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Abstract—One of the goals of software engineering research is 

to achieve generality:  Are the phenomena found in a few projects 

reflective of what goes on in others?  Will a technique benefit 

more than just the projects it is evaluated on?  The discipline of 

our community has gained rigor over the past twenty years and is 

now attempting to achieve generality through evaluation and 

study of an increasing number of software projects (sometime 

hundreds!).  However, quantity is not the only important compo-

nent.  Selecting projects that are representative of a larger body 

of software of interest is just as critical.  Little attention has been 

paid to selecting projects in such a way that generality and repre-

sentativeness is maximized or even quantitatively characterized 

and reported.  In this paper, we present a general technique for 

quantifying how representative a sample of software projects is of 

a population across many dimensions.  We also present a greedy 

algorithm for choosing a maximally representative sample.  We 

demonstrate our technique on research presented over the past 

two years at ICSE and FSE with respect to a population of 20,000 

active open source projects.  Finally, we propose methods of re-

porting objective measures of representativeness in research. 

I.  INTRODUCTION 
Over the past twenty years, the discipline of software engi-

neering research has grown in maturity and rigor.   Researchers 
and our community in general have worked towards maximiz-
ing the impact that software engineering research has on prac-
tice.  One such way is by providing techniques and results that 
are as general (and thus useful) as possible.  However, achiev-
ing generality is challenging.  Basili et al. remarked that “gen-
eral conclusions from empirical studies in software engineering 
are difficult because any process depends on a potentially large 
number of relevant context variables” [1]. 

With the availability of OSS projects, the software engi-
neering research community has called for more extensive val-
idation and researchers have answered the call.  As an extreme 
example, the study of Smalltalk feature usage by Robbes et al. 
[2] examined 1,000 projects!  Another example is the study by 
Gabel and Su that examined 6,000 projects [3]. But if care isn’t 
taken when selecting which projects to analyze, then increasing 
the sample size doesn’t actually contribute to the goal of in-
creased generality.  More is not necessarily better.   

As an illustration, consider a researcher that has a technique 
to evaluate or a hypothesis to investigate and wants to include a 
large number of projects in an effort to demonstrate generality 
and therefore impact.  To choose the subject programs, the re-
searcher goes to the json.org website, which lists over twenty 
JSON parsers that are all readily available for download and 
analysis.  While the researcher may select and evaluate twenty 

distinct projects, they all fall within a very narrow range of 
functionality (and are likely similar in terms of structure, size, 
running time, etc.).  Although such an evaluation would include 
many projects, generality would not be achieved because the 
projects studied are not representative of a larger and wider 
population of software projects.  We would learn about JSON 
parsers, but little about other types of software.  This extreme 
illustration is contrived and no serious researcher would select 
projects in such a way.  Nonetheless, the majority of studies 
that select projects for evaluation or investigation do so in a 
fairly subjective or non-obvious objective way.  One likely 
reason for this is that there is currently no standard method of 
selecting projects for study. 

Other fields such as medicine and sociology have overcome 
similar issues through published and accepted methodological 
guidelines for subject selection.  For example, guidelines have 
been provided for the design of clinical trials which include 
how subjects should be selected [2] (see Section 6.3 “Patient 
Selection” pp. 171-174 and Section 6.6 “Design Considera-
tions” pp. 179-182).  Additionally the National Institutes of 
Health (NIH) in the United States have developed requirements 
[4] to make sure that minimum generality bars are met by re-
quiring that certain subpopulations are included in such trials.  
The aim of these guidelines is to ensure that the subjects are 
representative of a larger population.   

Software engineering research lacks such guidelines today, 
but we can fortunately leverage the methodological advances of 
these older fields.  In this paper, we present techniques for 
measuring the representativeness of a sample, relative to a larg-
er population along various dimensions, and for selecting a 
maximally representative sample from a population.  Our tech-
nique is based on the theories underlying subject selection 
methodologies in other fields.  Whereas today, researchers em-
ploy what we term opportunistic sampling, selecting projects 
that are easiest to mine or display some attribute that makes 
them attractive to researchers, we recommend representative 

sampling, in which a subset of a statistical population is select-
ed that accurately reflects the members of the entire population.   

In our work, we present a framework to quantify the repre-
sentativeness of the sample in the population so that (a) the 
researcher can arrive at appropriate conclusions about the re-
sults of the experiments, (b) the research community can un-
derstand the context under which the results are applicable, and 
(c) the practitioners can easily identify if a particular research 
contribution is applicable to their software. In a way similar to 
the adoption of structured abstracts [5] in research papers, we 
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hope that researchers will use the techniques and recommenda-
tions in this paper to achieve consistent methods of reporting 
representativeness in their research.  We make the following 
contributions: 

1. We present a technique for objectively measuring how 
representative a sample set of projects are of a popula-
tion of projects. 

2. We present a technique for selecting a sample of pro-
jects to maximize the representativeness of a study. 

3. We assess the representativeness of studies in top tier 
software engineering research venues and provide 
guidance for reporting representativeness. 

In the rest of this paper, we first present a general frame-
work for evaluating representativeness of a sample from a pop-
ulation of software projects and selecting a maximally repre-
sentative sample (Section II).  We then demonstrate this tech-
nique by calculating the representativeness of research over the 
past two years at ICSE and FSE (Section III).  Finally, we pro-
vide appropriate methods of reporting representativeness and 
discuss implications (Section IV) and related work (Section V). 

II. FRAMEWORK 
In this section, we present our framework for assessing rep-

resentativeness: we first introduce our terminology (Section 
II.A and II.B) followed by algorithms to score the representa-
tiveness of a set of projects (Section II.C) and select the pro-
jects that increase the score the most (Section II.D). 

We implemented both algorithms in the R programming 
language and they will be made available as an R package.  
The appendix contains a walkthrough on how to use our im-
plementation. 

II.A. Terminology: Universe, Space, Configuration 

The universe is a large set of projects; it is often also called 
population.  The universe can vary for different research areas.  
For example, research on mobile phone applications will have 
a different universe than web applications. 

Possible universes: all open-source projects, all closed-source pro-
jects, all web applications, all mobile phone applications, all open-
source projects on Ohloh, and many others. 

Within the universe, each project is characterized with one 
or more dimensions. 

Possible dimensions: total lines of code, number of developers, 
main programming language, project domain, recent activity, pro-
ject age, and many others. 

The set of dimensions that are relevant for the generality of 
a research topic define the space of the research topic. Similar 
to universes, the space can vary between different research 
topics.  For example, we expect program analysis research to 
have a different space than empirical research on productivity: 

Possible space for program analysis research: total lines of code, 
main programming language. 

 

Possible space for empirical research on productivity: total lines of 
code, number of developers, main programming language, project 
domain, recent activity, project age, and likely others. 

The goal of representative research is typically to provide a 
high coverage of the space in a universe.  The underlying as-
sumption of this paper is that projects with similar values in the 

dimensions—that is they are close to each other in the space—
are representative of each other.  This assumption is common-
ly made in the software engineering field, especially in effort 
estimation research [6,7].  For each dimension d, we define a 
similarity function which decides whether two projects p1 and 
p2 are similar with respect to that dimension: 

        (     )               

The list of the similarity functions for a given space is 
called the configuration.   

                (                    ) 
Similar to universe and space, similarity functions (and the 

configuration) can vary across projects.  For some research 
topics, projects written in C might be considered similar to 
projects written in C++, while for other research they might be 
considered different. 

To identify similar projects within the universe, we require 
the projects to be similar to each other in all dimensions. 

       (     )   ⋂         (     )
 

 

If no similarity function is defined for a dimension, we as-
sume the following default functions, with p[d] the score of 
project p in dimension d and |e| the absolute (positive) value of 
the specified expression e: 

 For numeric dimensions (e.g., number of developers): 
We consider two projects to be similar in a dimension 
if their values are in the same order of magnitude (as 
computed by log10). 
        (     )  |                     |      

 For categorical dimensions (e.g., main programming 
language:  We consider two projects to be similar in a 
dimension if the values are identical. 
        (     )              

As mentioned above the similarity functions can be over-
ridden in a configuration.  Different configurations may exist 
for different research topics and areas. 

II.B. Example: Scoring and Project Selection 

Figure 1(a) shows a sample universe and a sample space: 
the universe contains 50 projects, each represented by a point.  
The space is defined by two dimensions: the number of devel-
opers (horizontal) and the number of lines of code (vertical).  In 
practice, the universe can be thousands of projects and the 
space can be defined by numerous dimensions, not just two.  
We will present a more complex instantiation of our framework 
in Section III. 

Consider project A in Figure 1(a) which is represented by 
an enlarged point.  The light gray areas indicate the projects 
that are similar to project A in one dimension (based on the 
similarity functions that are defined in the configuration).  The 
intersection of the light gray areas (the dark gray area) indicates 
the projects that are similar to A with respect to the entire 
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space.  In total seven projects are similar, thus project A covers 
(7+1)/50=16% of the universe.  We can also compute coverage 
for individual dimensions: project A covers 13/50=26% for 
number of developers and 11/50=22% for lines of code. 

Figure 1(b) illustrates how a second project increases the 
covered space: 

 If we add project B, ten additional projects are covered, 
the universe coverage increase to 18/50=36%. The 
coverage of the developer and lines of code dimensions 
increases to 60% and 56% respectively.  

 However if we add project C instead of project B, there 
is only little impact on coverage.  All similar projects 
have been already covered because project C is close to 
project A.  Thus the coverage increases only to 18%. 

This illustrates an important point: to provide a good cover-
age of the universe, one should select projects that are diverse 
rather than similar to each other.  We now introduce algorithms 
to score representativeness (score_projects) and to select addi-
tional projects such that the score is maximized (next_projects). 
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 (a) (b) 
Fig. 1.  Sample universe of 50 projects defined by a two-dimensional space. 
(a) The light gray areas indicate projects similar to project A in one dimension.  
The dark gray areas indicate projects similar to project A in both dimensions.   
(b) Project B increases the coverage of the space more than project C does, 
because C is too similar to projects already covered by project A. 

II.C. Scoring Representativeness 

We score the representativeness of a set of projects P for a 
given universe U, an n-dimensional space D, and a configura-
tion (                    ) as follows.  (Recall the definition 
of similar which is                            ) 

      
|⋃   |       (   )     |

| |
 

As discussed before, research topics can have different pa-
rameters for universe, space, and configuration.  Therefore it is 
important to not just report the score but also the context in 
which it was computed: What projects is the research intending 
to be representative of (universe)?  Based on what criteria 
(space, configuration)? 

To compute the score for a set of projects, we implemented 
the algorithm shown in Algorithm I in R.  For each project   
ject    , the algorithm computes the set of projects c_project 
that are covered by p (Lines 3-10).  As a naming convention we 
use the prefix c_ in variable names for sets of covered projects.  

In addition, the algorithm computes the projects c_dim[d] cov-
ered by each dimension d (Line 9).  After iterating through the 
set P, the algorithm computes the representativeness score 
within the entire space (Line 11) and for each dimension (Line 
12).  The apply function maps the function   | | | | to the 
vector c_dim and returns a vector with the result. 

II.D. Project Selection 

In order to guide project selection in such a way that the 
representativeness of a sample is maximized, we implemented 
the greedy algorithm that is shown in Algorithm II.  The input 
to the algorithm is the number K of projects to be selected, a set 
of already selected projects P, a universe U, an n-dimensional 
space D, and a configuration   (                    ).   

The algorithm returns a list of up to K projects; the list is 
ordered decreasingly based on how much the projects increase 
the coverage of the space.  The set of preselected projects P can 

𝐬𝐜𝐨𝐫𝐞_𝐩𝐫𝐨𝐣𝐞𝐜𝐭𝐬(p  j     𝑃     v     𝑈   p    𝐷         𝐶): 

𝐧𝐞𝐱𝐭_𝐩𝐫𝐨𝐣𝐞𝐜𝐭𝐬(𝐾  p  j     𝑃     v     𝑈   p    𝐷         𝐶): 

ALGORITHM I.  SCORING PROJECTS 

1: 𝑐_𝑠𝑝𝑎𝑐𝑒 ← ∅ 
2: 𝑐_𝑑𝑖𝑚 ←  ∅   ∅   
3:        h p  j    𝑝  𝑃:  
4:   𝑐_𝑝𝑟𝑜𝑗𝑒𝑐𝑡 ← 𝑈 
5:         h d m       𝑑  𝐷:  
6:   𝑎𝑟𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟(𝑝 𝑞) ← 𝐶 𝑑 (𝑝 𝑞) 
7:   𝑠𝑖𝑚_𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠 ←  𝑞|𝑎𝑟𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟(𝑝 𝑞)} 
8:   𝑐_𝑝𝑟𝑜𝑗𝑒𝑐𝑡 ←  𝑐_𝑝𝑟𝑜𝑗𝑒𝑐𝑡 ∩ 𝑠𝑖𝑚_𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠  
9:   𝑐_𝑑𝑖𝑚 𝑑 ←  𝑐_𝑑𝑖𝑚 𝑑 ∪ 𝑠𝑖𝑚_𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠  
10:  𝑐_𝑠𝑝𝑎𝑐𝑒 ←  𝑐_𝑠𝑝𝑎𝑐𝑒 ∪ 𝑐_𝑝𝑟𝑜𝑗𝑒𝑐𝑡  
11: 𝑠𝑐𝑜𝑟𝑒 ← |𝑐_𝑠𝑝𝑎𝑐𝑒| |𝑈|  
12: 𝑑𝑖𝑚_𝑠𝑐𝑜𝑟𝑒 ←  pp y(𝑐_𝑑𝑖𝑚 𝑋  |𝑋| |𝑈|)  
13:        (𝑠𝑐𝑜𝑟𝑒 𝑑𝑖𝑚_𝑠𝑐𝑜𝑟𝑒) 
 

ALGORITHM II.  SELECTING THE NEXT PROJECTS 

1: 𝑟𝑒𝑠𝑢𝑙𝑡 ←     
2: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟(𝑝 𝑞)  𝐶 1 (𝑝 𝑞)    𝐶 𝑑 (𝑝 𝑞) 
3: 𝑐_𝑠𝑝𝑎𝑐𝑒 ← ⋃  𝑞|𝑠𝑖𝑚𝑖𝑙𝑎𝑟(𝑝 𝑞) 𝑝 𝑃  

4: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← 𝑈  𝑃  
5:     𝑖   1   𝐾 : 
6:  𝑐_𝑏𝑒𝑠𝑡 ← ∅  
7:  𝑝_𝑏𝑒𝑠𝑡 ← NA  
8:         h    d d    𝑝  𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠: 
9:   𝑐_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ←  𝑞|𝑠𝑖𝑚𝑖𝑙𝑎𝑟(𝑝 𝑞)  
10:   𝑐_𝑛𝑒𝑤 ← (𝑐_𝑠𝑝𝑎𝑐𝑒 ∪ 𝑐_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)  𝑐_𝑠𝑝𝑎𝑐𝑒 
11:      |𝑐_𝑛𝑒𝑤| > |𝑐_𝑏𝑒𝑠𝑡|: 
12:    𝑐_𝑏𝑒𝑠𝑡 ← 𝑐_𝑛𝑒𝑤 
13:    𝑝_𝑏𝑒𝑠𝑡 ← 𝑝 
14:     𝑝_𝑏𝑒𝑠𝑡  NA: 
15:   b   k 
16:  𝑟𝑒𝑠𝑢𝑙𝑡 ←  pp  d(𝑟𝑒𝑠𝑢𝑙𝑡 𝑝_𝑏𝑒𝑠𝑡) 
17:  𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠   𝑝_𝑏𝑒𝑠𝑡   
18:  𝑐_𝑠𝑝𝑎𝑐𝑒 ← 𝑐_𝑠𝑝𝑎𝑐𝑒 ∪ 𝑐_𝑏𝑒𝑠𝑡 
19:        (𝑟𝑒𝑠𝑢𝑙𝑡) 
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be empty.  By calling the algorithm with   ∅ and   | | 
one can order the entire universe of projects based on their 
coverage increase and returns the subset of projects that is 
needed to cover the entire universe (for a score of 100%). 

The main part of the algorithm is the loop in Lines 5-18 that 
is repeated at most K times.  The loop is exited early (Lines 14-
15) when no project is found that increases the coverage; in this 
case the entire universe has been covered (score of 100%).  The 
algorithm maintains a candidate set of projects (candidates), 
which is initialized to the projects in universe U but not in P 
(Line 4, we use      d          d         ).  The body of the 
main loop computes for each candidate              
(Lines 8-13) how much its coverage (Line 9) would increase 
the current coverage c_space (Line 10) and memorizes the 
maximum increase (Lines 11-13).  At the end of an iteration i, 
the project p_best with the highest coverage increase is ap-
pended to the result list and then removed from the candidates 
list (Lines 16-17); the current coverage c_space is updated to 
include the projects in c_best (Line 18). 

Our R implementation includes several optimizations that 
are not included in Algorithm I for the sake of comprehension.  
To reduce the cost of set operations we use index vectors in R 
(similar to bit vectors).  Computing the projects similar to a 
candidate in Line 9 is an expensive operation and we therefore 
cache the results across loop iterations.  Lastly, starting from 
the second iteration, we do process candidates in Line 10 in 
decreasing order of their | _   | values from the previous 
iteration.  The | _   | values from iteration   1 are an upper 
bound of how much a candidate can contribute to the coverage 
in iteration  .  If the current best increase | _    | in iteration   
is greater or equal than the previous increase | _   | of the 
current candidate in iteration   1, we can exit the inner loop 
(Lines 8-13) and skip the remaining candidates.  This optimiza-
tion significantly reduces the search space for projects. 

II.E. Implementation in R 

Note to reviewers:  We are in the process of releasing the R 
implementation as open source.  All code from Microsoft re-
quires review before release and we expect the R package to be 
available in September/October 2012.  We will send the URL 
of the code to the PC chairs once it is available. 

III. INSTANTIATION 
In this section we provide an example of an instantiation of 

our framework and illustrate how it can be used to quantify the 
representativeness of software engineering research. 

III.A. The Ohloh Universe 

We chose as universe the active projects that are mapped by 
the Ohloh platform [8].  Ohloh is a social coding platform that 
collects data such as main programming language, number of 
developers, licenses, as well as software metrics (lines of code, 
activity statistics, etc.).  Note that the Ohloh data is just one 
possible universe and there are many other universes that could 
be used for similar purposes. 

To collect data to describe the projects in the universe, we 
used the following steps: 

1. We extracted the identifiers of active projects using the 
Project API of Ohloh.  We decided to include only the 
active projects in the universe because we wanted to 
measure representativeness for ongoing development.  
We followed Richard Sands’ definition [9] of an active 
project, that is, a project that had at least one commit 
and at least 2 committers in the last 12 months. 

2. For each project identifier, we extracted three different 
categories of data (each with one call to the API).  The 
first is the Analysis category which has data about main 
programming language, source code size and contribu-
tors.  The second is the Activity category which sum-
marizes how much developers have changed each 
month (commits, churn).  We accumulated the activity 
data for the period of June 2011 to May 2012.  Finally, 
we collected what is called the Factoid category.  This 
category contains basic observations about projects 
such as team size, project age, comment ratio, and li-
cense conflicts.  

3. We aggregated the XML files returned by the Ohloh 
APIs and converted them into tab-separated text files 
using a custom script.  We removed projects from the 
universe that had missing data (156 projects had no 
main language or an incomplete code analysis) or inva-
lid data (40 projects had a negative number for total 
lines of code). 

After selecting only active projects and removing projects 
with missing and invalid data, the universe consists of a total of 
20,028 projects.  This number is comparable to the number of 
active projects reported by Richard Sands [9]. 

III.B. The Ohloh Space 

We use the following dimensions for the space.  The list of 
dimensions is inspired by the comparison feature in Ohloh.  
The data for the dimensions is provided by Ohloh. 

 Main language. The most common programming lan-
guage in the project.  Ohloh ignores XML and HTML 
when making this determination. 

 Total lines of code. Blank lines and comment lines are 
excluded by Ohloh when counting lines of code. 

 Number of contributors (12 months). Contributors with 
at least one commit in the last 12 months.  

 Number of churn (12 months). Number of added and 
deleted lines of code, excluding comment lines and 
blank lines, in the last 12 months. 

 Number of commits (12 months). Commits made in the 
last 12 months. 

 Project age. The Ohloh factoid for project age: projects 
less than 1 year old are Young, between 1 year and 3 
years they are Normal, between 3 and 5 years they are 
Old, and above 5 years they are Very Old. 

 Project activity. The Ohloh factoid for project activity: 
if during the last 12 calendar months, there were at 
least 25% fewer commits than in the prior 12 months, 
the activity is Decreasing; if there were 25% more 
commits, the activity is Increasing; otherwise the activ-
ity is Stable. 
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In our case, metrics for the last 12 months are for the period 
of June 2011 to May 2012.  Again this is just one possible 
space and there will be other dimensions that can be relevant 
for the generality of research. 

Figure 2 shows the distributions of the dimensions in our 
dataset.  There are over 70 programming languages captured in 
the Ohloh dataset; the most frequently used languages are Java, 
Python, C, and JavaScript.  A large number of projects are very 
small in terms of size, people, and activity: 4,937 projects are 
less than 2,000 lines of code; yet 713 projects exceed a million 
lines of code.  Many projects have only 2 contributors (7,235 
projects) and not more than 50 commits (10,528 projects) in the 
last 12 months.  Again there are extreme cases with hundreds 
of contributors and thousands of commits. 

III.C. Covering the Ohloh Universe 

As a first experiment, we computed the set of projects re-
quired to cover the entire population of 20,028 Ohloh projects.  
For this we called the next_projects algorithm with N=20,028 
and an empty initial project list P. 

    _        (         p  j       ∅     v      
  h  h   p               ) 

Figure 3 shows the results with a cumulative sum plot.  
Each point (x,y) in the graph indicates that the first x projects 
returned by next_projects covered y percent of the Ohloh uni-
verse.  The first 50 projects (or 2.5%) covered 15.3% of the 
universe, 392 projects covered 50%, and 5030 projects covered 
the entire universe. 

In Table I we show the first 15 projects returned by the al-
gorithm next_projects.  These are the projects that increase the 
coverage of the space the most.  We draw the following con-
clusions.  First, small software projects written in dynamic lan-
guages dominate the list (seven of the first nine are in Ruby or 
Python and under 2000 LOC).  Are researchers exploring the 
problems faced by these projects?  Even when considering all 
15 projects, these projects together comprise less than 200,000 
LOC and just over 1,000 commits, an order of magnitude lower 
than for Apache HTTP, Mozilla Firefox, or Eclipse JDT.  The 
time and space required to analyze or evaluate on these projects 
are fairly low, providing a ripe opportunity for researchers to 
achieve impact without large resource demands.  This result 
also counters a common criticism of software engineering: re-
search: many people expect that any research has to scale to 
large-scale software.  However, as Table I and Figure 1 show, 
the space of smaller projects is non-negligible. 

III.D.  Covering the Ohloh Universe with ICSE and FSE 

We now apply the framework instantiated with the Ohloh 
universe to papers from premiere conferences in the software 
engineering field: the International Conference on Software 
Engineering (ICSE) and Foundations of Software Engineering 
(FSE).  

To create the dataset we considered the last two years 
(ICSE 2011, 2012 and FSE 2010, 2011).  The first author read 
each (full) paper of the main technical research track in each 

 
Fig. 2.  Histograms of the dimensions in the Ohloh universe. 

 
Fig. 3.  Number of projects that are needed to cover the Ohloh universe. Each 
point in the graph means that x projects can cover y percent of the universe. 
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conference, looked for the software projects that were analyzed 
and recorded the number and—if mentioned—the names of the 
projects in a spreadsheet.  We then queried Ohloh for each of 
the software projects to find the corresponding identifier, which 
we used to cross-reference the data with our corpus. 

Some projects we could not cross reference with our dataset 
because of any one of the following reasons: (a) the project was 
not indexed by Ohloh; (b) the paper used an aggregated set of 
projects, and we cannot name any one particular project that 
the authors used; (c) the project does not meet the criteria to be 
included in the universe, e.g., the project has not been under 
development in the past year, has only one developers, or has 
missing or invalid data. 

The analysis of the ICSE and FSE conferences revealed 
several large-scale studies that analyzed hundreds if not thou-
sands of projects.  Some of these papers we had to exclude 
from our analysis as they either analyzed closed-source projects 
or did not report the names of the individual projects analyzed 
or analyzed inactive Ohloh projects. 
What are the most frequent projects used in ICSE and FSE? 

We found 635 unique projects that were analyzed by the 
ICSE and FSE conferences in the two-year period.  Out of the-
se we could map 207 to the universe of active Ohloh projects.   

The most frequently studied projects were the Eclipse Java 
Development Tools (JDT) in 16 papers, Apache HTTP Server 
in 12 papers, gzip, jEdit, Apache Xalan C++, and Apache Lu-
cene each in 8 papers and Mozilla Firefox in 7 papers.  Another 
frequently studied project is Linux, which was analyzed in 12 
papers.  While the Linux project is listed on Ohloh, the code 
analysis has not yet completed and only limited information is 
available (no activity, no lines of code).  Therefore we ignored 
Linux from our analysis. 
How much of the Ohloh universe do ICSE and FSE cover? 

The 207 Ohloh projects analyzed in the two years of the 
ICSE and FSE conferences were representative of 9.15% of the 
Ohloh population.  At a first glance this score seems low, but 
one has to keep in mind that it is based on strict notion of rep-
resentativeness: values in all dimensions have to be similar for 
a project to be representative of another.  Low scores are not 
bad as we will discuss in Section IV.A.  

Our algorithm also measures the representativeness for each 
dimension.  Here the numbers are very promising (see second 
column in Table II): for all but one dimension the representa-
tiveness scores exceed 98%, which indicates that research pub-
lished at ICSE and FSE covers a wide spectrum of software in 
terms of team size, activity, and project size.  The lowest score 

TABLE I.  THE FIRST 15 PROJECTS RETURNED BY 𝐧𝐞𝐱𝐭_𝐩𝐫𝐨𝐣𝐞𝐜𝐭𝐬(𝑁         PROJECTS 𝑃  ∅  UNIVERSE 𝑈  𝑜ℎ𝑙𝑜ℎ  SPACE 𝐷  CONFIG 𝐶)  
WITH THE INCREASE IN COVERAGE 

Name Language Lines Contributors Commits Churn Age Activity Increase 

serialize_with_options Ruby 301 2 10 147 Normal Increasing 0.574% 
Java Chronicle Java 3892 4 81 8629 Young Stable 0.569% 
hike Ruby 616 3 11 333 Normal Stable 0.559% 
Talend Service Factory  Java 20295 8 162 27803 Normal Stable 0.549% 
OpenObject Library Python 1944 5 36 1825 Normal Stable 0.459% 
ruote-amqp-pyclient Python 315 4 7 139 Normal Stable 0.454% 
sign_server Python 1791 3 63 3415 Young Stable 0.414% 
redcloth-formatters-plain Ruby 655 4 5 82 Normal Decreasing 0.384% 
python-yql Python 1933 2 11 93 Normal Decreasing 0.369% 
mraspaud's mpop Python 12664 7 160 22124 Normal Stable 0.369% 
appengine-toolkit JavaScript 18253 5 110 20572 Normal Stable 0.364% 
socket.io-java Java 23533 4 187 46254 Young Stable 0.335% 
glinux C 41052 8 55 3114 Very Old Decreasing 0.335% 
Pax URL Java 31467 7 73 6923 Old Decreasing 0.330% 
honeycrm Java 14864 2 45 3810 Normal Decreasing 0.315% 

 
TABLE II.  THE REPRESENTATIVENESS OF ALL ICSE AND FSE PAPERS IN THE PAST 2 YEARS AS WELL AS THE FIVE MOST REPRESENTATIVE PAPERS.  THE 
UNIVERSE IS THE ACTIVE OHLOH PROJECTS, THE SPACE IS (MAIN LANGUAGE, TOTAL LINES OF CODE, CONTRIBUTORS, CHURN, COMMITS, PROJECT AGE, 

PROJECT ACTIVITY) AND THE CONFIGURATION CONSISTS OF THE DEFAULT SIMILARITY FUNCTIONS. 
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is for programming language, but still at an impressive 91.42%.  
The unstudied languages highlight opportunities for future re-
search: Objective-C is used by 245, Vim script by 145, Scala 
by 119, Erlang by 108, and Haskell by 99 projects. 
What are showcases of representative research? 

We identified several outstanding papers in terms of high 
representativeness.  In Table II, the Columns 3 to 8 show the 
total score and the dimension scores for the five most repre-
sentative papers: 

 “A study of the uniqueness of source code” by Gabel 
and Su [3] analyzed over 6,000 projects of which 30 
were named in the paper and analyzed in depth.  The 
score is computed for only the 30 named projects.  The 
bulk of the corpus is from the source distribution of the 
Fedora Linux distribution (rel. 12).  The authors stud-
ied multiple programming languages (C, C++, Java). 

 “Semistructured merge: rethinking merge in revision 
control systems” by Apel et al. [10] evaluated a merge 
algorithm on 24 projects written in the C#, Python, and 
Java languages.  

 “On the congruence of modularity and code coupling” 
by Beck and Diehl [11] analyzed 16 small to medium 
sized projects written in Java.  

 “Temporal analysis of API usage concepts” by Uddin 
et al. [12] studied 19 client software projects.  They 
covered a wide spectrum of project size (5.9 to 2991.8 
KLOC) but given the nature of their study focused on 
older projects with larger amounts of history. 

 “BugRedux: Reproducing field failures for in-house 
debugging” by Jin and Orso [13] recreated 17 failures 
of 15 real world programs.  The size of the projects 
was between 0.5 and 241 KLOC. 

Again the total scores seem to be low, which we will dis-
cuss in Section IV.A.  More importantly however, the numbers 
in Table II allow assessing which dimensions papers covered 
well and which dimensions need improvement.  For example, 
Beck and Diehl [11], Uddin et al. [12], and Jin and Orso [13] 
focused on a single programming language (Java and C respec-
tively).  To further increase the generality, additional languages 
may be studied.  Another example is project age: all three pa-
pers focused on older projects, possibly because they needed 
long project histories that are only available for older projects. 

Note that this is not a criticism of this research; these are 
merely ideas on how to become more representative of the 
Ohloh universe.  Also note that the relevant target universe 
may be different for each paper.  For example research on Java 
projects may limit itself to the Java universe. 

It is noteworthy that several of these papers selected their 
subjects with respect to a dimension that is not included in our 
space: the functionality of the software.  Given the availability 
of data, the dimension could be easily added to our space and 
accounted for in our score computation.   

III.E. Data Availability 

All data that has been used for the experiments in this sec-
tion is available at the following URL.  This includes the Ohloh 

data for universe and space as well as the spreadsheets with the 
conference data. 
 

http://sailhome.cs.queensu.ca/replication/representativeness/ 

IV. DISCUSSION 
Having introduced our technique for assessing project sam-

ple representativeness and demonstrated it on recent software 
engineering research, we now discuss issues surrounding the 
use of such a technique in research.  The use is not as straight-
forward as one might think.  Here are some considerations. 

IV.A. Low Representativeness is Not Bad 

One observation that we have made in the course of using 
our techniques to measure representativeness is that many stud-
ies have low levels of software representativeness.  At first 
glance, one might be tempted to conclude that these studies do 
not contribute much to the body of knowledge in software en-
gineering or that others with higher representativeness are bet-
ter.  Identifying how representative a study is does not devalue 
the research, but rather gives further insight into the results. 

For example, Zhou et al.’s recent result that bug report at-
tributes can be used to automatically identify the likely location 
of a fix was evaluated on Eclipse JDT, SWT, AspectJ, and 
ZXing [14].  The representativeness score for this paper across 
the Ohloh universe is 0.0028, because these are all Java and 
C++ codebases aimed at developers (SWT and ZXing are li-
braries, AspectJ and Eclipse are tools for Java development).  
The low representativeness does not mean that the results are 
invalid or not useful.  Rather, it yields additional insight into 
the technique.  Apparently, bugs reported against libraries and 
Java tools contain relevant information to help identify fix lo-
cations.  Thus, others building on this work might also evaluate 
on Java tools and libraries.  Other avenues of research include 
investigating whether the approach also works well for code-
bases where bug reporters are not as likely to be developers. 

We stress that the representativeness scores do not increase 
or decrease the importance of research, but rather enhance our 
ability to reason about it. 

IV.B. Generality is Rare 

The discussion from the previous subsection leads to a re-
lated point.  Few empirical findings in software engineering are 
completely general [1].  A finding that is true in the context of 
large scale enterprise server Java development on a ten year old 
codebase may not hold for a relatively new Android widget.  
There may be fear when reporting results and trying to achieve 
representativeness that unless some hypothesis is confirmed in 
all cases, it is does not contribute to the body of knowledge in 
software engineering and is not fit for publication.  This isn’t 
so. 

Kitchenham’s work on within- and cross-company effort 
estimation [15] showed that it is indeed possible to estimate 
effort of one project based on history of others, but that there is 
no general rule for effort estimation.  Rather they used regres-
sion analysis to find that similarities in the size of the develop-
ment team, number of web pages, and high effort functions 
between projects in different companies are related to similar 
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effort requirements (i.e., different projects have different effort 
requirements, but projects that are representative of each other 
have similar effort needs). 

Knowledge can be synthesized when reporting representa-
tiveness along different dimensions even when empirical re-
sults differ.  Systematic reviews rely upon this principle.  The 
recent review of fault prediction performance by Hall et al. [16] 
essentially constructed a space consisting of modeling tech-
niques, metrics used, and granularity and found that fault pre-
diction approaches performed differently.  However, they were 
also able to conclude that simpler modeling techniques such as 
Naïve Bayes and Logistic regression tended to perform the 
best.  In the same way, selecting projects that cover a large area 
in the project universe and examining where results are valid 
and where they are not give deeper insight into the research 
results.  As Murphy-Hill et al. explain, “Simply explaining the 
context in which a study occurs goes a long way towards creat-
ing impactful research” because this allows a practitioner to 
“decide whether your research applies to her.” [17] 

IV.C. Reporting should be Consistent 

We have provided a technique for selecting a representative 
sample of software projects and also for providing representa-
tiveness scores for samples.  While selecting projects in a more 
rigorous and objective way is important, reporting in a con-
sistent and consumable manner is just as important. 

Most papers include a summary of characteristics of the 
projects included (e.g., size, age, number of checkins, number 
of contributors, language).  This is an appropriate place to re-
port the representativeness of the selected sample of projects.  
As illustrated in Section III, the universe and the space that is 
used should also be explicitly described and the rationale pro-
vided.  How was the universe chosen?  Why was each dimen-
sion in the space selected?  For example, one might select only 
Java projects as a universe if a technique only makes sense in 
the context of Java. 

If projects from different parts of the space show different 
results, they should be reported and discussed.  Differences by 
dimension or location in the space provide a unique opportuni-
ty to refine theories and investigate further. 

Finally, issues in sampling can affect external validity.  Any 
potential problems or gaps in representativeness should be dis-
cussed in a section discussing validity, usually entitled “Threats 
to Validity” or “Limitations”. 

IV.D. Next Steps 

What do we hope will come from this work?  Our goal has 
not been to claim or imply that prior work is flawed, but rather 
to show that we can improve our practice and provide methods 
to do so.  It is our hope that researchers will begin to select 
projects in an objective, representative-based way.   

We realize that different studies and techniques are aimed 
at different problems and thus the goal may not always be to 
achieve maximum representativeness of all software projects. 
Further, the dimensions that people care about may differ.  For 
instance, when evaluating techniques for mining API rules, the 
age of each project evaluated on may not be of concern.  Our 
framework is general enough that researchers can define their 

own universe (the population they want to be representative of) 
and space (the dimensions they care about).  But it does little 
good if each study reports its representativeness using different 
and opportunistic spaces and universes.  We hope that this 
work sparks a dialog in our community about representative 
software engineering research and that some level of consensus 
on what universes and spaces are appropriate will be achieved.  
It is likely that different sub-disciplines will arrive at different 
answers to these questions, which we feel is reasonable. 

V. RELATED WORK 
Some of the earliest research studies on representativeness 

were by Kahneman and Tversky [18] [19].  In their study, they 
stated that the sample size is not related to any property of the 
population and “will have little to no effect on judgment of 
likelihood”.  In their experiments they determined that people's 
perception of the likelihood of an event depended more on its 
representativeness to the population than the size of it.  Thus 
they concluded that there is a difference between people's 
judgment and the normative probabilities.  They call this the 
representative heuristic.  In a more recent study, Nilsson et al. 
[20] investigated the cognitive substrate of the representative-
ness heuristic.  In our study we borrow the concept of repre-
sentativeness from them.  However, unlike their studies, we are 
not evaluating the likelihood of an event or how people's per-
ception differs from the actual probability of an event.  We 
rather propose the means to measure the representatives of the 
sample (software systems used in the case study) to the popula-
tion (the relevant universe of software). 

Selecting representative samples for case studies has been a 
problem in fields such as clinical trials, social sciences, and 
marketing for decades.  Hence studies such as the one by Rob-
inson et al. [21] evaluated selection biases and their effects on 
the ability to make inferences based on results in clinical trials.  
They found that biases did exist, certain subgroups were un-
derrepresented (e.g., women) while others were overrepresent-
ed (e.g., blacks).  Their statistical models found that the selec-
tion biases may not influence general outcomes of the trials, 
but would affect generalizability of results for select subgroups.  

Another area of research that often encounters the issue of 
representativeness is the field of systematic literature reviews.  
If the set of studies selected to be a part of the literature review 
is not representative of the research field under study, then the 
conclusions of the reviews can potentially be biased.  Hence a 
variety of guidelines that are written for conducting systematic 
literature surveys place a large emphasis on the selection of the 
studies that will be included in the review [22] [23] [24] [25].  
All the guidelines suggest that the researchers conducting the 
review must make the selection and rejection criteria clear for 
the reader to place the conclusions in context.  In literature re-
view studies researcher are not looking for a representative but 
rather a complete sample.  The goal in literature reviews is to 
obtain every possible sample before including or rejecting them 
from the study.  Hence steps such as searching the gray area of 
publications and asking experts in the field are suggested to 
obtain a more inclusive initial sample. 
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One line of research that attempts to rigorously achieve rep-
resentativeness is the work on the COCOMO cost estimation 
model by Boehm et al. [26].  In this model, they collect soft-
ware development project data and model it in order to help 
estimate and plan for the cost, effort and schedule of a project.  
The “Center for Systems and Software Engineering” at the 
University of Southern California to this day collects data to 
have a more representative dataset of projects, and to calibrate 
the model in order to provide better estimates [27].  Kemerer, 
in his validation of software cost estimation models, found that 
using an untuned cost estimation model can produce inaccurate 
estimates (up to 600% in some cases) [28].  In a more recent 
study, Chen et al. [29] examined how to prepare the available 
data in order to obtain better estimates.  Unlike Chen et al.'s 
work, we do not provide techniques to pre-process an individu-
al dataset.  Our research goals are more similar to the research 
goals of the COCOMO model.  The COCOMO model builds a 
statistical model with the available datasets.  Then it tries to fit 
the current project that needs estimation, in this model to de-
termine the particular space in the universe that this project 
belongs to.  We use similar concepts, but attempt to determine 
how representative the current set of projects is in terms of the 
universe. 

There have been several studies in software engineering on 
guidelines for conducting and reporting empirical software 
engineering research. [30] [31] [32] [33] [34].  Most of these 
studies focus on the process to be followed in an empirical 
study.  One of the common themes is that all of the studies are 
the set of guidelines for reporting the experimental setting.  
This description will help the reader in understanding the con-
text of the study, and allows future researchers to replicate the 
study.  With respect to the sample of software systems used in 
the experiments, these studies do not discuss how to select the 
sample, but rather discuss what to report about the selection.  

Unlike these studies, in our work we present a framework 
for the research community to measure the representativeness 
of the sample.  This will help in quantifying the representative-
ness of the sample within the population, thereby helping the 
reader better understand the context under which the results of 
the study are applicable. 

VI. CONCLUSION 
With the availability of open source projects, the software 

engineering research community is examining an increasing 
number of software projects to test individual hypothesis or 
evaluate individual tools.  However, more is not necessarily 
better and the selection of projects counts as well.  With this 
paper we provide the researcher community with a technique to 
assess how well a research study covers a population of soft-
ware projects.  This helps researchers to make informed deci-
sions about which projects to select for a study. Our technique 
has three parameters (universe, space, and configuration), 
which all can be customized based on the research topic and 
should be included with any sample that is scored.   

We hope that this work sparks a dialog about representative 
research in software engineering and that some level of consen-
sus on appropriate universes and spaces will be reached, which 

likely will differ across different sub-disciplines.  We also hope 
that more datasets will become available that allow to explore 
alternative universes and spaces. 

Our technique also extends to researchers analyzing closed 
source projects.  They can now describe the representativeness 
of their projects without revealing confidential information 
about the projects or their metrics and place their results in con-
text.  Companies can use our technique to place academic re-
search into the context of their own development by comparing 
against a company-specific universe and space. 
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VII. APPENDIX 

VII.A. How to compute the score? 

This example below uses the Ohloh universe to score the Mozilla Firefox project along the space (Lines of Code, Developers). The 
text id ~ total_code_lines + twelve_month_contributor_count is R syntax and commonly used to define models. 
url <- "http://sailhome.cs.queensu.ca/replication/representativeness/ masterdata.txt" 
ohloh <- read.delim(url, header=T, na.strings=c("", "NA")) 

sample <- ohloh[ohloh$name=="Mozilla Firefox",] 

score <- score.projects(sample, universe=ohloh, id ~ total_code_lines + twelve_month_contributor_count) 

The resulting total score is in score$score and the dimension scores are in score$dimension.score. 

VII.B. How to select the next projects? 

This example adds 10 more projects to the sample from the previous example. The result is a data frame np$new.projects with the 
projects to be added to the sample and the score object of the combined sample np$score. 
np <- next.projects(10, sample, universe=ohloh, id ~ total_code_lines + twelve_month_contributor_count) 

VII.C. How to change the configuration? 

Provide a list with the similarity functions. Values NA indicates that the default similarity function should be used for a dimension. 
In the example below the function custom.similarity will be used the first dimension. 
score <- score.projects(sample, universe=ohloh, ..., configuration=c(custom.similarity, NA)) 
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