

Representativeness in
Software Engineering Research

September 5, 2012
Technical Report
MSR-TR-2012-93

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

Microsoft Research. Technical Report. MSR-TR-2012-93.

© 2012 Microsoft Corporation. All rights reserved. Page 1

 Representativeness in
Software Engineering Research

Meiyappan Nagappan
Software Analysis and Intelligence Lab (SAIL)

Queen’s University, Kingston, Canada
mei@cs.queensu.ca

Thomas Zimmermann
Microsoft Research

Redmond, WA, USA
tzimmer@microsoft.com

Christian Bird
Microsoft Research

Redmond, WA, USA
Christian.Bird@microsoft.com

Abstract—One of the goals of software engineering research is

to achieve generality: Are the phenomena found in a few projects

reflective of what goes on in others? Will a technique benefit

more than just the projects it is evaluated on? The discipline of

our community has gained rigor over the past twenty years and is

now attempting to achieve generality through evaluation and

study of an increasing number of software projects (sometime

hundreds!). However, quantity is not the only important compo-

nent. Selecting projects that are representative of a larger body

of software of interest is just as critical. Little attention has been

paid to selecting projects in such a way that generality and repre-

sentativeness is maximized or even quantitatively characterized

and reported. In this paper, we present a general technique for

quantifying how representative a sample of software projects is of

a population across many dimensions. We also present a greedy

algorithm for choosing a maximally representative sample. We

demonstrate our technique on research presented over the past

two years at ICSE and FSE with respect to a population of 20,000

active open source projects. Finally, we propose methods of re-

porting objective measures of representativeness in research.

I. INTRODUCTION
Over the past twenty years, the discipline of software engi-

neering research has grown in maturity and rigor. Researchers
and our community in general have worked towards maximiz-
ing the impact that software engineering research has on prac-
tice. One such way is by providing techniques and results that
are as general (and thus useful) as possible. However, achiev-
ing generality is challenging. Basili et al. remarked that “gen-
eral conclusions from empirical studies in software engineering
are difficult because any process depends on a potentially large
number of relevant context variables” [1].

With the availability of OSS projects, the software engi-
neering research community has called for more extensive val-
idation and researchers have answered the call. As an extreme
example, the study of Smalltalk feature usage by Robbes et al.
[2] examined 1,000 projects! Another example is the study by
Gabel and Su that examined 6,000 projects [3]. But if care isn’t
taken when selecting which projects to analyze, then increasing
the sample size doesn’t actually contribute to the goal of in-
creased generality. More is not necessarily better.

As an illustration, consider a researcher that has a technique
to evaluate or a hypothesis to investigate and wants to include a
large number of projects in an effort to demonstrate generality
and therefore impact. To choose the subject programs, the re-
searcher goes to the json.org website, which lists over twenty
JSON parsers that are all readily available for download and
analysis. While the researcher may select and evaluate twenty

distinct projects, they all fall within a very narrow range of
functionality (and are likely similar in terms of structure, size,
running time, etc.). Although such an evaluation would include
many projects, generality would not be achieved because the
projects studied are not representative of a larger and wider
population of software projects. We would learn about JSON
parsers, but little about other types of software. This extreme
illustration is contrived and no serious researcher would select
projects in such a way. Nonetheless, the majority of studies
that select projects for evaluation or investigation do so in a
fairly subjective or non-obvious objective way. One likely
reason for this is that there is currently no standard method of
selecting projects for study.

Other fields such as medicine and sociology have overcome
similar issues through published and accepted methodological
guidelines for subject selection. For example, guidelines have
been provided for the design of clinical trials which include
how subjects should be selected [2] (see Section 6.3 “Patient
Selection” pp. 171-174 and Section 6.6 “Design Considera-
tions” pp. 179-182). Additionally the National Institutes of
Health (NIH) in the United States have developed requirements
[4] to make sure that minimum generality bars are met by re-
quiring that certain subpopulations are included in such trials.
The aim of these guidelines is to ensure that the subjects are
representative of a larger population.

Software engineering research lacks such guidelines today,
but we can fortunately leverage the methodological advances of
these older fields. In this paper, we present techniques for
measuring the representativeness of a sample, relative to a larg-
er population along various dimensions, and for selecting a
maximally representative sample from a population. Our tech-
nique is based on the theories underlying subject selection
methodologies in other fields. Whereas today, researchers em-
ploy what we term opportunistic sampling, selecting projects
that are easiest to mine or display some attribute that makes
them attractive to researchers, we recommend representative

sampling, in which a subset of a statistical population is select-
ed that accurately reflects the members of the entire population.

In our work, we present a framework to quantify the repre-
sentativeness of the sample in the population so that (a) the
researcher can arrive at appropriate conclusions about the re-
sults of the experiments, (b) the research community can un-
derstand the context under which the results are applicable, and
(c) the practitioners can easily identify if a particular research
contribution is applicable to their software. In a way similar to
the adoption of structured abstracts [5] in research papers, we

Microsoft Research. Technical Report. MSR-TR-2012-93.

© 2012 Microsoft Corporation. All rights reserved. Page 2

hope that researchers will use the techniques and recommenda-
tions in this paper to achieve consistent methods of reporting
representativeness in their research. We make the following
contributions:

1. We present a technique for objectively measuring how
representative a sample set of projects are of a popula-
tion of projects.

2. We present a technique for selecting a sample of pro-
jects to maximize the representativeness of a study.

3. We assess the representativeness of studies in top tier
software engineering research venues and provide
guidance for reporting representativeness.

In the rest of this paper, we first present a general frame-
work for evaluating representativeness of a sample from a pop-
ulation of software projects and selecting a maximally repre-
sentative sample (Section II). We then demonstrate this tech-
nique by calculating the representativeness of research over the
past two years at ICSE and FSE (Section III). Finally, we pro-
vide appropriate methods of reporting representativeness and
discuss implications (Section IV) and related work (Section V).

II. FRAMEWORK
In this section, we present our framework for assessing rep-

resentativeness: we first introduce our terminology (Section
II.A and II.B) followed by algorithms to score the representa-
tiveness of a set of projects (Section II.C) and select the pro-
jects that increase the score the most (Section II.D).

We implemented both algorithms in the R programming
language and they will be made available as an R package.
The appendix contains a walkthrough on how to use our im-
plementation.

II.A. Terminology: Universe, Space, Configuration

The universe is a large set of projects; it is often also called
population. The universe can vary for different research areas.
For example, research on mobile phone applications will have
a different universe than web applications.

Possible universes: all open-source projects, all closed-source pro-
jects, all web applications, all mobile phone applications, all open-
source projects on Ohloh, and many others.

Within the universe, each project is characterized with one
or more dimensions.

Possible dimensions: total lines of code, number of developers,
main programming language, project domain, recent activity, pro-
ject age, and many others.

The set of dimensions that are relevant for the generality of
a research topic define the space of the research topic. Similar
to universes, the space can vary between different research
topics. For example, we expect program analysis research to
have a different space than empirical research on productivity:

Possible space for program analysis research: total lines of code,
main programming language.

Possible space for empirical research on productivity: total lines of
code, number of developers, main programming language, project
domain, recent activity, project age, and likely others.

The goal of representative research is typically to provide a
high coverage of the space in a universe. The underlying as-
sumption of this paper is that projects with similar values in the

dimensions—that is they are close to each other in the space—
are representative of each other. This assumption is common-
ly made in the software engineering field, especially in effort
estimation research [6,7]. For each dimension d, we define a
similarity function which decides whether two projects p1 and
p2 are similar with respect to that dimension:

 ()

The list of the similarity functions for a given space is
called the configuration.

 ()
Similar to universe and space, similarity functions (and the

configuration) can vary across projects. For some research
topics, projects written in C might be considered similar to
projects written in C++, while for other research they might be
considered different.

To identify similar projects within the universe, we require
the projects to be similar to each other in all dimensions.

 () ⋂ ()

If no similarity function is defined for a dimension, we as-
sume the following default functions, with p[d] the score of
project p in dimension d and |e| the absolute (positive) value of
the specified expression e:

 For numeric dimensions (e.g., number of developers):
We consider two projects to be similar in a dimension
if their values are in the same order of magnitude (as
computed by log10).
 () | |

 For categorical dimensions (e.g., main programming
language: We consider two projects to be similar in a
dimension if the values are identical.
 ()

As mentioned above the similarity functions can be over-
ridden in a configuration. Different configurations may exist
for different research topics and areas.

II.B. Example: Scoring and Project Selection

Figure 1(a) shows a sample universe and a sample space:
the universe contains 50 projects, each represented by a point.
The space is defined by two dimensions: the number of devel-
opers (horizontal) and the number of lines of code (vertical). In
practice, the universe can be thousands of projects and the
space can be defined by numerous dimensions, not just two.
We will present a more complex instantiation of our framework
in Section III.

Consider project A in Figure 1(a) which is represented by
an enlarged point. The light gray areas indicate the projects
that are similar to project A in one dimension (based on the
similarity functions that are defined in the configuration). The
intersection of the light gray areas (the dark gray area) indicates
the projects that are similar to A with respect to the entire

Microsoft Research. Technical Report. MSR-TR-2012-93.

© 2012 Microsoft Corporation. All rights reserved. Page 3

space. In total seven projects are similar, thus project A covers
(7+1)/50=16% of the universe. We can also compute coverage
for individual dimensions: project A covers 13/50=26% for
number of developers and 11/50=22% for lines of code.

Figure 1(b) illustrates how a second project increases the
covered space:

 If we add project B, ten additional projects are covered,
the universe coverage increase to 18/50=36%. The
coverage of the developer and lines of code dimensions
increases to 60% and 56% respectively.

 However if we add project C instead of project B, there
is only little impact on coverage. All similar projects
have been already covered because project C is close to
project A. Thus the coverage increases only to 18%.

This illustrates an important point: to provide a good cover-
age of the universe, one should select projects that are diverse
rather than similar to each other. We now introduce algorithms
to score representativeness (score_projects) and to select addi-
tional projects such that the score is maximized (next_projects).

B

A

Developers

Li

n
es

 o
f

C
o

d
e

Developers

A

C

 (a) (b)
Fig. 1. Sample universe of 50 projects defined by a two-dimensional space.
(a) The light gray areas indicate projects similar to project A in one dimension.
The dark gray areas indicate projects similar to project A in both dimensions.
(b) Project B increases the coverage of the space more than project C does,
because C is too similar to projects already covered by project A.

II.C. Scoring Representativeness

We score the representativeness of a set of projects P for a
given universe U, an n-dimensional space D, and a configura-
tion () as follows. (Recall the definition
of similar which is)

|⋃ | () |

| |

As discussed before, research topics can have different pa-
rameters for universe, space, and configuration. Therefore it is
important to not just report the score but also the context in
which it was computed: What projects is the research intending
to be representative of (universe)? Based on what criteria
(space, configuration)?

To compute the score for a set of projects, we implemented
the algorithm shown in Algorithm I in R. For each project
ject , the algorithm computes the set of projects c_project
that are covered by p (Lines 3-10). As a naming convention we
use the prefix c_ in variable names for sets of covered projects.

In addition, the algorithm computes the projects c_dim[d] cov-
ered by each dimension d (Line 9). After iterating through the
set P, the algorithm computes the representativeness score
within the entire space (Line 11) and for each dimension (Line
12). The apply function maps the function | | | | to the
vector c_dim and returns a vector with the result.

II.D. Project Selection

In order to guide project selection in such a way that the
representativeness of a sample is maximized, we implemented
the greedy algorithm that is shown in Algorithm II. The input
to the algorithm is the number K of projects to be selected, a set
of already selected projects P, a universe U, an n-dimensional
space D, and a configuration ().

The algorithm returns a list of up to K projects; the list is
ordered decreasingly based on how much the projects increase
the coverage of the space. The set of preselected projects P can

𝐬𝐜𝐨𝐫𝐞_𝐩𝐫𝐨𝐣𝐞𝐜𝐭𝐬(p j 𝑃 v 𝑈 p 𝐷 𝐶):

𝐧𝐞𝐱𝐭_𝐩𝐫𝐨𝐣𝐞𝐜𝐭𝐬(𝐾 p j 𝑃 v 𝑈 p 𝐷 𝐶):

ALGORITHM I. SCORING PROJECTS

1: 𝑐_𝑠𝑝𝑎𝑐𝑒 ← ∅
2: 𝑐_𝑑𝑖𝑚 ← ∅ ∅
3: h p j 𝑝 𝑃:
4: 𝑐_𝑝𝑟𝑜𝑗𝑒𝑐𝑡 ← 𝑈
5: h d m 𝑑 𝐷:
6: 𝑎𝑟𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟(𝑝 𝑞) ← 𝐶 𝑑 (𝑝 𝑞)
7: 𝑠𝑖𝑚_𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠 ← 𝑞|𝑎𝑟𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟(𝑝 𝑞)}
8: 𝑐_𝑝𝑟𝑜𝑗𝑒𝑐𝑡 ← 𝑐_𝑝𝑟𝑜𝑗𝑒𝑐𝑡 ∩ 𝑠𝑖𝑚_𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠
9: 𝑐_𝑑𝑖𝑚 𝑑 ← 𝑐_𝑑𝑖𝑚 𝑑 ∪ 𝑠𝑖𝑚_𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠
10: 𝑐_𝑠𝑝𝑎𝑐𝑒 ← 𝑐_𝑠𝑝𝑎𝑐𝑒 ∪ 𝑐_𝑝𝑟𝑜𝑗𝑒𝑐𝑡
11: 𝑠𝑐𝑜𝑟𝑒 ← |𝑐_𝑠𝑝𝑎𝑐𝑒| |𝑈|
12: 𝑑𝑖𝑚_𝑠𝑐𝑜𝑟𝑒 ← pp y(𝑐_𝑑𝑖𝑚 𝑋 |𝑋| |𝑈|)
13: (𝑠𝑐𝑜𝑟𝑒 𝑑𝑖𝑚_𝑠𝑐𝑜𝑟𝑒)

ALGORITHM II. SELECTING THE NEXT PROJECTS

1: 𝑟𝑒𝑠𝑢𝑙𝑡 ←
2: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟(𝑝 𝑞) 𝐶 1 (𝑝 𝑞) 𝐶 𝑑 (𝑝 𝑞)
3: 𝑐_𝑠𝑝𝑎𝑐𝑒 ← ⋃ 𝑞|𝑠𝑖𝑚𝑖𝑙𝑎𝑟(𝑝 𝑞) 𝑝 𝑃

4: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← 𝑈 𝑃
5: 𝑖 1 𝐾 :
6: 𝑐_𝑏𝑒𝑠𝑡 ← ∅
7: 𝑝_𝑏𝑒𝑠𝑡 ← NA
8: h d d 𝑝 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠:
9: 𝑐_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← 𝑞|𝑠𝑖𝑚𝑖𝑙𝑎𝑟(𝑝 𝑞)
10: 𝑐_𝑛𝑒𝑤 ← (𝑐_𝑠𝑝𝑎𝑐𝑒 ∪ 𝑐_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) 𝑐_𝑠𝑝𝑎𝑐𝑒
11: |𝑐_𝑛𝑒𝑤| > |𝑐_𝑏𝑒𝑠𝑡|:
12: 𝑐_𝑏𝑒𝑠𝑡 ← 𝑐_𝑛𝑒𝑤
13: 𝑝_𝑏𝑒𝑠𝑡 ← 𝑝
14: 𝑝_𝑏𝑒𝑠𝑡 NA:
15: b k
16: 𝑟𝑒𝑠𝑢𝑙𝑡 ← pp d(𝑟𝑒𝑠𝑢𝑙𝑡 𝑝_𝑏𝑒𝑠𝑡)
17: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 𝑝_𝑏𝑒𝑠𝑡
18: 𝑐_𝑠𝑝𝑎𝑐𝑒 ← 𝑐_𝑠𝑝𝑎𝑐𝑒 ∪ 𝑐_𝑏𝑒𝑠𝑡
19: (𝑟𝑒𝑠𝑢𝑙𝑡)

Microsoft Research. Technical Report. MSR-TR-2012-93.

© 2012 Microsoft Corporation. All rights reserved. Page 4

be empty. By calling the algorithm with ∅ and | |
one can order the entire universe of projects based on their
coverage increase and returns the subset of projects that is
needed to cover the entire universe (for a score of 100%).

The main part of the algorithm is the loop in Lines 5-18 that
is repeated at most K times. The loop is exited early (Lines 14-
15) when no project is found that increases the coverage; in this
case the entire universe has been covered (score of 100%). The
algorithm maintains a candidate set of projects (candidates),
which is initialized to the projects in universe U but not in P
(Line 4, we use d d). The body of the
main loop computes for each candidate
(Lines 8-13) how much its coverage (Line 9) would increase
the current coverage c_space (Line 10) and memorizes the
maximum increase (Lines 11-13). At the end of an iteration i,
the project p_best with the highest coverage increase is ap-
pended to the result list and then removed from the candidates
list (Lines 16-17); the current coverage c_space is updated to
include the projects in c_best (Line 18).

Our R implementation includes several optimizations that
are not included in Algorithm I for the sake of comprehension.
To reduce the cost of set operations we use index vectors in R
(similar to bit vectors). Computing the projects similar to a
candidate in Line 9 is an expensive operation and we therefore
cache the results across loop iterations. Lastly, starting from
the second iteration, we do process candidates in Line 10 in
decreasing order of their | _ | values from the previous
iteration. The | _ | values from iteration 1 are an upper
bound of how much a candidate can contribute to the coverage
in iteration . If the current best increase | _ | in iteration
is greater or equal than the previous increase | _ | of the
current candidate in iteration 1, we can exit the inner loop
(Lines 8-13) and skip the remaining candidates. This optimiza-
tion significantly reduces the search space for projects.

II.E. Implementation in R

Note to reviewers: We are in the process of releasing the R
implementation as open source. All code from Microsoft re-
quires review before release and we expect the R package to be
available in September/October 2012. We will send the URL
of the code to the PC chairs once it is available.

III. INSTANTIATION
In this section we provide an example of an instantiation of

our framework and illustrate how it can be used to quantify the
representativeness of software engineering research.

III.A. The Ohloh Universe

We chose as universe the active projects that are mapped by
the Ohloh platform [8]. Ohloh is a social coding platform that
collects data such as main programming language, number of
developers, licenses, as well as software metrics (lines of code,
activity statistics, etc.). Note that the Ohloh data is just one
possible universe and there are many other universes that could
be used for similar purposes.

To collect data to describe the projects in the universe, we
used the following steps:

1. We extracted the identifiers of active projects using the
Project API of Ohloh. We decided to include only the
active projects in the universe because we wanted to
measure representativeness for ongoing development.
We followed Richard Sands’ definition [9] of an active
project, that is, a project that had at least one commit
and at least 2 committers in the last 12 months.

2. For each project identifier, we extracted three different
categories of data (each with one call to the API). The
first is the Analysis category which has data about main
programming language, source code size and contribu-
tors. The second is the Activity category which sum-
marizes how much developers have changed each
month (commits, churn). We accumulated the activity
data for the period of June 2011 to May 2012. Finally,
we collected what is called the Factoid category. This
category contains basic observations about projects
such as team size, project age, comment ratio, and li-
cense conflicts.

3. We aggregated the XML files returned by the Ohloh
APIs and converted them into tab-separated text files
using a custom script. We removed projects from the
universe that had missing data (156 projects had no
main language or an incomplete code analysis) or inva-
lid data (40 projects had a negative number for total
lines of code).

After selecting only active projects and removing projects
with missing and invalid data, the universe consists of a total of
20,028 projects. This number is comparable to the number of
active projects reported by Richard Sands [9].

III.B. The Ohloh Space

We use the following dimensions for the space. The list of
dimensions is inspired by the comparison feature in Ohloh.
The data for the dimensions is provided by Ohloh.

 Main language. The most common programming lan-
guage in the project. Ohloh ignores XML and HTML
when making this determination.

 Total lines of code. Blank lines and comment lines are
excluded by Ohloh when counting lines of code.

 Number of contributors (12 months). Contributors with
at least one commit in the last 12 months.

 Number of churn (12 months). Number of added and
deleted lines of code, excluding comment lines and
blank lines, in the last 12 months.

 Number of commits (12 months). Commits made in the
last 12 months.

 Project age. The Ohloh factoid for project age: projects
less than 1 year old are Young, between 1 year and 3
years they are Normal, between 3 and 5 years they are
Old, and above 5 years they are Very Old.

 Project activity. The Ohloh factoid for project activity:
if during the last 12 calendar months, there were at
least 25% fewer commits than in the prior 12 months,
the activity is Decreasing; if there were 25% more
commits, the activity is Increasing; otherwise the activ-
ity is Stable.

Microsoft Research. Technical Report. MSR-TR-2012-93.

© 2012 Microsoft Corporation. All rights reserved. Page 5

In our case, metrics for the last 12 months are for the period
of June 2011 to May 2012. Again this is just one possible
space and there will be other dimensions that can be relevant
for the generality of research.

Figure 2 shows the distributions of the dimensions in our
dataset. There are over 70 programming languages captured in
the Ohloh dataset; the most frequently used languages are Java,
Python, C, and JavaScript. A large number of projects are very
small in terms of size, people, and activity: 4,937 projects are
less than 2,000 lines of code; yet 713 projects exceed a million
lines of code. Many projects have only 2 contributors (7,235
projects) and not more than 50 commits (10,528 projects) in the
last 12 months. Again there are extreme cases with hundreds
of contributors and thousands of commits.

III.C. Covering the Ohloh Universe

As a first experiment, we computed the set of projects re-
quired to cover the entire population of 20,028 Ohloh projects.
For this we called the next_projects algorithm with N=20,028
and an empty initial project list P.

 _ (p j ∅ v
 h h p)

Figure 3 shows the results with a cumulative sum plot.
Each point (x,y) in the graph indicates that the first x projects
returned by next_projects covered y percent of the Ohloh uni-
verse. The first 50 projects (or 2.5%) covered 15.3% of the
universe, 392 projects covered 50%, and 5030 projects covered
the entire universe.

In Table I we show the first 15 projects returned by the al-
gorithm next_projects. These are the projects that increase the
coverage of the space the most. We draw the following con-
clusions. First, small software projects written in dynamic lan-
guages dominate the list (seven of the first nine are in Ruby or
Python and under 2000 LOC). Are researchers exploring the
problems faced by these projects? Even when considering all
15 projects, these projects together comprise less than 200,000
LOC and just over 1,000 commits, an order of magnitude lower
than for Apache HTTP, Mozilla Firefox, or Eclipse JDT. The
time and space required to analyze or evaluate on these projects
are fairly low, providing a ripe opportunity for researchers to
achieve impact without large resource demands. This result
also counters a common criticism of software engineering: re-
search: many people expect that any research has to scale to
large-scale software. However, as Table I and Figure 1 show,
the space of smaller projects is non-negligible.

III.D. Covering the Ohloh Universe with ICSE and FSE

We now apply the framework instantiated with the Ohloh
universe to papers from premiere conferences in the software
engineering field: the International Conference on Software
Engineering (ICSE) and Foundations of Software Engineering
(FSE).

To create the dataset we considered the last two years
(ICSE 2011, 2012 and FSE 2010, 2011). The first author read
each (full) paper of the main technical research track in each

Fig. 2. Histograms of the dimensions in the Ohloh universe.

Fig. 3. Number of projects that are needed to cover the Ohloh universe. Each
point in the graph means that x projects can cover y percent of the universe.

Microsoft Research. Technical Report. MSR-TR-2012-93.

© 2012 Microsoft Corporation. All rights reserved. Page 6

conference, looked for the software projects that were analyzed
and recorded the number and—if mentioned—the names of the
projects in a spreadsheet. We then queried Ohloh for each of
the software projects to find the corresponding identifier, which
we used to cross-reference the data with our corpus.

Some projects we could not cross reference with our dataset
because of any one of the following reasons: (a) the project was
not indexed by Ohloh; (b) the paper used an aggregated set of
projects, and we cannot name any one particular project that
the authors used; (c) the project does not meet the criteria to be
included in the universe, e.g., the project has not been under
development in the past year, has only one developers, or has
missing or invalid data.

The analysis of the ICSE and FSE conferences revealed
several large-scale studies that analyzed hundreds if not thou-
sands of projects. Some of these papers we had to exclude
from our analysis as they either analyzed closed-source projects
or did not report the names of the individual projects analyzed
or analyzed inactive Ohloh projects.
What are the most frequent projects used in ICSE and FSE?

We found 635 unique projects that were analyzed by the
ICSE and FSE conferences in the two-year period. Out of the-
se we could map 207 to the universe of active Ohloh projects.

The most frequently studied projects were the Eclipse Java
Development Tools (JDT) in 16 papers, Apache HTTP Server
in 12 papers, gzip, jEdit, Apache Xalan C++, and Apache Lu-
cene each in 8 papers and Mozilla Firefox in 7 papers. Another
frequently studied project is Linux, which was analyzed in 12
papers. While the Linux project is listed on Ohloh, the code
analysis has not yet completed and only limited information is
available (no activity, no lines of code). Therefore we ignored
Linux from our analysis.
How much of the Ohloh universe do ICSE and FSE cover?

The 207 Ohloh projects analyzed in the two years of the
ICSE and FSE conferences were representative of 9.15% of the
Ohloh population. At a first glance this score seems low, but
one has to keep in mind that it is based on strict notion of rep-
resentativeness: values in all dimensions have to be similar for
a project to be representative of another. Low scores are not
bad as we will discuss in Section IV.A.

Our algorithm also measures the representativeness for each
dimension. Here the numbers are very promising (see second
column in Table II): for all but one dimension the representa-
tiveness scores exceed 98%, which indicates that research pub-
lished at ICSE and FSE covers a wide spectrum of software in
terms of team size, activity, and project size. The lowest score

TABLE I. THE FIRST 15 PROJECTS RETURNED BY 𝐧𝐞𝐱𝐭_𝐩𝐫𝐨𝐣𝐞𝐜𝐭𝐬(𝑁 PROJECTS 𝑃 ∅ UNIVERSE 𝑈 𝑜ℎ𝑙𝑜ℎ SPACE 𝐷 CONFIG 𝐶)
WITH THE INCREASE IN COVERAGE

Name Language Lines Contributors Commits Churn Age Activity Increase

serialize_with_options Ruby 301 2 10 147 Normal Increasing 0.574%
Java Chronicle Java 3892 4 81 8629 Young Stable 0.569%
hike Ruby 616 3 11 333 Normal Stable 0.559%
Talend Service Factory Java 20295 8 162 27803 Normal Stable 0.549%
OpenObject Library Python 1944 5 36 1825 Normal Stable 0.459%
ruote-amqp-pyclient Python 315 4 7 139 Normal Stable 0.454%
sign_server Python 1791 3 63 3415 Young Stable 0.414%
redcloth-formatters-plain Ruby 655 4 5 82 Normal Decreasing 0.384%
python-yql Python 1933 2 11 93 Normal Decreasing 0.369%
mraspaud's mpop Python 12664 7 160 22124 Normal Stable 0.369%
appengine-toolkit JavaScript 18253 5 110 20572 Normal Stable 0.364%
socket.io-java Java 23533 4 187 46254 Young Stable 0.335%
glinux C 41052 8 55 3114 Very Old Decreasing 0.335%
Pax URL Java 31467 7 73 6923 Old Decreasing 0.330%
honeycrm Java 14864 2 45 3810 Normal Decreasing 0.315%

TABLE II. THE REPRESENTATIVENESS OF ALL ICSE AND FSE PAPERS IN THE PAST 2 YEARS AS WELL AS THE FIVE MOST REPRESENTATIVE PAPERS. THE
UNIVERSE IS THE ACTIVE OHLOH PROJECTS, THE SPACE IS (MAIN LANGUAGE, TOTAL LINES OF CODE, CONTRIBUTORS, CHURN, COMMITS, PROJECT AGE,

PROJECT ACTIVITY) AND THE CONFIGURATION CONSISTS OF THE DEFAULT SIMILARITY FUNCTIONS.

Microsoft Research. Technical Report. MSR-TR-2012-93.

© 2012 Microsoft Corporation. All rights reserved. Page 7

is for programming language, but still at an impressive 91.42%.
The unstudied languages highlight opportunities for future re-
search: Objective-C is used by 245, Vim script by 145, Scala
by 119, Erlang by 108, and Haskell by 99 projects.
What are showcases of representative research?

We identified several outstanding papers in terms of high
representativeness. In Table II, the Columns 3 to 8 show the
total score and the dimension scores for the five most repre-
sentative papers:

 “A study of the uniqueness of source code” by Gabel
and Su [3] analyzed over 6,000 projects of which 30
were named in the paper and analyzed in depth. The
score is computed for only the 30 named projects. The
bulk of the corpus is from the source distribution of the
Fedora Linux distribution (rel. 12). The authors stud-
ied multiple programming languages (C, C++, Java).

 “Semistructured merge: rethinking merge in revision
control systems” by Apel et al. [10] evaluated a merge
algorithm on 24 projects written in the C#, Python, and
Java languages.

 “On the congruence of modularity and code coupling”
by Beck and Diehl [11] analyzed 16 small to medium
sized projects written in Java.

 “Temporal analysis of API usage concepts” by Uddin
et al. [12] studied 19 client software projects. They
covered a wide spectrum of project size (5.9 to 2991.8
KLOC) but given the nature of their study focused on
older projects with larger amounts of history.

 “BugRedux: Reproducing field failures for in-house
debugging” by Jin and Orso [13] recreated 17 failures
of 15 real world programs. The size of the projects
was between 0.5 and 241 KLOC.

Again the total scores seem to be low, which we will dis-
cuss in Section IV.A. More importantly however, the numbers
in Table II allow assessing which dimensions papers covered
well and which dimensions need improvement. For example,
Beck and Diehl [11], Uddin et al. [12], and Jin and Orso [13]
focused on a single programming language (Java and C respec-
tively). To further increase the generality, additional languages
may be studied. Another example is project age: all three pa-
pers focused on older projects, possibly because they needed
long project histories that are only available for older projects.

Note that this is not a criticism of this research; these are
merely ideas on how to become more representative of the
Ohloh universe. Also note that the relevant target universe
may be different for each paper. For example research on Java
projects may limit itself to the Java universe.

It is noteworthy that several of these papers selected their
subjects with respect to a dimension that is not included in our
space: the functionality of the software. Given the availability
of data, the dimension could be easily added to our space and
accounted for in our score computation.

III.E. Data Availability

All data that has been used for the experiments in this sec-
tion is available at the following URL. This includes the Ohloh

data for universe and space as well as the spreadsheets with the
conference data.

http://sailhome.cs.queensu.ca/replication/representativeness/

IV. DISCUSSION
Having introduced our technique for assessing project sam-

ple representativeness and demonstrated it on recent software
engineering research, we now discuss issues surrounding the
use of such a technique in research. The use is not as straight-
forward as one might think. Here are some considerations.

IV.A. Low Representativeness is Not Bad

One observation that we have made in the course of using
our techniques to measure representativeness is that many stud-
ies have low levels of software representativeness. At first
glance, one might be tempted to conclude that these studies do
not contribute much to the body of knowledge in software en-
gineering or that others with higher representativeness are bet-
ter. Identifying how representative a study is does not devalue
the research, but rather gives further insight into the results.

For example, Zhou et al.’s recent result that bug report at-
tributes can be used to automatically identify the likely location
of a fix was evaluated on Eclipse JDT, SWT, AspectJ, and
ZXing [14]. The representativeness score for this paper across
the Ohloh universe is 0.0028, because these are all Java and
C++ codebases aimed at developers (SWT and ZXing are li-
braries, AspectJ and Eclipse are tools for Java development).
The low representativeness does not mean that the results are
invalid or not useful. Rather, it yields additional insight into
the technique. Apparently, bugs reported against libraries and
Java tools contain relevant information to help identify fix lo-
cations. Thus, others building on this work might also evaluate
on Java tools and libraries. Other avenues of research include
investigating whether the approach also works well for code-
bases where bug reporters are not as likely to be developers.

We stress that the representativeness scores do not increase
or decrease the importance of research, but rather enhance our
ability to reason about it.

IV.B. Generality is Rare

The discussion from the previous subsection leads to a re-
lated point. Few empirical findings in software engineering are
completely general [1]. A finding that is true in the context of
large scale enterprise server Java development on a ten year old
codebase may not hold for a relatively new Android widget.
There may be fear when reporting results and trying to achieve
representativeness that unless some hypothesis is confirmed in
all cases, it is does not contribute to the body of knowledge in
software engineering and is not fit for publication. This isn’t
so.

Kitchenham’s work on within- and cross-company effort
estimation [15] showed that it is indeed possible to estimate
effort of one project based on history of others, but that there is
no general rule for effort estimation. Rather they used regres-
sion analysis to find that similarities in the size of the develop-
ment team, number of web pages, and high effort functions
between projects in different companies are related to similar

Microsoft Research. Technical Report. MSR-TR-2012-93.

© 2012 Microsoft Corporation. All rights reserved. Page 8

effort requirements (i.e., different projects have different effort
requirements, but projects that are representative of each other
have similar effort needs).

Knowledge can be synthesized when reporting representa-
tiveness along different dimensions even when empirical re-
sults differ. Systematic reviews rely upon this principle. The
recent review of fault prediction performance by Hall et al. [16]
essentially constructed a space consisting of modeling tech-
niques, metrics used, and granularity and found that fault pre-
diction approaches performed differently. However, they were
also able to conclude that simpler modeling techniques such as
Naïve Bayes and Logistic regression tended to perform the
best. In the same way, selecting projects that cover a large area
in the project universe and examining where results are valid
and where they are not give deeper insight into the research
results. As Murphy-Hill et al. explain, “Simply explaining the
context in which a study occurs goes a long way towards creat-
ing impactful research” because this allows a practitioner to
“decide whether your research applies to her.” [17]

IV.C. Reporting should be Consistent

We have provided a technique for selecting a representative
sample of software projects and also for providing representa-
tiveness scores for samples. While selecting projects in a more
rigorous and objective way is important, reporting in a con-
sistent and consumable manner is just as important.

Most papers include a summary of characteristics of the
projects included (e.g., size, age, number of checkins, number
of contributors, language). This is an appropriate place to re-
port the representativeness of the selected sample of projects.
As illustrated in Section III, the universe and the space that is
used should also be explicitly described and the rationale pro-
vided. How was the universe chosen? Why was each dimen-
sion in the space selected? For example, one might select only
Java projects as a universe if a technique only makes sense in
the context of Java.

If projects from different parts of the space show different
results, they should be reported and discussed. Differences by
dimension or location in the space provide a unique opportuni-
ty to refine theories and investigate further.

Finally, issues in sampling can affect external validity. Any
potential problems or gaps in representativeness should be dis-
cussed in a section discussing validity, usually entitled “Threats
to Validity” or “Limitations”.

IV.D. Next Steps

What do we hope will come from this work? Our goal has
not been to claim or imply that prior work is flawed, but rather
to show that we can improve our practice and provide methods
to do so. It is our hope that researchers will begin to select
projects in an objective, representative-based way.

We realize that different studies and techniques are aimed
at different problems and thus the goal may not always be to
achieve maximum representativeness of all software projects.
Further, the dimensions that people care about may differ. For
instance, when evaluating techniques for mining API rules, the
age of each project evaluated on may not be of concern. Our
framework is general enough that researchers can define their

own universe (the population they want to be representative of)
and space (the dimensions they care about). But it does little
good if each study reports its representativeness using different
and opportunistic spaces and universes. We hope that this
work sparks a dialog in our community about representative
software engineering research and that some level of consensus
on what universes and spaces are appropriate will be achieved.
It is likely that different sub-disciplines will arrive at different
answers to these questions, which we feel is reasonable.

V. RELATED WORK
Some of the earliest research studies on representativeness

were by Kahneman and Tversky [18] [19]. In their study, they
stated that the sample size is not related to any property of the
population and “will have little to no effect on judgment of
likelihood”. In their experiments they determined that people's
perception of the likelihood of an event depended more on its
representativeness to the population than the size of it. Thus
they concluded that there is a difference between people's
judgment and the normative probabilities. They call this the
representative heuristic. In a more recent study, Nilsson et al.
[20] investigated the cognitive substrate of the representative-
ness heuristic. In our study we borrow the concept of repre-
sentativeness from them. However, unlike their studies, we are
not evaluating the likelihood of an event or how people's per-
ception differs from the actual probability of an event. We
rather propose the means to measure the representatives of the
sample (software systems used in the case study) to the popula-
tion (the relevant universe of software).

Selecting representative samples for case studies has been a
problem in fields such as clinical trials, social sciences, and
marketing for decades. Hence studies such as the one by Rob-
inson et al. [21] evaluated selection biases and their effects on
the ability to make inferences based on results in clinical trials.
They found that biases did exist, certain subgroups were un-
derrepresented (e.g., women) while others were overrepresent-
ed (e.g., blacks). Their statistical models found that the selec-
tion biases may not influence general outcomes of the trials,
but would affect generalizability of results for select subgroups.

Another area of research that often encounters the issue of
representativeness is the field of systematic literature reviews.
If the set of studies selected to be a part of the literature review
is not representative of the research field under study, then the
conclusions of the reviews can potentially be biased. Hence a
variety of guidelines that are written for conducting systematic
literature surveys place a large emphasis on the selection of the
studies that will be included in the review [22] [23] [24] [25].
All the guidelines suggest that the researchers conducting the
review must make the selection and rejection criteria clear for
the reader to place the conclusions in context. In literature re-
view studies researcher are not looking for a representative but
rather a complete sample. The goal in literature reviews is to
obtain every possible sample before including or rejecting them
from the study. Hence steps such as searching the gray area of
publications and asking experts in the field are suggested to
obtain a more inclusive initial sample.

Microsoft Research. Technical Report. MSR-TR-2012-93.

© 2012 Microsoft Corporation. All rights reserved. Page 9

One line of research that attempts to rigorously achieve rep-
resentativeness is the work on the COCOMO cost estimation
model by Boehm et al. [26]. In this model, they collect soft-
ware development project data and model it in order to help
estimate and plan for the cost, effort and schedule of a project.
The “Center for Systems and Software Engineering” at the
University of Southern California to this day collects data to
have a more representative dataset of projects, and to calibrate
the model in order to provide better estimates [27]. Kemerer,
in his validation of software cost estimation models, found that
using an untuned cost estimation model can produce inaccurate
estimates (up to 600% in some cases) [28]. In a more recent
study, Chen et al. [29] examined how to prepare the available
data in order to obtain better estimates. Unlike Chen et al.'s
work, we do not provide techniques to pre-process an individu-
al dataset. Our research goals are more similar to the research
goals of the COCOMO model. The COCOMO model builds a
statistical model with the available datasets. Then it tries to fit
the current project that needs estimation, in this model to de-
termine the particular space in the universe that this project
belongs to. We use similar concepts, but attempt to determine
how representative the current set of projects is in terms of the
universe.

There have been several studies in software engineering on
guidelines for conducting and reporting empirical software
engineering research. [30] [31] [32] [33] [34]. Most of these
studies focus on the process to be followed in an empirical
study. One of the common themes is that all of the studies are
the set of guidelines for reporting the experimental setting.
This description will help the reader in understanding the con-
text of the study, and allows future researchers to replicate the
study. With respect to the sample of software systems used in
the experiments, these studies do not discuss how to select the
sample, but rather discuss what to report about the selection.

Unlike these studies, in our work we present a framework
for the research community to measure the representativeness
of the sample. This will help in quantifying the representative-
ness of the sample within the population, thereby helping the
reader better understand the context under which the results of
the study are applicable.

VI. CONCLUSION
With the availability of open source projects, the software

engineering research community is examining an increasing
number of software projects to test individual hypothesis or
evaluate individual tools. However, more is not necessarily
better and the selection of projects counts as well. With this
paper we provide the researcher community with a technique to
assess how well a research study covers a population of soft-
ware projects. This helps researchers to make informed deci-
sions about which projects to select for a study. Our technique
has three parameters (universe, space, and configuration),
which all can be customized based on the research topic and
should be included with any sample that is scored.

We hope that this work sparks a dialog about representative
research in software engineering and that some level of consen-
sus on appropriate universes and spaces will be reached, which

likely will differ across different sub-disciplines. We also hope
that more datasets will become available that allow to explore
alternative universes and spaces.

Our technique also extends to researchers analyzing closed
source projects. They can now describe the representativeness
of their projects without revealing confidential information
about the projects or their metrics and place their results in con-
text. Companies can use our technique to place academic re-
search into the context of their own development by comparing
against a company-specific universe and space.

ACKNOWLEDGMENTS
We would like to thank our colleagues at the SAIL lab at

Queen’s University and at the ESE group at Microsoft Re-
search for valuable feedback on this idea. We would also like
to thank all the researchers whose work we looked at! Lastly,
we would like to thank Black Duck Software and Ohloh
(www.ohloh.net) for collecting and making the data available.

REFERENCES

1. Basili, V.R., Shull, F., and Lanubile, F. Building knowledge
through families of experiments. Software Engineering, IEEE

Transactions on, 25 (1999), 456--473.
2. Robbes, R., Tanter, E., and Rothlisberger, D. How developers use

the dynamic features of programming languages: the case of
smalltalk. Proceedings of the International Working Conference

on Mining Software Repositories (2011).
3. Gabel, M. and Su, Z. A study of the uniqueness of source code.

In FSE'10: Proceedings of the International Symposium on

Foundations of Software Engineering (2010), 147-156.
4. NIH. NIH Guideline on The Inclusion of Women and Minorities. ,

2001.
http://grants.nih.gov/grants/funding/women_min/guidelines_ame
nded_10_2001.htm.

5. Mulrow, C.D., Thacker, S.B., and Pugh, J.A. A proposal for more
informative abstracts of review articles. Annals of internal

medicine, 108 (1988), 613--615.
6. Kitchenham, B.A., Mendes, E., and Travassos, G.H. Cross versus

Within-Company Cost Estimation Studies: A Systematic Review.
IEEE Trans. Software Eng. (TSE), 33, 5 (2007), 316-329.

7. Hill, P.R. Practical Software Project Estimation. McGraw-Hill
Osborne Media, 2010.

8. BLACK DUCK SOFTWARE. Ohloh, http://www.ohloh.net/.
9. Sands, R. Measuring Project Activity.

http://meta.ohloh.net/2012/04/measuring-project-activity/. 2012.
10. Apel, S., Liebig, J., Brandl, B., Lengauer, C., and Kästner, C.

Semistructured merge: rethinking merge in revision control
systems. In ESEC/FSE'11: European Software Engineering

Conference and Symposium on Foundations of Software

Engineering (2011), 190-200.
11. Beck, F. and Diehl, S. On the congruence of modularity and code

coupling. In ESEC/FSE'11: European Software Engineering

Conference and Symposium on Foundations of Software

Engineering (2011), 354-364.
12. Uddin, G., Dagenais, B., and Robillard, M.P. Temporal analysis

of API usage concepts. In ICSE'12: Proceedings of 34th

International Conference on Software Engineering (2012), 804-
814.

Microsoft Research. Technical Report. MSR-TR-2012-93.

© 2012 Microsoft Corporation. All rights reserved. Page 10

13. Jin, W. and Orso, A. BugRedux: Reproducing field failures for
in-house debugging. In ICSE'12: Proceedings of 34th

International Conference on Software Engineering (2012), 474-
484.

14. Zhou, J., Zhang, H., and Lo, D. Where should the bugs be fixed?
More accurate information retrieval-based bug localization based
on bug reports. In International Conference on Software

Engineering (2012).
15. Kitchenham, B.A. and Mendes, E. A comparison of cross-

company and within-company effort estimation models for web
applications. In Proceedings of the 8th International Conference

on Empirical Assessment in Software Engineering (2004), 47-55.
16. Hall, T., Beecham, S., Bowes, D., Gray, D., and Counsell, S. A

systematic review of fault prediction performance in software
engineering. IEEE Transactions on Software Engineering, 99
(2011).

17. Murphy-Hill, E., Murphy, G.C., and Griswold, W.G.
Understanding Context: Creating a Lasting Impact in
Experimental Software Engineering Research. In Proceedings of

the Workshop on Future of Software Engineering (2010), 255-
258.

18. Kahneman, D. and Tversky, A. Subjective probability: A
judgment of representativeness. Cognitive Psychology, 3 (1972),
430 - 454.

19. Tversky, A. and Kahneman, D. Judgment under Uncertainty:
Heuristics and Biases. Science, 185 (1974), pp. 1124-1131.

20. Nilsson, H., Juslin, P., and Olsson, H. Exemplars in the mist: The
cognitive substrate of the representativeness heuristic.
Scandinavian Journal of Psychology, 49, 201--212.

21. Robinson, D., Woerner, M.G., Pollack, S., and Lerner, G. Subject
Selection Biases in Clinical Trials: Data From a Multicenter
Schizophrenia Treatment Study. Journal of Clinical

Psychopharmacology, 16, 2 (April 1996), 170-176.
22. Khan, K.S. et al., eds. NHS Centre for Reviews and

Dissemination, University of York, 2001.
23. Kitchenham, B. Procedures for undertaking systematic reviews.

Technical Report TR/SE-0401, Department of Computer Science,

Keele University and National ICT, Australia Ltd (2004).
24. Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., and

Khalil, M. Lessons from applying the systematic literature review
process within the software engineering domain. Journal of

Systems and Software, 80 (2007), 571 - 583.
25. Standards for Systematic Reviews..
26. Boehm, B.W., Abts, C., Brown, A.W., Chulani, S., Clark, B.K.,

Horowitz, E., Madachy, R., Reifer, D.J., and Steece,
B.t.=.S.C.E.w.C.I. NHS Centre for Reviews and Dissemination,
University of York, 2000.

27. Center for Systems and Software Engineering..
28. Kemerer, C.F. An empirical validation of software cost

estimation models. Commun. ACM, 30 (may 1987), 416--429.
29. Chen, Z., Menzies, T., Port, D., and Boehm, D. Finding the right

data for software cost modeling. Software, IEEE, 22 (nov.-dec.
2005), 38 - 46.

30. Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B.,
and Wesslen, A. Experimentation in software engineering: an

introduction. Kluwer Academic Publishers, 2000.
31. Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W.,

Hoaglin, D.C., Emam, E.K., and Rosenberg, J. Preliminary
Guidelines for Empirical Research in Software Engineering.
IEEE Transactions on Software Engineering, 28 (aug 2002), 721-
-734.

32. Jedlitschka, A. and Pfahl, D. Reporting guidelines for controlled
experiments in software engineering. In Empirical Software

Engineering, 2005. 2005 International Symposium on (nov.
2005), 10 pp.

33. Kitchenham, B., Al-Khilidar, H., Babar, M.A., Berry, M., Cox,
K., Keung, J., Kurniawati, F., Staples, M., Zhang, H., and Zhu, L.
Evaluating guidelines for reporting empirical software
engineering studies. Empirical Softw. Engg., 13 (feb 2008), 97--
121.

34. Runeson, P. and Host, M. Guidelines for conducting and
reporting case study research in software engineering. Empirical

Softw. Engg., 14 (Apr 2009), 131--164.
35. Sprague, S. and Bhandari, M. Organizationa and Planning. In

Gad, S.C., ed., Clinical Trials Handbook. John Wiley & Sons,
Inc., Hoboken, New Jersey, 2009.

VII. APPENDIX

VII.A. How to compute the score?

This example below uses the Ohloh universe to score the Mozilla Firefox project along the space (Lines of Code, Developers). The
text id ~ total_code_lines + twelve_month_contributor_count is R syntax and commonly used to define models.
url <- "http://sailhome.cs.queensu.ca/replication/representativeness/ masterdata.txt"
ohloh <- read.delim(url, header=T, na.strings=c("", "NA"))

sample <- ohloh[ohloh$name=="Mozilla Firefox",]

score <- score.projects(sample, universe=ohloh, id ~ total_code_lines + twelve_month_contributor_count)

The resulting total score is in score$score and the dimension scores are in score$dimension.score.

VII.B. How to select the next projects?

This example adds 10 more projects to the sample from the previous example. The result is a data frame np$new.projects with the
projects to be added to the sample and the score object of the combined sample np$score.
np <- next.projects(10, sample, universe=ohloh, id ~ total_code_lines + twelve_month_contributor_count)

VII.C. How to change the configuration?

Provide a list with the similarity functions. Values NA indicates that the default similarity function should be used for a dimension.
In the example below the function custom.similarity will be used the first dimension.
score <- score.projects(sample, universe=ohloh, ..., configuration=c(custom.similarity, NA))

Microsoft Research. Technical Report. MSR-TR-2012-93.

© 2012 Microsoft Corporation. All rights reserved. Page 11

