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Abstract. Symbolic Finite Transducers augment classic transducers
with symbolic alphabets represented as parametric theories. Such ex-
tension enables succinctness and the use of potentially infinite alphabets
while preserving closure and decidability properties. Extended Symbolic
Finite Transducers further extend these objects by allowing transitions
to read consecutive input elements in a single step. While when the al-
phabet is finite this extension does not add expressiveness, it does so
when the alphabet is symbolic. We show how such increase in expres-
siveness causes decision problems such as equivalence to become unde-
cidable and closure properties such as composition to stop holding. We
also investigate how the automata counterpart, Extended Symbolic Fi-
nite Automata, differs from Symbolic Finite Automata. We then intro-
duce the subclass of Cartesian Extended Symbolic Finite Transducers in
which guards are limited to conjunctions of unary predicates. Our main
result is an equivalence algorithm for such subclass in the single-valued
case. Finally, we model real world problems with Cartesian Extended
Symbolic Finite Transducers and use the equivalence algorithm to prove
their correctness.

1 Introduction

Finite automata have proven to be an effective tool in a wide range of applica-
tions, from regular expressions to network packet inspection [17]. Finite trans-
ducers extend finite automata with outputs and can model functions from strings
to strings such as natural language transformations [13]. Due to their closure and
decidability properties, these models are widely used in practice but they have
three major disadvantages: 1) their number of transitions usually “blows up”
when dealing with large alphabets; 2) they cannot model infinite alphabets; and
3) transitions cannot express relations between adjacent input symbols.

Symbolic Finite Automata/Transducers [18] or SFAs/SFTs respectively, are
an extension of traditional automata and transducers that attempts to solve
problems 1 and 2 above by allowing transitions to be labeled with arbitrary
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predicates in a specified theory. When such theory is decidable SFAs and SFTs
enjoy the same properties of finite automata and transducers, such as closure un-
der composition and decidability of equivalence (for single-valued SFTs). In [18],
Symbolic Transducers or STs (SFTs with registers) are proposed in order to cope
with the third problem above. STs are however undecidable with respect to most
analysis problems, even emptiness.

In our previous work on the topic of analysis of string coders [3], we intro-
duce Extended Symbolic Finite Automata/Transducers or ESFAs/ESFTs, that
add finite lookahead to SFAs/SFTs. This extension allows to read multiple input
symbols in a single transition and combine their values in the output. ESFTs
can be viewed as a subclass of STs with a restricted use of registers that mimic
“lookbehind”. This view is used in [3] to map ESFTs directly to STs in order to
overcome the problem that ESFTs are not closed under composition. In other
words, it addresses the composition problem by first converting ESFTs to STs,
then composing the STs, and finally converting the result back into an ESFT
using a semidecision procedure. The formal properties of ESFTs have not been
fully understood yet. From the point of view of analysis, the key operations that
are desired are composition and equivalence (for single-valued ESFTs). Then,
for example, the functional correctness of a string (encoder,decoder) pair (E,D)
(for example Utf8 to Utf16 encoding) can be decided by checking the equiv-
alence of λx.D(E(x)) with λx.x. Other properties, such as commutativity and
idempotence, also depend on composition and equivalence.

The topic that is left open in [3] is decidability of equivalence checking of
ESFTs. Our main theoretical contribution in this paper is a complete classifi-
cation, in terms of guard complexity and lookahead, of the cases in which the
equivalence problem is decidable for ESFTs. We first show that one-equality or
equivalence in the single-valued case is in general undecidable, contrasting the
finite alphabet setting where lookahead does not matter [20, Theorem 2.17]. We
then introduce the notion of Cartesian ESFT, in which transition guards are con-
strained to be conjunctions of unary predicates, and show that one-equality and
equivalence are decidable for single-valued Cartesian ESFTs. This is a proper
extension of the decidability result of one-equality of SFTs [18]. The key tool
that we need to prove the result is Lemma 2.

We also analyze basic properties of ESFAs and show how they differ from
SFAs. We prove ESFAs to be not closed under intersection and show that equiv-
alence and universality of ESFAs are both undecidable problems.

Applications. We present four applications of our models in different areas.
We first extend the result of [3] by proving the correctness of four real world
string encoders. The new equivalence algorithm is a full decision procedure for
the Cartesian case, unlike the semidecision procedure in [3] that may fail to
terminate in some incorrect instances. Our second and third applications are
in the context of networking and present new classes of programs that can be
modeled as ESFAs/ESFTs. We show how 1) ESFAs can be used for the task of
deep-packet inspection, and 2) ESFTs can succinctly represent transformations
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between headers of different network protocols. Our fourth case study shows the
use of additional theories for the analysis of list manipulating programs.

Contributions. In summary, we offer the following contributions:

– we study the closure and decidability properties of ESFAs (Section 3.1);
– we study the equivalence problem for ESFTs (Section 3.2):

• we prove the equivalence of single-valued ESFTs to be undecidable;
• we present a novel algorithm for the equivalence of single-valued Carte-
sian ESFTs;

– we extend the negative result on ESFTs composition presented in [3] (Sec-
tion 3.3); and

– we analyze the performance of the equivalence algorithm for “Cartesian”
ESFTs on real examples and propose new applications for ESFAs and ESFTs
(Section 4).

We finally summarize previous work and conclude (Section 5 and 6).

2 Extended Symbolic Finite Transducers

We assume a background structure that has a recursively enumerable (r.e.) multi-
typed carrier set or background universe U , and is equipped with a language of
function and relation symbols with fixed interpretations. Definitions below are
given with U as an implicit parameter. We assume closure under Boolean oper-
ations and equality. We use λ-expressions for representing anonymous functions
that we call λ-terms. A Boolean λ-term λx.ϕ(x), where x is a variable of type
σ is called a σ-predicate. We use standard first-order logic and follow the no-
tational conventions that are consistent with the original definition of symbolic
transducers [18]. The universe is multi-typed with Uτ denoting the subuniverse
of elements of type τ . We write Σ for Uσ and Γ for Uγ .

A label theory is given by a recursively enumerable set Ψ of formulas that is
closed under Boolean operations, substitution, equality and if-then-else terms. A
label theory Ψ is decidable when satisfiability for ϕ ∈ Ψ , IsSat(ϕ), is decidable.

For σ-predicates ϕ, we assume an effective witness function W such that, if
IsSat(ϕ) then W(ϕ) ∈ [[ϕ]]; ϕ is valid, IsValid(ϕ), when ∀xϕ(x) holds.

We are studying in this paper an extension of SFTs with lookahead, called
extended SFTs or ESFTs. Originally, ESFTs were introduced in [3] for the pur-
poses of analyzing string encoders and decoders, where a semi-decision procedure
was provided for converting STs (SFTs with registers) into ESFTs.

Definition 1. An Extended Symbolic Finite Transducer (ESFT) with input type
σ and output type γ is a tuple A = (Q, q0, R),

– Q is a finite set of states ;
– q0 ∈ Q is the initial state;
– R is a finite set of rules, R = ∆ ∪ F , where

– ∆ is a set of transitions r = (p, ℓ, ϕ, f, q), denoted p
ϕ/f
−−→
ℓ

q, where
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p ∈ Q is the start state of r;
ℓ ≥ 1 is the lookahead of r;
ϕ, the guard of r, is a σℓ-predicate;
f , the output of r, is a (σℓ→ γ)-sequence;
q ∈ Q is the continuation state of r.

– F is a set of finalizers r = (p, ℓ, ϕ, f), denoted p
ϕ/f
−−→
ℓ

•, with components as

above and where ℓ may be 0.

The lookahead of A is the maximum of all lookaheads of rules in R. An ESFT all
of whose rules have output [] is an Extended Symbolic Finite Automaton (ESFA).

A finalizer is a rule without a continuation state. A finalizer with lookahead
ℓ is used when the end of the input sequence has been reached with exactly
ℓ input elements remaining. A finalizer is a generalization of a final state. In
a classical setting, finalizers can be avoided by adding a new symbol to the
alphabet that is only used to mark the end of the input. In the presence of
arbitrary input types, this is not always possible without affecting the theory,
e.g., when the input type is Z then that symbol would have to be outside Z. The
following example represents typical (realistic) ESFTs over a label theory of
linear modular arithmetic. We use the following abbreviated notation for rules,
by omitting explicit λ’s. We write

p
ϕ(x̄)/[f1(x̄),...,fk(x̄)]
−−−−−−−−−−−−−→

ℓ
q for p

λx̄.ϕ(x̄)/λx̄.[f1(x̄),...,fk(x̄)]
−−−−−−−−−−−−−−−−−→

ℓ
q,

where ϕ and fi are terms whose free variables are among x̄ = (x0, . . . , xℓ−1).

Example 1. The example illustrates standard Base64 encoding that is used to
transfer binary data in textual format, e.g., in email via MIME. The digits
of the encoding are chosen in the safe ASCII range of characters that remain
unmodified during transport over textual media. Assume that the input type
and the output type are both byte, that is the set of integers between 0 and
255. Base64encode in an ESFT with one state and four rules:

p
true/[pb72(x0)q, p(b

1
0(x0)≪4)|b74(x1)q, p(b

3
0(x1)≪2)|b76(x2)q, pb

5
0(x2)q]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
3

p

p
true/[]
−−−−→

0
• p

true/[pb72(x0)q, pb
1
0(x0)≪4q, ‘=’, ‘=’]

−−−−−−−−−−−−−−−−−−−−−−−−→
1

•

p
true/[pb72(x0)q, p(b

1
0(x0)≪4)|b74(x1)q, pb

3
0(x1)≪2q, ‘=’]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
2

•

where bmn (x) extracts bits m through n from x, e.g., b32(13) = 3, x|y is bitwise
OR of x and y, x≪k is x shifted left by k bits, and pxq is the mapping

pxq
def

= (x≤25 ?x+65 : (x≤51 ?x+71 : (x≤61 ?x−4 : (x=62 ?‘+’ : ‘/’))))

of values between 0 and 63 into a standardized sequence of safe ASCII character
codes. The last two finalizers correspond to the cases when the length of the
input sequence is not a multiple of three. Observe that the length of the output
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sequence is always a multiple of four. The character ‘=’ (61) is used as a padding
character that is not a base64 digit. i.e., ‘=’ is not in the range of pxq.

Base64decode in an ESFT that decodes a base64 encoded sequence back into
the original byte sequence. Base64decode has also one state and four rules:

q

∧
3
i=0 β64(xi)/[(xx0y≪2)|b54(xx1y), (b

3
0(xx1y)≪4)|b52(xx2y), (b

1
0(xx2y)≪6)|xx3y]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
4

q

q
true/[]
−−−−→

0
• q

β64(x0)∧β
′

64(x1)∧x2=‘=’∧x3=‘=’/[(xx0y≪2)|b54(xx1y)]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

4
•

q
β64(x0)∧β64(x1)∧β

′′

64(x2)∧x3=‘=’/[(xx0y≪2)|b54(xx1y), (b
3
0(xx1y)≪4)|b52(xx2y)]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
4

•

The function xyy is the inverse of pxq, i.e., xpxqy = x, for 0 ≤ x ≤ 63. The
predicate β64(y) is true iff y is a valid Base64 digit, i.e., y = pxq for some x,
0 ≤ x ≤ 63. The predicates β′

64(y) and β
′′
64(y) are restricted versions of β64(y).

Unlike Base64encode , Base64decode does not accept all input sequences of bytes.
Sequences that do not correspond to any encoding are rejected.3 ⊠

In the sequel let A = (Q, q0, R), R = ∆ ∪ F , be a fixed ESFT with input
type σ and output type γ. The semantics of rules in R is as follows:

[[p
ϕ/f
−−→
ℓ

q]]
def

= {p
[a0,...,aℓ−1]/[[f ]](a0,...,aℓ−1)
−−−−−−−−−−−−−−−−−−→ q | (a0, . . . , aℓ−1) ∈ [[ϕ]]}

We write s1 · s2 for concatenation of two sequences s1 and s2.

Definition 2. For u ∈ Σ∗, v ∈ Γ ∗, q ∈ Q, q′ ∈ Q ∪ {•}, define q
u/v
−−→→A q′ as

follows: there exists n ≥ 0 and {pi
ui/vi
−−−→ pi+1 | i ≤ n} ⊆ [[R]] such that

u = u0 · u1 · · ·un, v = v0 · v1 · · · vn, q = p0, q′ = pn+1.

Let also q
[]/[]
−−→→A q for all q ∈ QA.

Definition 3. The transduction of A, TA(u)
def

= {v | q0
u/v
−−→→ •}.

The following subclass of ESFTs captures transductions that behave as par-
tial functions from Σ∗ to Γ ∗.

Definition 4. A function f : X → 2Y is single-valued if |f(x)| ≤ 1 for all x ∈ X .
An ESFT A is single-valued if TA is single-valued.

A sufficient condition for single-valuedness is determinism. We define ϕ f ψ,
where ϕ is a σm-predicate and ψ a σn-predicate, as the σmax(m,n)-predicate
λ(x1, . . . , xmax(m,n)).ϕ(x1, . . . , xm) ∧ ψ(x1, . . . , xn). We define equivalence of f
and g modulo ϕ, f ≡ϕ g, as: IsValid(λx̄.(ϕ(x̄) ⇒ f(x̄) = g(x̄))).

Definition 5. A is deterministic if for all p
ϕ/f
−−→
ℓ

q, p
ϕ′/f ′

−−−→
ℓ′

q′ ∈ R:

(a) Assume q, q′ ∈ Q. If IsSat(ϕ f ϕ′) then q = q′, ℓ = ℓ′ and f ≡ϕfϕ′ f ′.
(b) Assume q = q′ = •. If IsSat(ϕf ϕ′) and ℓ = ℓ′ then f ≡ϕfϕ′ f ′.

3 For more information see http://www.rise4fun.com/Bek/tutorial/base64.
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(c) Assume q ∈ Q and q′ = •. If IsSat(ϕf ϕ′) then ℓ > ℓ′.

Intuitively, determinism means that no two rules may overlap. It follows from
the definitions that if A is deterministic then A is single-valued. Both ESFTs in
Example 1 are deterministic.

The domain of a function f : X → 2Y is D(f)
def

= {x ∈ X | f(x) 6= ∅}

and for an ESFT A, D(A)
def

= D(TA). When A is single-valued, and u ∈ D(A),
we treat A as a partial function from Σ∗ to Γ ∗ and write A(u) for the value
v such that TA(u) = {v}. For example, Base64encode("Foo") = "Rm9v" and
Base64decode("QmFy") = "Bar".

Cartesian ESFTs. We introduce a subclass of ESFTs that plays an important
role in practice. A binary relation R over X is Cartesian over X if R is the
Cartesian product R1×R2 of some R1, R2 ⊆ X . The definition is lifted to n-ary
relations and σn-predicates for n ≥ 2 in the obvious way. In order to decide if
a satisfiable σn-predicate ϕ is Cartesian over σ, let (a0, . . . , an−1) = W(ϕ) and
perform the following validity check:

IsCartesian(ϕ)
def

= ∀x̄ (ϕ(x̄) ⇔
∧

i<n

ϕ(a0, . . . , ai−1, xi, ai+1, . . . , an−1))

In other words, a σn-predicate ϕ is Cartesian over σ if ϕ can be rewritten equiv-
alently as a conjunction of n independent σ-predicates.

Definition 6. An ESFT (ESFA) is Cartesian if all its guards are Cartesian.

Both ESFTs in Example 1 are Cartesian. Base64encode trivially so, while the
guards of all rules of Base64decode are conjunctions of independent unary pred-
icates. In contrast, a predicate such as λ(x0, x1).x0 = x1 is not Cartesian.

Note that IsCartesian(ϕ) is decidable by using the decision procedure of the
label theory. Namely, decide unsatisfiability of ¬IsCartesian(ϕ).

3 ESFAs and ESFTs Properties

We prove some basic properties of ESFAs and ESFTs and show how they drasti-
cally differ from SFAs and SFTs. While in the finite alphabet case adding finite
lookahead does not add any expressiveness, in the symbolic setting most prop-
erties become undecidable. We first investigate basic ESFAs properties. Then
we analyze ESFTs equivalence and propose a new one-equivalence algorithm for
Cartesian ESFTs. Finally we present some preliminary results on ESFT compo-
sition.

3.1 ESFAs Properties

This section analyses standard language properties such as closures and decid-
ability. We show how ESFAs have results similar to those of context free gram-
mars rather than regular languages. We first show how checking whether the
intersection of two ESFA definable language is empty is undecidable.
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Theorem 1 (Domain Intersection). Given two ESFAs A and B with looka-
head 2 over quantifier free successor arithmetic and tuples, checking whether
there exists an input accepted by both A and B is co-r.e.-complete.

Proof. Recall that a Minsky machine has two registers r1 and r2 that can hold
natural numbers and a program that is a finite sequence of instructions. Each
instruction is one of the following: INC i (increment ri and continue with the
next instruction); DEC i (decrement ri if ri > 0 and continue with the next
instruction); JZ i(j) (if ri = 0 then jump to the j’th instruction else continue
with the next instruction). The machine halts when the end of the program is
reached. Let M be a Minsky machine with program P . Let σ = N

3 represent
the type of the snapshot or configuration (program counter, r1, r2) of M .

Suppose πj : σ→N projects the j’th element of a k-tuple where 0 ≤ j < k.
Construct ESFAs A and B over σ as follows. Let ϕini be the σ-predicate λx.x =
(0, 0, 0) stating that the program counter and both registers are 0. Let ϕfin be
the final σ-predicate λx.π0(x) = |P | ∧ π1(x) 6= 0.

Let ϕstep be the σ2-predicate λ(x, x′).
∨

i<|P | ϕ
step
i where ϕstep

i is the formula

for the i’th instruction. If the i’th instruction is INC 1 then ϕstep
i is

π0(x) = i ∧ π0(x
′) = i+ 1 ∧ π1(x

′) = π1(x) + 1 ∧ π2(x
′) = π2(x)

If the i’th instruction is JZ 1(j) then ϕ
step
i is

π0(x) = i ∧ π0(x
′) = Ite(π1(x) = 0, j, i+ 1) ∧ π1(x

′) = π1(x) ∧ π2(x
′) = π2(x)

Similarly for the other cases. Thus, ϕstep encodes the valid step relation of M
from current configuration x to the next configuration x′. Let

A = ({p0}, p0, {p0
ϕstep

−−−→
2

p0, p0
true
−−−→

0
•}), and

B = ({q0, q1}, q0, {q0
ϕini

−−→
1

q1, q1
ϕstep

−−−→
2

q1, q1
ϕfin

−−→
1

•}).

So α ∈ D(A) ∩ D(B) iff α is a valid computation of M , i.e., α[0] is the initial
configuration, α[i+1] is a valid successor configuration of α[i] (this follows from
A for all odd i < |α| and from B for all even i < |α|), and α[|α| − 1] is a halting
configuration.

It follows that D(A) ∩ D(B) 6= ∅ iff M halts on input (0, 0) with a non-zero
output in r1. The latter is an r.e.-complete problem as an instance of Rice’s
theorem. ⊠

We first show that

Theorem 2 (ESFA Emptiness). Given an ESFA A it is decidable to deter-
mine whether it accepts any input.

Proof. Given A, we first where we remove all the transitions with unsatisfiable
guards. Let’s call the new ESFA A′. If A′ has a path from the initial state to •,
then A is not empty. ⊠
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The emptiness of a ESFA is a decidable problem while using a proof similar to
that for CFGs we prove that checking whether an ESFA accepts every possible
input is undecidable.

Theorem 3 (Universality). Given an ESFA A over σ checking whether it
accepts all the sequences in σ∗ is undecidable.

Proof. Let M be a Minsky machine with program P . Let σ = N
3 represent the

type of the snapshot or configuration (program counter, r1, r2) of M . Let ϕini,
ϕfin and ϕstep be as in Theorem 1.

We construct an ESFA AM that does not accept all the strings in σ∗ iff M

halts on input (0, 0) with a non-zero output in r1. The latter is an r.e.-complete
problem as an instance of Rice’s theorem.

Let

A = ({p0, p1}, p0, {p0
true
−−−→

1
p0, p0

¬ϕstep

−−−−→
2

p1, p1
true
−−−→

1
p1p1

true
−−−→

0
•})

B = ({q0, q1}, q0, {q0
¬ϕini

−−−→
1

q1, q1
true
−−−→

1
q1, q1

true
−−−→

0
•})

C = ({r0}, r0, {r0
true
−−−→

1
r0, r0

¬ϕfin

−−−→
1

•})

D = ({s0}, s0, {s0
true
−−−→

0
•})

A accepts all the M configuration sequences in which one step is wrong, B all
those that starts with the wrong initial state, C all those that end in the wrong
configuration, and D the empty sequence. We define AM = A ∪ B ∪ C using
Theorem 4. AM does not accept all the inputs in σ∗ iff M halts on input (0, 0)
with a non-zero output in r1 (i.e. such sequence of configuration wouldn’t be
accepted by AM ). ⊠

As a consequence of Theorem 3 we have that ESFA equivalence is undecid-
able.

Corollary 1 (Equivalence). Given two ESFAs A and B checking whether they
accept the same languages is undecidable.

Combining Theorems 2 and 1 we obtain the following.

Corollary 2 (Intersection). ESFAs are not closed under intersection.

Thanks to nondeterminism we can then show that ESFA definable languages
are closed under union.

Theorem 4 (Union). ESFAs are closed under union.

Proof. Given two ESFAs A1 = (Q1, q
1
0 , R1) and A2 = (Q2, q

2
0 , R2) over a sort σ

we construct an ESFA B over σ such that D(C) = D(A) ∪ D(B). C will have
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states Q = Q1 ∪Q2 ∪ {q0} and initial state q0. The transition relation R of C is
then defined as follows:

R = R1 ∪R2 ∪ {q0
ϕ
−→
k
q | q10

ϕ
−→
k
q ∈ R1 ∨ q

2
0
ϕ
−→
k
q ∈ R2}

. The proof of correctness is straightforward. ⊠

Combining Theorems 2 and 4 we obtain the following.

Corollary 3. ESFAs are not closed under complement.

We next show how nondeterministic ESFA are strictly more expressive than
their deterministic counterpart.

Theorem 5. Deterministic ESFAs are not closed under union.

Proof. Consider A and B from the proof of Theorem 7. They are deterministic,
but their union is not definable by a deterministic ESFA. ⊠

Corollary 4. Nondeterministic ESFAs are strictly more expressive than deter-
ministic ESFAs.

Finally, Cartesian ESFAs capture exactly the class of SFA definable languages.

Theorem 6 (Cartesian ESFA iff SFA). SFAs and Cartesian ESFA are equiv-
alent in expressiveness.

From Theorem 6 we have that Cartesian ESFAs enjoy all the properties of SFAs
(regular languages) such as boolean closures and decidable equivalence.

3.2 Equivalence of ESFTs

While the general equivalence problem of TA = TB is already undecidable for
very restricted classes of finite state transducers [7], the problem is decidable
for SFTs in the single-valued case. More generally, one-equality of transductions
(defined next) is decidable for SFTs (over decidable label theories).

Definition 7. Functions f ,g : X → 2Y are one-equal, f
1

= g, if forall x ∈ X , if
x ∈ D(f) ∩ D(g) then |f(x) ∪ g(x)| = 1. Let

f ⊎ g(x)
def

=

{

f(x) ∪ g(x), if x ∈ D(f) ∩ D(g);
∅, otherwise.

Proposition 1. f
1

= g iff f ⊎ g is single-valued.

Note that f
1

= f iff f is single-valued. Thus, one-equality is a more refined
notion than single-valuedness, because an effective construction of A ⊎ B such
that TA⊎B = TA ⊎ TB may not always be feasible or even possible for some
classes of transducers.
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Definition 8. Functions f ,g : X → 2Y are domain-equivalent if D(f) = D(g).

Definitions 7 and 8 are lifted to (E)SFTs. For domain-equivalent single-valued

transducers A and B, A
1

= B implies equivalence of A and B (TA = TB).
A natural question that arises is whether decidability of one-equality of SFTs

generalizes to ESFTs. The answer is positive for the subclass of Cartesian ESFTs
(that includes ESFTs in Example 1), but negative in general. We first show that
one-equality of ESFTs over decidable label theories is undecidable in general.

Theorem 7 (One-Equality). One-equality of ESFTs with lookahead 2 over
quantifier free successor arithmetic and tuples is co-re-complete.

Proof. We give a reduction from the Domain Intersection problem of Theorem 1.
Let A1 and A2 be ESFAs with lookahead 2 over quantifier free successor arith-
metic and tuples. We construct ESFTs A′

i, for i ∈ {1, 2}, as follows:

A′
i = (QAi

, q0Ai
, ∆Ai

∪ {p
ϕ/[i]
−−−→
k

• | p
ϕ
−→
k

• ∈ FAi
})

So TA′

i

(t) = {[i]} if t ∈ D(Ai) and TA′

i

(t) = ∅ otherwise. Let f = TA′

1
⊎ TA′

2
. So

– |f(t)| = 0 iff t 6∈ D(A1) ∪ D(A2);
– |f(t)| = 1 iff t ∈ D(A1) ∪ D(A2) and t 6∈ D(A1) ∩ D(A2);

– |f(t)| = 2 iff t ∈ D(A1) ∩ D(A2).

It follows that A′
1

1

= A′
2 iff (by Proposition 1) f is single-valued iff D(A1) ∩

D(A2) = ∅. Now use Theorem 1. ⊠

The main decidability result of the paper is Theorem 8 that extends the
corresponding result for SFTs [18, Theorem 1]. We use the following definitions.

A transition, p
ϕ/f
−−→
ℓ

q where ℓ > 1, ϕ is Cartesian and W(ϕ) = (a1, . . . , aℓ), is

represented, given ϕi = λx.ϕ(a1, . . . , ai−1, x, ai+1, . . . , aℓ), by the following path
of split transitions,

p
ϕ1/f
−−−→

1
p1

ϕ2/⊥
−−−→

1
p2 · · · pℓ−1

ϕℓ/⊥
−−−→

1
q

where pi for 1 ≤ i < ℓ are new temporary states, the output f is postponed
until all input elements have been read. Let ∆s

A denote such split view of ∆A.
Here we assume that all finalizers have lookahead zero, since we do not assume
ESFTs here to be deterministic.

Example 2. It is trivial to transform any ESFT into an equivalent (possibly
nondeterministic) form where all finalizers have zero lookahead. Consider the
ESFT Base64encode in Example 1. In the last two finalizers, replace • with a

new state p1 and and add the new finalizer p1
true/[]
−−−−→

0
•. ⊠
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Definition 9. Let A and B be Cartesian ESFTs with same input and output
types and zero-lookahead finalizers. The product of A and B is the following
product ESFT A×B. The initial state q0A×B of A×B is (q0A, q

0
B). The states and

transitions of A×B are obtained as the least fixed point of

(p, q) ∈ QA×B

p
ϕ/f
−−→

1
p′ ∈ ∆s

A

q
ψ/g
−−→

1
q′ ∈ ∆s

B















IsSat(ϕ∧ψ)
=⇒ (p′, q′) ∈ QA×B, (p, q)

ϕ∧ψ/(f,g)
−−−−−−−→

1
(p′, q′) ∈ ∆A×B

Let FA×B be the set of all rules (p, q)
true/(v,w)
−−−−−−−→

0
• such that p

true/v
−−−−→

0
• ∈ FA,

q
true/w
−−−−→

0
• ∈ FB , and (p, q) ∈ QA×B. Finally, remove from QA×B (and ∆A×B)

all deadends (non-initial states from which • is not reachable).

We lift the definition of transductions to product ESFTs. A pair-state (p, q) ∈
QA×B is aligned if all transitions from (p, q) have outputs (f, g) such that f 6= ⊥

and g 6= ⊥. The relation
/
−→→A×B is defined analogously to ESFTs.

Lemma 1 (Product). For all aligned (p, q) ∈ QA×B, u ∈ Σ∗, v, w ∈ Γ ∗:

(p, q)
u/(v,w)
−−−−−→→A×B • ⇔ p

u/v
−−→→A • ∧ q

u/w
−−−→→B •.

We define also, for all u ∈ Σ∗, TA×B(u)
def

= {(v, w) | q0A×B

u/(v,w)
−−−−−→→ •} and

D(A×B)
def

= D(TA×B). Lemma 1 implies that D(A×B) = D(A) ∩ D(B) and

A 6
1

= B iff there exists u and v 6= w such that (v, w) ∈ TA×B(u).
Next we prove an alignment lemma that allows us to either effectively elim-

inate all nonaligned pair-states from A×B without affecting TA×B or else es-

tablishes that A 6
1

= B. A product ESFT is aligned if all pair-states in it are
aligned.

Lemma 2 (Alignment). If A
1

= B then there exists an aligned product ESFT
that is equivalent to A×B. Moreover, there is an effective procedure that either
constructs it or else proves that A 6

1

= B, if the label theory is decidable.

Proof. The productA×B is incrementally transformed by eliminating nonaligned
pair-states from it. Each iteration preserves equivalence. Using DFS, initialize
the search frontier to be {q0A×B}. Pick (and remove) a state (p, q) from the fron-
tier and consider all transitions starting from it. The main two cases are the
following:

1. If there are transitions from (p, q) where both the A-output f and the B-
output g are (σℓ→ γ)-sequences with equal lookahead (say ℓ = 2):

(p, q)
ϕ/(f,g)
−−−−−→

1
(p1, q1)

ψ/(⊥,⊥)
−−−−−→

1
(p2, q2)

11



replace the path with the following combined transition with lookahead 2

(p, q)
λ(x0,x1).ϕ(x0)∧ψ(x1)/(f,g)
−−−−−−−−−−−−−−−−−−→

2
(p2, q2).

and add (p2, q2) to the frontier unless (p2, q2) has already been visited. Note
that (p2, q2) ∈ QA ×QB and thus (p2, q2) is aligned.

2. Assume there are transitions where the A-output f is a (σk→ γ)-sequence
and the B-output g is a (σℓ→ γ)-sequence (k 6= ℓ, say k = 2 and ℓ = 1):

(p, q)
ϕ/(f,g)
−−−−−→ (p1, q1)

ψ/(⊥,g1)
−−−−−−→ (p2, q2)

So p1 is temporary while q1 is not.

Decide if f can be split into two independent (σ→ γ)-sequences f1 and f2
such that for all a1 ∈ [[ϕ]] and a2 ∈ [[ψ]], [[f ]](a1, a2) = [[f1]](a1) · [[f2]](a2).
To do so, choose h1 and h2 such that f = λ(x, y).h1(x, y) · h2(x, y) (note
that the total number of such choices is |f |+1 where |f | is the length of the
output sequence), let f1 = λx.h1(x,W(ψ)), f2 = λx.h2(W(ϕ), x) and check
validity of the split predicate

∀x y ((ϕ(x) ∧ ψ(y)) ⇒ f(x, y) = f1(x) · f2(y))

If there exists a valid split predicate then pick such f1 and f2, and replace
the above path with

(p, q)
ϕ/(f1,g)
−−−−−→ (p′1, q

′
1)

ψ/(f2,g1)
−−−−−−→ (p2, q2)

where (p′1, q
′
1) is a new aligned pair-state added to the frontier.

Suppose that splitting fails. We show that A 6
1

= B, by way of contradiction.
Assume A

1

= B.

Since splitting fails, the following dependency predicates are satisfiable:

D1 = λ(x, x′, y).ϕ(x) ∧ ϕ(x′) ∧ ψ(y) ∧ f(x, y) 6= f(x′, y)

D2 = λ(x, y, y′).ϕ(x) ∧ ψ(y) ∧ ψ(y′) ∧ f(x, y) 6= f(x, y′)

Let (a1, a
′
1, a2) = W(D1 ) and (e1, e2, e

′
2) = W(D2 ). Assume that A

1

= B. We
proceed by case analysis over |f |. We know that |f | ≥ 1, or else splitting is
trivial.

(a) Assume first that |f | = 1. Let

[b] = [[f ]](a1, a2), [b
′] = [[f ]](a′1, a2), [d] = [[f ]](e1, e2), [d

′] = [[f ]](e1, e
′
2).

Thus b 6= b′ and d 6= d′. Since (p, q) is aligned, and (p1, q1) is reachable
and alive (by construction of A×B, • is reachable from (p1, q1)), there
exists α, β ∈ Σ∗, u1, u2, v1, v2, v3, v4 ∈ Γ ∗, such that, by IsSat(D1 ),

12



p0
α/u1
−−−→→ p

[a1,a2]/[b]
−−−−−−→→ p2

β/u2
−−−→→A •

q0
α/v1
−−−→→ q

[a1]/[[g]](a1)
−−−−−−−→ q1

[a2]·β/v2
−−−−−−→→B •







(A
1
=B)
=⇒

u1 · [b] · u2 =
v1 · [[g]](a1) · v2

p0
α/u1

−−−→→ p
[a′1,a2]/[b

′]
−−−−−−−→→ p2

β/u2

−−−→→A •

q0
α/v1
−−−→→ q

[a′1]/[[g]](a
′

1)−−−−−−−→ q1
[a2]·β/v2
−−−−−−→→B •







(A
1
=B)
=⇒

u1 · [b′] · u2 =
v1 · [[g]](a′1) · v2

By b 6= b′, |v1| ≤ |u1| < |v1 · [[g]](a1)| = |v1|+ |g|. Also, by IsSat(D2 ),

p0
α/u1
−−−→→ p

[e1,e2]/[d]
−−−−−−→→ p2

β/u2
−−−→→A •

q0
α/v1
−−−→→ q

[e1]/[[g]](e1)
−−−−−−−→ q1

[e2]·β/v3
−−−−−−→→B •







(A
1
=B)
=⇒

u1 · [d] · u2 =
v1 · [[g]](e1) · v3

p0
α/u1
−−−→→ p

[e1,e
′

2]/[d
′]

−−−−−−−→→ p2
β/u2
−−−→→A •

q0
α/v1
−−−→→ q

[e1]/[[g]](e1)
−−−−−−−→ q1

[e′2]·β/v4−−−−−−→→B •







(A
1
=B)
=⇒

u1 · [d′] · u2 =
v1 · [[g]](e1) · v4

By d 6= d′, |v1 · [[g]](e1)| = |v1|+ |g| ≤ |u1|. But |u1| < |v1|+ |g|. 	

(b) Assume that f = λ(x, y).[f1(x, y), f2(x, y)] (the case for |f | > 2 is simi-
lar). Since f cannot be split, either f1(x, y) depends on y (modulo ψ) or
f2(x, y) depends on x (modulo ϕ).

i. Suppose f1(x, y) does not depend on y. Then f2(x, y) must depend
of both x and y or else f can be split. We can then choose val-
ues a1, a

′
1, e1 ∈ [[ϕ]] and a2, e2, e

′
2 ∈ [[ψ]] such that [[f2]](a1, a2) 6=

[[f2]](a
′
1, a2) and [[f2]](e1, e2) 6= [[f2]](e1, e

′
2). A contradiction is reached

similarly to the case of |f | = 1.
ii. The case when f2(x, y) does not depend on x is symmetrical to (i).
iii. Suppose f1(x, y) depends on y and f2(x, y) depends on x. Choose

e1, a1, a
′
1 ∈ [[ϕ]] and e2, e

′
2, a2 ∈ [[ψ]] such that [[f1]](e1, e2) 6= [[f1]](e1, e

′
2)

and [[f2]](a1, a2) 6= [[f2]](a
′
1, a2). Let

b1 = [[f1]](e1, e2), b
′
1 = [[f1]](e1, e

′
2), b2 = [[f2]](a1, a2), b

′
2 = [[f2]](a

′
1, a2)

Since (p, q) is input-synchronized, and (p1, q1) is reachable and alive,
there exists α, β ∈ Σ∗, u1, u2, v1, v2, v3, v4 ∈ Γ ∗, such that:

p0
α/u1
−−−→→ p

[a1,a2]/[ ,b2]
−−−−−−−−→→ p2

β/u2
−−−→→A •

q0
α/v1
−−−→→ q

[a1]/[[g]](a1)
−−−−−−−→ q1

[a2]·β/v2
−−−−−−→→B •







(A
1
=B)
=⇒

u1 · [ , b2] · u2 =
v1 · [[g]](a1) · v2

p0
α/u1
−−−→→ p

[a′1,a2]/[ ,b
′

2]−−−−−−−−→→ p2
β/u2
−−−→→A •

q0
α/v1
−−−→→ q

[a′1]/[[g]](a
′

1)−−−−−−−→ q1
[a2]·β/v2
−−−−−−→→B •







(A
1
=B)
=⇒

u1 · [ , b′2] · u2 =
v1 · [[g]](a′1) · v2
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Since b2 6= b′2 it must be that |u1|+1 < |v1 · [[g]](a1)| = |v1|+ |g| Also,

p0
α/u1
−−−→→ p

[e1,e2]/[b1, ]
−−−−−−−−→→ p2

β/u2
−−−→→A •

q0
α/v1
−−−→→ q

[e1]/[[g]](e1)
−−−−−−−→ q1

[e2]·β/v3
−−−−−−→→B •







(A
1
=B)
=⇒

u1 · [b1, ] · u2 =
v1 · [[g]](e1) · v3

p0
α/u1
−−−→→ p

[e1,e
′

2]/[b
′

1, ]−−−−−−−−→→ p2
β/u2
−−−→→A •

q0
α/v1
−−−→→ q

[e1]/[[g]](e1)
−−−−−−−→ q1

[e′2]·β/v4−−−−−−→→B •







(A
1
=B)
=⇒

u1 · [b′1, ] · u2 =
v1 · [[g]](e1) · v4

Thus, since b1 6= b′1, we have |v1 · [[g]](e1)| = |v1| + |g| ≤ |u1|. But
|u1| < |v1|+ |g|. 	

The remaining cases are similar and effectively eliminate all nonaligned pair-
states from A×B or else establish that A 6

1

= B. ⊠

Assume A×B is aligned and let ⌈A×B⌉ be the following product SFT (prod-
uct ESFT all of whose transitions have lookahead 1) over the input type σ∗. For

each p
λx̄.ϕ(x0,x1,...,xℓ−1)/(f,g)
−−−−−−−−−−−−−−−−→

ℓ
q in ∆A×B let y be a variable of sort σ∗ and let

ϕ1 be the σ∗-predicate

λy.ϕ(y[0], y[1], . . . , y[ℓ− 1]) ∧ tail ℓ(y) = []
∧

i<ℓ

tail i(y) 6= []

where y[i] is the term that accesses the i’th head of y and tail i(y) is the
term that accesses the i’th tail of y. Lift f to the (σ∗ → γ)-sequence f1 =

λy.f(y[0], y[1], . . . , y[ℓ− 1]) and lift g similarly to g1. Add the rule p
ϕ1/(f1,g1)
−−−−−−−→

1
q

as a rule of ⌈A×B⌉. Thus, the domain type of T⌈A×B⌉ is (Σ∗)∗ while the range

type is 2Γ
∗×Γ∗

. For u = [u0, u1, . . . , un] ∈ (Σ∗)∗, let ⌊u⌋
def

= u0 · u1 · · ·un in Σ∗.

Lemma 3 (Grouping). Assume A×B is aligned. For all u ∈ Σ∗ and v, w ∈
Γ ∗: (v, w) ∈ TA×B(u) iff ∃z(u = ⌊z⌋ ∧ (v, w) ∈ T⌈A×B⌉(z)).

Proof. The type lifting does not affect the semantics of the label-theory specific
transformations. ⊠

Note that, [[a1, a2], [a3]] and [[a1], [a2, a3]] may very well be distinct inputs of
the lifted product, while both correspond to the same flattened input [a1, a2, a3]
of the original product. Intuitively, the internal subsequences correspond to input
alignment boundaries of the two ESFTs A and B.

So, in particular, grouping preserves the property of there existing an input
u and outputs v 6= w such that (v, w) ∈ TA×B(u). We use the following lemma
that is extracted from the main result in [18, Proof of Theorem 1].

Lemma 4 (SFT One-Equality [18]). Let C be a product SFT over a decidable
label theory. The problem of deciding if there exist u and v 6= w such that (v, w) ∈
TC(u) is decidable.
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We can now prove the main decidability result of this paper.

Theorem 8 (Cartesian ESFT One-Equality). One-equality of Cartesian
ESFTs over decidable label theories is decidable.

Proof. Let A and B be Cartesian ESFTs. Construct A×B. By the Product
lemma 1, D(A×B) = D(A) ∩ D(B) and A 6

1

= B iff there exist u and v 6= w

such that (v, w) ∈ TA×B(u). By using the Alignment lemma 2, construct aligned

product SFT C such that TC = TA×B or else determine that A 6
1

= B. Now lift C

to ⌈C⌉, and by using the Grouping lemma 3, A 6
1

= B iff there exist u and v 6= w

such that (v, w) ∈ T⌈C⌉(u). Finally, observe that adding the sequence operations
for accessing the head and the tail of sequences in the lifting contruction do, by
themselves, not affect decidability of the label theory, apply Lemma 4. ⊠

3.3 Composition of ESFTs

In this section we show some preliminary results (mainly negative) on ESFT
composition.

Given f :X→ 2Y and x ⊆ X , f(x)
def

=
⋃

x∈x f(x). Given f :X→ 2Y and

g :Y → 2Z , f ◦ g(x)
def

= g(f(x)). This definition follows the convention in [5],
i.e., ◦ applies first f , then g, contrary to how ◦ is used for standard function
composition. The intuition is that f corresponds to the relation Rf :X × Y ,

Rf
def

= {(x, y) | y ∈ f(x)}, so that f ◦ g corresponds to the binary relation com-

position Rf ◦Rg
def

= {(x, z) | ∃y(Rf (x, y) ∧Rg(y, z))}.

Definition 10. A class of transducer C is closed under composition iff for every
T1 and T2 that are C-definable T1 ◦ T2 is also C-definable.

We start by showing that both ESFTs and Cartesian ESFTs are not closed under
composition.

Theorem 9. ESFTs are not closed under composition.

Proof Sketch: We show two Cartesian ESFTs whose composition cannot be ex-
pressed by any ESFT. Let A be following ESFT over Z→Z

A = ({q}, q, {q
true/[x1,x0]
−−−−−−−−→

2
q, q

true/[]
−−−−→

0
•}).

and B be following ESFT over Z→Z

B = ({q0, q1}, q0, {q0
true/[x0]
−−−−−−→

1
q1, q1

true/[x1,x0]
−−−−−−−−→

2
q1, q1

true/[x0]
−−−−−−→

1
•})

The two transformations behave as in the following examples:

TA([a0, a1, a2, a3, a4, a5, a6, . . .]) = [a1, a0, a3, a2, a5, a4, a7, . . .]

TB([b0, b1, b2, b3, b4, b5, . . .]) = [b0, b2, b1, b4, b3, b6, . . .]
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When we compose TA and TB we get the following transformation:

TA◦B([a0, a1, a2, a3, a4, a5, a6, . . .]) = [a1, a3, a0, a5, a2, a7, . . .]

Intuitively, looking at TA◦B we can see that no finite lookahead seems to suffice
for this function. The following argument is illustrated by this figure:

a0 a1 a2 a3 a4 a5 a6 a7 · · ·
A :

a1 a0 a3 a2 a5 a4 a7 a6 · · ·
B :

a1 a3 a0 a5 a2 a7 a4 · · ·

⊠

Corollary 5. Given two Cartesian ESFTs, it is not the case that their compo-
sition is ESFT definable.

Corollary 6. Cartesian ESFTs are not closed under composition.

We now show that in general the composition of two ESFTs cannot be effec-
tively computed.

Theorem 10 (Undecidability of Composition Computation). Given two
ESFTs with lookahead 2 over quantifier free successor arithmetic and tuples
whose composition f is ESFT definable, it is undecidable to compute the ESFT
corresponding to f .

Proof Sketch: Given a Minsky machine M we construct two ESFTs A and B

such that their composition C is ESFT definable and C is defined on some input.
iff M halts on input (0, 0) with a non-zero output in r1 Consider the predicates
defined in the proof of Theorem 1. Let

A = ({p0}, p0, {p0
ϕstep/[x0,x1]
−−−−−−−−→

2
p0, p0

true/•
−−−−→

0
}), and

B = ({q0, q1}, q0, {q0
ϕini/[x0]
−−−−−→

1
q1, q1

ϕstep/[x0,x1]
−−−−−−−−→

2
q1, q1

ϕfin/[x0]
−−−−−→

1
•}).

So α ∈ D(A ◦ B) iff α is a valid computation of M , i.e., α[0] is the initial
configuration, α[i+1] is a valid successor configuration of α[i] (this follows from
A for all odd i < |α| and from B for all even i < |α|), and α[|α| − 1] is a halting
configuration. Since M is deterministic and we fix the initial configuration, we
have that D(A◦B) = {α} iff there exists α, such thatM halts on α or D(A◦B) =
∅ otherwise. In the first case we will have TA◦B(α) = α and undefined on any
input different from α. In the second case TA◦B is always undefined. In both
cases TA◦B is ESFT definable. Let’s call C the ESFT that implements TA◦B.
Since emptyness of ESFT is a decidable problem, we can decide if M halts on
input (0, 0) with a non-zero output in r1. The latter is an r.e.-complete problem.
⊠
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4 Experiments and Applications

In this section we show how several practical applications can be modeled and
verified using ESFAs and ESFTs. We first use ESFTs to prove the correctness
of some real world string encoders and decoders. We then show how ESFAs
and ESFTs can be useful in the context of deep packet inspection and network
protocol transformations. Finally we propose ESFTs as a tool for the analysis of
list manipulating programs. All our experiments are run using the tool Bek

4.

Analysis of String Encoders. A string encoder E transforms input strings
in a given format A into output strings in a different format B. A decoder D in-
verts such transformation. The formats A and B usually use different alphabets
(character sets). The first half of Table 1 shows examples of common string en-
coders/decoders and their respective lookahead sizes. E ◦D (D ◦E) denotes the
sequential compositions of the encoder with the decoder (decoder with the en-
coder). We compute such compositions using the semi-decision procedure of [3].

Lookahead Analysis (ms)

E D E◦D
1
=I D◦E

1
=I

Utf8: 2 4 16 24
Base64: 3 5 53 19
Base32: 5 8 8 12
Base16: 1 2 2 1

Table 1. Analyzed encoders (E)
and decoders (D), their looka-
heads, and analysis times.

The correctness of Utf8 encoding was al-
ready investigated in [3] using a semi-decision
procedure for 1-equality. We use the algo-
rithm proposed in Section 3.2 to confirm such
result and we prove the correctness of three
new encoders: Base64, Base32 and Base16.
The second half of Table 1 shows the running
times of the analyses. The column E ◦D

1

= I

(D ◦ E
1

= I) shows the cost of checking
whether E ◦ D (D ◦ E) is 1-equivalent to the identity transducer I. Compo-
sition times (typically 1-2 ms) are included in the measurements.

We want to stress that during our experiments we identified wrong imple-
mentations of the Utf8 encoder/decoder in which the algorithm of Section 3.2
correctly detected that one-equality fails, while the semi-decision procedure used
in [3] did not terminate.

Deep Packet Inspection. Fast identification of network traffic patterns is of
vital importance in network routing, firewall filtering and intrusion detection.
This task is addressed with the name “deep packet inspection” (DPI) [17]. Due
to performance constraints, DPI must be performed in a single pass over the
input. The simplest approach is to use DFAs and NFAs to identify patterns.
These representations are either not succinct or not streamable. Extended Fi-
nite Automata (XFA) [17] make use of registers to reduce the state space while
preserving determinism and therefore deterministic ESFAs can be seen as a sub-
class of XFAs that are able to deal with finite lookahead. Deterministic ESFA can
also represent the alphabet symbolically, which enables a new level of succinct-
ness. We believe that deterministic ESFAs can help achieve further succinctness
in particular problem instances. To support this hypothesis we observe that

4 http://www.rise4fun.com/Bek.
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several examples shown in [17, Figure 2,3] can be represented as deterministic
ESFAs with few transitions. For example the language ^/\ncmd[^\n]{200}$ can
be succinctly captured by a deterministic ESFA with one transition!

Network Protocol Conversions. Deep packet inspection can be naturally
extended by adding data manipulation. As in the previous setting we are inter-
ested in deterministic ESFTs which can commit their output at every transition
without seeing the rest of the input. Deterministic ESFTs can be used to com-
pute logs of network traffic or translate headers of one protocol into another. As
an example, a simple translation from an IPv4 header to an IPv6 header5 can
be easily implemented with a deterministic ESFT with less than 50 transitions.
The same transformation using an SFT would require over 100000 transitions.

Verification of List Manipulating Programs. ESFTs can be used for veri-
fication of list manipulating programs as they naturally model sequential pattern
matching. The ML guards x1::x2::xs -> (x1+x2)::(f2 xs) and
x1::x2::x3::xs -> (x1+x2+x3)::(f3 xs), respectively belonging to the func-
tions f2, f3 : list int → list int, can be naturally expressed as ESFT transi-
tions. Therefore f2 and f3 can be modelled as ESFTs. We can then use the
1-equivalence algorithm of Section 3.2 to prove that f2(f2(f2 l))

1

= f3(f3 l) in
less than 1 ms.

Modeling Tuple Alphabets. ESFTs also provide a natural way to extend
SFTs to work with tuple alphabets without changing the underlying solver. In
particular, the language BEK [8] is optimized for 16 bits characters. An ESFT
of lookahead two, for example, will be able to model 32 bits characters without
having to change the underlying solver.

5 Related Work

Symbolic finite transducers (SFTs) and Bek were originally introduced in [8]
with a focus on security analysis of sanitizers. The formal foundations and the
theoretical analysis of the underlying SFT algorithms, in particular, an algo-
rithm for one-equality of SFTs, modulo a decidable background theory is stud-
ied in [18]. Symbolic Transducers (STs) that allow the use of registers are also
defined in [18]. Full equivalence of finite state transducers is undecidable [7], and
already so for very restricted fragments [9]. In the single-valued case, decidability
was established in [15], and extended to the finite-valued case in [2, 19].

ESFTs were introduced in [3] as a succinct and more analyzable represen-
tation of a subclass of symbolic transducers (STs). The main result in [3] is a
register elimination technique that provides a way to construct (product) ES-
FTs from (product) symbolic transducers (STs). While this technique provides a
semi-decision procedure for one-equality checking (by using grouping, Lemma 3)

5 More information at http://www.cs.washington.edu/research/networking/napt/
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of non-Cartesian ESFTs, it does not provide a full decision procedure for one-
equality of the Cartesian case. The procedure in [3] fails to decide alignment of
ESFTs, that is the key lemma (Lemma 2) used in the main decidability result of
Theorem 8, that is a proper extension of the decidability result of one-equality
of SFTs [18, Theorem 1]. We also show that one-equality is undecidable in the
non-Cartesian case, Theorem 7, that is in sharp contrast to the theory of classi-
cal automata, where the non-Cartesian case is irrelevant (from the point of view
of decidability) due to the standard form [20, Theorem 2.17].

Extended Top-Down Tree Transducers [12] (ETTTs) are commonly used in
natural language processing. ETTS also allow finite lookahead on transformation
from trees to trees, but only support finite alphabets. The special case in which
the input is a string (unary tree) is equivalent to ESFTs over finite alphabets.
This paper focuses on ESFTs over any decidable theory. We leave as future work
extending the model to tree transformations.

In recent years there has been considerable interest in automata using infinite
alphabets [16], starting with the work on register automata [10]. Finite words
over an infinite alphabet are often called data words. This line of work focuses
on fundamental questions about decidability, complexity, and expressiveness on
classes of automata on one hand and fragments of logic on the other hand.

Streaming transducers [1] provide another recent symbolic extension of finite
transducers where the label theories are restricted to be total orders, in order
to maintain decidability of equivalence. Streaming transducers are largely or-
thogonal to SFTs or the extension of ESFTs, as presented in the current paper.
For example, streaming transducers do not allow arithmetic, but can reverse the
input, which is not possible with ESFTs.

The correctness of Utf8 encoder and decoder was proven in [3] using two
semi-decision procedures for equivalence and composition. In this paper we show
that the composition of Utf8 encoder and decoder can be expressed as a Carte-
sian ESFT and can be formally analyzed with the one-equivalence algorithm
introduced in this paper. We do the same for three encoders of which the cor-
rectness was not proven before: Base64, Base32, Base16.

Extended Finite Automata (XFA) are introduced in [17] for network packet
inspection. XFAs are a succinct representation of DFAs that use registers and
allow programs over the registers. ESFAs are orthogonal to XFAs in two ways: 1)
XFAs only support finite alphabets; and 2) XFAs aim at representingmost DFAs
succinctly, while ESFAs only capture the languages that use finite lookahead. We
have not investigated the application of ESFAs to network packet inspection in
detail, but we think that they can help achieving a further level of succinctness.
History-based finite automata [11] are another extension of DFAs that have been
introduced for encoding regular expressions in the context of network intrusion
detection systems, they use a single register (bitvector) to keep track of history.
The register is used together with the input character to determine enabledness
of transitions.

We use the SMT solver Z3 [4] for incrementally solving label constraints that
arise during the exploration algorithm. Similar applications of SMT techniques
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have been introduced in the context of symbolic execution of programs by us-
ing path conditions to represent under and over approximations of reachable
states [6].

Our work is complementary to previous efforts in using SMT solvers to solve
problems related to list transformations. Kaluza [14] extends the SMT solver to
handle equations with multiple variables over strings.

6 Conclusion

We showed fundamental negative and positive results about several classical de-
cision problems of ESFAs and ESFTs, establishing a sharp boundary between
decidability (the Cartesian case with any decidable background) and undecid-
ability (the non-Cartesian case with a background of successor arithmetic). While
the main motivation came from typical static analysis problems using ESFTs,
an equally important application of the Cartesian case is for efficient code gen-
eration. Namely, the conjucts of a Cartesian predicate can be compiled and
normalized into separate unary predicates that may for example use BDDs for
efficient and unique set representation when dealing with bitvectors, as in the
context of strings coders. Identifying classes of ESFTs that are closed under
composition, as well as extending ESFTs to trees are left as open problems.
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