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Abstract—Symbolic Finite Transducers, or SFTs, is a repre-
sentation of finite transducers that annotates transitionswith
logical formulae to denote sets of concrete transitions. This
representation has practical advantages in applications for web
security analysis, as it provides ways to succinctly represent web
sanitizers that operate on large alphabets. More importantly, the
representation is also conducive for efficient analysis using state-
of-the-art theorem proving techniques. Besides introducing SFTs
we provide algorithms for various closure properties including
composition and domain restriction. A central result is that
equivalence of SFTs is decidable when there is a fixed bound on
how many different values that can be generated for arbitrary
inputs. In practice, we use a semi-decision algorithm, encoded
axiomatically, for non-equivalence of arbitrary SFTs. We show
that several of the main results lift to a more expressive version of
SFTs with Registers, SFTRs. They admit a fixed set of registers
that can be referenced in the logical formulae, updated by input
characters, or used to generate output.

I. I NTRODUCTION

State machines, such as automata and transducers typically
use finite alphabets. This is both helpful when formulating the
main algorithms and it is realistic when considering applica-
tions from text processing. Furthermore, implementationscan
apply compression algorithms on the transition functions when
the alphabet is large. In symbolic analysis of automata, how-
ever, there are practical advantages to formulating transitions
directly as formulae, and sometimes use an abstract, possibly
infinite, alphabet. We are here interested in finite transducers
that arise from applications such as web sanitizers.

Our main contributions are:

• In Section III we show how several properties and algo-
rithms known from finite transducers lift to SFTs even
when the alphabets are abstract. Main algorithms include
composition and domain restriction.

• Equivalence of SFTs is shown to be decidable when there
is a fixed bound on how many different values that can
be generated for arbitrary inputs. The result, established
in III-B4, is technical and of independent interest.

• Section IV introduces SFTs with registers and lifts algo-
rithms to this more expressive class.

• We present a principled axiomatic encoding of a semi-
decision algorithm for non-equivalence checking in Sec-
tion V. It applies to arbitrary SFTRs and represents the
method used in practice.

1: static string EncodeHtmlX( string strInput)
2: {
3: if (strInput == null) return null;
4: if (strInput.Length == 0) return string.Empty;
5: StringBuilder b = new StringBuilder();
6: foreach ( char c in strInput)
7: if ((( ‘a’ <= c) && (c <= ‘z ’ )) || (c == ‘ , ’ ) ||
8: (( ‘A’ <= c) && (c <= ‘Z’ )) || (c == ‘ ’ ) ||
9: (( ‘0’ <= c) && (c <= ‘9’ )) || (c == ‘ . ’ ) ||
10: (c == ‘ - ’ ) || (c == ‘_’ ) || (c == ‘ ; ’ ))
11: b.Append(c);
12: else {
13: b.Append( string.Format("&#x {0:X }",( int)c));
14: b.Append(";");
15: }
16: return b.ToString();
17: }

Fig. 1. AntiXSS html sanitizer with hexadecimal formatting.

A. Examples and an Application to Web Sanitizers

We here illustrate the use of SFT analysis on web security
analysis using a running example. We later develop the nec-
essary algorithms for this analysis.Cross site scripting(XSS)
attacksare a major concern in web applications, and happen
as a result of untrusted data leaking across web sites. Part
of data may be interpreted as code (e.g. JavaScript) by a
browser, that may end up being executed in the browser of
another user. The first line of defense against XSS attacks is
the use ofsanitizersin web servers, that escape or remove
potentially harmful strings. Although sanitizers are typically
small programs, in the order of tens of lines of code, writing
them correctly is difficult. The work in [1] introduces a
domain specific language BEK based on SFTs for writing
and analyzing sanitizers. The axiomatic approach to SFTs,
introduced in the current paper, has been implemented as part
of the underlying algorithmic support in BEK and uses the
SMT solver Z3 [2].

Example1 (Sanitizer Program):A typical sanitizer, shown
in Fig. 1, is a version of a sanitizer from a public Microsoft
AntiXSS library.

We represent the sanitizer program as a symbolic finite
transducer. It uses transduction functions.

Example2 (Transduction Functions):In most modern pro-
gramming languages,strings correspond to character se-
quences where characters use Unicode (UTF16) encoding.
Assume that there is a sortBVk, for k ≥ 1, and thatUBVk is the
domain ofk-bit bit-vectors. The elements ofUBVk correspond
to k-bit binary encodings of nonnegative integers from0
to 2k − 1. A natural representation of Unicode characters



for symbolic analysis is as elements inUBV16 . Assume the
following operations, wherek = 16:

<: BVk × BVk → BOOL,
πnm : BVk → BVk, for 0 ≤ m < n ≤ k,
⊕ : BVk × BVk → BVk,

where < corresponds to the underlying integer order and
matches the lexicographic order over characters;πnm projects
bitsm throughn−1 and pads the result withk−n+m zeros;
⊕ is addition modulo2k. Then

hj(c)
def
= Ite(9 < π4j+4

4j (c), π4j+4
4j (c)⊕55, π4j+4

4j (c)⊕48)

extracts thej’th 4-bit unit of c, 0 ≤ j ≤ 3, and maps it to its
hexadecimal representation (‘0’,‘ 1’,. . . ,‘9’,‘ A’,. . . ,‘F’).

The transduction function allows defining a minimal sym-
bolic transducer.

Example3 (Transducer Guards):The SFT below repre-
sents a so-called “string sanitizer”, where certain characters
c in the input string, not satisfying the condition

ϕ(c) : (‘a’ ≤ c ∧ c ≤ ‘z ’) ∨ (‘A’ ≤ c ∧ c ≤ ‘Z’) ∨
(‘0’ ≤ c ∧ c ≤ ‘9’) ∨ c = ‘ ’ ∨ c = ‘ . ’ ∨
c = ‘ , ’ ∨ c = ‘ - ’ ∨ c = ‘_’ ∨ c = ‘ ; ’

are in the output string replaced by their hexadecimal repre-
sentation:

q0 q0 q1

ϕ(c)/[c]

ε/[‘ ; ’ ]

¬ϕ(c)/[‘&’ , ‘#’ , ‘x ’ ] · pcq

wherepcq is the (up-to) four-character encoding ofc:

pcq
def
= Ite(h3(c) 6= ‘0’ , [h3(c),h2(c),h1(c),h0(c)],

Ite(h2(c) 6= ‘0’ , [h2(c),h1(c),h0(c)],
Ite(h1(c) 6= ‘0’ , [h1(c),h0(c)], [h0(c)])))

with hj ’s as defined in Example 2. It is also straight-forward to
rewrite the conditions into four transitions with simple guards
and a fixed number of outputs each.

The main application of SFTs in the context of BEK is to
formally verify key security properties of sanitizers. Thetwo
most important properties areidempotence(to determine if
applying the same sanitizer twice matters) andcommutativity
(to determine if the order of applying different sanitizers
matters). Since sanitizers are functions that take arbitrary input
strings the corresponding SFTs are consequently single-valued
andtotal, i.e., produce one output string for each input string.
Equivalence checking of two corresponding SFTsA andB
reduces therefore to partial equivalence checking, that wewrite
asA ∼= B.

Example4 (Non-idempotent Sanitizers):The SFT corre-
sponding to Fig. 1, sayA, is the one given in Example 3.
The string formatting operation on line 13 corresponds to
the transitions from stateq0 to q1 in A. The question of
idempotence of the sanitizer is the problem of deciding
A◦A ∼= A. Fig. 3 defines a semi-decision procedure that finds
a shortest-input counter-example, if one exists. This sanitizer is

not idempotent, our implementation of the analysis algorithms
finds a witness in less than a second.

In general, it is highly nontrivial to write sanitizers thatare
idempotent. For example, for the sanitizer in Fig. 1 the main
problem is recognizing patterns that have been introduced in
the output involving the characters ‘&’ and ‘#’ in order not
to reencode those characters, for example to avoid double
encodings such asEncodeHtmlX("&") ="&#x26;" and
EncodeHtmlX("&#x26;") = "&#x26;&#x23;x26;" .

Example5 (Idempotent Sanitizers):Suppose that the sub-
string"&#" in the input must remain unchanged in the output.
The following transducer captures this requirement:

q0 q0 q1 q2

c 6= ‘&’ ∧ c 6= ‘#’ ∧ ¬ϕ(c)/&̄ · c̄
ϕ(c)/&̄ · [c]

c = ‘#’/[‘&’ , ‘#’ ]

c = ‘&’/ε

ϕ(c)/[c]
c 6= ‘&’ ∧ ¬ϕ(c)/c̄

c = ‘&’/&̄

c = ‘&’/&̄
c = ‘&’/&̄

where c̄ stands for[‘&’ , ‘#’ , ‘x ’ ] · pcq · [‘ ; ’ ] andϕ andψi are
defined in Example 3. Note thatϕ(‘&’), ϕ(‘#’) are false. In
this case the analysis takes also less than a second and shows
that the modified SFTis idempotent. However, the pattern
"&#" is not precise enough, ideally, one should consider
patterns that arise only as a result of santization, e.g."&#x" is
more precise and yields a similar but more complex extension
of the original SFT.

Handcoding of sanitizers and SFTs such as the one in
Example 5, is notoriously difficult are error-prone. In general,
construction of SFTs from sanitizers can be automatized and
the construction of special purpose SFTs that preserve certain
patterns can be used together with SFT algorithms presented
above to automatically construct and analyze properties of
SFTs such as the one in Example 5.

Example6 (Composition):The following general tech-
nique can be used to aid the above construction. Consider an
SFT Aσ/TUPLE〈BOOL,σ〉

W that, given a finite setW of “pattern”
words inUσ, replaces each pattern[a0, a1, . . . , an] in the input
with the word[〈true, a0〉, 〈true, a1〉, . . . , 〈true, an〉] and re-
places any other charactera in the input by〈false, a〉. Second,
assume an SFTATUPLE〈BOOL,σ〉/σ

f that maps each character
〈true, a〉 in the input toa and applies a transformationf(a)
to any character〈false, a〉. Then the compositionAW ◦ Af
is an SFT that performs the desired transformationf on input
characters unless they occur in the context ofW . The sort
TUPLE〈σ0, σ1〉 is a tuple sortand is associated with the usual
operations (tuple constructor and projection functions).

Example7 (Registers):The main difficulty in encoding the
transducer in Example 5 is having to introduce states that
remember previous patters of characters that should not be
replaced. By using registers, this encoding can be simplified
and can be much more succinct. In order not to apply
sanitization to characters occurring in a set of patternsW , use
registers for remembering previous input characters. Suppose
a single registerr is needed (initiallyr = ε) to remember the
previous input character. Before outputting a transformation
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f(c) of the current characterc, check if the patternr ·c occurs
in W , in which case outputr · c and setr = ε, or if c extends
a pattern, in which case letr = c and outputε, or if c breaks
a pattern, in which case outputf(r) · f(c) and setr = ε.

II. PRELIMINARIES

Our work is based on classical automata theory, classical
logic and model theory. We use terminology that is consistent
with [3], [4], [5].

A. Finite Transducers and Automata

We recall the definition of a finite transducer [5]. Intuitively,
a finite transducer is a generalization of a Mealy machine that
may omit inputs and outputs and may be nondeterministic. We
useε as a special symbol denoting the empty word.

Definition 1: A finite transducer(FT) A is defined as a
six-tuple (Q, q0, F, I, O, δ), whereQ is a finite set ofstates,
q0 ∈ Q is the initial state, F ⊆ Q is the set offinal states,
I is the input alphabet, O is the output alphabet, andδ is a
finite transition functionfrom Q× (I ∪ {ε}) to 2Q×O∗

.
There exist several alternative definitions of FTs. By using

the standard form theoremof FTs [5, Theorem 2.17], Defini-
tion 1 is easily seen to be equivalent to those definitions.

We indicate a component of an FTA by usingA as a
subscript. We often use the technically more convenient view

of δA as a set of transitions∆A and write p
a/v
−−→A q for

(q, v) ∈ δA(p, a). We omit the subscriptA when it is clear
from the context.

∆A
def
= ∆ε

A ∪ ∆ε̄
A

∆ε̄
A

def
= {p

a/v
−−→ q | (q, v) ∈ δA(p, a), a ∈ IA}

∆ε
A

def
= {p

ε/v
−−→ q | (q, v) ∈ δA(p, ε)}

Given a setV of elements, we writev = [v0, . . . , vn−1],
for v ∈ V ∗. For v, w ∈ V ∗, v · w denotes the concatenation
of v with w. (Both [] andε denote the empty sequence.)

Givenqi
ui/vi
−−−→A qi+1 for i < n we writeq0

u/v
 A qn where

u = u0 · u1 · . . . · un−1 andv = v0 · v1 · . . . · vn−1. We write

alsoq
ε/ε
 A q.

Definition 2: An FT A induces thetransduction,

TA(u)
def
= {v | ∃q ∈ FA (q0A

u/v
 q)}.

Two FTsA andB areequivalentif TA = TB.
We defined(A) as the underlying nondeterministic finite

automaton with epsilon moves (εNFA) that is obtained from
the FTA by eliminating outputs on all transitions. We write
L(B) for the language accepted by anεNFA B.

Definition 3: An FTA is finite-valuedif there existsk such
that for all u ∈ I∗A, |TA(u)| ≤ k; A is single-valuedif for all
u ∈ I∗A, |TA(u)| ≤ 1.

Definition 4: An FTA is ageneralized sequential machine
or GSM if ∆ε

A = ∅. We sayA is input-ε-free.
Definition 4 is consistent with [5], [6]. However, the def-

inition of a GSM is not standardized in the literature. Some
sources define GSMs without a dedicated set of final states [7].

Definition 5: An FT A is deterministicif d(A) is deter-
ministic.

There exist single-valued FTs for which there exists no
equivalent deterministic FT (e.g., an FT that removes all
input symbols after thelast occurrenceof a given symbol.)
Conversely, determinism does not imply single-valuedness,
since several transitions with same input but distinct outputs
may collapse into single transitions ind(A). Other definitions
of deterministic FTs (allowing input-ε) are used by some
authors [6]. Definition 5 is consistent with [5].

B. Background Structure and Models

We work modulo abackgroundstructureU over a lan-
guage ΓU that is multi-sorted. We also writeU for the
universe (domain) ofU . For each sortσ, Uσ denotes a
nonempty sub-domain ofU . There is a Boolean sortBOOL,
UBOOL = {true, false}, and the standard logical connectives
are assumed to be part of the background.Termsare defined
by induction as usual and are assumed to be well-sorted.
Function symbols with range sortBOOL are called relation
symbols. Boolean terms are called formulas or predicates. A
term without free variables isclosed.

An uninterpreted function symbol of arityn ≥ 1 is a
function symbolf /∈ ΓU with a domain sortσ1 × · · · × σn
and arange sortσ. An interpretation forf is a function from
Uσ1×· · ·×Uσn to Uσ. An uninterpreted constantis a constant
c /∈ ΓU of some sortσ. An interpretation forc is an element of
Uσ. By convention, a constant is also called afunction symbol
of arity 0.

We write Σ(t) for the set of all uninterpreted function
symbols that occur in a termt. Given a set of uninterpreted
function symbolsΣ, t is a term over Σ, or a Σ-term if
Σ(t) ⊆ Σ. We sayΣ-modelfor an expansion ofU to ΓU ∪Σ.
The interpretation of a closedΣ-term t in a Σ-modelM , is
denoted bytM and is defined by induction as usual. There is
a background function (symbol)Ite:BOOL × σ × σ → σ for
each sortσ and

Ite(ϕ, t, f)M = if ϕM then tM else fM

Let ϕ be a closedΣ-formula. A Σ-modelM satisfiesϕ or ϕ
is true inM or M �ϕ, if ϕM = true; ϕ is satisfiableif it
has a model, denoted byIsSat(ϕ); ϕ is true if ϕM = true

for all Σ-modelsM .
For each sortσ let cσ stand for adefault fixed uninterpreted

constantof sort σ. We omit the sortσ when it is clear from
the context. LetT σ(Σ) denote the set of all closed terms of
sortσ only using uninterpreted symbols fromΣ, T σ stands for
T σ(Σ) whereΣ is an infinite set of ininterpreted constants of
some fixed sort. Unless stated otherwise, we assume thatT σ is
quantifier free, closed under substitutions, Boolean operations,
and equality.F stands forT BOOL.

III. SYMBOLIC TRANSDUCERS

Symbolic automata provide a representation of automata
where several transitions from a given source state to a
given target state may be combined into a single transition
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with a symbolic label denoting multiple concrete labels. This
representation naturally separates the finite state graph from
the character representation.

Definition 6: A Symbolic Finite Transducer (SFT)A over
Γ with input sortι and output sorto, or Aι/oΓ , is a six-tuple
(Q, q0, F, ι, o,∆), whereQ is a finite set ofstates, q0 ∈ Q is
the initial state, F ⊆ Q is the set offinal states, ι is the input
sort, o is theoutput sort, and∆ = ∆ε̄ ∪ ∆ε,

∆ε̄ : Q×F(cι) × (T o(cι))
∗ ×Q

∆ε : Q× {ε} × (T o)∗ ×Q

is a finitesymbolic transition relation.
A single transition(p, ϕ,u, q) ∈ ∆A is also denoted by

p
ϕ/u
−−→A q or p

ϕ/u
−−→ q whenA is clear from the context;ϕ

is called theinput conditionor guard of the transition andu
is called theoutput sequenceof the transition. LetIA denote
the set of non-epsilon input conditions in∆A. LetOA denote
the set of output terms in∆A.

The definition of asymbolic finite automaton(SFA) is the
special case of an SFT whose outputs are empty. A transition
of an SFAAι is denoted byp

ϕ
−→ q whereϕ ∈ IA ∪ {ε}.

We lift the interpretation of terms to apply to sequences
of terms. Givenu = [ui]i<n ∈ (T γ(Σ))∗, for n ≥ 0, and a
Σ-modelM , u

M def
= [uMi ]i<n ∈ (Uγ)∗.

Definition 7: An SFTAι/o denotes theconcreteFT

[[A]]
def
= (QA, q

0
A, FA,U

ι,Uo,∆ε̄ ∪ ∆ε), where

∆ε̄ = {p
cM

ι /uM

−−−−−→ q | p
ϕ/u
−−→ q ∈ ∆ε̄

A, M �ϕ},

∆ε = {p
ε/uU

−−−→ q | p
ε/u
−−→ q ∈ ∆ε

A},

whereM ranges over{cι}-models. LetTA
def
= T[[A]].

Example8: Consider the SFTA in Example 3. Then
|∆ε̄

[[A]]| = 216. For example,[[A]] has the following transitions:

q0
‘b’/[‘b’ ]
−−−−−→ q0, q0

‘ö ’/[‘&’ ,‘#’ ,‘x ’ ,‘F’ ,‘6’ ]
−−−−−−−−−−−−−→ q1

ε/[‘ ; ’ ]
−−−−→ q0

So TA(“böb”) = {“b&#xF6;b ”}.
The following basic property of SFTs is important in the

context of algorithm design for SFTs.
Definition 8: An SFTA is clean if IsSat(ϕ) for ϕ ∈ IA.
Other properties of SFTs are defined in terms of their de-

notations as FTs: SFTA is deterministic, resp.single-valued,
input-ε-free, if [[A]] is deterministic, resp. single-valued, input-
ε-free. The following proposition follows from Definitions 5
and 7.

Proposition1: A is deterministic if and only ifA is input-

ε-free and for allp
ϕ/u
−−→ q, p

ψ/v
−−→ r ∈ ∆A, if q 6= r then

ϕ ∧ ψ is unsatisfiable.
A stronger notion ofinput-output determinismthat disallows

different outputs for the same input can be characterized sim-
ilarly and is a useful special case in practical applications. For
example the SFT in Example 3 is input-output deterministic.
If, in addition, the output sequence is required to be a singleton
sequence, this leads to a special case of SFTs that can be called
symbolic Mealy automata.

A. Alphabets of SFTs

In order to base the definitions of SFTs on classical formal
language theory, the concrete alphabetsU ι andUo need to be
finite. For example, in Example 3,|UBV16 | = 216. However, for
the symbolic representation the main concern is decidability
and complexity of the character theory, rather thanfinitenessof
the underlying domain. This point becomes more transparent
when we discuss algorithms for SFTs. When considering an
input or output sort whose domain isinfinite, e.g. integers, all
algorithms on SFTs remain intact, while SFTs are in this case
strictly more expressive than FTs.

Example9: Consider the sortINT for integers and the
following SFTAINT/INT :

q0 q0

true/[c, c]

The image ofTA is essentially{[n, n] | n ∈ U INT}∗ that
is not accepted by any SFA, since infinitely many states are
required, contrary to the image of a finite transduction (also
called rational transduction) that is a regular language.

Example 9 is an instance of the general case whenAι/o is a
clean SFT where bothU ι andUo are infinite,A has a transition
whose output sequence containscι in other than the first output
term and denotes infinitely many concrete transitions. In this
case the image ofTA cannot be recognized using a finite
number of states.

B. Algorithms for SFTs

We here examine several algorithms for SFTs. Following
the application to web sanitizers described in Section I-A,the
main algorithms of interest are composition and equivalence
checking. Our result on equivalence checking establishes that
equivalence checking is decidable under fairly mild assump-
tions, but establishing this requires a technical argument.

Cleaningof an SFTA is elimination of all transitions in
∆ε̄
A whose guard is unsatisfiable. Thus, cleaning is linear in

the number of transitions modulo complexity of satisfiability
of formulas inIA. In general we assume that SFTs are clean.

1) Standard algorithms:Many classical automata algo-
rithms, such as the following, are directly applicable to SFTs
(and SFAs).

• Epsilon elimination: elimination of all p
ε/ε
−−→ q (epsilon

moves), while linear in the number of states may increase
the number of transitions quadratically.

• Epsilon-loop elimination: elimination of all pathsp
ε/ε
 p

is linear in the number of states and transitions.
• Unreachable state elimination: elimination of all states

not reachable from the initial state.
• Deadend elimination: elimination of all non-initial states

from which no final state is reachable.
Both, unreachable state elimination and deadend elimination
are linear in the number of states and transitions. All those
algorithms are independent of the labels annotating the transi-
tions and work in exactly the same way for automata as well
as transducers. Note that epsilon elimination does not imply
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complete elimination of∆ε, which is in general not possible
because the class of transductions induced by input-ε-free FTs
is a proper subclass of all rational transductions. Epsilon-loop
elimination is not as widely known, but practically useful in
the context of symbolic analysis [8].

2) Composition:We lift the definition of transductions to
sets as usualT (V )

def
=

⋃
v∈V T (v). Given two transductions

T1 andT2, the compositionof T1 andT2 is the transduction:

T1 ◦ T2(v)
def
= T2(T1(v)).

A fundamental property of SFTs that makes them attractive
for symbolic analysis, isclosure under symbolic composition.

In [1] it is shown that for any two input-ε-free SFTsAι/σ

andBσ/o, one can effectively construct an input-ε-free SFT
A ◦ Bι/o such thatTA◦B = TA ◦ TB. The extension of the
algorithm to all SFTs is as follows. First, assume that epsilon-
transitions have been eliminated, and if there was a transition

p
ε/[u1,...,un]
−−−−−−−→ q, for somen ≥ 2,

new (nonfinal) statesp1, . . . , pn−1, were added and the tran-
sition was replaced by the new transitions

p
ε/[u1]
−−−−→ p1

ε/[u2]
−−−−→ · · ·

ε/[un]
−−−−→ q

Sincecι does not occur in anyui, the transformation is well-
defined and equivalence preserving.

The composition algorithm [1] is a DFS algorithm where
QA◦B is constructed as a reachable subset ofQA×QB, start-
ing from (q0A, q

0
B). During creation of composed transitions

from a reached state(p1, p2) the following transitions are
added, for example, suppose

p1
ϕ/[u1,u2]
−−−−−−→A q1, p2

ψ1/[v1]
−−−−→B

ψ2/[v2]
−−−−→B q2

then, letθi = {c 7→ ui} for i = 1, 2,

(p1, p2)
ϕ∧ψ1θ1∧ψ2θ2/[v1θ1,v2θ2]
−−−−−−−−−−−−−−−−→A◦B (q1, q2)

The following additional cases are added to the algorithm:

• if p2
ε/v
−−→B q2 then (p1, p2)

ε/v
−−→A◦B (p1, q2),

• if p1
ε/[u]
−−−→A q1, p2

ϕ/v
−−→B q2, let θ = {cσ 7→ u}, if ϕθ

is true then(p1, p2)
ε/vθ
−−−→A◦B (q1, q2).

There is a subtle point about this extension. While the algo-
rithm in [1] only depends on decidability of satisfiability for
keepingA ◦ B clean, the extension requires evaluatingϕθ
above for maintainingcorrect semanticsof A ◦B.

Note also that the transition(p1, p2)
ε/vθ
−−−→A◦B (q1, q2) is

an epsilon transition whenv = ε, i.e., epsilon-transitions may
reoccur inA ◦B although eliminated fromA andB.

Example10: Consider the following SFTsAι/σ andBσ/o

wherea ∈ Uσ andϕ is some{cσ}-formula:

A : p1 p1 q1
ε/[a]

B : p2 p2 q2
ϕ/ε

Then∆A◦B = {(p1, p2)
ε/ε
−−→ (q1, q2)} if ϕ{cσ 7→ a} is true,

∆A◦B = ∅, otherwise.

Aι/o
�Dι def

=
1: let Q = {(q0A, q

0
D)}

2: let ∆ = ∅
3: let S be a stack with initial element(q0A, q

0
D)

4: while S is nonempty
5: pop (p, q) from S
6: foreach (p, ϕ,u, r) ∈ ∆A and(q, ψ, s) ∈ ∆D

7: if ϕ = ε then
8: add ((p, q), ε,u, (r, q)) to ∆
9: if (r, q) /∈ Q then add (r, q) to Q andpush (r, q) to S
10: if ψ = ε then
11: add ((p, q), ε, ε, (p, s)) to ∆
12: if (p, s) /∈ Q then add (p, s) to Q andpush (p, s) to S
13: if ϕ 6= ε andψ 6= ε andIsSat(ϕ ∧ ψ) then
14: add ((p, q), ϕ ∧ ψ,u, (r, s)) to ∆
15: if (r, s) /∈ Q then add (r, s) to Q andpush (r, s) to S
16: let B = (Q, (q0A, q

0
D), Q ∩ (FA × FD), ι, o,∆)

17: eliminate deadends fromB
18: return B

Fig. 2. Domain restriction algorithm,Aι/o is an SFT andDι is an SFA.

We obtain the following generalization of [1, Theorem 1]
by using the above extension.

Theorem1: LetAι/σΓ andBσ/oΓ be SFTs. Then there is an
SFTA ◦ B

ι/o
Γ such thatTA◦B = TA ◦ TB. If F is decidable

thenA ◦B can be constructed effectively.
3) Domain restriction: Domain restriction is an operation

that restricts the input sequences accepted by an SFTAι/o

with respect to an SFADι. The algorithm for the domain
restrictionA�D is shown in Fig. 2. The following proposition
follows from definitions.

Proposition2: Let Aι/oΓ be an SFT andDι
Γ an SFA. Then

TA�D = TA�L(D). Construction ofA�D is effective.
Note that the satisfiability checking performed in the algorithm
(in line 13) ensures thatA�D is clean and uses decidability
of F(cι). However, if satisfiability checking is omitted,TA�D

is unchanged.
4) Equivalence:Equivalence checking of FTs is undecid-

able in general [9], and is undecidable already for GSMs. The
special case of equivalence checking of single-valued input-ε-
free SFTs over decidable character background is shown to be
decidable in [1]. This result is substantially generalizedhere
(Theorem 2) tofinite-valuedSFTs. This result generalizes also
the decidability of equivalence of finite-valued FTs [10], [6],
[11]. We use several lemmas to prove Theorem 2.

Proposition3: Let A be a finite-valued SFT such that
TA(ε) = ∅. There is an input-ε-free SFT that is effectively
equivalent toA.

Proof: First, assume thatA is clean, has no epsilon-loops,
no deadends, and no unreachable states. Second, note thatA

cannot haveinput-epsilon loopsp
ε/u
 p, u 6= ε, becauseA is

finite-valued.
Let ∆A(p) denote the set of all transitions in∆A starting

from p. Similarly for ∆ε
A and∆ε̄

A.
The idea is to transformA repeatedly, each time decreasing

the number of statesp, such that∆ε
A(p) 6= ∅, while preserving

equivalence. The following transformation is repeated until
∆ε
A(p) = ∅ for p ∈ QA \ {q0A}.

1) Choose a non-initial stateq such that∆ε
A(q) 6= ∅.
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2) For each transitionp
ϕ/u
−−→ q in A add the new transitions

{p
ϕ/u·v
−−−−→ r | q

ε/v
−−→ r ∈ ∆ε

A(q)}

to A. Note thatr 6= q and if ϕ = ε then p 6= q. Also,
the semantics ofv is not affected becauseΣ(v) = ∅.

3) Remove the transitions∆ε
A(q) from A.

Equivalence of the transformedA to the original one follows
by using absence of input-epsilon loops and thatq 6= q0A.
Eliminate all deadends that were created.

Finally, transitions in∆ε
A(q0A) are eliminated one by one

as follows. Fixq0A
ε/u
−−→ p. SinceTA(ε) = ∅ we know that

p /∈ FA and sincep is not a deadend∆A(p) 6= ∅. We know

also thatq0A 6= p. Replace the transitionq0A
ε/u
−−→ p by

{q0A
ϕ/u·v
−−−−→ r | p

ϕ/v
−−→ r ∈ ∆A(p)}

Repeat the step until∆ε
A(q0A) = ∅.

Note that if A in Proposition 3 is not clean, then more
transitions may be added during the transformations but whose
guards remain unsatisfiable and the statement remains correct.
If A is clean then the transformed SFT is also clean, since
guards are not modified.

Example11: Consider the SFT in Example 3. Input-
epsilon elimination yields the following equivalent SFT:

q0 q0
ϕ(c)/[c]
¬ϕ(c)/c̄

wherec̄ stands for[‘&’ , ‘#’ , ‘x ’ ] · pcq · [‘ ; ’ ].
We say that a state of an SFT isrelevant if it is reachable

from the initial state and not a deadend.
Lemma1: Let A be a finite-valued SFT. For allu, v, w,

and relevantp ∈ QA, if p
u/v
 A p and p

u/w
 A p thenv = w.

Proof: Suppose there existu, v, w, andp such thatp
u/v
 A

p andp
u/w
 A p andv 6= w. Then for anyk, by the pumping

lemma, there existu1, u2, v1 andv2 andm such thatTA(u1 ·
um · u2) ≥ k, contradicting finite-valuedness ofA.

Definition 9: An SFT A is a componentif it is strongly
connected andFA = {q0A}, q0A is called theanchorof A. An
SFTA is a sequence (of components)if it consists of disjoint
componentsAi for 0 ≤ i ≤ n such thatq0A = q0A0

, FA = FAn ,
and there is a single transitionq0Ai

→ q0Ai+1
for 0 ≤ i < n.

Definition 10: The union of a setA of SFTs is an SFT
with a new initial state and epsilon moves to the initial states
of SFTs inA.

Definition 11: An SFT is in sequence normal form(SNF)
if it is a union of pairwise disjoint sequences.

Lemma2: All SFTs have an effectively equivalent SNF.
Proof: LetA be an SFT. The construction is standard: the

sequences are constructed by considering all loop-free paths
from the initial state ofA to some final state, possibly creating
extra states if a strongly connected component ofA is entered
and exited through different states.

The following is a key lemma used in the proof of decid-
ability of equivalence of finite-valued SFTs below.

Lemma3: Every finite-valued SFT has an effectively equiv-
alent SNF with single-valued sequences.

Proof: By using Lemma 2 we assume, without loss of
generality, that the SFT is a single sequence. Moreover, by
using Proposition 3, we assume that the SFT is input-ε-free.

We apply the following algorithm to transform the SFT into
a set of single-valued sequences. First, note that if the SFTis a
single component then it is already single-valued by Lemma 1.
Next, we describe the algorithm for the case when the SFT
has the formAαB, whereA andB are two components with
anchorsp and q andα is a nonempty pathp  q. The case
when eitherA or B have no transitions follows also from
Lemma 1. So assume that bothA andB contain nonempty
paths p  p and q  q. Different outputs may arise by
ambiguous parses of an input sequenceu throughAαB that
must allow paths:

r s

p q
v/y

a/w b/z

a/x1 v/y1 b/x2v/y2

andu has the formam · a · v · v · b · bn causing the conflict
x1 · y1 · y · z 6= w · y · y2 ·x2 in the output. We can rule out the
case whena = b = ε or else there exist either unboundedly
many different outputs forvk, by increasingk, contradicting
finite-valuedness, or just a single output, independent of the
parse, e.g. wheny1 = y2 = ε. So assumea 6= ε (the case
b 6= ε is symmetrical). The idea is to resolve the conflict by
replacingAvB with (A \ {av, v}∗)vB, AavvB andAavB.

In order to detect and resolve such conflicts symbolically,
extract the sequencēϕ of guards on the pathα and search
for the corresponding symbolic paths inA andB by checking
satisfiability of the corresponding guard sequences for which
there exist different output sequences. The maximum lengthof
the paths corresponding toa andb that need to be considered
is |QA||QB|.

For example, letα = p
ψ/t
−−→ q. And suppose there exist

transitionsp
ϕ1/u1

−−−−→ p
ϕ′

1/u
′

1−−−−→ r
ψ1/t1
−−−→ p in A and transitions

q
ϕ2/u2

−−−−→ q
ψ2/t2
−−−→ s

ϕ′

2/u
′

2−−−−→ q in B. Let θi = {c 7→ ci} where
ci is fresh. Assume the following formula is satisfiable:

ϕ1θ1 ∧ ψθ2 ∧ ψ2θ3 ∧ ϕ′
2θ4 ∧ ϕ

′
1θ1 ∧ ψ1θ2 ∧ ψθ3 ∧ ϕ2θ4

∧u1θ1 · tθ2 · t2θ3 · u
′
2θ4 6= u′1θ1 · t1θ2 · tθ3 · u2θ4

Then there existu with different outputs. Construct the SFAD
for the guard sequences{[ϕ1∧ϕ

′
1], [ϕ1∧ϕ

′
1, ψ1]}

∗, in particu-
lar accepting{a, a ·v}∗ as above. Let̄D be the complement of
D. Let A′ = A�D̄ (thus removing the conflicts fromA). Let

α1 be the pathp
ϕ1∧ϕ

′

1/u1

−−−−−−→ p1
ψ/t
−−→ q and letα2 be the path

p
ϕ1∧ϕ

′

1/u
′

1−−−−−−→ r2
ψ1/t1
−−−→ p2

ψ/t
−−→ q. Now replaceAαB with

the SFTsA′αB, Aα1B andAα2B. Note thatA′αB is now
single-valued and can be transformed to SNF. It follows that
the union of the new sequences is equivalent toAαB. Repeat
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the transformation onAα1B andAα2B. Termination follows
from that both have fewer nonequivalent conflicts remaining
and that the length of pathsα causing conflicts is effectively
bounded by the size of the original SFT. The proof can be
generalized to the case of sequences of arbitrary length.

Below we make use of the following pumping lemma about
equations over finite sequences of elements.

Lemma4: For all u1, u2, v1, v2, w1, w2, z1, z2, if

u1 · u2 = v1 · v2,
u1 · w1 · u2 = v1 · z1 · v2,
u1 · w2 · u2 = v1 · z2 · v2

thenu1 · w1 · w2 · u2 = v1 · z1 · z2 · v2.
We also need the following generalization of [1, Theorem 2]

where an algorithm is given for deciding equivalence of single-
valued input-ε-free SFTs. The algorithm in [1] does not,
however, generalize to the case of simultaneous equivalence
between multiple SFTs, that is needed below. For a single-
valued SFTA write A(u) = v whenTA(u) = {v}.

Lemma5: LetAι/o, Bι/o1 , . . . , B
ι/o
k be input-ε-free single-

valued SFTs for somek ≥ 1 then the problem
∃x (

∧k
i=1 TA(x) 6= TBi(x)) is decidable ifF is decidable.

Proof: Casek = 1 is [1, Theorem 2]. We prove the
case fork = 2. Generalization tok > 2 is technically more
involved but straightforward. LetB = B1, C = B2. We only
need to consider inputs inL = L(d(A))∩L(d(B))∩L(d(C)).
For example, ifu ∈ L(d(A)) \ L(d(B)) and u ∈ L(d(C))
thenTA(u) 6= TB(u) and the problem reduces to equivalence
of A�d(B) and C, where the construction ofA�d(B) is
effective. The other cases are similar.

For the caseL construct the productD = A×B ×C that
has statesQA ×QB ×QC and 3-output-transitions

(p, q, r)
ϕ∧ψ1∧ψ2/(u,v,w)
−−−−−−−−−−−→ (p′, q′, r′),

for p
ϕ/u
−−→A p

′, q
ψ1/v
−−−→B q′, r

ψ2/w
−−−→C r′

such thatIsSat(ϕ ∧ ψ1 ∧ ψ2). Note thatL(d(D)) = L. The
unreachable states and the deadends are eliminated fromD.

D(u)
def
= (A(u), B(u), C(u))

Let p0 = q0A, q0 = q0B and r0 = q0C . We write s0 for
(p0, q0, r0) andsf for some(pf , qf , rf ) ∈ FA × FB × FC .

Givenu ∈ L andD(u) = (a,b, c), there are two (possibly
overlapping) cases for aB-conflict a 6= b (symmetrically for
a C-conflict a 6= c):

1) there is aB-length-conflict: |a| 6= |b|, or
2) there is aB-character-conflict: for somei, a[i] 6= b[i].

We say that a states ∈ QD is aB-length-conflict-stateif there

exists asimpleloop (a loop without nested loops)s
u/(v,w, )
 s

such that|v| 6= |w|. The statements below make implicit use
of the assumption thatD contains no unreachable states and
no deadends.

(*) There are two ways how aB-length-conflict can arise.

1.a) There exists aB-length-conflict states in D.

1.b) There exists a loopfree paths0
u/(v,w, )
 sf such

that |v| 6= |w|.

Proof of (*): We show that cases 1.a and 1.b are exhaus-
tive. Consider anyu ∈ L such thatD(u) = (v, w, ) and
|v| 6= |w| and suppose 1.b is false. Then there must exist
u1, u

′, u2, v1, v
′, v2, w1, w

′, w2 such that

u = u1 · u
′ · u2, v = v1 · v

′ · v2, w = w1 · w
′ · w2,

and a loops
u′/(v′,w′, )
 s where |v′| 6= |w′|, or else

|v| = |w| since 1.b is false. Now suppose the loop is not
simple, then there existu′1, u

′′, u′2, v
′
1, v

′′, v′2, w
′
1, w

′′, w′
2

such that

u′ = u′1 · u
′′ · u′2, v

′ = v′1 · v
′′ · v′2, w

′ = w′
1 · w

′′ · w′
2,

and a states′,

s s′

u′

1/(v
′

1, w
′

1, )

u′′/(v′′, w′′, )

u′

2/(v
′

2, w
′

2, )

If |v′′| = |w′′| then |v′1 · v
′
2| 6= |w′

1 · w
′
2| and

s u′

1 · u′

2/(v
′

1 · v′2, w
′

1 · w′

2, )

and repeat the argument for the shorter path if it is not
simple. Otherwise, if|v′′| 6= |w′′| and the loop through
s′ is not simple apply the argument fors′. �

Note that the problems of deciding 1.a and 1.b are decidable.
In order to decide if a states is a B-length-conflict-state
consider all the possible simple loopss  s: for each such
path check if the outputs lengths forA andB are different.
There are finitely many such paths. Similarly for 1.a.

Next, we proceed by case analysis, showing that we can
effectively decide all the different combinations of possible
B-conflicts andC-conflicts that can arise. We write B.1.a for
the case when there exists aB-length-conflict-state, similarly
for the other cases.

Case (B.1.a, C.1.a):Check if there existsA andsB such that
sB is a B-length-conflict-state andsC is a C-length-conflict
state andsB  sC . Then there exists a path

s0 sB sC sf

u1/(v1, w1, z1)

u2/(v2, w2, z2)

u3/(v3, w3, z3)

u4/(v4, w4, z4)

u5/(v5, w5, z5)

where|v2| 6= |w2| and |v4| 6= |z4|. It follows that there exist
m andn such that

|v1 · vm2 · v3 · vn4 · v5| 6= |w1 · wm2 · w3 · wn4 · w5|
|v1 · vm2 · v3 · vn4 · v5| 6= |z1 · zm2 · z3 · zn4 · z5|

Thus there existsu = u1 ·um2 ·u3 ·un4 ·u5 ∈ L such thatD(u)
is aB-conflict and aC-conflict. There are finitely many such
combinations. The casesC  sB is symmetrical. No other
simultaneous combinations of (B.1.a, C.1.a) are possible.
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Case (B.1.a, C.1.b):Check if there exists aB-length-
conflict-states and a looopfree paths0  s sf that causes
a C-length conflict, i.e., there exists a path

s0 s sf

u1/(v1, w1, z1) u3/(v3, w3, z3)

such that |v1 · v3| 6= |z1 · z3|. There existsu2 such that

s
u2/(v2,w2,z2)
 s where|v2| 6= |w2|. Thus, there existsm such

that
|v1 · vm2 · v3| 6= |w1 · wm2 · w3|
|v1 · vm2 · v3| 6= |z1 · zm2 · z3|

Thus there existsu = u1 · um2 · u3 ∈ L such thatD(u) is
a B-conflict and aC-conflict. There are finitely many such
combinations. No other simultaenous combinations of (B.1.a,
C.1.b) are possible. The case (B.1.b, C.1.a) is symmetrical.

Case (B.1.b, C.1.b):Check if there exists a loopfree path
s0  sf that causes both aB-length-conflict and and aC-
length-conflict. Then there existsu such thatD(u) is a B-
conflict and aC-conflict. There are finitely many such paths
and no other simultaneous occurrences of (B.1.b, C.1.b) are
possible.

Case (B.2, C.1):Assume, by previous cases, that (B.1, C.1)
is not possible. Let̀ be the length of the longest possible
output from eitherA, B or C on any loopfree path. Clearly,`
can be computed effectively. Suppose there exists aC-length-
conflict-states. Consider all paths

ρm : s0  (s s)m  sf , m ≤ 2`

Since B.1.a is not possible, we know that for all loopss s
theA-output and theB-output have the same length. For each
ρm check if a simultaneousB-character-conflict andC-length-
conflict exists.

If no such simultaneous conflicts exist it follows from the
following argument that no such simultaneous conflicts exist
in any longer paths. We may assume that all such loops have
nonemptyA (and thusB) outputs, since empty outputs neither
cause nor remove any character conflicts.

• Suppose someρm, ` ≤ m < 2`, contains aB-character
conflict. Then, by choice of̀ and since all theA andB-
outputs are nonempty, there existui, vi, wi, zi, 1 ≤ i ≤ 2,
such that

s0 s sf

u1/(v1, w1, z1) u2/(v2, w2, z2)

and either the character conflict occurs in the prefixes of
v1, w1 or in the suffixes ofv2, w2 (i.e., the conflict is not
in the overlap). Thus, theB-charater-conflict remains in

s0 s s sf

u1/(v1, w1, z1) u
′
/(v

′
, w

′
, z

′
) u2/(v2, w2, z2)

for anys
u′/(v′,w′,z′)
 s, where|v′| = |w′| and|v′| 6= |z′|.

We now have a contradiction, because eitherρm or ρm+1

must cause a simultaneousC-length-conflict, i.e., either
|v1 · v2| 6= |z1 · z2| or |v1 · v′ · v2| 6= |z1 · z′ · z2|.

• Thus, in particular,ρ` and ρ`+1 do not cause anyB-
character-conflicts. It now follows from Lemma 4 that
for all m ≥ `, in ρm the outputs ofA andB will be
equal.

There are finitely many symbolic paths inD that correspond
to the concreteρm’s above. For each such path construct a
formula inF that is satisfiable iff aB-character-conflict exists.
For example, for a symbolic path

s0
ϕ1/(v1,w1, )
−−−−−−−−→ s

ϕ2/(v2,w2, )
−−−−−−−−→ sf ,

given substitutionθi = {cι 7→ ci} where ci is a fresh
uninterpreted constant the formula is:

ϕ1θ1 ∧ ϕ2θ2 ∧ v1θ1 · v2θ2 6= w1θ1 · w2θ2

The case C.1.b is covered by considering all loopfree paths.
It follows that the case (B.2, C.1) is decidable. The case (B.1,
C.2) is symmetrical.

Case (B.2, C.2):Assume, by previous cases, that (B.1, C.1),
(B.1, C.2) and (C.1, B.2) are not possible. In other words, for
all loops, the lengths of outputs fromA, B andC are equal
and the total lengths of outputs are equal. Let` be as above
and consider all paths:

ρm : s0  (s s)m  sf , m ≤ 2`

wheres  s is a simple loop and check if a simultaneous
character conflict exists. As above, all such paths correspond
to finitely many symbolic paths inD. For example, for a
symbolic path

s0
ϕ1/(v1,w1,z1)
−−−−−−−−−→ s

ϕ2/(v2,w2,z2)
−−−−−−−−−→ sf ,

given substitutionθi = {cι 7→ ci} where ci is a fresh
uninterpreted constant the formula is:

ϕ1θ1∧ϕ2θ2∧v1θ1·v2θ2 6= w1θ1·w2θ2∧v1θ1·v2θ2 6= z1θ1·z2θ2

the following argument shows that, if no such simultaneous
character conflicts are detected then there are none in any
longer paths. The argument is similar to the case (B.2, C.1).
As above, we may assume that all such loops have nonempty
A (and thusB andC) outputs, since empty outputs neither
cause nor remove any character conflicts.

• Suppose for someρm, ρn, ` ≤ m < n < 2`, ρm causes a
B-character-conflict andρn causes aC-character-conflict.
Then, by choice of̀ and since all theA andB-outputs
are nonempty, there existui, vi, wi, zi, 1 ≤ i ≤ 2, such
that

s0 s sf

u1/(v1, w1, z1) u2/(v2, w2, z2)

and either both character conflicts occur in the prefixes
of (v1, w1, z1) or in the suffixes of(v2, w2, z2), or one
occurs in the prefixes of(v1, w1, z1) and the other in the
suffixes of (v2, w2, z2) (i.e., the conflicts are not in the
overlap). Then both conflicts remain in

s0 s s sf

u1/(v1, w1, z1) u′/(v′, w′, z′) u2/(v2, w2, z2)
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for any s
u′/(v′,w′,z′)
 s, where|v′| = |w′| = |z′|. In par-

ticular both conflicts would be in someρ2`, contradicting
the assumption.

• Thus, in particular,ρ` andρ`+1 contains, without loss of
generality, noB-character conflicts. It now follows from
Lemma 4 that for allm ≥ `, in ρm the outputs ofA and
B will be equal.

One can show that the above cases are exhaustive. Decidability
follows for k = 2.

Note that the proof above uses arbitrarily many uninter-
preted constants of sortι, i.e., it assumes decidability ofF
while the proof of the case fork = 1 needs only two distinct
constants of sortι and needs decidability ofF({c : ι, d : ι})

Theorem2: Equivalence of finite-valued SFTs is decidable
provided thatF is decidable.

Proof: Let A andB be finite-valued SFTs. AssumeD =
L(d(A)) = L(d(B)), or elseA andB are not equivalent.
By using Lemma 3 assumeA andB are on SNF containing
single-valued SFTs. Assume, without loss of generality that A
andB do not accept the empty string and that all component
sequences inA andB are input-ε-free. To decideA ∼= B, we
check that for allv ∈ D, TA(v) ⊆ TB(v) andTB(v) ⊆ TA(v).
Conversely,A � B iff either (1) or (2) holds for somev ∈ D:

1) for someA1 in A and allB1 in B, TA1
(v) 6= TB1

(v).
2) for someB1 in B and allA1 in A, TA1

(v) 6= TB1
(v).

Decidability of (1) and (2) follows now from Lemma 5.
Although we can check equivalence, there is no direct way

to generate witnesses when equivalence does not hold (even for
the single-valued case). For this, intersection of SFTs would
be useful for separating the common answers in the single-
valued case Intersection of two SFTsAι/o andBι/o, if one
exists, is an SFTA∩B such thatTA∩B = TA∩TB. However,
SFTs are not closed under intersection, already in the case of
input-ε-free single-valued SFTs as illustrated by the following
example.

Example12: Consider SFTsAσ/σ andBσ/σ :

A : q0 q0 q1 q2

true/[c, c] true/[c]

B : p0 p0 p1 p2

true/[c] true/[c, c]

ThenTA∩TB = {[c, c] 7→ [c, c, c] | c ∈ Uσ} is not expressible
as an SFT whenUσ is infinite, and is very large when|Uσ|
is large.

IV. EXTENSION WITH REGISTERS

In this section we introduce the extension of SFTs with
registers, and generalize some of the results for SFTs. By a
register we mean an uninterpreted constant.

Definition 12: A Symbolic Finite Transducer withn Reg-
isters (SFTRn) is an extension of an SFTAι/o with n
distinct registers ri : σi, ri 6= cι, for 0 ≤ i < n. Let
R = {ri}i<n. Transition labels in∆ε̄

A may, in addition tocι,
contain registers. Each transition is associated with anupdate
that is a substitutionρ for R such thatriρ ∈ T σi(R ∪ {cσ}).
Input-ε-transitions form a separate set of∆ε

A of transitions

whose labels do not containcσ. The initial updateR0 is an

R-model. We writeq
ϕ/v;ρ
−−−→ p for the symbolic transition of

A whereρ is the associated update.
The concrete transducer[[A]] of A is defined similarly to

the case of SFTs, except that the number of states in[[A]] is
infinite in general. The states of[[A]] are all pairs(q,M) where
M is anRA-model. The initial state is(q0A, R

0
A). If (q,M)

is a state,q
ϕ/v;ρ
−−−→A p, and there existsN = M ∪ {cσ 7→ a}

such thatN �ϕ then

(q,M)
a/vN

−−−→[[A]] (p, {r 7→ rρN | r ∈ RA}).

The definition ofTA is lifted from the finite case.
One can show that SFTRs are closed under composition.

The algorithm is a DFS algorithm similar to the case of SFTs.
Let A be a SFTRn and letB be an SFTRm such thatRA ∩
RB = ∅. ThenA◦B is an SFTRn+m that is defined as follows.

QA◦B = QA ×QB,

FA◦B = FA × FB ,

RA◦B = RA ∪RB ,

R0
A◦B = R0

A ∪R0
B .

Let (p1, p2) ∈ QA◦B. The following transitions are added from
(p1, p2), for example, suppose

p1
ϕ/[u1,u2];ρ
−−−−−−−→A q1, p2

ψ1/v1;ρ1
−−−−−−→B p′

ψ2/v2;ρ2
−−−−−−→B q2

Let θ1 = {c 7→ u1} be the substitution for the input character
read fromp2 and letθ2 = {c 7→ u2}∪ρ1θ1 be the substitution
for the input character read fromp′ as well as the composed
register update after the update fromp2. Then the composed
transition is

(p1, p2)
ϕ∧ψ1θ1∧ψ2θ2/v1θ1·v2θ2;ρ∪ρ2θ2
−−−−−−−−−−−−−−−−−−−−−→A◦B (q1, q2)

The generalization to arbitrary lengths of outputs fromp1 is
obvious. The case when there is an input-ε transition from
p1 is similar, in this case we get input-ε transitions in the
composition whose guards involve registers only.

Theorem3: Given SFTRm Aι/σ and SFTRn Bσ/o there
is an SFTRm+n A ◦ Bι/o such thatTA◦B = TA ◦ TB. The
construction ofA ◦B is effective.

Although general reachability at the level[[A]] is undecidable
in this case,cleaning of SFTRs is local as it requires only
satisfiability checks of the guards.

A practically very useful fragment of SFTRs is the case
when each output term and each update term is either a
concrete value, an input character, or a register. We say the
SFTR hassimple updates. For example, there is a whole class
of sanitizers that only filter input characters and either keep,
remove, replace, or append them with other characters, but do
not perform bit-level transformations on the character itself. It
is easy to see that this fragment is closed under composition
as well, since it is preserved by substitutions.

SFTRs are strictly more expressive than SFTs with simple
updates as illustrated by the following example.
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Example13: ConsiderT = {[c, c] 7→ [c, c, c] | c ∈ Uσ}
from Example 12. LetAσ/σ be an SFTR with a registerr : σ
and transitions

q0A
c=c/[c];r 7→c
−−−−−−−−→ q1

c=r/[c,c];r 7→r
−−−−−−−−−→ qfinal

ThenTA = T .
For SFTRs with simple updates we can omit guard formulas

from input-ε transitions. For SFTRs with simple updates, such
guards would only depend on the registers, and updates to
registers on input-ε transitions can only depend on the current
registers as well. We can therefore consider allε paths existing
input-non-ε transition and fold the guards from theε paths
into a corresponding number of versions of the input-non-ε
transition.

Moreover, we extend the result of decidability of single-
valued SFTs to the case when all update terms are simple.

Theorem4: Equivalence of single-valued SFTRs with sim-
ple updates is decidable provided thatF is decidable.

Proof: Notice first that we establish the theorem for
single-valuedSFTRs, not generalfinite-valued SFTRs, so
we can apply an argument that uses ideas from [1]. LetA
and B be two single-valued SFTRs that we wish to check
equivalence for. We will perform a depth first exploration of
the product ofA andB starting from their initial states. The
states examined during the product construction are of the
form (p, q,u,v, ϕ, ψ), wherep ∈ QA, q ∈ QB; eitheru or v

is empty and accumulates the output generated byA (B) that
extends the common output sequence ofB (A); andϕ resp.
ψ are the conjunction of guards fromA resp.B accumulated
on the trace leading to the current state. The use of guard
formulas is specific to SFTRs where the transition can depend
on the values in registers. The idea used in [1], that does not
require tracking guard formulas, is to explore the product until
either (1) a state is visited with different outputs; or (2) the
same pair(p, q,u,v) is revisited with a longer output foru
(v); or (3) the full product has been explored without hitting
cases (1) or (2). Equivalence ofA andB then amounts to
reaching condition (3).

With SFTRs, transitions depend on the contents of registers
and these have to be tracked during a product exploration. So
the states examined during the product construction contain ϕ
andψ with the path conditions. There is an infinite number of
such traces of course, but let us consider isomorphic sets of
such guards. Two sets of instantiated guards are isomorphic
if there is a renaming of the characters (that are treated as
fresh variables) that equates the two sets. Such sets are equi-
satisfiable and we don’t need to consider more than one such
equivalence class on a path. The number of isomorphism
classes for SFTRs with simple updates is finite, so the states
examined during the product construction is also finite.

Also note that we can extend the definition of register
update to allow updating a register with a function of the input
character as long as the domain and range of the function is
finite.

Equivalence for general SFTRs is not decidable since they
allow registers to be updated by arbitrary functions.

V. A SEMI-DECISION PROCEDURE FOR

NON-EQUIVALENCE

In the following we develop a theory for SFTs that uses the
theory of algebraic datatypes [12]. In particular, it provides
a semi-decision algorithm for the counterexample generation
problem. In practice it uses state-of-the-art SMT solvers that
support algebraic datatypes in the background, such as Z3 [2].
The approach is close in spirit to similar encodings for
symbolic regular automata. A distinguishing feature of this
encoding is that it applies to general SFTRs that are free of
ε-loops. We provide the encoding for SFTs. The extension to
SFTRs is straight-forward. The detailed encoding for SFTs can
be found in the appendix A; we here summarize the highlights.

We assume a sortLIST〈α〉 of lists over sortα and decision
procedures for the quantifier-free theory of lists. Let us intro-
duce a theory that is used to characterize the transition relation
of an SFTA. First, we define anon-epsilon step formula,
whereθ is the substitution{cι 7→ hd(x)} andx andy are list
variables,

Step(p,ϕ,[u0,...,un−1],q)(x, y)
def
=

x 6= ε ∧ ϕθ ∧
∧
k<n(tl (k)(y) 6= ε ∧ hd(tl (k)(y)) = ukθ)

stating that the first element inx satisfies the conditionϕ and
that thek’th element ofy is equal toukθ for k < n. We define
an input-epsilon step formulasimilarly.

Definition 13: Let

ΣA
def
= {Accp : LIST〈ι〉 × LIST〈o〉 → BOOL}p∈QA

be a set of fixed uninterpreted relation symbols. Letx : LIST〈ι〉
andy : LIST〈o〉 be variables. For allp ∈ QA define:

ax p
def
= ∀x y (Accp(x, y) ⇔ ((p∈FA ∧ x = ε ∧ y = ε)∨∨

(p,ϕ,u,q)∈∆A
(Step(p,ϕ,u,q)(x, y)∧

Accq(tl
(|ϕ|)(x), tl (|u|)(y)))))

Let AccA
def
= Accq0

A
, Th(A)

def
= {ax p | p ∈ QA}.

The main property of the encoding can be summarized as
follows.

Theorem5: Th(A) is consistent. Moreover, ifA is ε-loop-
free, then there is a uniqueΣA-modelMA �Th(A) such that
w ∈ TA(v) if and only ifMA �AccA(v, w).

The axioms can be used in the context of theorem
provers that produce ground instantiations: for each length
`, there is a finite set of instances ofTh(A), such that
MA, w �AccA(v, w) ∧ |v| ≤ ` iff w ∈ TA(v), |v|M ≤ `. The
high-level procedure is illustrated in Fig. 3. The reason why
negation of the acceptors predicates works in this procedure
is that the transducers are epsilon-loop-free, implying that the
axioms are well-founded. (Similar transformation would in
general not work for arbitrary transition systems.)

The encoding of SFTRs is a straight-forward generalization:
it requires the predicatesAccA to take additional arguments
corresponding to registers, and it requires the transitionrela-
tions to encode updates and outputs from registers. Theorem5
remains intact for this generalization.
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Witness�(Aι/o, Bι/o)
def
=

1: let ΣA ∪ ΣB be new uninterpreted function symbols
2: assertTh(A) ∪ Th(B) as auxiliary axioms
3: let y : LIST〈o〉 be a new uninterpreted constant
4: let x = ε : LIST〈ι〉
5: loop
6: if existsM �AccA(x, y) ∧ ¬AccB(x, y), or
7: M � AccB(x, y) ∧ ¬AccA(x, y) then
8: return (xM , yM)
9: else
10: let x := [c |x] wherec : ι is a new uninterpreted constant

Fig. 3. For input-ε-free SFTsA andB such thatA � B, generates a witness
(v, c) for c ∈ TA(v) \ TB(v) ∪ TB(v) \ TA(v).

VI. RELATED WORK

Relationships between logics and automata have been in-
vestigated for over half a century, a comprehensive study
is presented in [13]. In recent years there has been consid-
erable interest in automata over infinite languages, starting
with the work onfinite memory automata[14], also called
register automata, where, besides a finite number of states,
the automaton has a finite number of registers taking values
in an infinite domain, a register automaton has thus infinitely
many extended states, called configurations, consisting ofa
finite state component together with a value assignment for the
registers. Similar extensions of finite automata, calledextended
finite state machines, have been studied and used in the context
of protocol testing [15]. Finite words over an infinite alphabet
are usually calleddata wordsin the literature.

Besides register automata, various other automata models
over data words have been studied in the literature [16],
such aspebble automata[17] that use markers to annotate
positions in a data word, anddata automata[18] that are
two-way automata used to establish (un)decidability results
on two-variable logic with equality over data words. Several
characterizations of logics with respect to different models of
data word automata are studied in [19]. This line of work fo-
cuses on fundamental questions about definability, decidability,
complexity, and expressiveness on classes of automata on one
hand and fragments of logic on the other hand.

A different line of work on automata with infinite alphabets
introduceslattice automata[20] that are finite state automata
whose transitions are labeled by elements of an atomic lattice.
The motivation for the work comes from verification of
symbolic communicating machines. Unlike register automata,
pebble automata or data automata, lattice automata providea
way to incorporate a particular interpretation for data through
the operations. An advantage of the approach is that labels can
be over-approximated to equivalence classes and mapped to a
finite alphabet leading to classical finite automata.

Finite state automata with arbitrary predicates over sym-
bols, calledpredicate-augmented finite state recognizers, or
symbolic finite automata(SFAs) in the current paper, were first
used in the context of natural language processing [21], where
predicates provide a natural way to express phonological
generalizations such as fricative and nasal that are more com-
mon in computational phonology than individual phonemes.
It is pointed out in [21] that the finiteness assumption of

the alphabet is not needed. To the contrary, an infinite or
unbounded alphabet is often needed for robustness of parsing
algorithms. A similar extension of regular languages is used
in [22]. Compared to lattice automata, SFAs are defined
modulo a given character theory and avoid the problem that
an element of a lattice may not have a complement.

While the work in [21] views symbolic automata as a “fairly
trivial” extension of finite automata, the more fundamental
question is how classical automata algorithms, that use alpha-
bet symbols explicitly, can be extended to the symbolic case.
In particular symbolic complementation by a combinatorial
optimization problem calledminterm generation[23] leads
to significant speedups compared to state-of-the-art automata
algorithm implementations.

The work in [21] introduces also an extension to finite
state transducers called apredicate-augmented finite state
transducer (pfst). A pfst has two kinds of transitions: 1)

p
ϕ/ψ
−−−→ q whereϕ andψ are character predicates orε, or 2)

p
c/c
−−→ q. In the first case the symbolic transition corresponds

to all concrete transitionsp
a/b
−−→ q such thatϕ(a) andψ(b)

are true, the second case corresponds toidentity transitions

p
a/a
−−→ q for all charactersa. A pfst is not expressive enough

for describing an SFT. Besides identities, it is not possible
to establish functional dependencies from input to output that
are needed for example to encode sanitizers such as the one
in Fig. 1. Also, the input and output alphabets are the same,
thus it is not possible to describe transducers with different
input and output sorts, which is important for various SFT
constructions such as the one mentioned in Section I-A.

Besides the work on BEK [1], finite state transducers
have been used for dynamic and static analysis to validate
sanitization functions in web applications in [24], by an over-
approximation of the strings accepted by the sanitizer using
static analysis of existing PHP code. Other security analysis of
PHP code, e.g., SQL injection attacks, use string analyzersto
obtain over-approximations (in form of context free grammars)
of the HTML output by a server [25], [26], [27].

Our work is complementary to previous efforts in extending
SMT solvers to understand the theory of strings. HAMPI [28]
and Kaluza [29] extend the STP solver to handle equations
over strings and equations with multiple variables. The work
in [30] shows how to solve subset constraints on regular
languages. In contrast, we show how to combine any of these
solvers with SFTs whose edges can take symbolic values
in the theories understood by the solver. Axiomatization of
SFAs using a background of lists was initially introduced
in [31] and is used to provide integrated support for REGEX-
constraints in parameterized unit testing of .NET code [32],
[33], and to provide support for LIKE-expressions in SQL
query analysis [34]. Axiomatization of SFAs was extended to
symbolic PDAs in [8]. The axiomatic theory of SFTs presented
here is to our knowledge new.
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VII. C ONCLUSION

We have introduced and studied Symbolic Finite Trans-
ducers and Symbolic Finite Transducers with Registers. The
main algorithms of interest for applications, such as web
sanitizers, are composition and equivalence checking. Equiv-
alence checking is in general undecidable and we revert to a
semi-decision procedure presented in Section V. However, the
cause for undecidability is subtle, and this paper identifies a
boundary based on whether the transducer is finite-valued (and
satisfiability of guard formulas is decidable). SFTRs add extra
expressibility, but under the simple update assumption, also
maintain decidability for single-valued SFTRs. We conjecture
that equivalence of SFTRs for finite-valued SFTRs with simple
updates is also decidable.

The symbolic representation of transducers is both conve-
nient for applications and allows for succinct representations.
Basic automata algorithms lift in many cases in a straight-
forward way to this representation, and it allows leveraging
state-of-the-art theorem proving technology for analyzing the
automata.
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[11] K. Culic and J. Karhumäki, “The Equivalence Problem for Single-Valued
Two-Way Transducers (on NPDT0L Languages) is Decidable,”SIAM
Journal on Computing, vol. 16, no. 2, pp. 221–230, 1987.

[12] A. Mal’cev, The Metamathematics of Algebraic Systems. North-
Holland, 1971.

[13] W. Thomas, “Languages, automata, and logic,” inHandbook of Formal
Languages, G. Rozenberg and A. Salomaa, Eds. Springer, 1997, vol. 3,
pp. 389–455.

[14] M. Kaminski and N. Francez, “Finite-memory automata,”in 31st Annual
Symposium on Foundations of Computer Science (FOCS 1990), vol. 2.
IEEE, 1990, pp. 683–688.

[15] D. Lee and M. Yannakakis, “Principles and methods of testing finite
state machines – a survey,” inProceedings of the IEEE, vol. 84, no. 8,
Berlin, Aug 1996, pp. 1090–1123.

[16] L. Segoufin, “Automata and logics for words and trees over an infinite
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APPENDIX

A. Axioms for SFTs

We develop an axiomatic approach for reasoning about
SFTs. The background is assumed to includelists, as a special
case of algebraic data types. For each element sortσ there is
a list sort LIST〈σ〉. The following background functions are
assumed for elements of sortLIST〈σ〉:

hd : LIST〈σ〉 → σ
tl : LIST〈σ〉 → LIST〈σ〉

[ | ] : σ × LIST〈σ〉 → LIST〈σ〉
ε : LIST〈σ〉

The standard list axioms are assumed to hold for these func-
tions. In particular, for alle : σ andl : LIST〈σ〉, hd([e | l]) = e,
tl([e | l]) = l, and [e | l] 6= ε. We write [e0, . . . , en] · l, or
[e0, . . . , en] when l = ε, as a shorthand for[e0 | · · · [en | l]].
Given a unary function symbolf , term t, and n ≥ 0, we
write f (0)(t) for t andf (n+1)(t) for f(f (n)(t)). For example
tl(2)([e0, e1, e2, e3]) denotes the list[e2, e3].

We adapt the notion of IDs and step relations from [3] to
SFTs. An ID is anInstantaneous Descriptionof a possible
state of an SFT together with an input word (still to be
read) and output word (still to be written) starting from that
state. The formal definition is as follows. Words in(Uσ)∗ are
encoded by lists inU LIST〈σ〉. In the following letAι/o be an
SFT.

Definition 14: An ID of A is a triple (v, q, w) wherev ∈
U LIST〈ι〉, q ∈ QA, andw ∈ U LIST〈o〉. The step relationof A is
the binary relatioǹA over IDs:

([a |v], p, u · w) À (v, q, w) ⇔ (p, a, u, q) ∈ ∆ε̄
[[A]]

(v, p, u · w) À (v, q, w) ⇔ (p, ε, u, q) ∈ ∆ε
[[A]]

We write t̀ for À restricted to a single symbolic transition
t ∈ ∆A. The following proposition follows from definitions,
where`∗

A denotes the reflexive and transitive closure ofÀ.
Proposition4: TA(v)={w|∃q∈FA((v, q0A, w)`∗

A (ε, q, ε))}.
The following lemma is used below. For uniformity, we

view guards of transitions as either singleton sequences con-
taining a formula or empty sequences. Thus, the length of a
guard of a transition is 0 if the transition is an input-epsilon
transition, the length is 1, otherwise.

Lemma6: Let t = (p, ϕ, u, q) ∈ ∆A, v, v′ ∈ U LIST〈ι〉, and
w,w′ ∈ U LIST〈o〉. The following statements are equivalent

• U �Stept(v, w) and v′ = tl
(|ϕ|)(v) andw′ = tl

(|u|)(w)
• (v, p, w) t̀ (v′, q, w′).

Proof: By using list axioms and Definition 14.
The correctness criterionthat we wantTh(A) to fulfill is

IsSat(
∧

Th(A) ∧ AccA(v, w)) if an only if w ∈ TA(v). To
this end, we need to consider SFTs whose step relation is
well-founded.

Theorem6: Th(A) is satisfiable. Moreover, if̀A is well-
founded, then there is a uniqueΣA-modelMA �Th(A) such
that w ∈ TA(v) if and only ifMA �AccA(v, w).

Proof: To show satisfiability ofTh(A) define theΣA-
modelM by AccMp (v, w) iff ∃f ∈ FA((v, p, w) `∗

A (ε, f, ε)).
It follows from definitions thatM �ψ for all ψ ∈ Th(A).

Next, assumèA is well-founded. LetQ = QA. SinceQ
is finite it follows that there exists a well-ordering>Q over
Q such that if p >Q q then there exists no epsilon-path

q
ε/ε
 A p, or, equivalently, that(ε, q, ε) 6`∗

A (ε, p, ε). Define the
lexicographic order� overU LIST〈ι〉×U LIST〈o〉×Q as follows:

(v, w, q) � (v′, w′, q′)
def
= |v| > |v′|∨

(|v| = |v′| ∧ |w| > |w′|)∨
(|v| = |v′| ∧ |w| = |w′| ∧ q >Q q′)

Next, we prove (?) by induction over�.

(?) For all p ∈ Q, v ∈ U LIST〈ι〉, w ∈ U LIST〈o〉, and all
M �Th(A):

∃f ∈ FA((v, p, w) `∗
A (ε, f, ε)) ⇔M �Accp(v, w).

To establish the base case, let(v, w, p) be minimal with respect
to �. Thus,v = w = ε and there are no epsilon moves from
p. Hence, byM � ax p,

M �Accp(ε, ε) ⇔ (p ∈ FA ∧ ε = ε ∧ ε = ε) ∨M �ψ

⇔ p ∈ FA

⇔ ∃f ∈ FA((ε, p, ε) `∗
A (ε, f, ε))

whereM 2 ψ since each step formula fromp contains a
trivially false conjunctε 6= ε because there are no epsilon
moves fromp.

The case is also clear forv = w = ε andp ∈ FA, because
then it does not make a difference ifM �ψ or M 2 ψ.

Now consider any(v, w, p) such thatp ∈ FA∧v = ε∧w = ε
is false and(v, w, p) is not minimal with respect to�. Hence,
by M � ax p,

M �Accp(v, w) ⇔
∨

t∈∆A

(∃v′ w′ ((v, p, w) t̀ (v′, q, w′) ∧

M �Accq(v
′, w′)))

⇔
∨

t∈∆A

(∃v′ w′ ((v, p, w) t̀ (v′, q, w′) ∧

∃f ∈ FA((v′, q, w′) `∗
A (ε, f, ε)))

⇔ ∃f ∈ FA((v, p, w) `∗
A (ε, f, ε)))

where the first equivalence follows from Lemma 6 and Def-
inition 13. The second equivalence follows from the IH,
since (v, w, p) � (v′, w′, q). The third equivalence holds by
definition of À. (?) follows by the induction principle.

The rest follows from (?) by letting p = q0A and by using
Proposition 4. Finally,MA is unique by definition ofTA.

Theorem 6 fails if we omit the condition that̀A is well-
founded.

Example14: ConsiderA with a single (nonfinal) state
q and a single transition(q, ε, ε, q). Then Th(A) =
{∀x y (Accq(x, y) ⇔ Accq(x, y))}. So all ΣA-models satisfy
Th(A) while TA(v) = ∅ for all v.
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The following proposition provides a simple condition overthe
structure ofA that is equivalent tòA being well-founded; the
proposition reflects the role of>Q in the proof of Theorem 6.

Proposition5: À is well-founded⇔ A is epsilon-loop-
free.

The practical significance of the proposition is that there is
an efficient algorithm that givenA constructs an equivalent
epsilon-loop-free SFT fromA. While full epsilon move elimi-
nation may cause quadratic increase in the number of symbolic
transitions (by eliminatingsharing), epsilon-loop elimination
does not increase the number of symbolic transitions.

Define theε-loop closureas the intersection of the epsilon
closure and the the inverse epsilon closure of a state:

p̃
def
= {q ∈ QA | p

ε/ε
 A q} ∩ {q ∈ QA | q

ε/ε
 A p}

and lift the definition to sets:̃P
def
= {p̃ | p ∈ P}.

Definition 15: Let Ã
def
= (Q̃A, q̃0A, F̃A, ι, o,∆) where∆ =

{(p̃, ϕ, u, q̃) | (p, ϕ, u, q) ∈ ∆A} \ {p̃
ε/ε
−−→ p̃ | p ∈ QA}.

The following proposition follows from Definition 15 and
by using techniques similar to the proof of equivalence be-
tween nondeterministic finite automata and nondeterministic
finite automata with epsilon-moves (see [3]).

Proposition6: Ã is epsilon-loop-free andTA = T
Ã

.
The following corollary provides a foundation for express-

ing decision problems over SFTs as logical formulas and
provides a basis for integration ofTh(Ã) in the context of
state-of-the-art satisfiability modulo theories (SMT) solvers,
as discussed in the following section.

Corollary 1: M
Ã
�Acc

Ã
(v, w) ⇔ w ∈ TA(v).

Proof: Use Theorem 6 and Propositions 5 and 6.
The following corollary shows how two SFT theories can

be combined for non-equivalence checking.
Corollary 2: Let Aι/o andBι/o be epsilon-loop-free SFTs

such thatΣA ∩ΣB = ∅. Let Σ = ΣA ∪ΣB ∪ {x : LIST〈ι〉, y :
LIST〈o〉, z : LIST〈o〉}. ThenTh(A)∪Th(B) is satisfiable and
the following statements are equivalent forΣ-modelsM such
thatM �Th(A) ∪ Th(B).

1) M �AccA(x, y) ∧ ¬AccB(x, y)
2) yM ∈ TA(xM ) andyM 6∈ TB(xM ).

Proof: By ΣA∩ΣB = ∅ Theorem 6 and Proposition 5.

B. Implementation

SMT solvers establish satisfiability of formulas modulo
theories. Two inputs are given:

• Auxiliary Axioms: a satisfiable setΨ of universally quan-
tified ΣΨ-axioms.

• Goal formula: a quantifier free(Σ ∪ ΣΨ)-formula γ,
whereΣ ∩ ΣΨ = ∅.

The case of an empty set of axioms is most common. Other-
wise, axioms inΨ are expanded using quantifier instantiation
as explained below. In order to useΨ it is required thatΨ
is well-formed for γ. Different well-formdness requirements
exist, the one we use is specific for SFT theories and is defined
below. Under the well-formdness assumption, ifγ ∧

∧
Ψ is

satisfiable, the solver generates a partial modelM � γ that can

be extended to a model ofΨ. M is partial in the sense that
the interpretation given for function symbols inΣΨ is finite
and is restricted to valuestM for all subtermst (of appropriate
sort) that occur during model search. The following general
property is used as a correctness assumption of SMT solvers.

Proposition7: If γ ∧
∧

Ψ is satisfiable andΨ is well-
formed forγ then the SMT solver generates a partial model
M � γ that can be extended to a model ofΨ.

In the following we describe howTh(A) is used as auxiliary
axioms. First, we introduce an equivalence preserving transfor-
mationTh ′(A) of Th(A). For each axiom∀x y (Accp(x, y) ⇔
β) ∈ Th(A), there are two axioms inTh

′(A) where the lhs
of each axiom is declared as itspattern:

∀y (Accp(ε, y) ⇔ β{x 7→ ε}),

∀e r y (Accp([e |r], y) ⇔ β{x 7→ [e |r]}),

It is clear thatTh ′(A) is equivalent toTh(A). The particular
choice of patterns reflects the use ofTh ′(A) below.

Consider a goal formulaγ containing a subformulaϕ that
matchesthe patternα of an axiom∀x (α⇔ β), meaning that
ϕ = αθ for some substitutionθ for x. Then, theunfolding of
γ wrt α is the formulaγ′ obtained fromγ by replacing all
occurrences ofϕ with βθ, denoted here byγ `Ψ γ′. Unfolding
clearly preserves equivalence wrtΨ. A Ψ-reduct ofγ, if one
exists, is a formulaγ′ such thatγ `∗

Ψ γ′ and γ′ cannot be
unfolded.

Definition 16: Ψ is well-formedfor γ if `Ψ is well-founded
and anyΨ-reduct ofγ is a Σ-formula.
In other words, well-formdness implies that repeated unfolding
of γ is guaranteed to terminate with a formula that does not
contain any symbols fromΣΨ.

1) SFT nonequivalence checking:Two SFTsAι/oΓ andBι/oΓ

are equivalent if and only if the following conditions hold:

• A andB aredomain equivalent: L(d(A)) = L(d(B)).
• A and B are partial equivalent, A ∼= B: forall v ∈
L(d(A)) ∩ L(d(B)), TA(v) = TB(v).

Domain equivalence is decidable ifF({cι}) is decidable by
using the difference algorithm for SFAs [8]. In Fig. 3 we
provide an algorithm for generating a witness whenA � B
andA andB are input-ε-free. Using a different transformation
of Th(A) the algorithm can be extended to all SFTs. This
algorithm provides a practically useful extension of Theorem 2
when A and B are single-valued and can be used as a
semidecision procedure forA � B, in general.

Theorem7: AssumeA and B are input-ε-free andF is
decidable. IfA � B then Witness�(A,B) terminates and
generates(v, c), s.t., c ∈ TA(v) \ TB(v) ∪ TB(v) \ TA(v).
Moreover,v is shortest possible.

Proof: Let γ be the formula in line 6 in Fig. 3. Let
Ψ = Th ′(A) ∪ Th ′(B). AssumeA � B. SinceA and B
are input-ε-free, for every∀e r y (Accp([e | r], y) ⇔ β) ∈ Ψ,
the first argument of anyAccq in β is r, and for every
∀y (Accp(ε, y) ⇔ β) ∈ Ψ, Σ(β) ∩ ΣΨ = ∅. It follows thatΨ
is well-formed forγ. Now use Proposition 7 and Corollary 2.
It follows also from the algorithm thatxM is shortest.
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