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. L. . 1: static string EncodeHtmIX( string strinput)
Abstract—Symbolic Finite Transducers, or SFTs, is a repre- 2:
sentation of finite transducers that annotates transitionswith 3 if (strinput == null) return null;
logical formulae to denote sets of concrete transitions. Tk 4 if (strinputlength == 0)  return string.Empty;
. h tical advantages in applicationsaf web 5: StringBuilder b = ~ new StringBuilder();
representatlon_ as p_rac ; g _pp 6: foreach (char c in strinput)
security analysis, as it provides ways to succinctly reprent web 7: if (('a"<=¢c) & (c<= ‘Z)€= I
sanitizers that operate on large alphabets. More importarly, the 8 (‘A <=c) & (c <= "Z) |l (c="")I
representation is also conducive for efficient analysis usg state- 210_ E£ 0 <= ')C)”&fé €<= ?))?l Iéc(0__== oy )l
of-the-art theorem proving techniques. Besides introducig SFTs 11 b.Append(c): - -
we provide algorithms for various closure properties incluing 12: el se {
composition and domain restriction. A central result is tha 13: b.Append( string.Format("&#x {0:X }",( int)c));
equivalence of SFTs is decidable when there is a fixed bound on E‘f ) b.Append(");
how many different values that can be generated for arbitray 16 return b.ToString();
inputs. In practice, we use a semi-decision algorithm, encled 7.}
axiomatically, for non-equivalence of arbitrary SFTs. We $iow
that several of the main results lift to a more expressive vesion of Fig. 1. AntiXSS html sanitizer with hexadecimal formatting.

SFTs with Registers, SFTRs. They admit a fixed set of register
that can be referenced in the logical formulae, updated by iput

characters, or used to generate output. A. Examples and an Application to Web Sanitizers

We here illustrate the use of SFT analysis on web security
. INTRODUCTION analysis using a running example. We later develop the nec-
essary algorithms for this analysiSross site scriptindXS$

State machines, such as automata and transducers typicaiiicksare a major concern in web applications, and happen
use finite alphabets. This is both helpful when formulatimg t 85 @ result of untrusted data leaking across web sites. Part
main algorithms and it is realistic when considering agplic ©f data may be interpreted as code (e.g. JavaScript) by a
tions from text processing. Furthermore, implementaticars Prowser, that may end up being executed in the browser of
apply compression algorithms on the transition functiohsm another user. The first line of defense against XSS attacks is
the alphabet is large. In symbolic analysis of automata,-holfie use ofsanitizersin web servers, that escape or remove
ever, there are practical advantages to formulating tiansi Potentially harmful strings. Although sanitizers are tadly
directly as formulae, and sometimes use an abstract, ppssi#nall programs, in the order of tens of lines of code, writing
infinite, alphabet. We are here interested in finite traneduc them correctly is difficult. The work in [1] introduces a

that arise from applications such as web sanitizers. domain specific language H& based on SFTs for writing
and analyzing sanitizers. The axiomatic approach to SFTs,

_ _ introduced in the current paper, has been implemented as par
« In Section Ill we show how several properties and algaf the underlying algorithmic support in B and uses the
rithms known from finite transducers lift to SFTs eversMT solver Z3 [2].
when the alphabets are abstract. Main algorithms includegxample 1 (Sanitizer Program):A typical sanitizer, shown
composition and domain restriction. in Fig. 1, is a version of a sanitizer from a public Microsoft
« Equivalence of SFTs is shown to be decidable when thesgitiXSS library. m
is a fixed bound on how many different values that can we represent the sanitizer program as a symbolic finite
be generated for arbitrary inputs. The result, establishgdnsducer. It uses transduction functions.

Our main contributions are:

in I1-B4, is technical and of independent interest. Example2 (Transduction Functions)tn most modern pro-
. Sectlon v |.ntroduces SFTS.WIth registers and lifts a'g(gramming |anguages$trings Correspond to character se-
rithms to this more expressive class. quences where characters use Unicode (UTF16) encoding.

« We present a principled axiomatic encoding of a semissume that there is a s@v,,, for k > 1, and that/®V* is the
decision algorithm for non-equivalence checking in Se¢omain ofk-bit bit-vectors. The elements 8V correspond
tion V. It applies to arbitrary SFTRs and represents thg -bit binary encodings of nonnegative integers fram
method used in practice. to 28 — 1. A natural representation of Unicode characters



for symbolic analysis is as elements @f¥is. Assume the not idempotent, our implementation of the analysis algoni
following operations, wheré = 16: finds a witness in less than a second. [ ]

In general, it is highly nontrivial to write sanitizers thate
idempotent. For example, for the sanitizer in Fig. 1 the main
problem is recognizing patterns that have been introduced i
the output involving the character&*and ‘#' in order not
where < corresponds to the underlying integer order and reencode those characters, for example to avoid double

<: BVj X BV — BOOL,
. BV — BV, for 0 <m < n <k,

©: BV X BVg — BVy,

matches the lexicographic order over charactefs;projects encodings such ak&ncodeHtmIX("&") ="&#x26;" and
bits m throughn — 1 and pads the result with—n+m zeros; EncodeHtmIX("&#x26;") = "&#x26;&#x23;x26;"
@ is addition modula®2*. Then Example5 (ldempotent Sanitizers)Suppose that the sub-

string"&#" in the input must remain unchanged in the output.
def 4544 4j+4 4j+4
hj(c) = Tte(9 < w3 (¢), myj " (€)@55, my5 ™ (c)®48) The following transducer captures this requirement:

extracts thej’'th 4-bit unit of ¢, 0 < 57 < 3, and maps it to its c="8&/& .
hexadecimal representatior®( 1',...,'9",* A',...,'F"). ] c=&/%
The transduction function allows defining a minimal sy .- =&/ \) ‘
bolic transducer. W
Example 3 (Transducer Guards)The SFT below repre- (@71l ¢)/&: [c] c=8 /&
sents a so-called “string sanitizer”, where certain charac c# & A —p(c) c= # /18, #]
¢ in the input string, not satisfying the condition
wherec stands for['&,'#’,'x’] - T¢'- ['; '] andy and); are
ple): (@ <che<'Z)V(A <che<'Z)V defined in Example 3. Note that(‘&), p(‘#') are false. In
(‘0' ScAe<'9) Ve=""Ve=""V this case the analysis takes also less than a second and shows
c=""Ve="-"Ve="_"Ve="" that the modified SFTis idempotent However, the pattern
are in the output string replaced by their hexadecimal repr&#" IS not precise enough, ideally, one should consider
sentation: patterns that arise only as a result of santization,"&#x" is
f)/[c more precise and yields a similar but more complex extension
of the original SFT. ]
‘ Handcoding of sanitizers and SFTs such as the one in
Example 5, is notoriously difficult are error-prone. In geale

- &L H# X T ) - 4
w(e)/] ¢ construction of SFTs from sanitizers can be automatized and

where'c' is the (up-to) four-character encoding of the construction of special purpose SFTs that preservainert
det . patterns can be used together with SFT algorithms presented
‘e = Ite(hs(c) #°0', [h3(c), ha(c), i (c), ho(c)], above to automatically construct and analyze properties of

Ite(ha(c) # 07, [ha(c), hu(c), ho(c)], SFTs such as the one in Example 5.

Ite(hy(c) # °0", [h1(c), ho(c)], [ho(c)]))) Example6 (Composition):The following general tech-
with h;’s as defined in Example 2. It is also straight-forward toique can be used to aid the above construction. Consider an
rewrite the conditions into four transitions with simpleagds SFT AJ/™P*5(9°-9) that, given a finite setV’ of “pattern”
and a fixed number of outputs each. m words |nu" replaces each pattefay, a1, . . . , a,,] in the input

The main application of SFTs in the context ofBis to with the word[{true, a), (true,a;),..., (true,a,)] and re-
formally verify key security properties of sanitizers. Ttweo  places any other characiein the input by(false, ). Second,
most important properties aelempotenceto determine if assume an SFTAT'F*E®°°9)/? that maps each character
applying the same sanitizer twice matters) aodnmutativity (true,a) in the input toa and applies a transformatiof(a)

(to determine if the order of applying different sanitizero any characteffalse, a). Then the compositiodyy o Ay
matters). Since sanitizers are functions that take arpitnput is an SFT that performs the desired transformatfamm input
strings the corresponding SFTs are consequently sindleda characters unless they occur in the contextiiof The sort
andtotal, i.e., produce one output string for each input string.uPLE(c, o1) is atuple sortand is associated with the usual
Equivalence checking of two corresponding SFAsand B operations (tuple constructor and projection functions).m
reduces therefore to partial equivalence checking, thatrite Example7 (Registers):The main difficulty in encoding the
asA = B. transducer in Example 5 is having to introduce states that

Example4 (Non-idempotent Sanitizersfhe SFT corre- remember previous patters of characters that should not be
sponding to Fig. 1, say, is the one given in Example 3.replaced. By using registers, this encoding can be simghlifie
The string formatting operation on line 13 corresponds tnd can be much more succinct. In order not to apply
the transitions from statgy, to ¢; in A. The question of sanitization to characters occurring in a set of pattévhause
idempotence of the sanitizer is the problem of decidinggisters for remembering previous input characters. 8sgp
Ao A= A. Fig. 3 defines a semi-decision procedure that findssingle register is needed (initially = ¢) to remember the
a shortest-input counter-example, if one exists. Thistizamiis previous input character. Before outputting a transfoiomat



f(c) of the current character, check if the patterm-c occurs ~ Definition 5: An FT A is deterministicif d(A) is deter-

in W, in which case output - ¢ and setr = ¢, or if ¢ extends ministic.

a pattern, in which case let= ¢ and output, or if ¢ breaks  There exist single-valued FTs for which there exists no

a pattern, in which case outpyitr) - f(c) and setr = . B equivalent deterministic FT (e.g., an FT that removes all

input symbols after théast occurrenceof a given symbol.)

Conversely, determinism does not imply single-valuedness
Our work is based on classical automata theory, classicice several transitions with same input but distinct otgtp

logic and model theory. We use terminology that is conststemay collapse into single transitions dt{4). Other definitions

with [3], [4], [5]. of deterministic FTs (allowing input} are used by some

authors [6]. Definition 5 is consistent with [5].

Il. PRELIMINARIES

A. Finite Transducers and Automata

We recall the definition of a finite transducer [5]. Intuitiye B- Background Structure and Models
a finite transducer is a generalization of a Mealy machine tha We work modulo abackgroundstructurel/ over a lan-
may omit inputs and outputs and may be nondeterministic. Weage I';, that is multi-sorted. We also writé¢/ for the
usee as a special symbol denoting the empty word. universe (domain) ofi/. For each sorto, U/° denotes a
Definition 1: A finite transducer(FT) A is defined as a nonempty sub-domain dff. There is a Boolean soROOL,
six-tuple (@, ¢°, F, I, 0,5), where@ is a finite set ofstates 1/®°°* = {true, false}, and the standard logical connectives
¢° € Q is theinitial state, F' C Q is the set offinal states are assumed to be part of the backgrouFfetmsare defined
1 is theinput alphabet O is the output alphabetandé is a by induction as usual and are assumed to be well-sorted.
finite transition functionfrom @ x (I U {¢}) to 29*9", Function symbols with range sosooL are called relation
There exist several alternative definitions of FTs. By usirgymbols. Boolean terms are called formulas or predicates. A
the standard form theorerof FTs [5, Theorem 2.17], Defini- term without free variables islosed
tion 1 is easily seen to be equivalent to those definitions. ~ An uninterpreted function symbol of arity > 1 is a
We indicate a component of an FA by using A as a function symbolf ¢ T';, with a domain sorto; x --- X o,
subscript. We often use the technically more convenien vieand arange sorto. An interpretation for f is a function from
of 54 as a set of transitions\ 4 and write p MA q for U7 x---xU toU?. An uninterpreted constans$ a constant

(¢,v) € 4(p,a). We omit the subscrip when it is clear ¢ ¢ I'y, of some sort. An interpretation forc is an element of

from the context. U°. By convention, a constant is also calletLiaction symbol
AL # Ac U AF of arity 0. _ _
A= 24 A We write X(¢) for the set of all uninterpreted function
A £ {p o, q|(gq,v) €dalp,a),a € 1s} symbols that occur in a termh Given a set of uninterpreted

A, def {pi/—v> g1 (g0) € 6a(p, )} function symbolsy, ¢ is a term overE_, or a X-term if

’ ’ ¥(t) C 3. We sayX-modelfor an expansion off to T, UX.

Given a setl” of elements, we writey = [vg,...,v,—1], The interpretation of a closeB-term¢ in a ¥-model M, is
for v € V*. Forv,w € V*, v - w denotes the concatenatiordenoted byt™ and is defined by induction as usual. There is

of v with w. (Both [] ande denote the empty sequence.)  a background function (symbolfe:BOOL x o x o — o for

Giveng; /" 4 i1 for i < n we write gy "% 4 ¢, where €ach sort and
q i+ q q

u = U()E/'Eul EE T | andv = Vo UL ... Up—1-. We write ]te(go,t, f)]\l —if (PM then tM else fM
alsog ~ 4 g. -
Definition 2: An FT A induces theransduction Let ¢ be a closed-formula. A ¥-model M satisfiesy or ¢
is true in M or M F o, if oM = true; ¢ is satisfiableif it
Ta(u) € {v]|3q € Fa(d u/y Q). has a model, denoted bigSat(y); ¢ is true if o™ = true
) ] for all X-models)M.
Two FTs A and B areequivalentif Ty = Tp. For each sort let ¢, stand for adefault fixed uninterpreted

We defined(A) as the underlying nondeterministic finiteconstantof sorto. We omit the sor when it is clear from
automaton with epsilon movesNFA) that is obtained from the context. Let7?(3) denote the set of all closed terms of
the FT A by eliminating outputs on all transitions. We writeggt, only using uninterpreted symbols frof) 7° stands for
L(B) for the language accepted by aNFA B. 77 (%) where¥. is an infinite set of ininterpreted constants of

Definition 3: An FT A is finite-valuedf there existsk such  gome fixed sort. Unless stated otherwise, we assumd thit
that for allu € I}, [Ta(u)| < k; A'is single-valuedf for all  gyantifier free, closed under substitutions, Boolean djners,

u€ Iy, [Ta(u)| < 1. . . _and equalityF stands for78°-.
Definition 4: An FT A is ageneralized sequential machine
or GSMif A4 = ). We sayA is input<-free [1l. SYmBOLIC TRANSDUCERS

Definition 4 is consistent with [5], [6]. However, the def- Symbolic automata provide a representation of automata
inition of a GSM is not standardized in the literature. Somghere several transitions from a given source state to a
sources define GSMs without a dedicated set of final states [gil/en target state may be combined into a single transition



with a symbolic label denoting multiple concrete labelsisThA. Alphabets of SFTs

representation naturally separates the finite state graph f | order to base the definitions of SFTs on classical formal

the character representation. language theory, the concrete alphali¢tsand/® need to be
Definition 6: A Symbolic Finite Transducer (SFT) over finite. For example, in Example 8451¢| = 216, However, for

r Witp input sort. and output sort, or AL is a(;six-tuple the symbolic representation the main concern is decidpbili

(@, ¢", F,1,0,A), whereQ is a finite set ofstates ¢” € Q is  and complexity of the character theory, rather tfinitenessf

theinitial state, I" C @ is the set offinal states. is theinput  the underlying domain. This point becomes more transparent

sort, o is theoutput sort andA = A°U A, when we discuss algorithms for SFTs. When considering an
AT Qx Fle,) x (T°(e,))* x Q input_or output sort Whose_ d_omaini'r$fi_nite, e.g. integers3 all
A Qx{e} x (T xQ algorithms on SFTs remain intact, while SFTs are in this case
_ - _ - _ strictly more expressive than FTs.
is a finite symbolic transition relation Example9: Consider the sortnT for integers and the
A single transition(p, ¢, u,q) € A, is also denoted by following SFT ANT/INT:
¢/u ¢/u ; , true/[c, c]
p ——4 g Of p —— g when A is clear from the contextp -

is called theinput conditionor guard of the transition andx
is called theoutput sequencef the transition. Let/ 4 denote
the set of non-epsilon input conditions 4. Let 04 denote The image ofT, is essentially{[n,n] | n € UNT}* that
the set of output terms it 4. is not accepted by any SFA, since infinitely many states are
The definition of asymbolic finite automato(SFA is the required, contrary to the image of a finite transductiong(als
special case of an SFT whose outputs are empty. A transiticailled rational transductiol that is a regular language. ®
of an SFAA" is denoted by % ¢ wherey € I, U {e}. Example 9 is an instance of the general case wiféf is a
We lift the interpretation of terms to apply to sequenceadean SFT where bo#i* andi/° are infinite,A has a transition
of terms. Givernu = [u;]i<n € (T77(X))*, for n > 0, and a whose output sequence contaipé other than the first output
s-model M, u™ = [uM];,, € U")*. term and denotes infinitely many concrete transitions. Is th
Definition 7: An SFT A*/° denotes the&oncreteFT case the image of’4 cannot be recognized using a finite

AL (Qar g, Fa, U, U, AU A), wh number of states.
[A] = (Qa, ¢, Fa,U", U, A® U A€), where _
B. Algorithms for SFTs

€ __ e /u »/u €
AT=1p e/uH al f/u q €8 MEe), We here examine several algorithms for SFTs. Following
A ={p——gql|p——q€ Ay}, the application to web sanitizers described in Section th&,
main algorithms of interest are composition and equivaenc
checking. Our result on equivalence checking establidhais t
equivalence checking is decidable under fairly mild assump
tions, but establishing this requires a technical argument
‘b /[b] 6 JF8 X 6] /5] Cleaningof an SFTA is elimination of all transitions in
go — 4o, 9o q1 do A% whose guard is unsatisfiable. Thus, cleaning is linear in
SO, (bob) = ‘DD ). s Mo o ol
. . . . . A, .
The following basic property of SFTs is important in the 1) Standard algorithms:Many classical automata algo-

context of algorithm design for SFTs. . . i .
Definition 8: An SFT A is cleanif IsSat(y) for ¢ € I4. Lgung::;)h as the following, are directly applicable toTSF

Other properties of SFTs are defined in terms of their d _ o S o/c _
notations as FTs: SFA is deterministi resp.single-valued ~ « Epsilon elimination elimination of allp — ¢ (epsilon
input--free, if [A] is deterministic, resp. single-valued, input- ~ move, while linear in the number of states may increase
e-free. The following proposition follows from Definitions 5  the number of transitions quadratically.

where M ranges ovefc, }-models. LetT’s « Tpay-
Example8: Consider the SFTA in Example 3. Then
|Af 4 = 2'°. For example[A] has the following transitions:

and 7. « Epsilon-loop eliminationelimination of all pathg % P

Proposition1: A is deterministic if and only if4 is input- is linear in the number of states and transitions.
e-free and for allp #fu, q,p KZAN Ay, if ¢ # r then « Unreachable state eliminatiorelimination of all states
@ A1 is unsatisfiable. not reachable from the initial state.

A stronger notion ofnput-output determinisrihat disallows o Deadend eliminationelimination of all non-initial states
different outputs for the same input can be characterized si ~ from which no final state is reachable.
ilarly and is a useful special case in practical applicatidfor Both, unreachable state elimination and deadend elinoinati
example the SFT in Example 3 is input-output deterministiare linear in the number of states and transitions. All those
If, in addition, the output sequence is required to be a siogl algorithms are independent of the labels annotating thsitra
sequence, this leads to a special case of SFTs that can eé caibns and work in exactly the same way for automata as well
symbolic Mealy automata as transducers. Note that epsilon elimination does notyimpl



ef

. . . . . . . L/o L d
complete elimination ofA¢, which is in general not possible 4 /oDt =

. . . 1: let Q@ = {(¢%, ¢°
because the class of transductions induced by iegtge FTs 3 P é(q“ o)}
is a proper subclass of all rational transductions. Epdibap 3} 'vafallse 'geg ;L?C:m";'t‘; initial elemerttg , g7, )
elimination is not as widely known, but practically usefal i & pop (p, g) from §
the context of symbolic analysis [8]. 6 foreach (p, ¢, u,r) € A4 and(g, ¥, ) € Ap
2) Composition:We lift the definition of transductions to fdg((@ @), eu,(r,q) o A
sets as usual'(V) = Upev T'(v). Given two transductions go . ifp(jaeqihincz then add (r, ¢) to Q andpush (r, q) to S
T andT%, the compositionof T} and T is the transduction: 11 add ((p, q), € ¢, (p, 5)) to A
det 12: if (p,s) ¢ Q then add (p, s) to Q andpush (p, s) to S
Ty o Ty(v) =T (T1(v)). 13: if o # eandy # e and IsSat(p A ) then
14: add ((p,q), » A, u,(r,s)) o A

A fundamental property of SFTs that makes them attractivety o p = (57,6 G055 2.3 Smopy (e 8

for symbolic analysis, i€losure under symbolic composition 17:  eliminate deadends from
In [1] it is shown that for any two inpui-free SFTsA"/? 18 reum B
and B°/°, one can effectively construct an mpauf_fee SFT  Fig. 2. Domain restriction algorithma*/° is an SFT andD" is an SFA.
A o BY/° such thatTyog = T4 o Ts. The extension of the
algorithm to all SFTs is as follows. First, assume that epsil

transitions have been eliminated, and if there was a tiansit \yie optain the following generalization of [1, Theorem 1]
€/[u1,e . tn) by using the above extension.

q, for somen > 2, \o o/o .
Theorem1: Let A" and B.’" be SFTs. Then there is an

new (nonfinal) states,, ..., p,—1, were added and the tran-sFT 4 o B!/° such thatTu,5 = T4 o Tp. If F is decidable
sition was replaced by the new transitions then A o B can be constructed effectively.
€/[ui] » €/[uz] €/ [un] q 3) Domain restriction: Domain restriction is an operation
1

that restricts the input sequences accepted by an $FT

Sincec, does not occur in any;, the transformation is well- with respect to an SFAD*. The algorithm for the domain

defined and equivalence preserving. restriction AT D is shown in Fig. 2. The following proposition
The composition algorithm [1] is a DFS algorithm wherdollows from definitions.

Qa0 Is constructed as a reachable subsePafx Q) 5, start- Proposition2: Let A‘F/O be an SFT and)}. an SFA. Then

ing from (¢9%, ¢%). During creation of composed transitionsI’s;p = T4 L(D). Construction ofA|D is effective.

from a reached statép,,p,) the following transitions are Note that the satisfiability checking performed in the aiion

added, for example, suppose (in line 13) ensures thatl| D is clean and uses decidability
n ©/[u1,us)] ad. 1 /[v1] B o/ [vs] - of ]—'(cﬂ). Hovc;/ever, if satisfiability checking is omitteds|p
AL - is unchanged.
then, letd; = {c — u;} for i = 1,2, 4) Equivalence:Equivalence checking of FTs is undecid-
A103 a0/ (0201 2a] able in general [9], and is undecidable already for GSMs. The
(p1, pg) SN, vo (a1, @2) special case of equivalence checking of single-valuedtiapu

free SFTs over decidable character background is shown to be

decidable in [1]. This result is substantially generalitexte

o if po €/—V>B g2 then (p1,p2) 6/—V>AQB (p1,q2), (Theorem 2) tdinite-valuedSFTs. This result generalizes also

o if o1 g pe Ep o let 6 = {c, — u), if g the decidability of equivalence of finite-valued FTs [1G]],[

[11]. We use several lemmas to prove Theorem 2.
Proposition3: Let A be a finite-valued SFT such that

?’A(e) = (. There is an input-free SFT that is effectively

The following additional cases are added to the algorithm:

. e/vo

is true then(p1,p2) —— 408 (41, ¢2).
There is a subtle point about this extension. While the alg
rithm in [1] only depends on decidability of satisfiabilitgrf

. . . _ equivalent toA.
keeping A o B clean the extension requires evaluating e : .
L . Proof: First, assume thad is clean, has no epsilon-loops,
above for maintainingorrect semanticef A o B.

< /v0 no deadends, and no unreachable states. Second, noté that

" / .
Note also that the transitiofp, p2) 0B (01,02) 1S o havenput-epsilon loopg N pu # ¢, becaused is
an epsilon transition when = ¢, i.e., epsilon-transitions may finite-valued ' '

reoccur inA o B although eliminated fromd and B. Let A denote th t of all t ii i« starti
Example 10: Consider the following SFTs\*/? and B°/° et Aa(p) denote the set of all transitions i, starting
from p. Similarly for A and AS.

wherea € U7 andy is some{c, }-formula: _ _ . .
The idea is to transforml repeatedly, each time decreasing
. . </la] . . /e the number of statgs, such thatA¢, (p) # (), while preserving
A = B : = A
@ equivalence. The following transformation is repeatedilunt
Then Ao = {(p1.2) L (a1.02)} if e, a} is true, 2a(p) =0 forpeQa {a3}.
Ao = 0, otherwise. [ | 1) Choose a non-initial statg such thatA¢(¢) # 0.



2) For each transitiop LZAN g in A add the new transitions Lemmaa3: Every finite-valued SFT has an effectively equiv-
alent SNF with single-valued sequences.

{p ey, ., | q AN AS(q)} Proof: By using Lemma 2 we assume, without loss of
generality, that the SFT is a single sequence. Moreover, by
) . using Proposition 3, we assume that the SFT is inpiuee.

the semantics of IS not affected because(v) = We apply the following algorithm to transform the SFT into
3) Remove the transitiona (¢) from A. a set of single-valued sequences. First, note that if theiSBT
Equivalence of the transformed to the original one foIIows single component then it is already single-valued by Lemma 1
by using absence of input-epsilon loops and tha# ¢%. Next, we describe the algorithm for the case when the SFT
Eliminate all deadends that were created. has the formdaB, whereA and B are two components with
Finally, transitions inA¢(¢%) are eliminated one by oneanchorsp and¢ anda is a nonempty patp ~ ¢. The case
as follows. Fix g% AZAN p. SinceT4(e) = @ we know that when eitherA or B have no transitions follows also from
p ¢ F, and sincep is not a deadend\ 4(p) # (). We know Lemma 1. So assume that bathand B contain nonempty

L €/u pathsp ~ p and ¢ ~» ¢. Different outputs may arise by
also thatg!) . Replace the transitiogy — p b . .
a 7P P A p Ry ambiguous parses of an input sequenctrough AaB that

to A. Note thatr # ¢ and if ¢ = e thenp # ¢. Also,
0

@O Y p B e Aa(p)) must allow paths:
Repeat the step untih (¢%) = 0. []
Note that if A in Proposition 3 is not clean, then more a/r v/y1 v/y2 b/ 2

transitions may be added during the transformations busaho
guards remain unsatisfiable and the statement remainstorre
If A is clean then the transformed SFT is also clean, since
guards are not modified. ajw b/z
Example11: Consider the SFT in Example 3. Input-
epsilon elimination yields the following equivalent SFT:

v/y

and u has the forma™ - a - v - v -b-b" causing the conflict
T1-Yy1-Y -2 £ w-y-yo - xo in the output. We can rule out the

_,’ #(e)/[c] case wheru = b = ¢ or else there exist either unboundedly
mela)/e many different outputs for*, by increasingk, contradicting
where¢ stands for[' & ,‘#','x’] - ¢ ['; '], m finite-valuedness, or just a single output, independentef t
We say that a state of an SFTrislevantif it is reachable Parse, e.g. whemy; = y, = e. So assume: # e (the case
from the initial state and not a deadend. b # e is symmetrical). The idea is to resolve the conflict by

Lemmal: Let A be a finite-valued SFT. For all, v,w, replacingAvB with (A\ {av,v}*)vB, AavvB and AavB.
In order to detect and resolve such conflicts symbolically,
] w/v extract the sequencg of guards on the pathx and search

Proof: Suppose there exist v, w, andp such thap ~ 4 for the corresponding symbolic paths.inand B by checking

p andp uv/i”A p andv # w. Then for anyk, by the pumping satisfiability of the corresponding guard sequences foickvhi

lemma, there existy, us, v1 andve andm such thatl's(u; - there exist different output sequences. The maximum leofgth

u™ - ug) > k, contradicting finite-valuedness f. B the paths corresponding toandb that need to be considered
Definition 9: An SFT A is a componentf it is strongly is |Q4||@5].

connected and’s = {q3}, ¢ is called theanchorof A. An  por example, letn = p 2% ¢. And suppose there exist

SFT A is asequence (of componeni)t consists of disjoint . @1 /u1 oV jul i/t

componentsi; for 0 < i < n such that;A = quv Fa=Fyu,, tragzs/lilzonSpwz/tz Z;, ! .T

and there is a single transitiafy, — ¢ for0<i<n. ¢ q s — ¢ in B. Lett; = {c — ¢;} where
Definition 10: The union of a setA of SFTs is an SFT ¢ is fresh. Assume the following formula is satisfiable:

with a new initial state and epsilon moves to the initial&sat 9, A 10, A 1205 A ©h0s A @01 Ay A s A 204
of SFTs inA. /\U191 . t92 . t293 . ’U/294 }é u'191 . t192 . t93 . U294

Definition 11: An SFT is insequence normal fortSNF . L
Then there exist with different outputs. Construct the SHA

if it is a union of pairwise disjoint sequences. .
Lemma2: All SFTs have an effectively equivalent SNF. for the guard sequencebo: A¢' ], o1 A, ¥1]}", in particu-

Proof: Let A be an SFT. The construction is standard: tﬁr aLcctzzpltlng{a g Ut}h as above, L?ﬁ be tr}? (t:oTpI:lmel? ttOf
sequences are constructed by considering all loop-frdesp wfwlf?u:emovg}? e conflicts from). Le
from the initial state ofA to some final state, possibly creatingx: be the pathp —

and relevanty € Q, if p “ 4 p andp " 4 p thenv = w.

p in A and transitions

p1 — ¢ and letay be the path
extra states if a strongly connected componend a$ entered PP/ ro Y1/t Do LIAN ¢. Now replaceAaB with

and exited through different states. . n the SFTsA’aB, Aa; B and AayB. Note thatA’aB is now
The following is a key lemma used in the proof of decidsingle-valued and can be transformed to SNF. It follows that
ability of equivalence of finite-valued SFTs below. the union of the new sequences is equivalenttaB. Repeat



wv—)

the transformation oo, B and Ao, B. Termination follows 1.b) There exists a loopfree patfy u/ (0 sy such
from that both have fewer nonequivalent conflicts remaining that |[v| # |w).
and that the length of paths causing conflicts is effectively Proof of (*): We show that cases 1.a and 1.b are exhaus-
bounded by the size of the original SFT. The proof can be e Consider any: € L such thatD(u) = (v,w,_) and
generalized to the case of sequences of arbitrary lengtia. lu| # |w| and suppose 1.b is false. Then there must exist
Below we make use of the following pumping lemma about 4, /7 4y v, 0, v, w1, w', wy Such that
equations over finite sequences of elements.
Lemmad: For all uq,us,v1,v9, w1, ws, 21, 29, if u=1u-u Uy, v=01 -0 v, w=wy W - wy,
diotiz = o, and a loops """ 5 where [v/| # [u|, or else
tr stz = A 02, |v| = |w| since 1.b is false. Now suppose the loop is not
ti-tz -tz = U122 02 simple, then there exist), u", ub, v}, v, vh, w),w”  wh
thenuy - wy - wa - us = v1 + 21 - 29 - Va. such that
We also need the following generalization of [1, Theorem 2] , , ., Do o,
where an algorithm is given for deciding equivalence of Eing W=Up U Uy, U =0V Vg, W =W W - Wy,

valued inpute-free SFTs. The algorithm in [1] does not,

) ) : and a state’,
however, generalize to the case of simultaneous equivalenc

between multiple SFTs, that is needed below. For a single- /0w, )
valued SFTA write A(u) = v whenTy(u) = {v}. /—\@u,,/(v,, W)

Lemma5: Let Ao, BY/° . ,B,i/o be inpute-free single- ®‘*,\,_//“ T
valued SFTs for somek > 1 then the problem uz/ (Vg w3, )
dx (/\f:1 Ta(z) # Tp,(x)) is decidable ifF is decidable. If |0 = |w”| then|v} - v| # |w} - w}| and

Proof: Casek = 1 is [1, Theorem 2]. We prove the

case fork = 2. Generalization td: > 2 is technically more @u’l “uy/ (V) vy, wy s wy, )
involved but straightforward. LeB = By, C = B,. We only o
need to consider inputs ih = L(d(A))NL(d(B))NL(d(C)). a_nd repeat the_arggmsnt for :t/he shorter path if it is not
For example, ifu € L(d(A)) \ L(d(B)) andu € L(d(C)) simple. Otherwise, ifv”’| # |w”| and the loop through

thenT'a(u) # Tx(u) and the problem reduces to equivalence IS NOt simple apply the argument fef. [J
of A]d(B) and C, where the construction ofi|d(B) is Note that the problems of deciding 1.a and 1.b are decidable.

effective. The other cases are similar. In order to decide if a state is a B-length-conflict-state
For the casd. construct the produdb = A x B x C that consider all the possible simple loops- s: for each such
has state€) 4 x Qg x Q¢ and 3-output-transitions path check if the outputs lengths far and B are different.

There are finitely many such paths. Similarly for 1.a.
(p,q,r) R TGN ', q,r"), Next, we proceed by case analysis, showing that we can
for w/u , 1 /v ' 2 /w , effectively decide all the different combinations of pddsi
p——ApP, 4q—BYq, T ——CT . . . .

B-conflicts andC-conflicts that can arise. We write B.1.a for
such that/sSat(¢ A ¥1 A 1)2). Note thatL(d(D)) = L. The the case when there existsBlength-conflict-state, similarly
unreachable states and the deadends are eliminatedfrom for the other cases.

o Case (B.1.a, C.1.aCheck if there exist 4 andsp such that
D(u) = (A(u), B(u), C(u)) sp is a B-length-conflict-state andc is a C-length-conflict

Let po = % a0 = ¢% andro = ¢%. We write s, for state andsp ~~ s¢. Then there exists a path

(po; g0, 7m0) @and sy for some(py, qr,rs) € Fa x Fp x Fc.
Givenu € L and D(u) = (a, b, c), there are two (possibly

overlapping) cases for 8-conflicta # b (symmetrically for @v@\/@
a C-conflicta # c):
) ) uy/(v1, w1, z1) uz/(vs, ws, z3) us /(vs, ws, z5)
1) there is aB-length-conflict |a| # |b], or

2) there is aB-character-conflictfor somei, a[i] # b[i]. Where|va| # [wa] and |vs| # [24]. It follows that there exist
m andn such that

uz/(v2, w2, 22) g /(va, wa, 24)

We say that a state€ Q) p is a B-length-conflict- statda‘ there

exists asimpleloop (a loop without nested Ioops) ‘) [v1 - 05" vz - VY - U5

such thatjv| # |w|. The statements below make |mpI|C|t use  |vi-vytuseviws| # o fzn-2yt ez 2l -z
of the assumption thab contains no unreachable states a
no deadends.

vs| # |wi-wy - ws - wy - ws

"hus there exists = uq - uf’ - us - u}f -us € L such thatD(u)
. _ is a B-conflict and aC-conflict. There are finitely many such
(*) There are two ways how &-length-conflict can arise. combinations. The case- ~ sp is symmetrical. No other

1.a) There exists @-length-conflict states in D. simultaneous combinations of (B.1.a, C.1.a) are possible.



Case (B.l.a, C.1.b)Check if there exists aB-length- e Thus, in particular,, and p,1; do not cause any3-

conflict-states and a looopfree patk, ~» s ~» s7 that causes character-conflicts. It now follows from Lemma 4 that
a C-length conflict, i.e., there exists a path for all m > ¢, in p,, the outputs ofA and B will be
w1 /(v1, w1, 21) us/(vs, w3, z3) equal'
@mcaf/—\@ There are finitely many symbolic paths in that correspond

to the concretep,,,’s above. For each such path construct a
such that|v; - v3| # |21 - 23]. There existsup such that formulainF that is satisfiable iff &3-character-conflict exists.

< uz/(v2,w2,22) s where|va| # |ws|. Thus, there exists: such For example, for a symbolic path

that w1/ (v1,w1,_) w2/ (v2,w2,_)

v w5t - va| # |wr - wh - ws) %0 5 A

lv1 - 08" -vs| # [z 25" - 25 given substitutiond; = {c, — c¢;} wherec; is a fresh
uninterpreted constant the formula is:

Thus there exists = uq - u* - ug € L such thatD(u) is
a B-conflict and aC-conflict. There are finitely many such 0101 A pals A w101 - v26s # w167 - wabs

combinations. No other simultaenous combinations of éB.lTh CAibi db ideri Il loonf h
C.1.b) are possible. The case (B.1.b, C.1.a) is symmetrical e case C.1.b s covered by considering all loopiree paths.

Case (B.L.b, C.1.b)Check if there exists a loopfree pathlt follows that the case (B.2, C.1) is decidable. The casé,(B.

: C.2) is symmetrical.
so ~ sy that causes both #&-length-conflict and and &'- .
length-conflict. Then there exists such thatD(u) is a B- Case (B.2, C.2)Assume, by previous cases, that (B.1, C.1),

conflict and aC-conflict. There are finitely many such pathéB'l’ C.2) and (C.1, B.2) are not possible. In other words, fo

and no other simultaneous occurrences of (B.1.b, C.1.b) é%loops, the lengths of outputs from, B and €' are equal
and the total lengths of outputs are equal. Ldte as above

possible. d id Il paths:
Case (B.2, C.1)Assume, by previous cases, that (B.1, C.f)‘n consider all paths.
is not possible. Le? be the length of the longest possible Pm S0~ (S~ 8)™ ~ sy, m <20

output from eitherA, B or C' on any loopfree path. Clearly,
can be computed effectively. Suppose there exisislangth-
conflict-states. Consider all paths

wheres ~» s is a simple loop and check if a simultaneous
character conflict exists. As above, all such paths correspo
to finitely many symbolic paths inD. For example, for a

Pm i So~ (s~ 8)" sy, m<20 symbolic path
Since B.1.a is not possible, we know that for all loaps- s gp P rwrz) | pa/ (v w2,22) /
the A-output and theB-output have the same length. For eaChiven substitutiong: — 1 where ¢ is a fresh
pm check if a simultaneouB-character-conflict and'-length- 9 i = {a ool G

conflict exists. uninterpreted constant the formula is:

If no such simultaneous conflicts exist it follows from thep;0; Ap20sAv1601-v202 # w101 -wabaAv101-v202 # 21012202
following argument that no such simultaneous conflicts texi followi t sh that. if h simult
in any longer paths. We may assume that all such loops h TZI oflowing argument shows fhat, 1 no such simultaneous

ronempy and i) ot ince ey cpus retef, S€T TS e Sereced ten et e rene 1 o
cause nor remove any character conflicts. ger p ) 9 (B2, C.1).

As above, we may assume that all such loops have nonempty

« Suppose somp,,, £ < m < 2¢, contains aB-character 4 anqd thusB and C) outputs, since empty outputs neither
conflict. Then, by choice of and since all thed and B- cause nor remove any character conflicts

it v;, wi, 2i, 1 <1 <
gﬂiﬂufﬁge nonempty, there exist v, wi, 2, 1 < i < 2, o Suppose for somg,,, pn, £ < m < n < 2¢, p,, causes a
B-character-conflict ang,, causes &'-character-conflict.

v/, wnz1)  uz/(va, wa, 22) Then, by choice of and since all thed and B-outputs
@ are nonempty, there exist;, v;, w;, z;, 1 < i < 2, such
and either the character conflict occurs in the prefixes of that i ) p |
. . . . . u V1, W1, 2 )2, Wa,
vy, w; or in the suffixes ob,, w; (i.€., the conflict is not e
in the overlap). Thus, th&-charater-conflict remains in
wr/(vi,wi,21) W/, w 2 ua/(v2, wa, z2) and either both character conflicts occur in the prefixes
@m@m@/—\@ of (v1,w1,2) or in the suffixes of(vy, wo, z3), OF ONe
occurs in the prefixes dfv1, w1, 21) and the other in the
oy /) | < | a4z, SRS ol ) e the ot ae ot n e
We now have a contradiction, because eithgror p,,, 11 P)- o
must cause a simultaneoGslength-conflict, i.e., either wfvwnz)  wjhule) | ua/(susz)

|y - va| # |21 - 22| OF vy - v - va| # |21 - 2" - 22].



for any s W) where|v'| = |w'| = |2/|. In par- Whose labels do not contain,. The initial update R° is an
ticular both conflicts would be in some,, contradicting R-model. We writeq plvie, p for the symbolic transition of
the assumption. A wherep is the associated update.

« Thus, in particularp, and 1 contains, without loss of  The concrete transducefA] of A is defined similarly to
generality, noB-character conflicts. It now follows from the case of SFTs, except that the number of statefsi]nis
Lemma 4 that for alin > ¢, in pn, the outputs ofd and infinite in general. The states pA] are all pairs(q, M) where
B will be equal. M is an R4-model. The initial state ig¢%, RY). If (¢, M)

One can show that the above cases are exhaustive. Dediglabili 4 stateg p/vip and there existsV = M U {c, — a}

—>A p!

follows for & = 2. o B such thatV k¢ then
Note that the proof above uses arbitrarily many uninter-

pre_ted constants of sort i.e., it assumes decidability ch (¢, M) a/o” (a1 (0, {r = rpN | € Ra}).
while the proof of the case fot = 1 needs only two distinct
constants of sort and needs decidability oF ({c: ¢,d : 1}) The definition ofT, is lifted from the finite case.

Theorem2: Equivalence of finite-valued SFTs is decidable One can show that SFTRs are closed under composition.
provided thatF is decidable. The algorithm is a DFS algorithm similar to the case of SFTs.
Proof: Let A and B be finite-valued SFTs. Assunie = Let A be a SFTR and letB be an SFTR' such thatR 4 N

L(d(A)) = L(d(B)), or else A and B are not equivalent. Rg = (). ThenAoB is an SFTR™™ that is defined as follows.
By using Lemma 3 assumg and B are on SNF containing
single-valued SFTs. Assume, without loss of generality tha Qaop = Qax Qs

and B do not accept the empty string and that all component Faop = FaXxFp,
sequences i and B are inpute-free. To decided = B, we Raop = RaURgp,
check thatforalb € D, T4 (v) C Tg(v) andTs(v) C Ta(v). R%., = RYURY.

ConverselyA # B iff either (1) or (2) holds for some € D:
1) for somed, in A and all By in B, T, (v) # Tp,(v). Let (p1,p2) € Qaop. The following transitions are added from
2) for someB; in B and all Ay in A, Ta, (v) # Tp, (v). (P1,p2), for example, suppose

Decidability of (1) and (2) follows now from Lemma 5. m @/ u1,uzl;p Y1/viip1 ) b2/v2;ps
Although we can check equivalence, there is no direct way ! AdL, P2 B P B ¢

to generate witnesses when equivalence does not hold (@verifet 9, = {c+— u,} be the substitution for the input character

the single-valued case). For this, intersection of SFTslévouead fromp, and letd, = {c+— uz}Up, 0, be the substitution

be useful for separating the common answers in the singfer the input character read fropi as well as the composed
valued case Intersection of two SFF8/° and B'/?, if one register update after the update frgm Then the composed
exists, is an SFTANB such thatl'yng = T4 NTg. However, transition is

SFTs are not closed under intersection, already in the dase o

input<-free single-valued SFTs as illustrated by the following (p1,p2

example.
Example12: Consider SFTsA/? and B?/7:

POAY101Ah202/v101-v202;0Up202
) AoB (Q1 s q2)

The generalization to arbitrary lengths of outputs frpmis
obvious. The case when there is an inputansition from

A _)@ true/le, D true/lel @ p1 is similar, in this case we get inpatiransitions in the
N\ composition whose guards involve registers only.
B: () iV N o Theorem3: Given SFTR A"/7 and SFTR B?/° there
Y is an SFTR*™ A o BY/° such thatTyog = T4 o Ts. The
ThenTsNTp = {[c,c] — [c,c,c] | c € U} is not expressible construction ofd o B is effective. . .
as an SFT whed/“ is infinite, and is very large wheft¢?| ~ Although general reachability at the levie!] is undecidable
is large. m in this casecleaningof SFTRs is local as it requires only
satisfiability checks of the guards.
IV. EXTENSION WITH REGISTERS A practically very useful fragment of SFTRs is the case

In this section we introduce the extension of SFTs wittvhen each output term and each update term is either a
registers, and generalize some of the results for SFTs. Bya@ncrete value, an input character, or a register. We say the
registerwe mean an uninterpreted constant. SFTR hassimple updates~or example, there is a whole class

Definition 12: A Symbolic Finite Transducer with Reg- of sanitizers that only filter input characters and eithezpke
isters (SFTR) is an extension of an SFTY° with n remove, replace, or append them with other characters,dut d
distinct registersr; : oy, 7, # ¢, for 0 < i < n. Let not perform bit-level transformations on the charactesfitgt
R = {r;}i<n. Transition labels iM% may, in addition toc,, is easy to see that this fragment is closed under composition
contain registers. Each transition is associated withigadate as well, since it is preserved by substitutions.
that is a substitutiop for R such thatr;p € 77 (RU {c,}). SFTRs are strictly more expressive than SFTs with simple
Input<-transitions form a separate set Af, of transitions updates as illustrated by the following example.



Example13: ConsiderT = {[c,c] — [c,c,c] | ¢ € U} V. A SEMI-DECISION PROCEDURE FOR
from Example 12. Letd°/? be an SFTR with a register: ¢ NON-EQUIVALENCE

and transitions In the following we develop a theory for SFTs that uses the

@ e=c/lelir—e ¢ e=r/leclir—r ¢ theory. of a_lg.ebraic dgtatypes [12]. In particular, it pdes .
a semi-decision algorithm for the counterexample germrati
ThenTy =T. B problem. In practice it uses state-of-the-art SMT solvee t

For SFTRs with simple updates we can omit guard formuldg ot algebraic datatypes in the background, such as]z3 [2
from inpute transitions. For SFTRs with simple updates, suchj,o approach is close in spirit to similar encodings for

guards would only depend on the registers, and updatesg{onpholic regular automata. A distinguishing feature ofthi

registers on input-transitions can only depend on the curren{cqing is that it applies to general SFTRs that are free of
registers as well. We can therefore considet laths existing ._150ps. We provide the encoding for SFTs. The extension to
input-none transition and fold the guards from thepaths  geTRs s straight-forward. The detailed encoding for SFafrs ¢
into a corresponding number of versions of the input-AONpe fond in the appendix A; we here summarize the highlights.
transition. N ) We assume a sottisT(«) of lists over sortv and decision
Moreover, we extend the result of decidability of S,'nglebrocedures for the quantifier-free theory of lists. Let usan
valued SFTs to th? case When_all update terms are ?'mp_leduce a theory that is used to characterize the transitiatioal
Theorem4: Equivalence of single-valued SFTRs with SiM5f an SET A. First, we define anon-epsilon step formuja

ple updates is decidable provided thatis decidable. hered is th bstituti ;
Proof: Notice first that we establish the theorem fo%var;rglelss € substitutior{c, — hd(z)} andz andy are st

single-valuedSFTRs, not generafinite-valued SFTRs, so

we can apply an argument that uses ideas frqm [1]. Aet  Step(, o tuo,...un_1]0) (s Y) =

and.B be two smgle—\{alued SFTRs that we wish to _check z#eApfhA /\k<n(tl(k) (y) # e A hd(HP) (1)) = uih)

equivalence for. We will perform a depth first exploration of i ) o .

the product ofA and B starting from their initial states. The Stating that the first element in satisfies the conditiop and

states examined during the product construction are of tHEt thek’th element ofy is equal tou6 for k < n. We define

form (p, ¢, u, v, , ), wherep € Qu,q € Qp; eitheru or v aninput-epsilon step formulaimilarly.

is empty and accumulates the output generated [fy3) that ~ Definition 13: Let

extends the common output sequenceBofA); and ¢ resp.

1) are the conjunction of guards fror resp. B accumulated

on the trace leading to the current state. The use of guadjga set of fixed uninterpreted relation symbols. et IST(:)

formulas is specific to SFTRs where the transition can depeaddy : LIST(o) be variables. For alp € Q 4 define:

on the values in registers. The idea used in [1], that does not o

require tracking guard formulas, is to explore the produttiu  azp = Vo y (Acey(z,y) & (pEFa Nz = Ay =)V

either (1) a state is visited with different outputs; or (Bgt \/(p,gp,u,q)GAA(Step(p,gp,u,q)(x7y)/\

same pair(p, ¢, u, v) is revisited with a longer output fon Accq(tl(‘“"‘)(x), tl““”(y)))))

(v); or (3) the full product has been explored without hitting

cases (1) or (2). Equivalence of and B then amounts to Let Accy & Accgo, Th(A) = {az, |p€Qal.

reaching condition (3). The main property of the encoding can be summarized as
With SFTRs, transitions depend on the contents of registéedows.

and these have to be tracked during a product exploration. Sd’heorem5: Th(A) is consistent. Moreover, il is e-loop-

the states examined during the product construction aoptai free, then there is a unique 4.-modelM 4 F Th(A) such that

andt with the path conditions. There is an infinite number o € Ta(v) if and only if M4 E Acca(v, w).

such traces of course, but let us consider isomorphic sets ofhe axioms can be used in the context of theorem

such guards. Two sets of instantiated guards are isomorppiovers that produce ground instantiations: for each fengt

if there is a renaming of the characters (that are treated fasthere is a finite set of instances dfh(A), such that

fresh variables) that equates the two sets. Such sets are edllu, wF Acca(v,w) A [v] < £ iff w € Ta(v), || < L. The

satisfiable and we don’t need to consider more than one sunigh-level procedure is illustrated in Fig. 3. The reasorywh

equivalence class on a path. The number of isomorphisragation of the acceptors predicates works in this proeedur

classes for SFTRs with simple updates is finite, so the stateghat the transducers are epsilon-loop-free, implyirag the

examined during the product construction is also finite. ~ axioms are well-founded. (Similar transformation would in
Also note that we can extend the definition of registegeneral not work for arbitrary transition systems.)

update to allow updating a register with a function of theuinp The encoding of SFTRs is a straight-forward generalization

character as long as the domain and range of the functioritisequires the predicatedcc4 to take additional arguments

Sa Z {Acc, : LIST(L) X LIST(0) — BOOL} e,

finite. B corresponding to registers, and it requires the transitéa-
Equivalence for general SFTRs is not decidable since thegns to encode updates and outputs from registers. Thebrem
allow registers to be updated by arbitrary functions. remains intact for this generalization.
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. /o L/ oy def . . e s
Witness® (A*/©, B'/?) = _ _ the alphabet is not needed. To the contrary, an infinite or
: let ¥4 U X p be new uninterpreted function symbols

1 . .

2. assert Th(A) U Th(B) as auxiliary axioms unbounded alphabet is often needed for robustness of garsin

DA L'jTi?gTb(ef new uninterpreted constant algorithms. A similar extension of regular languages isduse

. T = H L . . .

5. loop in [22]. Compared to lattice automata, SFAs are defined

& if exists M & Acca(w,y) A =Accp (x,y), of modulo a given character theory and avoid the problem that

7: ME Aceg(z,y) AN ~Acca(z,y) then .

8: return (zM, y™M) an element of a lattice may not have a complement.

9: else

10: let 2 := [c|=] wherec : « is a new uninterpreted constant While the work in [21] views symbolic automata as a “fairly
trivial” extension of finite automata, the more fundamental

Fig. 3. For inpute-free SFTsA and B such thatd 2 B, generates a witness . ) . -
(v,¢) for ¢ € Ta(v) \ T (v) U T () \ Ta(v). question is how classical automata algorithms, that udeaalp

bet symbols explicitly, can be extended to the symbolic case
In particular symbolic complementation by a combinatorial
V1. RELATED WORK optimization problem calledninterm generatio23] leads

Relationships between logics and automata have been f#.Significant speedups compared to state-of-the-art aattom
vestigated for over half a century, a comprehensive stud{gorithm implementations.
is presented in [13]. In recent years there has been consid-

. . o . The work in [21] introduces also an extension to finite
erable interest in automata over infinite languages, starti ) -
. - state transducers called predicate-augmented finite state
with the work onfinite memory automatfl4], also called

register automatawhere, besides a finite humber of stateganSducer (pfs). A pfst has two kinds of transitions: 1)

the automaton has a finite number of registers taking valués—— ¢ Wherey and+ are character predicates aror 2)
in an infinite domain, a register automaton has thus infipitep 2%, 4. In the first case the symbolic transition corresponds

many extended states, called configurations, consisting ofg a|| concrete transitiong /b, ¢ such thato(a) and ¢ (b)

finite state component together with a value assignmenh®r tyre trye, the second case correspondideémtity transitions
registers. Similar extensions of finite automata, cadle@nded a/a

finite state machinefave been studied and used in the conte%r de

of protocol testing [15]. Finite words over an infinite aljlea to establish functional dependencies from input to outpat t

are usually calledlata wordsin the literature. o
: X . re needed for example to encode sanitizers such as the one
Besides register automata, various other automata models.. .
ig. 1. Also, the input and output alphabets are the same,

over data words have been studied in the literature [1@ o . X ) .

us it is not possible to describe transducers with differe
such aspebble automatd17] that use markers to annotatem ut and output sorts, which is important for various SFT
positions in a data word, andata automata[18] that are P P ' P

two-way automata used to establish (un)decidability IesuFonstructlons such as the one mentioned in Section I-A.

on two-variable logic with equality over data words. Selera gesides the work on BX [1], finite state transducers
characterizations of logics with respect to different mMedd psve peen used for dynamic and static analysis to validate
data word automata are studied in [19]. This line of work fosgnitization functions in web applications in [24], by arepv
cuses on fundamental questions about definability, dedityab approximation of the strings accepted by the sanitizergusin
complexity, and expressiveness on classes of automataen gitic analysis of existing PHP code. Other security aistyfs
hand and fragments of logic on the other hand. PHP code, e.g., SQL injection attacks, use string analytwers

introduceslattice automata[20] that are finite state automatayf the HTML output by a server [25], [26], [27].

whose transitions are labeled by elements of an atomicdatti
The motivation for the work comes from verification of Our work is complementary to previous efforts in extending
symbolic communicating machines. Unlike register aut@natSMT solvers to understand the theory of strings. HAMPI [28]
pebble automata or data automata, lattice automata pravidand Kaluza [29] extend the STP solver to handle equations
way to incorporate a particular interpretation for datatlgh over strings and equations with multiple variables. Thekwor
the operations. An advantage of the approach is that labels in [30] shows how to solve subset constraints on regular
be over-approximated to equivalence classes and mapped targuages. In contrast, we show how to combine any of these
finite alphabet leading to classical finite automata. solvers with SFTs whose edges can take symbolic values
Finite state automata with arbitrary predicates over syrn the theories understood by the solver. Axiomatization of
bols, calledpredicate-augmented finite state recognizeys SFAs using a background of lists was initially introduced
symbolic finite automatéSFAS) in the current paper, were firstin [31] and is used to provide integrated support for REGEX-
used in the context of natural language processing [21]yevh&onstraints in parameterized unit testing of .NET code,[32]
predicates provide a natural way to express phonologi¢dB], and to provide support for LIKE-expressions in SQL
generalizations such as fricative and nasal that are mare cajuery analysis [34]. Axiomatization of SFAs was extended to
mon in computational phonology than individual phonemesymbolic PDAs in [8]. The axiomatic theory of SFTs presented
It is pointed out in [21] that the finiteness assumption dfere is to our knowledge new.

q for all characters:. A pfst is not expressive enough
scribing an SFT. Besides identities, it is not possibl
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VIl. CONCLUSION

[20]

We have introduced and studied Symbolic Finite Trans-
ducers and Symbolic Finite Transducers with Registers. Tkl
main algorithms of interest for applications, such as w
sanitizers, are composition and equivalence checkingivEqu
alence checking is in general undecidable and we revert to a

semi-decision procedure presented in Section V. Howeher, {2

2

cause for undecidability is subtle, and this paper idestifie [24]
boundary based on whether the transducer is finite-valuet! (a
satisfiability of guard formulas is decidable). SFTRs adulaex
expressibility, but under the simple update assumptiosp al
maintain decidability for single-valued SFTRs. We conjeet
that equivalence of SFTRs for finite-valued SFTRs with s'ﬂmp[%]
updates is also decidable.

The symbolic representation of transducers is both conve-
nient for applications and allows for succinct represeoitast
Basic automata algorithms lift in many cases in a straighto]
forward way to this representation, and it allows leverggin
state-of-the-art theorem proving technology for analgzine
automata.
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APPENDIX Proof: To show satisfiability of Th(A) define theX 4-
. model M by Accéw(v,w) iff 3f € Fa((v,p,w) F5 (e, f,¢)).
A. Axioms for SFTs It follows from definitions thatM =+ for all ¥ € Th(A).

We develop an axiomatic approach for reasoning aboutNext, assumé— is well-founded. LetQ = Q4. Since@
SFTs. The background is assumed to incllists, as a special is finite it follows that there exists a well-ordering, over
case of algebraic data types. For each elementostiiere is ) such that ifp >¢ ¢ then there exists no epsilon-path

a list sortLIsT(o). The following background functions are e/e ; * :
, or, equivalently, thate, g, ¢ e, p,<). Define the
assumed for elements of samsT(o): q=ab ;. Y, thate, ¢.£) 1 (¢, )

lexicographic order- overl/t'ST() x (f-57¢) x @ as follows:
hd : LIST{o) — o
tl: LIST(o) — LIST(o)
L]]: oxusT{(o) — LIST(0)
g: LIST(o)

(v,w,9) = (Vs w',q') = [o] > V|V

(lo] = ['| A w] > |w')V

(] = ' Aw] = '[N g>q )
The standard list axioms are assumed to hold for these fur’?‘cht’ we prove{) by induction over-.
tions. In particular, for alt : o andl : LIsT(c), hd([e|l]) =¢, ) Foralp € @, v € U, w e U™, and all
(e | 1)) = 1, and[e | I] # . We write [e, ..., en] - I, OF M= Th(A):

[eo,...,en] Whenl = ¢, as a shorthand fofeg | - - - [en | {]]. *
Given a unary function symbof, term¢, andn > 0, we 3 € Fallv,pw) i (e, f,€)) & ME Acey (v, w).

write f(O)(t) for ¢ and f("+1)(t) for f(f()(t)). For example To establish the base case, (etw, p) be minimal with respect

t1®) ([eo, €1, €2, e3]) denotes the lisfes, es]. to . Thus,u = w = ¢ and there are no epsilon moves from
We adapt the notion of IDs and step relations from [3] tp. Hence, byM & azy,

SFTs. An ID is anlnstantaneous Descriptionf a possible
state of an SFT together with an input word (still to be M F Accy(e,e) & (p€EFahe=cAhe=¢)VMFEY

read) and output word (still to be written) starting fromttha & pEeEFy
state. The formal definition is as follows. Words (#”)* are *
L X & df € Fa((e,p,e) 4 (e, fre
encoded by lists ii/"S™¢?) . In the following let A/° be an J € Fale:pe) H (& f.))
SFT. where M ¥ 1 since each step formula from contains a

Definition 14: An ID of A is a triple (v, ¢, w) wherev € trivially false conjuncts # ¢ because there are no epsilon
U g e Qa, andw € UVST(?). The step relationof A is  moves fromp.

the binary relatiorty over IDs: The case is also clear fer= w = ¢ andp € F,, because
. then it does not make a differenceM F 1 or M ¥ 1.
(falvl,pu-w) Fa (v,qw) & (p,a,u,q) € Ay Now consider anyu, w, p) such thap € FaAv = eAw = ¢
(v,p,u-w)ba (v,qw) & (p6u,q) € Ay is false andv, w, p) is not minimal with respect te-. Hence,
by Mk az,,

We write i for k4 restricted to a single symbolic transition

t € A 4. The following proposition follows from definitions, ME Accy(v,w) & \/ (' W' ((v,p,w) i (W, q,w") A
wherel-; denotes the reflexive and transitive closure-of tEA L

Proposition4: Ta(v)={w|3¢eFa((v,q%, w); (e, q,¢))} ME Acey (v, 0')))

The following lemma is used below. For uniformity, we , , ,
view guards of transitions as either singleton sequences co < \/ (3w’ (v, p,w) B (v, g, ) A

taining a formula or empty sequences. Thus, the length of a tEA“H Fal(y N
guard of a transition is O if the transition is an input-epsil f e Pallv',q,w) 4 (&, fr€)))
transition, the length is 1, otherwise. & 3f € Fa((v,p,w) F5 (e, f,¢)))

Lemma6: Lett = (p,,u,q) € Aa, v, € U, and

w,w' € UMST The following statements are equivalent where the first equivalence follows from Lemma 6 and Def-

inition 13. The second equivalence follows from the IH,
o UE Step,(v,w) and o’ = 11V (v) andw' = 1"V (W) gjnce (v,w,p) = (v',w',q). The third equivalence holds by
o (v,p,w) k(v g, ). definition of4. (x) follows by the induction principle.
Proof: By using list axioms and Definition 14. [ | The rest follows from £) by letting p = ¢% and by using
The correctness criteriorthat we wantTh(A) to fulfill is  Proposition 4. FinallyM 4 is unique by definition ol s. ®
IsSat(A\ Th(A) A Acca(v,w)) if an only if w € Ty(v). To Theorem 6 fails if we omit the condition thaf is well-
this end, we need to consider SFTs whose step relationfasinded.
well-founded. Example14: Consider A with a single (nonfinal) state
Theorem6: Th(A) is satisfiable. Moreover, if4 is well- ¢ and a single transition(q,e¢,¢,q). Then Th(A) =
founded, then there is a uniqugs-modelM 4 E Th(A) such {Vzy (Accqy(z,y) < Accqg(z,y))}. So all¥ 4-models satisfy
that w € T4(v) if and only if M4 F Acca (v, w). Th(A) while Ty (v) = 0 for all v. [ |
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The following proposition provides a simple condition ottee be extended to a model df. M is partial in the sense that

structure ofA that is equivalent toé4 being well-founded; the the interpretation given for function symbols ¥y is finite

proposition reflects the role of, in the proof of Theorem 6. and is restricted to values$! for all subtermg (of appropriate
Proposition5: H is well-founded< A is epsilon-loop- sort) that occur during model search. The following general

free. property is used as a correctness assumption of SMT solvers.
The practical significance of the proposition is that there i Proposition7: If v A A ¥ is satisfiable and¥ is well-

an efficient algorithm that givem! constructs an equivalentformed forv then the SMT solver generates a partial model

epsilon-loop-free SFT fromi. While full epsilon move elimi- M E~ that can be extended to a model bf

nation may cause quadratic increase in the number of symboli In the following we describe hoWh (A) is used as auxiliary

transitions (by eliminatingsharing), epsilon-loop elimination axioms. First, we introduce an equivalence preservingfoan

does not increase the number of symbolic transitions. mation Th'(A) of Th(A). For each axionwz y (Acc,(z,y) &
Define thee-loop closureas the intersection of the epsilon3) € Th(A), there are two axioms irTh’'(A) where the lhs
closure and the the inverse epsilon closure of a state: of each axiom is declared as pattern
FE{aeQalp¥aatn{aeQala%an} 7y (Aeep(e,y) & Sz 2}),
and lift the definition to setsP d:ijﬂ p € P} very (Acey(lelr],y) & Bz — le[r]}),
Definition 15: Let A £ (Qa,¢%, Fa,1,0,A) where A = Itis clear thatTh'(A) is equivalent toTh(A). The particular

choice of patterns reflects the use Bf'(A) below.

~ - €/e
) ) ) ) ) ) E A e . . . .
{0 u.a) | (0, u,0) Al \ P plpeQa} Consider a goal formulg containing a subformula that

The following proposition follows from Definition 15 and ) )
by using techniques similar to the proof of equivalence bg]atchesihe patterm of an axiomvx (a < (3), meaning that

tween nondeterministic finite automata and nondeternignisf = ¢ for some substitutio for x. Then, theunfolding of
finite automata with epsilon-moves (see [3]). ~ wrt « is the formulay’ obtained from~y by replacing all

Proposition6: A is epsilon-loop-free and’s = T';. occurrences op with /36, denoted here by Fy ~'. Unfolding

The following corollary provides a foundation for express‘-:le_arly preserves eq/uwalence vt 'i‘ \I/;reduct/of'y, if one
ing decision problems over SFTs as logical formulas afgiSts: IS @ formulay” such thaty Fy, " and" cannot be

provides a basis for integration dfh(A) in the context of unfolqeq: o . .
state-of-the-art satisfiability modulo theories (SMT)veos,  Definition 16: W iswell-formedfor - if -y is well-founded

as discussed in the following section. and any¥-reduct ofy is a -formula. _
Corollary 1: M~k Acc;(v,w) o we Tav). In other words, well-formdness implies that repeated utifig

Proof: Use Theorem 6 and Propositions 5 and 6. m of v is guaranteed to terminate with a formula that does not
The following corollary shows how two SFT theories caONtain any symbols fromy.

be combined for non-equivalence checking. 1) SFT nonequivalence _CheCkin-@NO_SFTSALr/_O_ andBy/®
Corollary 2: Let A*/° and B/° be epsilon-loop-free SFTs aré equivalent if and only if the following conditions hold:

suchthabsNYp =0. Let =X UXgU{z: LIST(),y : « A and B aredomain equivalentL(d(A)) = L(d(B)).

LIST(0), z : LIST(0)}. Then Th(A) U Th(B) is satisfiable and e+ A and B are partial equivalenf A = B: forall v €

the following statements are equivalent f6smodels)M such L(d(A)) N L(d(B)), Ta(v) = Tp(v).

that M E Th(A) U Th(B). Domain equivalence is decidable #({c,}) is decidable by
1) ME Acca(z,y) A —Accp(x,y) using the difference algorithm for SFAs [8]. In Fig. 3 we
2) yM € Ta(2™) andy™ & Ty (™). provide an algorithm for generating a witness whérg B

Proof: By 4N 5 = () Theorem 6 and Proposition @ andA andB are inpute-free. Using a different transformation
of Th(A) the algorithm can be extended to all SFTs. This

B. Implementation algorithm provides a practically useful extension of Tteen2
SMT solvers establish satisfiability of formulas modulavhen A and B are single-valued and can be used as a
theories. Two inputs are given: semidecision procedure fot 2 B, in general.
« Auxiliary Axioms a satisfiable se¥ of universally quan-  Theorem7: AssumeA and B are inpute-free and F is
tified Xy -axioms. decidable. IfA 2 B then Witnes%(A,B) terminates and
« Goal formula a quantifier free(X U Sy)-formula v, generates(v,c), s.t., ¢ € Ta(v) \ Tp(v) UTs(v) \ Ta(v).
whereX N Xy = 0. Moreover,v is shortest possible.

The case of an empty set of axioms is most common. Other- Proof: Let v be the formula in line 6 in Fig. 3. Let
wise, axioms in¥ are expanded using quantifier instantiatiof = Th'(A) U Th'(B). AssumeA % B. Since A and B
as explained below. In order to use it is required thatl are inpute-free, for everyve ry (Acc,(le |r],y) < B) € ¥,

is well-formedfor ~. Different well-formdness requirementsthe first argument of anydcc, in g is r, and for every
exist, the one we use is specific for SFT theories and is defindd(Accp (€, y) < B) € ¥, X(3) N Xy = (. It follows that ¥
below. Under the well-formdness assumptionyifs A ¥ is is well-formed fory. Now use Proposition 7 and Corollary 2.
satisfiable, the solver generates a partial mddét ~ that can It follows also from the algorithm that" is shortest. ~ m
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