer Set Programming

Answer set programming (ASP) is used for specifying and solving constraint sat-
isfaction problems. ASP takes a different approach from standard Prolog by: (1)
unifying the logical and execution semantics of programs, (2) giving semantics
to programs with arbitrary negation, (3) and alleviating users from manually
encoding search strategies. It accomplishes these goals by observing that pro-
grams with arbitrary negation exhibit a set of minimal fixpoints, called stable
models [21]. The primary job of an ASP engine is to search for stable models.
If search problems can be rephrased through stable models, then users do not
need to implement search strategies in their programs [20].

Consider the ASP program in Figure 3 written for the CLASP ASP system
[22]. It also contains four rules specifying traces, but these rules appear more
like the OLP rules than Prolog rules. Also unlike Prolog, the program has been
written so the trace relation contains the traces of only one input list, as opposed
to all inputs lists. Every stable model shall correspond to a different choice of
input list. The last rule in the program does not have a head. It is called a
consistency rule and its body should never be true. If a stable model exists for
this program, then this model is a counterexample, i.e. the chosen input list
is never sorted. The ASP engine should either return a stable model for this
program, or state that the program is unsatisfiable. As with OLP, the syntactic
presentation of the rules does not impact the search process.

Generalized negation. The requirement that a stable model contains ex-
actly one input is stated using a cardinality constraint :

1 { input(W,X,Y,Z) : num(W), num(X), num(Y), num(Z) } 1.

It requires the input relation to have at least and at most one element. The
domain of input is restricted to a finite range of integers via the num relation.
The upper bound on the cardinality constraint corresponds to the following rule
employing generalized negation:

input(W,X,Y,Z) :- num(W), num(X), num(Y), num(Z), not input(, , ,).

Notice that the rule recursively depends on input through a negation. Concep-
tually, once input(W,X, Y, Z) is chosen, it forces the input relation to be false

num(1..100).
1 { input(W,X,Y,Z) : num(W), num(X), num(Y), num(Z) } 1.

trace(W, X, Y, Z) :- input(W, X, Y, Z).
trace(X, W, Y, Z) :- trace(W, X, Y, Z), W >X.
trace(W, Y, X, Z) :- trace(W, X, Y, Z), X >Y.
trace(W, X, Z, Y) :- trace(W, X, Y, Z), Y >Z.

:- trace(W, X, Y, Z), W <= X, X <= Y, Y <= Z.

Fig. 3. CLASP ASP: Deciding a sorting property.

for all other places. Therefore, this program gives rise to a set of stable models,
each of which chooses a single input and then contains all the traces consistent
with this choice.

Model Search. Stable models are defined for ground programs, which are
programs without variables. Searching for stable models on ground programs
is NP-complete and engines employ SAT-like algorithms [23]. Most real-world
programs are non-ground (e.g. Figure 3), but are grounded as a pre-processing
step. Grounding expands each rule into many variable-free rules for all possi-
ble substitutions of variables by values. For example, the second trace rule is
grounded as:

trace(1, 1, 1, 1) :- trace(1, 1, 1, 1), 1 > 1.
trace(1, 2, 1, 1) :- trace(2, 1, 1, 1), 2 > 1.

...

Constraints can now be simplified by evaluation. The first expansion is discarded
and the second is simplified to trace(1, 2, 1, 1) :- trace(2, 1, 1, 1). Grounding
is clearly expensive. Our program restricts integers to the interval [1, 100], but
generates 100 million expansions per trace rule during the grounding phase. It
quickly runs out of resources when using the state-of-the-art GrinGo grounder
[24].

ASP engines as constraint solvers. As a specification language, ASP
also has clear advantages over Prolog. However, grounding does not make use of
modern decision procedures. Combining ASP with other decision procedures is
a challenge, because the stable model semantics must be preserved. There have
been attempts to lazily ground programs by combining grounding with finite
domain constraint solvers. The approach is to mark those program variables that
should be handled by an external solver [25, 26]. Only some decision procedures
are compatible in order to preserve the stable model semantics.

We tried a slightly modified version of the same program using the Clingcon
ASP engine, which employs the Gecode finite domain solver [27]. It is more scal-
able, but still exhibits exponential slowdown as the integer range is increased.
We observed around 1 minute to find the first stable model for the integer range
[−105, 105] and 16 minutes for [−106, 106], which are small fractions of the full

Programs Π ::= E∗ | R∗

Type equations E ::= α ∼∼ τ
Type terms τ, τ ′ ::= α | β | c | τ ∪ τ ′ | f(τ+)
Base types β ::= Real | Integer | Natural | . . . | String

Rules R ::= f(t+)← p∗ | c← p∗, for c not a built-in constant
Predicates p, q ::= K(x) | r(t, t′) | no{q∗}

Terms t, t′ ::= c | x | f(t+) | o(t+)
Operators o ::= + | − | ∗ | . . . | π1 | π2 | . . . | count | sum | . . .
Relations r ::= = | 6= | < | ≤ | > | ≥ | <: | . . .
Constants c ::= −1 | 0.5 | 2

3
| . . . | "foo" | . . . | true | false | . . .

Data constructors f, g, . . ., Variables x, y, . . ., Data types α, αf , . . .

Fig. 4. Grammar of core programs.

32-bit integer range. In conclusion, ASP leads to cleaner specifications and ap-
plies sophisticated techniques to find stable models. However, the stable model
semantics makes it difficult to avoid grounding and to incorporate other deci-
sion procedures. The OLP approach avoids the stable model semantics in favor
of defining open-world programs.

3 Core Programs and Static Semantics

In this section we present the syntax and static semantics of a core open-world
logic programming language. formula programs may use a more convenient
syntax, but they are translated back into core form. Figure 4 shows the syntax
of our core language.

Data types. Data types are important for OLP, because they ensure clo-
sures contain meaningful facts. Programs can define new data types using type
equations. A type equation E relates a data type symbol α with a set of values.
Base types such as Real and String are predefined and name the sets of all real
and string values. A data constructor is a function for building complex data.
Users may introduce new data constructors and write type equations over them.
For instance, the type declaration for input in Figure 1 introduces the input
data constructor and a type equation:

αinput ∼∼ input(Integer, Integer, Integer, Integer),

The αinput type stands for the set of all input terms with integer arguments (as
opposed to input terms with string arguments). Because data constructors are
first-class, users do not need separately define program relations. We assume an
implicit unary program relation K, called the knowledge set, containing complex
data. If K were made explicit, then formula rules would appear as:

K(trace(W, X,Y, Z)) :- K(input(W, X, Y, Z)).

Also, the least fixpoint reported in Equation 1 are all elements of K.
A rule may constrain variables to range over types using the subtyping re-

lation (‘<:’). For example, x <: αinput constrains x to be an input applied to
four integers. The Prolog / ASP examples do not have explicit data types [28].
However, the use of arithmetic relations forces variables to be instantiated with
numeric types. For a full formalization of these data types see [29].

Rules. A rule is a conjunction of predicates. A predicate K(x) is satisfied
if x is a member of the knowledge relation K. A predicate r(t, t′) is satisfied
according to the underlying theory for r. For example, r might be the arithmetic
relation ‘<’ or ‘≥’. It might be the equality ‘=’ or disequality ‘ 6=’ relation. Impor-
tantly, r is not a program relation; its meaning is fixed and users cannot redefine
it. Similarly, operators such as ‘+’ or ‘π1’ have fixed meanings. (A selector πi
extracts the ith argument of a term, e.g. π1(input(1, 2, 3, 4)) = 1.) The exact
set of relations and operators depends on the decision procedures available. We
view these as parameters of the language.

Negation. The last built-in predicate is the no predicate. It takes a list of
predicates surrounded by a lexical scope. A predicate no{q} is true if there is
no substitution satisfying the predicates q for those variables introduced in the
scope. A variable x is introduced in the scope {p} if x appears in some pi and
pi is not of the form no{q}. For example, this formula rule:

cntrexmp(W, X, Y, Z) :- input(W, X, Y, Z),
no { A, B, C, D | trace(A, B, C, D), A <= B, B <= C, C <= D }.

It is translated into core form as follows:

cntrexmp(π1(l), π2(l), π3(l), π4(l))←
K(l), l <: αinput, no{K(t), t <: αtrace, π1(t) ≤ π2(t), π2(t) ≤ π3(t), π3(t) ≤ π4(t)}.

3.1 Static semantics

Not all syntactically correct programs can be handled by our framework. We
impose additional safety and stratification conditions on programs.

Safety. Intuitively, a rule is safe if it does not force an infinite number of ele-
ments into K and it does not examine an infinite number of elements. Practically,
safety is phrased as a syntactic condition on rules.

Definition 1 (Safe Rule). A rule is safe if whenever a variable x is introduced
in a scope, then that scope contains the predicate K(x). Also, every variable
appearing in a head must be introduced at the top-most scope of the rule.

The previous translation of the cntrexmp rule is an example of safety. The
variables w, x, y, z in the head were replaced with expressions over l and the pred-
icate K(l) appears in the body. The formula compiler automatically translates
programs into safe rules, or reports an error if a safe orientation of the variables

cannot be found. Prolog has weaker safety conditions because it allows infinite
fixpoints. For example, Prolog would allow the fact:

input(w, x, y, z)← .

where all possible input terms are placed into K. ASP has stronger restrictions
on safety. Notice that many variables in the ASP example were explicitly guarded
by the num relation.

Stratification. Stratification restricts negation to guarantee a unique least
fixpoint. The general idea is to track dependencies between rules. A stratified
program disallows cyclic dependencies through negations. Suppose R and R′

are rules, then let relabel be a one-to-one function from variables to variables.
Assume no variable from R is relabeled into a variable in R′. We lift relabel
onto rule syntax so that relabel(s) produces identical syntax to s, except that
all variables are relabeled. The rules R, R′ may depend on each other positively,
negatively, or not at all:

Definition 2 (Positive dependency). Rule R′ positively depends on R, written
R →+ R′ if: (1) R is the rule t ← p and R′ is the rule t′ ← q. (2) Some qi is
the predicate K(x). (3) The composition is weakly consistent2: relabel(p), q, x =
relabel(t).

Definition 3 (Negative dependency). Rule R′ negatively depends on R, written
R →− R′ if: (1) R is the rule t ← p and R′ is the rule t′ ← B1 no{ q } B2.
(2) Some qi is the predicate K(x). (3) The composition is weakly consistent:
relabel(p), B1 no{q, x = relabel(t)} B2.

The partial bodies B1 and B2 split the body of R′ to expose an arbitrarily deep
negation. A dependency is detected if rule R might produce an element in K
that is used to trigger another rule R′. The accuracy of the dependency analysis
is tunable; various LP languages implement different versions of this analysis.

Definition 4 (Stratified Programs). An OLP program is stratified if there exists
an order O on rules satisfying:

R→+ R′ ⇒ O(R) ≤ O(R′) and R→− R′ ⇒ O(R) < O(R′). (2)

Such an order exists iff there is no cyclic dependency through negation. This
order will be used to formalize programs, and to translate open-world queries into
quantifier-free constraints. ASP does not require the strict inequality O(R) <
O(R′) for negative dependencies.

4 Logical Semantics

One advantage of using logic programming for formal specifications is that pro-
grams can be directly translated into logic. In this section we give the logical

2 By weakly consistent, we mean satisfiable according to some over-approximation of
satisfiability.

LJΠcloK
def
=

 ∧
E∈Πclo

T JEK

 ∧
 ∧
R∈Πclo

RJR, intro(R),O(R)K



T Jα ∼∼ τK def
= T JαK = T JτK T JcK def

= {c}
T Jτ ∪ τ ′K def

= T JτK ∪ T Jτ ′K T JβK def
= X, where X is a set such as Z

T Jf(τ)K def
= {f(t) | ti ∈ T JτiK} T JαK def

= α

RJt← p,x, nK def
= ∀x.

(∧
pi

RJpi,x, n,+K⇒ K(t, n)

)

RJno{q},x, n,±K def
= ∀y.¬(

∧
qi

RJqi,z, n,−K),

{
y

def
= intro(q)− x,

z
def
= intro(q) ∪ x

RJK(y),x, n,+K def
= ∃i. (i ≤ n ∧K(y, i))

RJK(y),x, n,−K def
= ∃i. (i < n ∧K(y, i))

RJr(t, t′),x, n,±K def
= r(t, t′)

Fig. 5. Translation of closures into logic.

Open-World Query Example Result

query(ΠSort, trace(x, x, x, x)) ({input(1, 1, 1, 1)}, trace(1, 1, 1, 1))
query(ΠSort, trace(1, 2, x, x)) ({input(2, 4, 1, 4)}, trace(1, 2, 4, 4))
query(ΠSort, trace(x, y, x, y)) ({input(3, 3, 2, 2)}, trace(3, 2, 3, 2))
query(ΠSort, cntrexmp(w, x, y, z)) unsatisfiable
Table 2. Example results for several open-world queries on the sorting program.

semantics of OLPs using the ideas of the well-founded semantics [9]. The for-
malization works as follows: Let LJK be a translator from closures to logic. A
structure I is one possible interpretation of a closure Πclo if it satisfies this trans-
lation in the usual sense, i.e. I |= LJΠcloK. However, the intended meaning of
Πclo is the least such interpretation lm(Πclo):

lm(Πclo)
def
= min{ I | I |= LJΠcloK }. (3)

We shall define min shortly. A query operation on an OLP Π with goal g returns
the set of all extension/term pairs (F, t) whereby closing Π with facts F yields
a least interpretation containing the goal.

query(Π, g)
def
= { (F, t) | lm(Π ∪ F) |= K(t) and t = g[x\t] }. (4)

Table 2 shows results for several open-world queries on the sorting program.
Figure 5 shows the translator LJK. It translates a program into a conjunction

of formulas. The first part translates type equations (T JK) and the second part

Init: (∅,min(O))

Step: (K,n) =⇒ (K ∪ {(t[x\t], n)}, n) If


O(R) = n, x

def
= intro(R),

R is t← p, and
K |= (x = t) ∧

∧
pi
RJpi,x, nK

Fix: (K,n) =⇒ (K,n+ 1) If no step extends K.

Fig. 6. Concrete Execution

translates rules (RJK). An interpretation I assigns a set of values αI to each
type symbol α. Rules are slightly more complicated to translate. To correctly
translate a rule sub-expression the translator must know: (1) the variables x
introduced in earlier scopes, (2) the stratification number of the rule, (3) and
whether a predicate appears under a negation (denoted ‘−’). The knowledge
relation is translated into a binary relation K(t, n) that holds if t is placed into
K by a rule at stratum n. A negation can only examine K at a stratum lower
than the rule in which it appears. This particular translation guarantees that all
programs have a unique least interpretation:

Definition 5 (Interpretation Order). Let I and I ′ be two interpretations of
Πclo. Then I ≤ I ′ if one of the following holds:

1. I is the same interpretation as I ′.
2. There is some α where αI ⊂ αI′ .
3. Both interpretations are identical for type symbols, but for the first stratum
n where I and I ′ differ: Whenever KI(t, n) holds then KI′(t, n) holds.

Lemma 1 (Least Interpretation Exists). For a closure Πclo and stratifica-
tion O there is a unique least interpretation lm(Πclo). Also, { t | lm(Πclo) |=
K(t, i) } is the same for all choices of O.

5 Concrete and Symbolic Execution

In this section we give the execution semantics of closures, and then generalize
to symbolic execution. Symbolic execution yields an algorithm for solving open-
world queries assuming an upper-bound on the size of the closure is known.
Klm(Πclo) can be computed by applying rules until reaching a fixpoint. This
execution semantics is a simple fixpoint procedure that completely computes
the fixpoint at stratum n before applying rules at n+ 1. The state of execution
is a pair (K,n), where K is the partially computed knowledge relation (with
stratum markings). The value n is the stratum currently being executed. Figure
6 shows the transition system for execution. Theorem 1 asserts that these two
semantics agree.

Theorem 1 (Semantic Equivalence). Given Πclo and O. If execution pro-
duces a state (Klfp,max(O) + 1), then Klfp = Klm(Πclo)

Suppose Π is open and the number of facts required to solve query(Π, g)
can be established. We use this upper-bound to form a symbolic closure of Π,
and apply symbolic execution to capture all possible fixpoints obtainable from
all possible choices of symbolic values. The output of symbolic execution is a
ternary symbolic fixpoint H. An element of H is a triple (t, ϕ, n) where t is a
term (possibly with symbolic values), ϕ is a quantifier-free formula (possibly
with symbolic values), and n is a stratum number. Let the vector s assign a
non-symbolic value to every symbolic value, then the concrete fixpoint obtained
from these choices is:

fix(H, s)
def
= { (t[?\s], n) | (t, ϕ, n) ∈ H and |= ϕ[?\s]} (5)

In other words, an element t[?\s] is in the concrete fixpoint if ϕ[?\s] evaluates to
true. For instance, the sorting problem asks about one input list, which gives an
upper-bound on the facts required to close ΠSort. Our algorithm would perform
symbolic execution on the closure:

ΠSort ∪ {input(?1, ?2, ?3, ?4)← . }

Here are a few elements in the resulting symbolic fixpoint: (input(?1, ?2, ?3, ?4), true, 0),
(trace(?1, ?2, ?3, ?4), true, 1),

(trace(?2, ?1, ?3, ?4), ?1 > ?2, 1)

 ⊂ H
For any choice of s the first two elements are in a concrete fixpoint, but the third
is there only if s1 > s2.

Symbolic execution. Computing H makes use of the safety condition that
all universally quantified variables range over K. A partial symbolic fixpoint
captures all possible elements up to some point in execution. Thus, H can be
used to expand quantifiers as follows3: Let h be a vector of elements from H,
with jth component (tj , ϕj ,mj). The translator EJK expands quantifiers using
the current state H.

EJ∀y. ¬ψ,x,h′, HK def
=

∧
h∈H|y|

∧
yj

yj = tj

⇒ ¬EJψ,xy,h′h, HK

 .

EJ∃i. (ψ ∧K(xj , i)),x,h, HK def
= ψ[i\mj] ∧ ϕj .

Figure 7 gives the symbolic execution procedure. The next theorem asserts that
symbolic execution correctly captures the affects of choosing values s for ? on
the possible fixpoints.

Theorem 2 (Correctness). Let Π ∪ F be a closure of Π with symbolic facts
F , and H lfp be any state (H lfp,max(O) + 1) obtained by symbolically executing
this closure. Then, for any choice of s of symbolic values:

Klm(Π∪F [?\s]) = fix(H lfp, s).

3 For simplicity, we assume all variables with the same name are the same variable. If
this is not the case, then variables must be renamed beforehand.

Init: (∅,min(O))

Step: (H,n) =⇒ (H ∪ {(t[x\t], ϕ, n)}, n) If


R as in Figure 6,h = H |x|, and

ϕ
def
=

∧
pi
EJRJpi,x, nK,x,h, HK∧∧

j(xj = tj)

Fix: (H,n) =⇒ (H,n+ 1) If steps are subsumed by elements in H

Fig. 7. Symbolic Execution

Given query(Π, g) and a symbolic-upper bound F , then compute H lfp for Π∪F∪
{cfresh ← g.}. Let the set of goal constraints beG

def
= { ϕ | (cfresh, ϕ, n) ∈ H lfp }.

By Theorem 2 all concrete closures obtainable from F satisfying the goal are

characterized by the solutions to
∨
ϕ∈G

ϕ.

6 Discussion and Conclusion

In general, open-world queries are undecidable and the techniques presented
here are incomplete. Incompleteness can manifest in two ways: (1) Symbolic
execution may not terminate for a single symbolic closure. This can happen
if an OLP encodes an infinite state transition system. For some such systems
symbolic execution cannot summarize all behaviors within a finite number of
steps. (2) It may be impossible to determine an upper-bound on the size of the
closure. This can happen when an OLP places non-linear cardinality constraints
on the size of the closure. Determining an upper-bound amounts to deciding a
system of non-linear Diophantine inequalities.

formula addresses these issues in two ways: Transition systems can be rec-
ognized, and then full computation of the symbolic fixpoint can be avoided. This
helps specifically for the transition system scenario where bounded unrolling may
be sufficient. formula extracts and presolves cardinality constraints to obtain
reasonable estimates for closure size. If a guess is unsatisfiable, then it tries
again with a larger guess; this process may never terminate. The fixpoint pro-
cedures presented here are not the most efficient. A realistic engine needs to
optimize them. For both the concrete and symbolic cases, formula combines
static analysis, eager simplification, and efficient indexing to avoid unnecessary
execution of rules. Subsumption tests are performed infrequently at the risk of
extra unnecessary computation.

In conclusion, open-world logic programming is a powerful approach for for-
mal specifications that also integrates deeply with modern solvers. It has a sim-
ple formal semantics, can express a wide range of problems, and can unify a
wide range of verification/analysis/synthesis tasks under the single open-world
query operation. In this paper we focused our comparisons on other logic pro-
gramming paradigms. See [30] for a less rigorous comparison with the relational
model finder Alloy [31] and the term rewriting system Maude [32].

References

1. Boronat, A., Heckel, R., Meseguer, J.: Rewriting logic semantics and verification
of model transformations. In: FASE. (2009) 18–33

2. Büttner, F., Egea, M., Cabot, J.: On verifying atl transformations using ’off-the-
shelf’ smt solvers. In: MoDELS. (2012) 432–448

3. Maoz, S., Ringert, J.O., Rumpe, B.: Cd2alloy: Class diagrams analysis using alloy
revisited. In: MoDELS. (2011) 592–607

4. Varró, D.: Automated formal verification of visual modeling languages by model
checking. Software and System Modeling 3(2) (2004) 85–113

5. Ball, T., Bjørner, N., de Moura, L.M., McMillan, K.L., Veanes, M.: Beyond first-
order satisfaction: Fixed points, interpolants, automata and polynomials. In: SPIN.
(2012) 1–6

6. Desai, A., Gupta, V., Jackson, E.K., Qadeer, S., Rajamani, S., Zufferey, D.: P:
Safe Asynchronous Event-Driven Programming. In: PLDI. (2013)

7. Jackson, E.K., Levendovszky, T., Balasubramanian, D.: Reasoning about Meta-
modeling with Formal Specifications and Automatic Proofs. In: MoDELS. (2011)
653–667

8. Jackson, E.K., Kang, E., Dahlweid, M., Seifert, D., Santen, T.: Components,
Platforms and Possibilities: Towards Generic Automation for MDA. In: EMSOFT.
(2010) 39–48

9. Gelder, A.V., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. J. ACM 38(3) (1991) 620–650

10. Alvaro, P., Condie, T., Conway, N., Elmeleegy, K., Hellerstein, J.M., Sears, R.:
Boom analytics: exploring data-centric, declarative programming for the cloud.
In: EuroSys. (2010) 223–236

11. Becker, M.Y., Russo, A., Sultana, N.: Foundations of logic-based trust manage-
ment. In: IEEE Symposium on Security and Privacy. (2012) 161–175

12. Li, N., Mitchell, J.C.: Datalog with constraints: A foundation for trust management
languages. In: PADL. (2003) 58–73

13. Schäfer, M., de Moor, O.: Type inference for datalog with complex type hierarchies.
In: POPL. (2010) 145–156

14. de Moura, L.M., Bjørner, N.: Z3: An efficient smt solver. In: TACAS. (2008)
337–340

15. Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. J. Log. Program.
19/20 (1994) 503–581

16. Holzbaur, C., Menezes, F., Barahona, P.: Defeasibility in clp(q) through generalized
slack variables. In: CP. (1996) 209–223

17. Frühwirth, T.W.: Constraint Handling Rules. In: Constraint Programming. (1994)
90–107

18. Hermenegildo, M.V., Bueno, F., Carro, M., López-Garćıa, P., Morales, J.F.,
Puebla, G.: An overview of the ciao multiparadigm language and program de-
velopment environment and its design philosophy. In: Concurrency, Graphs and
Models. (2008) 209–237

19. Apt, K.R., Wallace, M.: Constraint logic programming using Eclipse. Cambridge
University Press (2007)

20. Dovier, A., Formisano, A., Pontelli, E.: An empirical study of constraint logic
programming and answer set programming solutions of combinatorial problems.
J. Exp. Theor. Artif. Intell. 21(2) (2009) 79–121

21. Lifschitz, V.: Twelve definitions of a stable model. In: ICLP. (2008) 37–51

22. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp : A conflict-driven
answer set solver. In: LPNMR. (2007) 260–265

23. Syrjänen, T., Niemelä, I.: The Smodels System. In: LPNMR. (2001) 434–438
24. Gebser, M., Schaub, T., Thiele, S.: Gringo : A new grounder for answer set pro-

gramming. In: LPNMR. (2007) 266–271
25. Baselice, S., Bonatti, P.A., Gelfond, M.: Towards an integration of answer set and

constraint solving. In: ICLP. (2005) 52–66
26. Mellarkod, V.S., Gelfond, M.: Integrating answer set reasoning with constraint

solving techniques. In: FLOPS. (2008) 15–31
27. Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. In: ICLP.

(2009) 235–249
28. Frühwirth, T.W., Shapiro, E.Y., Vardi, M.Y., Yardeni, E.: Logic programs as types

for logic programs. In: LICS. (1991) 300–309
29. Jackson, E.K., Schulte, W., Bjørner, N.: Detecting specification errors in declara-

tive languages with constraints. In: MoDELS. (2012) 399–414
30. Jackson, E.K., Schulte, W.: Understanding specification languages through their

model theory. In: Monterey Workshop. (2012) 396–415
31. Torlak, E., Jackson, D.: Kodkod: A Relational Model Finder. In: TACAS. (2007)

632–647
32. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Quesada,

J.F.: Maude: specification and programming in rewriting logic. Theor. Comput.
Sci. 285(2) (2002) 187–243

