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Technical Report
MSR-TR-2013-35

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

http://www.research.microsoft.com

1Zengfeng Huang is with Hong Kong University of Science and Technology, Hong Kong
(huangzf@cse.ust.hk). His work was performed in part while an intern with Microsoft Research.
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Abstract– We consider the problem of computing an approximate maximum matching in
a graph that consists of n vertices whose edges are stored across k distributed sites in a data
center. We are interested in characterizing the communication complexity of this problem which
is of primary concern in data centers where communication bandwidth is a scarce resource.
Our main result is that any algorithm that finds an α-approximate maximum matching has a
communication complexity of Ω(α2kn). Perhaps surprisingly, we show that this lower bound
matches an upper bound of a simple sequential algorithm, showing that no benefits can be
obtained with respect to the communication cost despite the full flexibility allowed by the
underlying computation model. Our lower bound for matching also implies lower bounds for
other important graph problems in the distributed computation setting, including max-flow and
graph sparsification. Other main contribution of this paper is a new technique for multi-party
randomized communication complexity that is of wide applicability.

1 Introduction

Massive volumes of data are being collected in almost every type of industry posing challenges
to the system architecture and algorithm design to best support analytics on big data. To scale
up the computations on big data, the data is typically distributed and stored across various sites
in a data center. Sites are interconnected with a communication network. The key challenge
on the algorithm design side is how to process the data without putting too much of strain on
the communication network, which is typically the bottleneck for many data analytics tasks. A
particular interest has been devoted to large-scale graph data as it arises in many applications
including online social networks, online services, biological and other networks. On the system
architecture side, a lot of recent effort has been devoted to designing computation platforms that
take as input large-scale input graphs, e.g. general iterative computations platforms such as
Google’s Pregel [24], Apache Giraph [6] and machine learning platforms such as GraphLab [23,
22]. There has been a recent surge of interest in distributed graph databases where a key
challenge is to support efficient resolving of queries on big graphs that may consist of as many
as billions of vertices and trillions of edges, e.g. semantic web knowledge graph, and Facebook
Graph Search [11]. On the system architecture side, there are now many available graph
database systems, e.g. see Neo4j [26] and Trinity [28] and the references therein. A key open
challenge is to design efficient algorithms for processing of big graphs in distributed systems as
also evidenced by recent focus of the theory community on this type of problems, e.g. [21, 19,
2, 3, 5, 4].

In this paper we consider the problem of approximate computation of a maximum matching
in an input graph that is edge-partitioned across different sites in a distributed system. This is
considered in themessage-passing (or coordinator) model (precise definition given in Section 1.1)
which is the model of interest in the view of current architecture of platforms for big data
analytics. Our main result is a lower bound on the communication complexity that we show to
be tight. To the best of our knowledge, this is the first characterization of the communication
complexity for solving the approximate maximum matching problem, which is one of most
elementary and studied combinatorial problems on graphs, in the message-passing model. This
is also one of the first graph problems studied in the message-passing model. The only previous
work, as far as we are concerned, is the graph connectivity problem studied in [27].
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1.1 The Communication Model

We consider a natural distributed computational model that consists of k sites, P 1, . . . , P k,
where each site P i holds a piece of data input xi, and they want to jointly compute a function
f(x1, . . . , xk). In order for them to do this, we allow the sites to communicate among themselves.
At the end of the computation, we require that at least one site should return the answer. We
assume that each site has infinite communicational power, and the internal computation of each
site is free of charge 1. Our goal is to minimize the total communication between the k sites.
We can distinguish three types of multi-site communication models:

1. Blackboard model: We assume that there is a central blackboard. Every time one site
speaks, the message is written to the blackboard and everyone else can see it.

2. Message-passing model: Every time a site speaks, it specifies another site and it can only
send a message to that site; the other k − 2 sites cannot see the message.

3. Coordinator model: In this model, we introduce another special party called the coordi-
nator. The coordinator does not have any input. We require that all sites can only talk
with the coordinator, and at the end of the computation, the coordinator should output
the answer.

The blackboard model corresponds to the situation where each site has the ability to broad-
cast the message, while the message-passing model corresponds to the point-to-point commu-
nication. The coordinator model is essentially the same as the message-passing model for the
following reasons: Every time a site P i wants to speak to another site P j , it can first send
the message to the coordinator, and then the coordinator forwards the message to P j . By
doing this, we only increase the total communication by a factor of 2, thus this will not affect
the asymptotic communication complexity. 2 The coordinator model has an advantage that
the coordinator can specify who speaks next based on all previous communication, making the
model more rigorous for analysis.

In this paper, we study the message-passing model, and will interchangably refer to it as the
coordinator model and the message-passing model for convenience. The message-passing model
(and its dynamic version called the distributed streaming model) is well-studied in literature
(mainly for statistical problems). We refer the reader to [12, 30] and the references therein for
an overview of the development in this model.

We would like to comment that there are two general classes of the multi-party communi-
cation model, namely the number-in-hand (NIH) model (which includes all the three variants
addressed above) and the number-on-forehead (NOF) model. In NIH, each player only knows
its own input, while in NOF, as the name suggests, each player sees all the inputs (on the
other k − 1 players’ foreheads) except its own. These two models are used in different appli-
cations: NOF is usually used for applications such as circuit complexity and data structure
lower bounds, while NIH is suitable for proving lower bounds in the data stream model and
distributed computation for big data. In this paper, we only consider the NIH model, in partic-
ular, the message-passing (or the coordinator) model. We refer the reader to the classic book
in the area [18] for more information about the NOF model.

1This assumption makes perfect sense for the lower bound purpose. While for the upper bounds, it is desired
that the internal computation time is also kept small (e.g., linear in the size of the input).

2A careful reader may find that in order to specify the destination site P j , the message from P i should include
an index j which is log k bits. This might increase the communication complexity by a factor of log k, but if
each message is at least of size log k bits (which is usually the case), then this extra index will not affect the
asymptotic communication complexity. For simplicity, we neglect this extra cost in the paper.
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1.2 Problem Definition and Overview of Results

We study the approximate maximum matching problem in the message-passing model, which
we refer to as DMR (Distributed Matching Reporting). Given a set of k > 1 sites, an input
graph G = (V,E) with |V | = n vertices, and partitioning of edges E = E1 ∪E2 ∪ · · · ∪Ek such
that site P i is assigned the subset of edges Ei, the output is defined to be an α-approximation
of the maximum matching, for given 0 ≤ α 6 1, which must be reported by at least one of the
sites. Notice that DMR is different from the counting version of the problem where the output
corresponds to an α-approximate size of a maximum matching. In this paper, we prove the
following main theorem.

Theorem 1 Given α ∈ [0, 1], any protocol that computes an α-approximation for DMR in the
message passing model with error probability 1/4 has the communication complexity of Ω(α2kn)
bits, assuming that k ≤ n. This lower bound actually holds for bipartite graphs.

It is noteworthy that a simple greedy algorithm solves DMR for α = 1/2 at the commu-
nication cost of O(kn log n) bits. This greedy algorithm is based on computing a maximal
matching by a straightforward sequential procedure through the sites that we define as follows.
Let G(E′) be the graph induced by a subset of edges E′ ⊆ E. The first site P 1 computes a
maximal matching M1 in G(E1), and sends it to P 2. Then, P 2 computes a maximal matching
M2 in G(E1 ∩ E2) by greedily adding edges in E2 to M1, and then sends M2 to P 3, and this
continues until P k. At the end, P k outputs M = Mk that is a maximal matching in the whole
graph G, hence a 1/2-approximation of the maximum matching in G. The communication cost
of this protocol is O(kn logn) bits, as the size of each M i is at most n. Thus, our lower bound
matches the upper bound up to a log n factor. In Section 4, we give an upper bound that also
matches our lower bound in the approximation factor α for any α ≤ 1/2 (up to a log n factor),
which further shows the tightness of the lower bound.

The above upper bound uses a very simple sequential algorithm. Given the flexibility of our
computation model, one may a priori contemplate that it might be possible to improve upon
the upper bound Õ(kn) for a constant 0 < α 6 1.3 The key insight from our paper is that
the asymptotic communication cost of the sequential algorithm cannot be improved beyond a
logarithmic factor.

We comment that in the blackboard model, a maximal matching can be obtained using
O(n log n + k) bits of communication through a simple modification of our greedy algorithm
proposed above: when player i speaks, instead of sending the partial matching M i to player
i + 1, it simply writes M i \ M i−1 to the blackboard. Thus our lower bound separates the
complexities of the matching problem in the two models.

An important contribution of our work is a new technique for studying communication
complexity in the message-passing model that we believe is widely applicable. It is described
in Section 1.3.

Direct Applications. Our result has also a wider applicability.

• Since bipartite matching can be solved using max-flow (find a feasible flow, not just
approximate the value), our lower bound also holds for approximate max-flow.

• Our lower bound also implies a lower bound for graph sparsification (see the definition of
graph sparsification, e.g., in [5]). This is because in our lower bound construction (see

3In Õ we hide logO(1)(kn) factors.
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Section 3), the bipartite graph we constructed contains a lots of cuts of size 1, which have
to be included in a sparsifier. By our construction, these edges form a good approximate
matching. In [5], it is showed that there is a sketch based O(1)-approximate graph sparsi-
fication algorithm with sketch size Õ(n), which directly translates to a protocol of Õ(kn)
communication in our model. Thus, our lower bound is tight up to a polylogarithmic
factor.

• Any graph matching problem can be cast as a simple integer program [3]. When the graph
is bipartite, the integrality gap is one, hence, our lower bound also holds for any general
class of linear programs which contains the bipartite matching program as a special case.

1.3 New Technique for Lower Bounds

As far as we are concerned, there are currently two general techniques for randomized commu-
nication complexity lower bounds in the message-passing model. We briefly describe the high
level ideas that underlie these two techniques, and then describe our new technique.

Symmetrization. The general idea of this technique, introduced in [27], is to reduce a 2-
party problem to a k-party problem. Call the 2-party problem TWO and the k-party problem
MULTI. Given an input (X,Y ) for TWO, we proceed as follows.

1. Alice picks a random site P I from the set of k sites, and assigns it an input XI = h(X),
where X is Alice’s input and h is a fixed function.

2. Bob constructs inputs for the other k− 1 sites: Using a fixed function g, he computes an
input g(Y ) = {X1, . . . , XI−1, XI+1, . . . , Xk}, and assigns Xi to site P i for each i ̸= I.
In this construction, he guarantees that all X1, . . . , XI−1, XI+1, . . . , Xk have the same
distribution as XI (whose distribution is known to Bob), and X1, . . . , Xk are independent
given Y .

3. We show that a protocol that solves MULTI(X1, . . . , Xk) can also solve TWO(X,Y ).

Note that since the input distributions for the k sites are identical, in expectation, the
communication cost of TWO should be at most a factor 2/k of that of MULTI. Thus, if we can
show that TWO has a lower bound of Ω(n), then we will get an Ω(kn) lower bound for MULTI.

Composition. This technique was proposed in [30]. The high-level idea is to solve a compli-
cated problem HARD under input X1, . . . , Xk, by first solving an easier problem EASY. Let
Z1, . . . , Zk be the inputs to the k sites P 1, . . . , P k, respectively, for EASY. We assume that
Zi’s are independent random variables such that each Zi is the output of a 2-party problem
TWO between the i-th site and the coordinator, i.e. Zi = TWO(Xi, Y ), where Xi is the input
of P i and Y is something that the coordinator can construct after spending T = o(kn) bits of
communication with the k sites. Next, we show that to solve HARD, we must solve EASY,
and to solve EASY, we must learn at least Ω(k) of Zi’s well. Now, in order to learn each Zi

well, we need to solve an instance of the problem TWO. Thus, if we can show that TWO has
a lower bound of Ω(n), then we get an Ω(kn) bound for HARD.

Our New Technique. In this paper, we propose a new technique, which can be thought
of as a combination of symmetrization and composition. At a high level, it is similar to sym-
metrization in that we want to perform a reduction from a 2-party problem TWO to a k-party
problem MULTI. Given an input (A,B) for TWO, with A,B ∈ {0, 1}n/q,
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1. Alice picks a random site P I and assigns it an input XI = {XI,1, . . . , XI,q} = h(A,R),
where A is Alice’s input, h is a fixed function, and R is some public randomness shared
by Alice and Bob. Each XI,j ∈ {0, 1}n/q.

2. Bob constructs inputs for the other k − 1 sites and the coordinator. Concretely, he
computes g(B,R) = {X1, . . . , XI−1, XI+1, . . . , Xk, Y } where XI = {XI,1, . . . , XI,q}, B is
Bob’s input, g is a fixed function, andR is some public randomness. Then, he assignsXi to
site P i for each i ̸= I, and assigns Y to the coordinator. In this construction, he guarantees
that conditioned on Y , Xi,j (i ∈ [k], j ∈ [q]) are independent and identically distributed
random variables. Let Zi,j = TWO(Xi,j , Y j) (i ∈ [k], j ∈ [q]). Thus, conditioned on Y ,
Zi,j ’s are also i.i.d. random variables.

3. We show that, because of symmetry, we can recover the answer of TWO(A,B) by simu-
lating any protocol that solves MULTI(X1, . . . , Xk). Then we show such a protocol must
learn an Ω(1)-fraction of Zi,j ’s well. Therefore, if TWO(Xi,j , Y j) has a lower bound of
Ω(n/q), then we have an Ω(k · q · n/q) = Ω(kn) bound for MULTI(X1, . . . , Xk).

We briefly describe how we apply this framework to DMR. In the hard instance, we have
a bipartite graph G = (U, V,E) with |U | = |V | = n/2. Each site P i holds a set of q = n/(2k)
vertices which is a partition the set of left vertices U . The neighbors of each vertex in U is
determined by a DISJ instance (that is, TWO is DISJ in our construction for DMR). In other
words, we “embed” one DISJ instance into the neighborhood of each vertex in U . In total there
are q×k = n/2 DISJ instances, and we want to perform a direct-sum type of argument on these
n/2 DISJ instances. To do this, we reduce DISJ to DMR in the way outlined above. We show
that due to symmetry, the answer of DISJ can be recovered from a good matching reported.
And then we use techniques from information complexity to establish the direct-sum theorem.
We note that the use of symmetrization here is different from that in [27].

Notice that in this reduction, each site needs to solve q DISJ instances with the coordi-
nator, thus for the purpose of a direct-sum argument, we have to use the information cost
(see Section 2.3 for a definition) all the way through the proof, instead of simply using the
communication cost as that in the previous works [27, 30]. For this purpose, we also need to
give a new definition of information cost of a protocol in the message-passing (equivalently, the
coordinator) model.

We believe that our techniques will have a wide applicability to prove distributed commu-
nication complexity for other graph problems. One reason is that for many graph problems
whose solution certificates “span” the whole graph (e.g., connected components, vertex cover,
dominating set, etc.), hard instances should be like ours for the matching problem, i.e., each of
the k sites will contain roughly n/k vertices, and the neighborhood of each vertex defines an
independent instance of a two-party problem. Thus, a direct-sum argument between each site
and the coordinator using information cost may be necessary.

1.4 Related Work

The approximate maximum matching problem was studied extensively in the literature. In this
section we only review the results obtained in some most related models, namely the streaming
computation model [25, 1, 14, 2, 3, 4, 31, 17, 16] , distributed model of computation [29, 21, 20],
and the Map-Reduce model [19].

In the streaming computation model, the maximum matching problem was presented as an
open problem by McGregor [1] and a number of results have been established since then. Much

5



of previous work was devoted to the semi-streaming model, which allows Õ(n) space. Recently,
Ahn and Guha [3] obtained a (1−ε)-approximation for the maximum weight matching on graphs
with space Õ(n/poly(ε)) bits and number of passes Õ(1/poly(ε)). Another recent work is that
of Kapralov [16] studying approximate maximum matching in bipartite graphs in the streaming
model. For the vertex arrival model (stream elements are vertices with all incident edges), he
showed that no one-pass streaming algorithm (possibly randomized) that uses Õ(n) bits of space
can achieve better than (1−1/e)-approximation, and if r passes are allowed, a simple fractional
load balancing achieves the approximating ratio (1 − 1/

√
2πr + O(1/r)) using O(n logn) bits

of space. All these algorithms can be directly used to get an Õ(kn) communication bound for
O(1)-approximate matching in our message-passing model.

In the context of distributed model of computation, Lotker et.al. [21, 20] considered the
problem of approximate solving of maximum matching problem in a synchronous distributed
computation model. In this computation model, each vertex is associated with a processor and
edges represent bidirectional communication. The time is assumed to progress over synchronous
rounds, where in each round each processor may send messages to its neighbors, which are then
received and processed in the same round by their recipients. This model is different from
ours: in their model, the input graph and the communication topology are the same. While in
our model, the communication topology is essentially a complete graph which is different from
the input graph, and in general, sites are not vertices in the topology graph. Their model is
generally used for computation in a network while our model is more tailored to accommodate
the architecture of big data analytics platforms. Their main results include a randomized
algorithm that yields (1 − ϵ)-approximation for the maximum matching problem in O(log n)
rounds. This implies the communication cost of Õ(m) bits where m = O(n2) is the number of
edges in the graph.

The maximum matching problem was also studied in the Map-Reduce model by Lattanzi
et.al. [19] (see [19] for a description of the Map-Reduce model). Under certain assumptions
on the model, they obtain a 1

2 -approximation algorithm in O(1) rounds and Õ(m) bits of
communication.

1.5 Conventions

Let [n] = {1, 2, . . . , n}. All logarithms are with base of 2. We always use capital letters X,Y, . . .
to denote random variables or sets, and the lower case letters x, y, . . . to denote specific values
of random variables X,Y, . . .. We write x ∼ µ to mean that x is chosen randomly according to
the distribution µ. When we say a protocol Π has success probability p we always mean Π has
success probability at least p. On the other hand, when we say Π has error probability p, we
always mean Π has error probability at most p. For convenience, we often abuse the notation
by using Π for both a protocol and its transcript. We usually call a player a site, which we feel
to be more suitable in the coordinator model that we consider in this paper.

2 Preliminaries

2.1 Information Theory

Here we review some basic definitions and inequalities from the information theory which we
use in our proofs. We refer the reader to [13] for an introduction to the information theory.

For two random variables X and Y , we use H(X) to denote the Shannon entropy of the
random variableX, andH(X|Y ) to denote the conditional entropy ofX given Y . Let I(X;Y ) =
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H(X) − H(X|Y ) denote the mutual information between X and Y , and I(X;Y |Z) be the
conditional mutual information given Z. We know that I(X;Y ) ≥ 0 for any X,Y . We will
need the following inequalities from the information theory.

Data processing inequality: If random variables X and Z are conditionally independent
given Y , then I(X;Y | Z) ≤ I(X;Y ) and I(X;Z) ≤ I(X;Y ).

Super-additivity of mutual information: IfX1, · · · , Xt are independent, then I(X1, · · · , Xt;Y ) ≥∑t
i=1 I(X

i;Y ).

Sub-additivity of mutual information: If X1, · · · , Xt are conditional independent given Y ,
then I(X1, · · · , Xt;Y ) ≤

∑t
i=1 I(X

i;Y ).

2.2 Communication Complexity

In a two party communication complexity model, we have two players Alice and Bob. Alice
is given x ∈ X and Bob is given y ∈ Y, and they want to jointly compute some function
f : X × Y → Z, by exchanging messages according to a randomized protocol Π. We use Πxy

to denote the random transcript (i.e., the concatenation of messages) when Alice and Bob run
Π on the input (x, y), and Π(x, y) to denote the output of the protocol. When the input (x, y)
is clear from the context, we will simply use Π to denote the transcript. We say Π is a δ-error
protocol if for all (x, y), the probability that Π(x, y) ̸= f(x, y) is no larger than δ, where the
probability is over the randomness used in Π. Let |Πxy| be the length of the transcript. The
communication cost of Π is maxx,y |Πxy|. The δ-error randomized communication complexity
of f , denoted by Rδ(f), is the minimal cost of any δ-error protocol for f .

The multi-party NIH communication complexity model is a natural generalization of the
two-party model, where instead of two parties, we have k parties, each having a piece of in-
put, and they want to compute some function together by exchanging messages. For more
information about the communication complexity we refer the reader to [18].

2.3 Information Complexity

The communication complexity measures the number of bits needed to be exchanged by multiple
players in order to compute some function together, while the information complexity studies
the amount of information of the inputs that must be revealed by the bits exchanged. It was
extensively studied in the last decade, e.g., [10, 7, 8, 30, 9]. One of the main reasons to study
information complexity is to prove direct-sum type theorems, i.e, the information complexity
of solving t independent copies of the same function simultaneously is t times the information
complexity of solving one. There are several definitions of information complexity. In this
paper, we will follow the definition used in [7].4 In the two-party case, let Π be a two-party
communication protocol and µ be a distribution on X ×Y, we define the information cost of Π
measured under µ as ICµ(Π) = I(XY ; Π | R), where (X,Y ) ∼ µ and R is the public randomness
used in Π. For any function f , we define the information complexity of f parameterized by µ
and δ as ICµ,δ(f) = minδ-error Π ICµ(Π).

2.4 Information Complexity in the Message-Passing Model

We can indeed extend the above definition of information complexity to k-party message-passing
model. That is, let Xi be the input of i-th player with (X1, . . . , Xk) ∼ µ and Π be the whole

4Usually called the external information cost, in contract with the internal information cost used in papers
such as [8].
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transcript, then we could define ICµ(Π) = I(X1, . . . , Xk; Π | R). However, such a definition
does not fully explore the point-to-point communication feature of the message-passing model.
Indeed, the lower bound we can prove using such a definition is at most a lower bound we
can prove under the blackboard model. For some functions, there could be a gap as large as
Ω̃(k) between the complexities in these two models. For example, our problem admits a simple
algorithm with communication O(n log n + k) = O(n log n) (if we assume k = O(n)) in the
blackboard model.

In this paper we give a new definition of information complexity for the message-passing
model, which allows us to prove higher lower bounds compared with the simple generaliza-
tion. Let Πi be the transcript between i-th player and the coordinator, thus Π = Π1 ◦
Π2 ◦ . . . ◦ Πk. We define the information cost of a problem f with respect to input distri-
bution µ and error parameter δ (0 ≤ δ ≤ 1) in the message passing model as ICµ,δ(f) =

minδ-error Π
∑k

i=1 I(X
1, · · · , Xk; Πi). The proof of the following theorems/lemmas can be found

in Appendix C.

Theorem 2 Rδ(f) ≥ ICµ,δ(f) for any distribution µ.

Lemma 2.1 If Y is independent of the random coins used by the protocol Π, then

ICµ,δ(f) ≥ minΠ
∑k

i=1 I(X
i, Y ; Πi).

In this paper we will measure information cost with respect to distributional errors. Given
an input distribution ν, we say a protocol has distributional error δ under ν if the protocol
errors with probability at most δ, where the probability is taken over both the randomness
used in the protocol and the input distribution ν. Clearly any lower bounds proved for the
distributional error also hold for the worst-case error.

3 The Lower Bound

We first overview the main ideas and intuition of the proof. Our lower bound is established by
constructing a hard input distribution on bipartite graphs with n vertices.

A natural idea to approximately compute a maximum matching is to randomly sample a
few edges from each site and hope that we can find a good matching using these edges. For
the lower bound purpose, we have to make such a random sampling strategy difficult, meaning
that no good matching can be constructed out of those sampled edges if we only sample an
insufficient number of edges. One way to do this is to create a lot of noisy edges, entirely
covered by a small set of vertices (denoted by W ). Clearly, the size of the matching that can be
formed by noisy edges must be no more than |W |. At the same time, we will also create a set
of important edges in such a way that any large matching will have to include many of them.
We will carefully craft the bipartite graph so that these edges cannot be found easily by a small
amount of communication between the k sites. We implement this idea by embedding n/2 set
disjointness problems (DISJ) into the graph, such that to find each important edge, the k sites
have to solve a DISJ instance, which is communication intensive. In our reduction, each site
is involved in solving n/(2k) DISJ instances, which introduces some extra technical challenges.
In particular, we have to use information cost instead of communication cost to accomplish a
direct-sum type of argument.

In the remainder of this section we first investigate the information cost of the DISJ problem
under certain input distributions, for which we have to first understand the information cost of
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a primitive problem AND. After that, we reduce DISJ to DMR and prove an information cost
lower bound for DMR.

3.1 The AND Problem

In the problem AND, Alice and Bob hold bits x and y, respectively, and they want to compute
AND(x, y) = x ∧ y.

Let A be Alice’s input and B be Bob’s input. We define two input distributions for (A,B).
Let p = c · α ∈ (0, 1/2], where c is some constant to be chosen later.

ν1: We first choose a random bit W ∈ {0, 1} such that Pr[W = 0] = p and Pr[W = 1] = 1−p.
If W = 0, we set B = 0, and A = 0 or 1 with equal probability. If W = 1, we set A = 0,
and set B = 1 with probability 1− p and B = 0 with probability p. Thus we have

(A,B) =


(0, 0) w. pr. 3p/2− p2,
(0, 1) w. pr. 1− 2p+ p2,
(1, 0) w. pr. p/2.

W here is served as an auxiliary random variable to break the dependence between A and
B, since ν1 is not a production distribution. The use of W will be clear in the reduction.
Let τ be the distribution of W . Note that τ partitions ν1, i.e, given τ , ν1 is a product-form
distribution.

µ1: We first choose W according to τ , and then choose (A,B) according to ν1 given W .
Next, we reset A to be 0 or 1 with equal probability. Let δ1 be the probability that
(A,B) = (1, 1) under distribution µ1. We have δ1 = (1− 2p+ p2)/2.

For p = 1/2, it is proved in [7] that if a private coin protocol Π has worst case error 1/2−β,
then I(A,B; Π | W ) ≥ Ω(β2), where the information cost is measured with respect to µ1. Here
we extend this to any p ≤ 1/2 and distributional error.

We say a protocol has a one-sided error δ for AND under µ, if it has distributional error δ
and always answers correctly for inputs (x, y) satisfying AND(x, y) = 0.

Theorem 3 Let Π be the transcript of any public coin protocol for AND on input distribution
µ1 with error probability δ1 − β for a β ∈ (0, δ1). We have I(A,B; Π | W,R) = Ω(β2p/δ1

2),
where the information is measured when W ∼ τ , (A,B) ∼ ν1, and R is the public randomness.
If Π has a one-side error δ1(1− β), then I(A,B; Π | W,R) = Ω(βp).

Proof. The proof is somewhat technical and is deferred to Appendix A.

3.2 The DISJ Problem

In the problem DISJ, Alice holds s = {s1, . . . , sk} ∈ {0, 1}k and Bob holds t = {t1, . . . , tk} ∈
{0, 1}k, and they want to compute DISJ(s, t) =

∨k
ℓ=1AND(sℓ, tℓ).

Let S = {S1, . . . , Sk} be Alice’s input and T = {T1, . . . , Tk} be Bob’s input. We again define
two input distributions for (S, T ).

νk: We first choose W = {W1, . . . ,Wk} ∼ τk, and then choose (Sℓ, Tℓ) ∼ ν1 given Wℓ, for
each 1 ≤ ℓ ≤ k. For notation convenience, let νk |∗w be the distribution of S conditioned
on W = w, and let νk |w∗ be the distribution of T conditioned on W = w.
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µk: We first choose W = {W1, . . . ,Wk} ∼ τk, and then choose (Sℓ, Tℓ) ∼ ν1 given Wℓ, for each
1 ≤ ℓ ≤ k. Next, we pick a special coordinate D uniformly at random from {1, . . . , k}, and
reset SD to be 0 or 1 with equal probability. Note that (SD, TD) ∼ µ1, and the probability
that DISJ(S, T ) = 1 is also δ1. For notation convenience, let µk |S=s be the distribution
of T conditioned on S = s, and let µk |T=t be the distribution of S conditioned on T = t.

Similar to AND, we say a protocol has a one-sided error δ for DISJ under µk, if it has
distributional error δ and always answers correctly for inputs (s, t) satisfying DISJ(s, t) = 0.

Theorem 4 Let Π be the transcript of any public coin protocol for DISJ on input distribution
µk with error probability δ1 − γ for a γ ∈ (0, δ1). We have I(S, T ; Π | W,R) = Ω(γ2pk/δ1

2),
where the information is measured when W ∼ τk, (S, T ) ∼ µk, and R is the public randomness
used by the protocol. If Π has a one-sided error δ1(1− γ), then I(S, T ; Π | W,R) = Ω(γpk).

Proof. The proof is deferred to Appendix B.

3.3 Proof of Theorem 1

In this section we first reduce DISJ to DMR, and then give a proof for Theorem 1.
Before going to the detailed reduction, we first provide an overview of the hard input

distribution that we construct for DMR. The whole graph is a random bipartite graph con-
sisting of q = n/(2k) i.i.d. random bipartite graphs G1, . . . , Gq, where Gj = (U j , V j , Ej) with
U j = {uj,1, . . . , uj,k} and V j = {vj,1, . . . , vj,k}. The set of neighbors of each vertex uj,i ∈ U j ,
for i ∈ [k], is determined by a k-bit random vector Xj,i, that is, (uj,i, vj,ℓ) ∈ Ej if Xj,i

ℓ = 1. The
k (k-bit) random vectors {Xj,1, . . . , Xj,k} are chosen as follows: we first choose (Xj,1, Y j) ∼ µk,
and then independently choose for each i ∈ {2, . . . , k}, a k-bit vector Xj,i according to the con-
ditional distribution µk |T=Y j . Finally, the input for the i-th site is simply vertices {u1,i, . . . , uq,i}
and all their incident edges, which is actually determined by Xi = {X1,i, . . . , Xq,i}. Note that
Y = {Y 1, . . . , Y k} is not part of the input for DMR, but it will be helpful to think Y as a
virtual input for the coordinator.

Input Reduction. Let s ∈ {0, 1}k be Alice’s input and t ∈ {0, 1}k be Bob’s input for DISJ.
Alice and Bob construct an input {X1, . . . , Xk} for DMR, where Xi = {X1,i, . . . , Xq,i} with
Xj,i ∈ {0, 1}k (j ∈ [q]) is the input for site i.

1. Alice and Bob use public coins to sample an index I uniformly at random from {1, . . . , k}.
Alice will construct the input XI for the I-th site, and Bob will construct the inputs
X1, · · · , XI−1, XI+1, · · · , Xk for the other k − 1 sites.

2. Alice and Bob use public coins to sample an index J uniformly at random from {1, . . . , q}.

3. Alice sets XJ,I = s, and Bob sets Y J = t. For each i ∈ [k]∧ i ̸= I, Bob privately samples
XJ,i according to µk |T=t. This finishes the construction of GJ .

4. For each j ∈ [q] ∧ j ̸= J , they construct Gj as follows,

(a) Alice and Bob first use public coins to sample W j = {W j
1 , . . . ,W

j
k} ∼ τk (see the

definition of τ in Section 3.1).
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(b) Alice and Bob privately sample Xj,I and Y j according to conditional distributions
νk |∗W j and νk |W j∗, respectively. Bob also privately samples Xj,1, . . ., Xj,I−1, Xj,I+1,

. . ., Xj,k independently according to the conditional distribution νk |T=Y j .

(c) Alice privately samples Dj,I uniformly at random from {1, . . . , k}, and resets Xj,I
Dj,I

to be 0 or 1 with equal probability. This makes {Xj,I , Y j} ∼ µk. Bob does the
same for all i ∈ [k] ∧ i ̸= I. That is, for each i ∈ [k] ∧ i ̸= I, he privately samples
Dj,I uniformly at random from {1, . . . , k}, and resets Xj,i

Dj,I to be 0 or 1 with equal
probability.

Note that the I-th site’s input XI is determined by the public coins, Alice’s input s and
her private coins. And the remaining k − 1 sites’ inputs {X1, · · · , XI−1, XI+1, · · · , Xk} are
determined by the public coins, Bob’s input t and his private coins. Let ϕ denote the distribution
of {X1, . . . , Xk} when (s, t) is chosen according to the distribution µk.

In this reduction, in each bipartite graph Gj , we carefully embed k instances of DISJ in
random positions, and the output of a DISJ instance determines whether a specific edge in the
graph exists or not. In the whole graph, we embed a total of k × q = n/2 DISJ instances.
The input of one such DISJ instance is just the original input of Alice and Bob, and the other
(n/2− 1) instances are sampled by Alice and Bob using public and private random coins. Such
a symmetric construction can be used to argue that if the original DISJ instance is solved, then
with a good probability, at least Ω(n) of embedded DISJ instances are solved. We note that this
use of symmetrization is different from that in [27]: The proof that the original DISJ instance
can be solved by solving DMR (that is, obtaining a good matching) is rely on the symmetric
property.

Let p = α/20 ≤ 1/20, where recall that p is a parameter in distribution µk and α is the
approximation parameter. Now, given a protocol P ′ for DMR that achieves an α-approximation
and error probability 1/4 with respect to ϕ, we construct a protocol P for DISJ with one-sided
error probability δ1(1− α/10) with respect to µk, as follows.

Protocol P

1. Given an input (S, T ) ∼ µk, Alice and Bob construct an input (X1, . . . , Xk) ∼ ϕ for DMR
as described by the input reduction above. Let Y = {Y 1, . . . , Y q} be the virtual input
created for the coordinator. Let I, J be the two indices sampled by Alice and Bob during
the reduction.

2. Alice plays the I-th site, and Bob plays the other k − 1 sites and the coordinator. They
run P ′ for DMR. Any communication between the I-th site and the other k − 1 sites
and the coordinator will be exchanged between Alice and Bob. For any communication
between the other k − 1 sites and the coordinator, Bob will just simulate it without any
actual communication. At the end the coordinator (that is, Bob) gets a matching M .

3. Bob outputs 1 if and only if there exists an edge (uJ,I , vJ,ℓ) in the matching M for some
ℓ ∈ [k], such that Y J

ℓ ≡ Tℓ = 1, and 0 otherwise.

In the rest of this section, we first show the correctness of the reduction, and then use an
information cost lower bound of DISJ to prove an information cost lower bound of DMR.

Correctness. First, suppose DISJ(S, T ) = 0, i.e., Sℓ ∧ Tℓ = 0 for all ℓ ∈ [k]. Then, for each
ℓ ∈ [k], we must have either Y J

ℓ ≡ Tℓ = 0 or XJ,I
ℓ ≡ Sℓ = 0, but XJ,I

ℓ = 0 means no edge
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between uJ,I and vJ,ℓ. Thus P will always answer correctly when DISJ(S, T ) = 0, i.e., it has a
one-sided error.

Now suppose that Sℓ = Tℓ = 1 for a certain ℓ ∈ [k] (note that there is at most one
such ℓ according to our construction), which we denoted by L. The output of P is correct if
(uJ,I , vJ,L) ∈ M . In the rest of the analysis we estimate the probability that this event happens.

For each Gj = {U j , V j} (j ∈ [q]), let U j
1 = {uj,i | DISJ(Xj,i, Y j) = 1} and U j

0 = U j \ U j
1 .

Let V j
1 = {vj,ℓ | Y j

ℓ = 1} and V j
0 = V j \ V j

1 . Let U0 = ∪q
j=1U

j
0 , U1 = ∪q

j=1U
j
1 , V0 = ∪q

j=1V
j
0

and V1 = ∪q
j=1V

j
1 . Intuitively, edges between U0 ∪ U1 and V0 can be seen as noisy edges, since

the total number of such edges is large but the maximum matching they can form is small
(at most |V0| ≤ 2pn according to Lemma 3.1, see below). On the contrary, we say the edges
between U1 and V1 the important edges, since the maximum matching they can form is large,
though the total number of such edges is small. Note that there is no edge between U0 and
V1. Therefore, to find a good matching we must choose many edges from the important edges.
A key feature here is that all important edges are symmetric, that is, each important edge
is equally likely to be the edge (uJ,I , vJ,L). Thus with a good probability (uJ,I , vJ,L) will be
included in the matching returned by P ′. Using this we can answer whether XJ,I (= S) and
Y J (= T ) intersect or not, thus solving the original DISJ problem.

We first estimate the size of the maximum matching in graph G = {G1, . . . , Gq}. Recall we
set p = α/20 ≤ 1/20 and δ1 = (1− 2p+ p2)/2, thus 9/20 < δ1 < 1/2.

Lemma 3.1 With probability 0.99, the following events happen.

1. |V0| ≤ 2pn. In this case the size of the maximum matching formed by edges between V0

and U0 ∪ U1 is no more than 2pn.

2. The maximum matching of the graph G is at least 0.2n.

Proof. The first item follows simply by a Chernoff bound. Note that each vertex in
∪

j∈[q] V
j

is included in V0 independently with probability (2p−p2), and E[|V0|] = (2p−p2)n/2, therefore
Pr[|V0| ≥ 2pn] ≥ Pr[|V0| − E[|V0|] ≥ pn] ≤ e−Ω(p2n).

For the second item, we first consider the size of the matching in Gj for a fixed j ∈ [q], that
is, a matching between vertices in U j and V j . For each i ∈ [k], let Li be the coordinate ℓ where
Xj,i

ℓ = Y j
ℓ = 1 if such an ℓ exists (note that by our construction at most one such coordinate

exists), and NULL otherwise.
We use a greedy algorithm to construct a matching between U j and V j . For i from 1 to k,

we connect uj,i to vj,L
i
if Li is not NULL and vj,L

i
is not connected by any uj,i

′
(i′ < i). At

the end, the size of the matching is essentially the number of distinct elements in {L1, . . . , Lk},
which we denote by R. We have the following claim. The proof is similar to Lemma 4 in [30],
and we leave it to Appendix C.3.

Claim 1 It holds R ≥ 0.25k with probability 1−O(1/k).

Therefore, for each j ∈ [k], with probability 1 − O(1/k), we can find a matching in Gj of
size at least 0.25k. If q = n/(2k) = o(k), then by a simple union bound it holds that with
probability at least 0.99, the size of the maximum matching in G = {G1, . . . , Gq} is at least
0.25n. Otherwise, since G1, . . . , Gq are constructed independently, by another application of
Chernoff bound, we have that with probability 1 − e−Ω(q) ≥ 0.99, the size of the maximum
matching in G = {G1, . . . , Gq} is at least 0.2n.
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Now let us make our intuition above more precise. First, if P ′ is an α-approximation
protocol with error probability 1/4, then by Lemma 3.1 we have that with probability at least
3/4− 0.01 ≥ 2/3, P ′ will output a matching M containing at least (α · 0.2n− 2pn) important
edges. We know that there are at most n/2 important edges and the edge (uJ,I , vJ,L) is one
of them. We say (i, j, ℓ) is important for G, if (uj,i, vj,ℓ) is an important edge in G. Since our
construction is totally symmetric, for any G in the support, we have

Pr[I = i, J = j, L = ℓ | G] = Pr[I = i′, J = j′, L = ℓ′ | G].

for any (i, j, ℓ) and (i′, j′, ℓ′) which are important in G. In other words, given an input G, the
protocol can not distinguish between any two important edges. Then we can apply the principle
of deferred decisions to decide the value (I, J) after the matching has already been computed,
i.e., the probability (uJ,I , vJ,L) ∈ M is at least

2/3 · α · 0.2n− 2pn

n/2
≥ α/10.

Recall that we have chosen p = α/20.
To sum up, protocol P solves DISJ correctly with one-sided error at most (δ1(1 − α/10)),

where δ1 is the probability that DISJ(S, T ) = 1 when (S, T ) is distributed according to µk.

Information Cost. Now we analyze the information cost of DMR. Let Π = Π1◦Π2◦· · ·◦Πk be
the best protocol for DMR with respect to input distribution ϕ and one-sided error probability
δ = δ1(1 − α/10). By Lemma 2.1, we have ICϕ,δ(DMR) ≥

∑k
i=1 I(X

i, Y ; Πi). Let W−J =
{W 1, . . . ,W q} \ W J , and W = W JW−J . Recall that in our input reduction I, J,W−J are
public coins used by Alice and Bob.

2/n · ICϕ,δ(DMR) ≥ 1/(qk) ·
k∑

i=1

I(Xi, Y ; Πi)

≥ 1/(qk) ·
k∑

i=1

I(Xi, Y ; Πi | W ) (data processing inequality)

≥ 1/(qk) ·
k∑

i=1

q∑
j=1

I(Xj,i, Y j ; Πi | W−j ,W j) (super-additivity) (1)

= 1/(qk) ·
k∑

i=1

q∑
j=1

I(S, T ; Πi | I = i, J = j,W−j ,WS,T ) (2)

= I(S, T ; ΠI | I, J,W−J ,WS,T )

≥ I(S, T ; Π∗ | WS,T , R) (3)

= Ω(α2k) (4)

where

1. WS,T ∼ τk is the random variable used to sample (S, T ) from µk. Eq. (2) holds because
the distribution of W j is the same as that of WS,T , and the conditional distribution of
(Xj,i, Y j ,Πi | W−j ,W j) is the same as (S, T,Πi | I = i, J = j,W−j ,WS,T ).

2. In Eq. (3), Π∗ is the best protocol for DISJ with one-sided error probability at most
(δ1(1− α/10)) and R is the public randomness used in Π∗. The information is measured
according to µk.

13



3. Eq. (4) holds by Theorem 4. Recall that we have set p = α/20.

Therefore, we have R1/4(DMR) ≥ ICϕ,1/4(DMR) ≥ Ω(α2kn), proving our Theorem 1.

4 The Upper Bound

In this section we present a simple α-approximation algorithm for α ≤ 1/2, which matches
the lower bound . The algorithm consists of two steps. In the first step, each site computes
a local maximum matching and sends its size to the coordinator. The coordinator compares
these sizes, and then sends a message to the site that has the largest local maximum matching.
This site then sends the local maximum matching to the coordinator. We can assume that the
size of this matching is not larger than αn, as otherwise, the local matching of that site can be
declared to be the output of the algorithm, since it is already an α-approximation. Note that
the communication cost of this step is at most O((k + αn) log n) bits.

In the second step, the coordinator picks each site randomly with probability α′ = 4α,
and computes a maximal matching among the sites picked using the straightforward algorithm
that we described in the introduction. The communication cost of this step is at most O((k +
α2kn) log n) bits in expectation. We now show the correctness of the algorithm.

Let Xi be the random variable indicating the event that the i-th site is picked in the second
step, and we have E[Xi] = α′ and Var[Xi] = α′(1 − α′). Let M be the global maximum
matching and m = |M |. We use mi to denote the number of edges in M which are incident to
the vertices in the i-th site, thus

∑
imi = m (recall that we assume edge partitioning where

edges are partitioned disjointly across the set of k sites). For the same reason as in the first
step, we can again assume that mi ≤ α′m for all i ∈ [k], since otherwise, we will already get
an α-approximation. Let Y be the size of the maximal matching that is obtained in the second
step. Recall that a maximal matching is at least 1/2 of a maximum matching, thus we have
Y ≥ 1

2 ·
∑k

i=1miXi. Let Y
′ =

∑k
i=1miXi. So we have E[Y ′] = α′m and

Var[Y ′] = α′(1− α′)
k∑

i=1

m2
i ≤ α′ · α′m2 = α′2m2.

The inequality holds since we assume that mi ≤ α′m for all i ∈ [k]. Now, we can apply
Chebyshev’s inequality to bound the error probability. We have

Pr[|Y ′ − α′m| ≥ α′m/2] ≤ 1/4.

Therefore, with probability at least 3/4, it holds Y ≥ 1/2 · Y ′ ≥ 1/2 · α′m/2 = αm.

Theorem 5 For α ≤ 1/2, there exists a randomized algorithm that computes an α-approximation
of the maximum matching with probability at least 3/4 at the communication cost of O((k +
α2nk + αn) log n) bits.

Note that Ω(αn) is a trivial lower bound, simply because the size of the output could be as
large as Ω(αn). And obviously Ω(k) is also a lower bound, since the coordinator has to talk to
each of the sites at least one. Thus, together with the lower bound Ω(α2kn) in Theorem 1, the
upper bound above is tight up to a log n factor.
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5 Concluding Remarks

In this paper we have shown tight bounds on the communication complexity for solving approxi-
mate maximum matching problem in the message-passing communication model. An important
problem left open after this work is the complexity of the counting version of the problem, i.e.,
what is the communication complexity if we only require the k sites to compute an approxima-
tion of the size of a maximum matching, instead of reporting the matching itself? Note that
our lower bound proof crucially relies on the fact that the protocol has to return a certificate of
the matching. Thus, in order to prove a lower bound for the counting version of the problem,
we need new ideas, and it is also possible that a better upper bound exists. Another interesting
direction for future research is to investigate other important graph problems, for example,
connected components, minimum spanning tree, vertex cover and dominating set. We believe
that our technique can possibly to applied to those problems as well (see the discussions at the
end of Section 1.3).
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A Proof of Theorem 3

We will use Πab to denote the transcript when the input is a, b. By definition,

I(A,B; ΠAB | W ) = pI(A, 0;ΠA0 | W = 0) + (1− p)I(0, B; Π0B | W = 1)

= pI(A; ΠA0) + (1− p)I(B; Π0B). (5)

In (5) A distributed uniformly in {0, 1}, Pr[B = 0] = p and Pr[B = 1] = 1− p. It is proved in
[7] that if the U and V are random variables with uniform distribution in {0, 1}, then

I(U ; ΠU0) ≥ h2(Π00,Π10),

and
I(V ; Π0V ) ≥ h2(Π00,Π01)

where h(X,Y ) is the Hellinger distance between two random variables X,Y . However now the
distribution of B is not uniform. To bound the second part of (5), we need to use the following
lemma, the proof of which can be found in the book [13] (Theorem 2.7.4).

Lemma A.1 Let (X,Y ) ∼ p(x, y) = p(x)p(y|x). The mutual information I(X,Y ) is a concave
function of p(x) for fixed p(y|x).

In our case, x is B and y is Π0B, and it is easy to see the conditional probability Pr[Π0B =
π|B = b] is fixed for any π and b. So the mutual information I(B; Π0B) is a concave function
of the distribution of B. Let µ be the uniform distribution in {0, 1}, and υ be the distribution
always taking value 1. Here we have Pr[B = 0] = p and Pr[B = 1] = 1 − p, which can be
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expressed as a convex combination of µ and υ as 2pµ + (1 − 2p)υ (In this paper we always
assume p ≤ 1/2). Then the second part of the mutual information can be bounded

I(B; Π0B) ≥ 2pIµ(B; Π0B) + (1− 2p)Iυ(B; Π0B) ≥ 2p · h2(Π00,Π01)

as mutual information is non-negative. So

I(A,B; ΠAB | W ) = pI(A; ΠA0 | W = 0) + (1− p)I(B; Π0B | W = 1)

≥ p · h2(Π00,Π10) + (1− p) · 2p · h2(Π00,Π01)

≥ p · (h2(Π00,Π10) + h2(Π00,Π01)). (6)

We next show that if Π is a protocol with error probability no larger than (δ1 − β) under
distribution µ1, then

h2(Π00,Π10) + h2(Π00,Π01) = Ω(β2/δ21),

from which the theorem follows.
By the triangle inequality,

h(Π00,Π10) + h(Π00,Π01) ≥ h(Π01,Π10) = h(Π00,Π11)

The last equality is from the cut-and-paste lemma in [7] (Lemma 6.3). Thus

h(Π00,Π10) + h(Π00,Π01) ≥ 1/2 · (h(Π00,Π10) + h(Π00,Π01) + h(Π00,Π11))

≥ 1/2 · (h(Π00,Π10) + h(Π00,Π11))

≥ 1/2 · h(Π10,Π11). (Triangle inequality)

Similarly we have,
h(Π00,Π10) + h(Π00,Π01) ≥ 1/2 · h(Π01,Π11).

So for any a, b, c ∈ [0, 1] with a+ b+ c = 1,

h(Π00,Π10) + h(Π00,Π01) ≥ 1/2 · (ah(Π00,Π11) + bh(Π01,Π11) + ch(Π10,Π11)) (7)

Let e00, e01, e10, e11 be the error probability of Π when the input is (0, 0), (0, 1), (1, 0), (1, 1)
respectively. Recall that δ1 = µ1(1, 1) ≤ 1/2. By assumption,

(δ1 − β) ≥ µ1(0, 0)e00 + µ1(1, 0)e10 + µ1(0, 1)e01 + δ1e11

≥ δ1

(
(µ1(0, 0)e00 + µ1(1, 0)e10 + µ1(0, 1)e01)

1− δ1
+ e11

)
(since δ1 ≤ 1/2)

= δ1

(
µ1(0, 0)

1− δ1
(e00 + e11) +

µ1(0, 1)

1− δ1
(e01 + e11) +

µ1(1, 0)

1− δ1
(e10 + e11)

)
= δ1(a(e00 + e11) + b(e01 + e11) + c(e10 + e11)) (8)

where a+ b+ c = 1.
Let Π(x, y) be the output of Π when the input is (x, y). Let us analyze the value of e00+e11.

The other two are similar.

e00 + e11 = Pr[Π(0, 0) = 1] + Pr[Π(1, 1) = 0]

= 1− (Pr[Π(0, 0) = 0]− Pr[Π(1, 1) = 0])

≥ 1− V (Π00,Π11).
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Here V (X,Y ) is the total variation distance between X,Y . We also have e01 + e11 ≥ 1 −
V (Π01,Π11) and e10 + e11 ≥ 1− V (Π10,Π11). It is known (see, e.g., [7], Section 6) that

V (X,Y ) ≤ h(X,Y )
√

2− h2(X,Y ) ≤
√
2h(X,Y ),

Thus by (8) we get

a · h(Π00,Π11) + b · h(Π10,Π11) + c · h(Π01,Π11) ≥ β/(
√
2δ1).

It follows from (7) that

h(Π00,Π10) + h(Π00,Π01) ≥ β/(2
√
2δ1).

So we have

h2(Π00,Π10) + h2(Π00,Π01) ≥ 1/2 · (h(Π00,Π10) + h(Π00,Π01))
2 (by Cauchy-Schwarz)

≥ β2/(16δ21).

Then the first part of the theorem follows from (6).
Next let us consider public coin protocol. Let R denote the public randomness. Let Πr

be the private coin protocol when we fix R = r. Recall that δ1 ≤ 1/2 is the probability of
(A,B) = (1, 1). We assume that the error probability of Πr is at most δ1, since otherwise we
can just answer AND(A,B) = 0. Let (δ1 − βr) be the error probability of Πr. We have already
shown that

I(A,B; Πr | W ) = Ω(βr
2p/δ1

2).

And we also have
∑

r(Pr[R = r] · (δ1 − βr)) = δ1 − β, or∑
r(Pr[R = r] · βr) = β. (9)

Thus we have

I(A,B; Π | W,R) =
∑

r Pr[R = r]I(A,B; Πr | W,R = r)

≥
∑

r Pr[R = r]Ω(βr
2pk/δ1

2)

≥ Ω(β2pk/δ1
2).

The last inequality is due to the Jensen’s inequality and (9).
If Π has a one-sided error δ1(1− β), i.e., it will output 1 with probability β when the input

is (1, 1), then we can run l instances of the protocol and answer 1 if and only if there exists one
instance which outputs 1. Let Π′ be this new protocol. The transcript Π′ is the concatenation
of l instances of Π, that is, Π = Π1 ◦Π2 ◦ . . .◦Πl. To make the distributional error smaller than
0.1δ1 = Θ(1) under µ1, it is enough to set l = O(1/β). Thus by the first part of this theorem,
we have I(A,B; Π′ | W,R) = Ω(p).

I(A,B; Π′ | W,R) = I(A,B; Π1,Π2, · · · ,Πl | W,R)

≤
l∑

i=1

I(A,B; Πi | W,R) (10)

= l · I(A,B; Π | W,R),

where (10) follows from the sub-additivity and the fact that Π1,Π2, · · · ,Πl are conditional
independent of each other given A,B and W . So I(A,B; Π | W,R) ≥ Ω(p) · 1/l = Ω(βp).
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B Proof of Theorem 4

We first consider the two-sided error case. Consider the following reduction from AND to
DISJ. Alice has input u, and Bob has input v. They want to decide the value of u ∧ v. They
first publicly sample J ∈R [n], and embed u, v in the J-th position, i.e. setting S[J ] = u and
T [J ] = v. Then they publicly sample W [j] according to τ for each j ̸= J . Let W [−J ] =
{W [1], . . . ,W [J−1],W [J+1], . . . ,W [n]}. Conditioning on W [j], they further privately sample
(S[j], T [j]) ∼ ν1 for each j ̸= J . Then they run the protocol Π on the input (S, T ), and output
whatever Π outputs. Let Π′ denote this protocol for AND. It easy to see if (U, V ) ∼ µ1, the
distributional error of Π′ is the same as that of Π under input distribution µk. The public coins
of Π′ include J , W [−J ] and the public coins R of Π. We first analyze the information cost
when (S, T ) is distributed according to νk.

1

k
· I(S, T ; Π | W,R) ≥ 1

k
·

k∑
j=1

I(S[j], T [j]; Π | W [j],W [−j], R) (super-additivity)

=
1

k
·

k∑
j=1

I(U, V ; Π | W [j], J = j,W [−j], R)

= I(U, V ; Π | W [J ], J,W [−J ], R)

= Ω(γ2p/δ1
2). (11)

The last equality is from Theorem 3. Thus I(S, T ; Π | W,R) = Ω(γ2pk/δ1
2) when (S, T ) ∼ νk.

Now we consider the information cost when (S, T ) ∼ µk. Recall that to sample from µk, we
first sample (S, T ) ∼ νk, and then randomly pick D ∈R [k] and set S[D] to 0 or 1 with equal
probability. Let E be the indicator random variable of the event that the last step does not
change the value of S[D]. Thus (µk|E = 1) = νk, and Pr[E = 1] = Pr[E = 0] = 1/2. We get

Iµk
(S, T ; Π | W,R) ≥ Iµk

(S, T ; Π | W,R, E)−H(E)

=
1

2
· Iµk

(S, T ; Π | W,R, E = 1) +
1

2
· Iµk

(S, T ; Π | W,R, E = 0)− 1

≥ 1

2
· Iνk(S, T ; Π | W,R)− 1

= Ω(γ2pk/δ1
2).

The proof for the one-sided error case is the same, except that we use the one-sided error
lower bound Ω(γp) in theorem 3 to bound (11).

C Other Omitted Proofs

C.1 Proof of Theorem 2

Proof. For any protocol Π, the expected size of its transcript is (we abuse the notation by
using Π also for the transcript)

E[|Π|] =
k∑

i=1

E[|Πi|] ≥
k∑

i=1

H(Πi) ≥ ICµ,δ(Π).

The theorem then follows since the worst-case cost is at least the average.
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C.2 Proof of Lemma 2.1

Proof. It follows directly from the data processing inequality, since Π and Y are conditionally
independent given X1, . . . , Xk.

C.3 Proof of Claim 1

Proof. The proof is similar to Lemma 4 in [30]. By our construction, we have E[|U j
1 |] = δ1k and

E[|V j
1 |] = (1 − 2p + p2)k. Similar to the first item we have that with probability

(
1− e−Ω(k)

)
,

|V j
1 | ≥ 0.9 ·E[|V j

1 |] = 0.9 · (1− 2p+ p2)k ≥ 0.8k (recall p ≤ 1/20) and |U j
1 | ≥ 0.9 ·E[|U j

1 |] ≥ 0.4k.
Therefore with probability

(
1− e−Ω(k)

)
, R must be at least the value R′ of the following bin-ball

game: We throw each of 0.4k balls to one of the 0.8k bins uniformly at random, and then count
the number of non-empty bins at the end of the process. By Fact 1 and Lemma 1 in [15], we
have E[R′] = (1− λ) · 0.4k for some λ ∈ [0, 1/4] and Var[R′] < 4(0.4k)2/(0.8k) = 0.8k. Thus by
Chebyshev’s Inequality we have

Pr[R′ < E[R′]− 0.05k] ≤ Var[R′]

(0.05k)2
< 320/k.

Thus with probability 1−O(1/k), we have R ≥ R′ ≥ 0.25k.
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