Bargaining Dynamics in Exchange Networks

Moez Draief and Milan Vojnowi *

Technical Report
MSR-TR-2010-91

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052
http://ww. research. m crosoft.com

M. Draief is with the Department of Electrical and Enginegtilmperial College, London, United Kingdom.
E-mail: m.draief@imperial.ac.uk

M. Vojnovit is with Microsoft Research, Cambridge, United Kingdom.
E-mail: milanv@microsoft.com



Abstract — We consider some known dynamical assumptions described later in the paper. An open re-
systems for Nash bargaining on graphs and focus search question has been to gain a better understanding
on their rate of convergence. We first consider of convergence properties and obtain tight bounds on the
the edge-balanced dynamical system by Azar et al convergence time for this type of systems.
and fully specify its convergence for an important In this paper we consider dynamical systems of Nash
class of elementary graph structures that arise in bargaining and focus on characterizing their rate of
Kleinberg and Tardos’ procedure for computing a convergence. We first consider edge-balanced dynamics
Nash bargaining solution on general graphs. We show of Azar et al [3] over elementary graphs that arise in the
that all these dynamical systems are either linear or decomposition procedure of Kleinberg and Tardos [1]
eventually become linear and that their convergence which include a path, a cycle, a blossom and a bicycle
times are quadratic in the number of matched edges. (see Figures 1, 2, 3 and 4 for examples). It turns out
We then consider another linear system, the path that, for all these network structures, the dynamics is
bounding process of natural dynamics by Kanoria either linear or eventually becomes linear. Specifically,
et al, and show a result that allows to improve we show that the dynamics Igear for a path and a
their convergence time bound toO(n*t9), for any cycle and iseventually linearfor a blossom and a bicycle
0 > 0, and for a graph of n nodes that has a unique (and characterize the time when this takes place). This
maximum-weight matching and satisfies a positive allows us to fully characterize the rate of convergence
gap condition. by deploying well known spectral methods for linear
systems. As a result, for all these elementary structures,
we find that the convergence time daiadratic in the
number of matched edges.

Bargaining and, in particular, the concept of Nash We then consider path bounding processtroduced
bargaining on general graphs has been a focus of mumshKanoria et al to study convergence properties of the
recent research in economics, sociology and compuser called natural dynamics introduced in [4]. This path
science [1], [2], [3], [4], [5]. In a bargaining systembounding process is yet another linear system that in [4]
players aim at making pairwise agreements to sharavas used to establish the convergence time upper bound
fixed wealth specific to a pair of players. Bargaining(n5t9), for any § > 0, for any graph with a unique
solutions aim at providing predictions on how the wealtmaximum-weight matching and satisfies a positive gap
will be shared and how this sharing would depend aondition (we discuss in Section II). It turns out that an
players’ positions in a network describing some notiompper bound for this path bounding process asserted in
of relationships among players. Lemma 27 [4] can be improved froin-©(1/n%) to 1—

The concept of Nash bargaining solution was intrd-/n which implies an improvement of the convergence
duced by Nash [6] for two players, each having aiime bound toO(n**?), for 6 > 0.
exogenous, alternative profit at its disposal were they to
disagree on how to share the wealth. Recent reseapchoutiine of the Paper
has focused on the concept of Nash bargaining with

. . . In Section Il we introduce system assumptions and
multiple players where each player has alternative profits _ . . :
.overview relevant concepts, including the concept of

determined by trading opportunities with ne?ghbors 'Riash bargaining outcomes, local dynamics, and the KT
a graph. In computer science literature, Kleinberg a%‘)g?)cedure. Section Il provides the characterization of

Tardos [1] were _the first to establish various proper e edge-balanced dynamics and convergence times for
of Nash bargaining outgom_es on ggneral graphs. Thee%(ch of the elementary graphs of the KT decomposition.
also propose a polynomial-time algorithm for computin

them. provided one exists. Follow up work aimed Section 1V, we provide a result for a path bounding
. P! C P rocess for natural dynamics. Section V reviews related
introducing some local dynamics that are natural (so . . .
: : .“work. Finally, we conclude in Section VI.
they, hopefully, have some connections with reaht)}sl
and studied their convergence properties. Azar et al [3]
considered the so calleddge-balanced dynamicand o
established various properties about fixed points afd Nash Bargaining Outcomes on Graphs
convergence but left open the characterization of theWe consider a grapy = (V, E) whereV is the set of
convergence rate. In a tandem of papers [4], [5], Kanom@des andt is the set of edges. Each node corresponds
et al considered an alternativeatural dynamicsand to a distinct player that participates in the trading game

established polynomial convergence time bounds undksfined as follows. Each edde j) € E is associated

. INTRODUCTION

Il. SYSTEM AND ASSUMPTIONS



with a weightw; ; > 0 representing the amount that’(0), fori =1,2,...,n andt =0,1,..., we have that
can be shared between playérand j should these two

: ) . (4 1) =x(t (¢
players decide to trade with each other. The trading game zil 1_ ) = @it) + oy )+w1, 5 )
iS one—exc_ha_nge meaning th_at each player attempts to +—(wip, — yi(t) — ypi(t))} _ xi(t)}
make a pairwise agreement with at most one other player, 2 0
which corresponds to a matching C E' in the graph where y(¢) is the best alternate value that a matched

where (i, j) € M if and only if playersi andj reached player; may get at timet by trading with her other
an agreement. We denote with the profit of player neighbors, i.e.

i wherez; > 0 and letZ = (z1,x9,...,2,) denote
the vector of players' profits according to an arbitrary wi(t) = k:(l,%zeué\M(wl’k —p(t))+
enumeration of thes = |V| players.
A balanced outcome or a Nash bargaining solution @1d we use the notatiofi; = min(max(-,a),b), for
a pair (M, 7) where M is a matching inG andZ isa @<= b . .
vector of players’ profits. Such an outcome satisfies thelt is not difficult to observe that if players and j
following properties: are matched, them;(t) + z;(t) = w; ; is time invariant,
i.e. if the latter holds for a time, then it still holds
for time ¢ + 1. Note that the dynamics is not necessarily
consistent with Nash bargaining solution for every time
as for a matched pait, j), the edge-surplus; ;—y;(t)—
y;(t) is allowed to be negative; the only requirement is
that the allocationy;(t) + 5(wi; — yi(t) — y;(t)) is in
zi— max (wp—xg)y = Tj— max (w;p—x)t [O,wi,j]: However, the edge surpluses are guaranteed to
keVi\{sj} keVi\{i} be positive fort large enough [3].
where, hereinafter}; denotes the set of neighbors Na_ltural dyngmlcs (Kanorla et al [4)). For this dy-
of a nodei and (), = max(0, ). namlcs,xi,j(t) is defined to be 'the proflt that player
i can earn at timet by partnering with one of his
The stability means that there exists no player thakighbors other than playgr The bargaining is assumed
can improve her profit by unilaterally deciding to tradgy evolve according the following system: given initial
with an alternative trading partner. The balance propekilues z; ;(0), for (i,5) € E, for 0 < o < 1 and
originates from the Nash bargaining problem [6] where— 1, ..,
two playersl and2 aim at a pairwise agreement to share
a profitw having outside profit options;, andr; in case zii(t+1) = 2 j(t)+a { max  yr(t) — l'z',j(t)} 2
of disagreement. The Nash bargaining solution is then for keVi\{s}
playersl and2 to share the surplus —r; —72 equally, if wherey; ;(¢) denotes the offer made by playieto player
positive, i.e. receive profits, = r1+%(w—r1—r2)+ and j at timet:
Do =19+ %(w —r1 —12)4, respectively. This allocation 1
is balanced in the sense that — 71 = py — 12, which  ¥ij(t) = (wij — 4 ;(t))+ — §(wz,j — 2 5(t) — x5,i(t))+.
1S exact!y the above_ asserted baIanpe property Wh?rrl?:ieed, this is consistent with Nash’s bargaining solu-
the outside profit options are determined by the vaIUﬁ

S .
that players may extract through trading agreements wi Bn' If z;;(t) > wi; then player: canh earn more
their neighbors. elsewhere and makes a zero offer to playedtherwise,

playeri offers just the right amount so that if playgr
accepts the offer, the resulting allocation is according to
a Nash bargaining solution:

1
Edge-balanced dynamicqAzar et al [3]). First con- w;; — v ;(t) = @i ;(t) + = (wij — x4 (t) — z5:(t))+-

sidered by Rochford [7] and Cook and Yamagishi [81f‘ _ . 2

this dynamical process assumes that players alreadyf Profit of a playet is equal to the current best offer
agreed on a matchiny/ and are negotiating the value of"2de to this player, thus at timeequal to

the outcomer. Hence, each matched playigs assigned ;(t) = max yg;(t).

a trading partner, which we denote with. A version kevi

of this dynamics in discrete-time can be represented Hse above dynamics was showed in [4] to converge to a
follows. For a fixed) < o < 1 and given an initial value Nash bargaining solution in polynomial time, provided

« Stability: for every edg€(i, j) € F,
T+ T > wj.

» Balance for every (i, j) € M, it holds

B. Local Nash Bargaining Dynamics



that it exists and is unique, and the graph satisfiesctahave been already assigned. The 4a$ constructed
positive gap condition which we define later in thisuch that no matched edge crosses the(dut” \ A),
section. i.e. for every node € A there exists no nodge V' \ A

Both dynamical systems by Azar et al and Kanorisuch that(i, j) € M. Initially, o = 0 and setA contains
et al are nonlinear because of the maximum operatais the unmatched nodes. The algorithm then proceeds
that appear in evaluating best profit values available itductively with respect to the number of nodes with
the players. Specifically, both dynamical systems awmassigned values as given By \ A|. Giveno and A
piecewise linear ian‘f‘ and IR‘f‘, respectively. This the inductive step amounts to assigning values to nodes
fact may be leveraged in some future analysis. in V'\ A that maximize the minimum slaeK > o which

amounts to solving the following linear program

C. KT Procedure o ,
maximize o

Nash’s barga_lnlng solgtlons on graphs are 'nt,'matel%ubject to 2} >0, icV\A
related to maximum-weight matchings. In [1] it was
found that the matching/ of a stable outcome’ is
a maximum-weight matching. Furthermore, whenever
a stable outcome exists, a balanced outcome exists as
well [1]. The outcome vectorr can be seen as ayhere(A) corresponds to the set of edges of the graph
feasible solution of a dual to a fractional relaxation of g linking nodes inA.
maximum-weight matching (primal):

1‘; +x;~ = Wi j, (Z,]) eM
zp+a > wij+o, (i,5) € B\ (MUE(A))
z, = w0 € A,

For a fixedo’, this is a linear inequalities’ problem
with at most two variables per inequality, for which
polynomial algorithms exist. In particular, by results of
Aspvall and Shilach [9], for a givew’, the system
. N of inequalities is infeasible if there exists an infeasible
where the dual problem is the following linear problem. . . . .
with two variables per inequality: simple I_oop in the graph co_nstruc_th_n descrlped in [9].

A path is said to be a loop if the initial and final nodes
are identical and is said to be simple if all intermediate
over z; >0, i€V nodes of this path are distinct. Furthermore, if a feasible

subject to x; +x; > w; j, (4,5) € E. solution exists than it can be constructed by finding the

In [1], it was established that a balanced outconiBOSt constraining feasible simple loop. For the above
(M, #) can be found in polynomial time by first findingSystem of inequalities, any such feasible simple loop is
a maximum-weight matching/ and then solving the either a path, a cycle, a blossom or a bicycle. We refer
above dual problem to find a balanced vectoThe dual 0 these aKT elementary graphand define them in the
problem can be solved by an iterative procedure whefdlowing:
each iteration maximizes the smallest slack as described Path. A path consists of alternating matchings with
in the following. each of its end nodes anchored at either a node

A node: € V slacks; is defined bys; = z; — i € A or at a matched edgg, j) € M such that
max( ;e p\m (Wi —77)+ While an edgéi, j) € £ slack sj =zt
s;; is defined bys; ; = x; + x; — w; ;. Indeed, for a « Cycle. A cycle consists of an even number of nodes
stable outcomer, s; ; > 0, for every(i,j) € E. Itis connected by a path of alternating matchings.
not difficult to observe that node and edge slacks satisfys Blossom A blossom is a concatenation of a cycle
8; = min(z;, ming jyep\ s Sil)- and a path (we refer to as a stem) as follows.

The KT procedure for finding a balanced outcome The cycle consists of an odd number of nodes that

maximize - e p Wi, %
over z;; >0, (i,j) € £
subjectto > ;. hepij <1

minimize ., x;

proceeds by successively fixing the valugsfor some
nodes inV. This is allowed by the following key
property [1]: if there exists a set C V ando > 0 such
thats; < o for everyi € A ands; > o forie V\ A
and a vector? such that valueg; are balanced i,
then there exists a vectaf such that:;, = x; for every
i € A that is a balanced outcome f6f.

The KT algorithm is sketched as follows. Let> 0

are connected by a cycle of alternating matchings
started from a node (we call gateway) with an
unmatched edge. The stem is a path of alternating
matchings such that one end node is matched to the
gateway node and the other end node is anchored
as for a path.

'Recall that if for a matched edde, j) € E, i € V' \ 4, then also

be a variable and let be a set of nodes for which valueg € v \ 4, and vice versa.



« Bicycle. A bicycle is a concatenation of two blos.where we refer toR as the rate of convergence and
soms by connecting the end nodes of their reall T = 1/R the convergence time. Moreover, If
spective stems such that the connected stems fafift) evolves according to the aforementioned linear
alternating matchings. system then the rate of convergence is given (by

The above described step is repeated until all the nodés= log(1/p(A)) wherep(A) is the spectral radius of

are assigned values, i.e. uritil\ A = . Hence, the total matrix A if the system is globally asymptotically stable,
number of such stepks is at most the number of nodesand(ii) R = log(1/X2(A)) wherel;(A) is the modulus
n. At each stepl, a KT elementary structur€; and Of the largest eigenvalue of matri that is smaller than
maximum slacks; are identified such that the’s form 1, if the system is asymptotically stable.

an non-decreasing sequenfes oy < o1 < -+ - < gp.

A positive gap condition A balanced outcomg with [Il. DYNAMICS FOR KT ELEMENTARY GRAPHS
slacksoy, 01, .., 0% is said to have a gap > 0 if, for  |n this section, we will observe that for all the el-
everyl <1 <k, ementary graphs of the KT decomposition, the values

held by the nodes eventually evolve according timear
discrete-time dynamical system, i.e., for given matkix
and, for every pair of nodesand j of C; such that the and vector(t), Z(¢) evolves according to
edge(i, j) is not part ofC;, we have Ht+1) = AZ(L) + B(1). 3)
We will find that for a path and a cycle the dynamics
This positive gap condition enables to study convergeniselinear for every timet > 0 while for a blossom and
of a dynamic process by partitioning into a sequené@ebicycle there exists a finite tinf&, > 0 such that the
of KT elementary graphs and decoupling the dynamiéynamics is linear for every > T,. The asymptotic
over these elementary graphs, a technique introduced &etavior is determined by spectral properties of matrix
used in [4]. A. Note that it suffices to consider the spectrum of
matrix A for « = 1. This is because, for every given
0<a<1, )N =1-—a+alis an eigenvalue andis an
_ eigenvector of the matriA, where\ is an eigenvalue
We introduce a few elementary concepts about stgng i is an eigenvector of the matriA undera = 1.
bility of dynamical systems in a somewhat informalye will see that for every KT elementary graph, the
manner and then define the notion of convergence t"@?genvalues of matribA, undera = 1, are located in
considered in this paper. We say that a dynamical systef{b interval [—1,1] and will show that—1 can be an
according to whichi(t) evolves overt > 0, is asymp- gjgenvalue only for a cycle with an even number of
totically stable if there exists a point™ such that for maiched edges or a bicycle with an even number of
every initial valuez(0), we have matched edges in each of its loops. In the latter two
cases, fora = 1, there is no convergence to a limit
point as the asymptotic behavior is periodic because
The system is said to bgdobally asymptotically stablé of the eigenvalue—1. This is ruled out by choosing
Z* is unique, i.e. does not depend on the initial conditidhe smoothing parametér < o < 1, making all the
Z(0). eigenvalues strictly larger thar1, and thus ensuring
In particular, for a linear systerfi(t + 1) = AZ(t) + convergence to a limit point.
b(t) whereA is a given matrix and(¢) is a vector that  Finally, we note that for our results in this section, we
may depend ort, we have that the system is globallyassume uniform edge weights and under this assumption,
asymptotically stable if the spectral radius of the matriwithout loss of generality, we lei. = 1, for everye ¢
A is smaller thanl (i.e. all eigenvalues are of moduloE.
strictly smaller thanl). The concepts of asymptotic
stability and global asymptotic stability are standargh path
see [10] for more details. PO PN ot e PN o
We say that the convergence to a paifitis exponen- ety T2 Tn T
tially bounded if there exis€ > 0 and R > 0 such that Figure 1. A path with boundary conditions.
for every initial valuez(0), we have

op—01-12>20

T +x; —wi; > o+ o

D. Convergence

Jim [|#(t) — 2| = 0.

We consider a path with boundary values(t) and
||Z(t) — || < Ce™ i for everyt > 0, z~ (t) as llustrated in Figure 1. In this case, the evolution



of the node valuesi(t) boils down to a discrete-time and where vectob = 0. Note that in this case
linear dynamical system (3) wherA is the n x n
symmetric tridiagonamatrix Z(t) = A'Z(0), for t > 0.
0 1/2 0 --- 0
. : By using similar arguments as for a path, it is not

2z e difficult to establish that the eigenvalues of matix
A = 0 .. .0 @) e

S R 5

2n(k —1
0 - 0 1/2 0 )\k:cos<¥>,k:1,2,...,n,
andb(t) = (220 o,... 0, 2T,
7:2—’ with the corresponding orthonormal eigenvectors
The eigenvalues of matriA are ) -
- k - J (L1 Ly i k=1

/\k—COS<—n+1>,]{7—1,2,..-7”7 ,L_},k: ﬁ(l,—l,,l,—l)T,lfk:1+n/2

with the corresponding orthonormal eigenvectors \/%(l,cos (1) ,- -, cos (dr(n — 1)))T’ O.W.

) 2 <Sin < mk > sin < mkn >>T
K =1/ ey .
n+1 n+1 n+1 where for easy of notation, = Z¢:=L=1

n

Note that every eigenvalue is of modulo smaller than  ysing the spectral decomposition of the symmetric

This implies asymptotic stability for every < o < 1. matrix A (see [10] for details), we have
From the above spectrum, we have the following char-

acterization of the convergence time whose proof is ~ P

deferred to Appendix A. F(t) = Y Nkt #(0). (6)
Theorem 1:For a path of» matched edges and every k=1

0 < a < 1, the convergence time is

5 We distinguish two cases:
T = Wrﬂ 14 0(1/n%)]. . Case 1 n is even. In this case\, = —1, for k =
1+ n/2, and \y > —1, otherwise. From (6), we
From this theorem, we observe that the convergence time have

is quadratic in the number of matched edges.
#(t) = (577 + (~1)TranoTeya) 7(0) +o(1).

B. Cycle
Tn Therefore, the asymptotic behavior is periodic.
:cz[ I o« Case 2 n is odd. In this caser-1 < A\, < 1, for
every k, and thus we have asymptotic convergence
A— to the limit point, li (1) = 237 25(0),
Figure 2. A cycle. 1 for everyi p im0 i (1) n Z]_l z;(0)
For a cycle, the dynamics of node valugég) boils In view of the above observations, we note that for

down to a linear dynamical system (3) wheAeis the evenn, we need to assume that is strictly smaller

following circulant matrix, for n = 2, A = 0 1 > than 1 in order to rule out asymptotically periodic

. 1 0 behavior, while for oddn, we can allow fora = 1.
and otherwise The following result shows that in like manner as for a
o 12 0 -~ 0 0 1/2 path, the convergence time is quadratic in the number
/2 0 1/2 . . .0 of matched edges, but note that it is four times smaller,
. . asymptotically for largen.
0 1/2 ' ' ' - 0 Theorem 2:For cycle graph of» matched edges and
A= Pl e e e e B) 0<a<1,ifniseven, and < a < 1, if n is odd, the
0 .12 0 convergence time is
0 /20 1/2 T=——n?-[1+0(1/n?)].

/2 0 0 -~ 0 1/2 0 272



initial value (Z(0), 7(0)), the sum of node values (¢)+

v2 ym(t) satisfies:
x°_'°l """" °—°x2 """" °'_'°mn 1) y1>(t2)+ ym(t), for t > 0, is autonomous off(t),
O—- =
Ym 2) limyoo y1(t) + ym(t) = 1.

Figure 3. A blossom. 3) The asymptotic rate of convergences, .

4) There exists a tim&;, > 0 such that eithey, (t) +
Ym(t) < 1 ory(t) +ym(t) = 1 for everyt > Tp.
C. Blossom _ 2
A blossom is a concatenation of a cycle and a path : - o
The theorem derives from an explicit characterization

(we refer to as a stem); see Figure 3 for an exampl%. ; o f ¢ > 0. which Ci
We consider a blossom with matched edges in the%ey%c()ll)o;rviag-( ), for everyz > 0, which we present in

stem andm matched edges in the loop. We refer to th Lemma. 1-Given initial value#(0). for everve > 0
node that connects the stem and the loop gstaway -Given initial valueg(0), veryt =1,

node. The matched edges of the stem are enumerated as 9 21
1,2,...,n along the stem towards the gateway note. Wey: (t) + ym () = 1 — 1 > faic1(H0)A, (8)
let x; denote the value of the end node of an edgé i=1

the stem that is connected to a node towards the opehnere

end of the stem. Similarly, we enumerate matched edges m+1

of the loop asl, 2,...,m and lety; denote the value of @) =1+ X —2¢/1 =} 5 kY

the node that appears first on a matched edgewe go

along the loop in the clockwise direction. We provide proofs of Theorem 3 and Lemma 1 in

It can be observed that node ValUﬁa) and g(t) Appendix B and C, respectively.
evolve according to the following non-linear dynamical From Theorem 3 item 4, we have that the dynamics
system: for a blossom is eventually according to the following
linear system

1’2(75)
ri(t+1) = —5 Z(t+1) )\ |
l’i_l(t) + :L'Z'+1(7f) g(t + 1) =A g(t) ’
zi(t+1) = 1<i<n .
2 where matrixA and vectob assume one of the following
To(t+1) = L+ ona(t) - ma;{[l — 91(0), ym(t)] two choices:
7 e Case 1 (1 —yi(t) > ymlt
B Tn(t) + y2(t) (7) ( y1(t) > ym(t))
yi(t+1) = S E— T P
1)+ s (1) r=(5 ) ©
pit+1) = LLE DI i | B "
2 with T,, andT,,, tridiagonal matrices of paths of
Ym(t +1) = Lt ym-1(t) = 2nlt) andm matched edges, respectively, and
2 00 --- 0 0 --- 0 %

Note that the system is non-linear only because of the 00 --- 0 0o --- 0 0
maximum operator that acts in the update forthenodgp — [ : : = : | Q= : Do
matched to the gateway node, which connects the stem 00 - 0 0 0 0
and the loop of the blossom. The maximum operator is 1 0 0 0 1
over the values of the nodes that are in the loop matched #2 2
to the neighbors of the gateway node- y;(¢) and andb = (0,...,0,1/2)7.

ym(t). It turns out that, eventually, one of these two ntm—1
values is larger or equal to the other and, hence, thes Case 2 (1 —yi(t) < ym(t)) same as under Case 1
system dynamics becomes linear. This is showed in the but

following lemma. Note that the sumpy (t) + ym (), if 0 0
smaller or equal thahindicatesmax(1—y1(t), ym(t)) = 0 0 0
1—y1(t), and otherwisemax (1 —y1 (), ym (t)) = Ym(t). P=1: P
Theorem 3:For a blossom with. matched edges in 0 0 O

0

|
N[

the stem andn matched edges in the loop, for every 0



andb = (0,...,0,1/2,0,...,0,1/2)T. Therefore, the spectral radius of matrk, p(A) =
¥ " max(maxy |Ag|, maxy |ug|) is given by

n—1 m—1
In the following we only consider Case 1 as the ”
spectrum of matrixA under Case 2 is exactly the oS gnmy1 ) MM EVEN
same. We note that the eigenvalues of the makiare  p(A) = { cos 2n+2++1 , modd,m <2n—1
()‘17)‘27"'JAn+Lm/2J7M17N27"'7“]—m/21) Where COS m11)7 modd,m>2n—l
Ay = cos 2mk k=1,...,n+|m/2] The asserted asymptotic follows from the last identities.
n+m+1)’ B -
2k —1
Ug = COS <L1)> , k=1,...,[m/2]
m+ D. Bicycle
with a proof provided in Appendix D. z y
. T T T T 1
It is noteworthy that all the eigenvalues have modulo / \ D’° Y2
strictly smaller andl, and thus, the system is globally 301_0 ------- o °x—°il I
asymptotically stable. We now characterize the conver- \ ______ /Z 2 " N
gence time from an instance at which the system became 29 Ym
linear.

Theorem 4:For a blossom with: matched edges in 719U 4 A bicycle.

the stem andn matched edges in the loop, for every
0 < a < 1, the convergence timé& satisfies: ifm is
even, then

A bicycle graph consists of two loops that are
connected by a path. Without loss of generality, we
refer to one of the loops as loop 1 and to other as loop

2 9 2 and refer to the path as a cross-bar; see Figure 4 for
T=—2n+m)"-[1+o0(1)]

ar an illustration. Notice that a bicycle graph corresponds
_ to a concatenation of two blossoms by connecting the
otherwise, form odd, end nodes of their respective stems so that a cross-bar
9 1 is formed of alternating matchings. We leandm be
T = —; max <m2,1(2n—|—m)2> [1 4 o(1)]. the number of matched edges in loop 1 and loop 2,

respectively, and let be the number of matched edges

Observations The result implies that the convergencgg the crosz—bar:[ ';heq\;alu_es oftend :odes oftqutched
time is O((n + m)2), i.e. quadratic in the number ofS0 3¢S aré denote b3(t) = (e1(t), 22(), - ., a(t))"

. O . F(t) = (z1(t),22(t),..., ()T and y =
matched edges. There is a significant difference WI}?@(t),yg(f),...,ym(t))T, for loop 1, cross-bar,

regard to whether the number of matched edges in t 4| 5 ivelv. See Fi 4% " ¢
loop, m, is even or odd. The convergence is slower f 00p £, TeSPECIVEly. See fFigure 4 Tor positions o
g e corresponding nodes.

m even. Specifically, if the length of the stem is at lea .
twice the length of the loop, the convergence time is We note that f_or a blcy_cle the system evolves accord-
larger for a factor4. For a fixedn, the convergenceIng to the following non-linear system:

time is asymptotically-2,m? as for a path of lengthn 14 2a(t) — 21 (t)

which is intuitive. Likewise, ifm is fixed and odd, the 1(f T1) >
convergence time is asymptoticali$;n? as for a path zi—1(t) + zi41(t) _
of lengthn and thus also in conformance to intuition. it +1) = 2 1 <i<d
Proof: For the eigenvaluesy, Xz, ..., Ay m/a), it alt+1) = 2-1(t) + 1(t) (10)
is readily checked that 2
zo(t) + max|l — z1(t), 2 (¢
141 oqd)m n(t+1) = 2(t) [2 1(1), z1(t)]
max [Ag| = —Apy|m/2) = cos <—>
k 2n+m+1 plus other updates as for blossom.(7)
while, on the other hand, In this case, the non-linearity originates because of two
gateway nodes that connect the cross-bar with loops,
T each such gateway node having two alternative profit
max || = 11 = cos <m+ 1)' options with nodes in the loops. Similarly as for a



blossom we have that eventually the dynamics beconegenvalues of the matriA are given by
linear as stated in the following: (2% — 1)
Proposition 1: For a bicycle with/ and m matched cos <W7> yk=1,...,[1/2],

edges in loops and matched edges in the cross-bar, (+1
there exists a timdy > 0 such that for every > T, cos <7T(2k7 — 1)> Jk=1,...,[m/2],
(Z(t),#(t),y(t)) evolves according to a linear system. m+1
— 2
FurthermoreTo = O(max(l,m)?). | cos < 27k ) k=1t |12] + lmy2)
This observation follows from Theorem 3 applied to 2n+1l+m

each loop of the bicycle. This can be done because b%nich we establish in Appendix E
y1(t) + ym(t) andzy(t) + z(t) evolve autonomously as '

given by Lemma 1 forys (£) + ym(t) and analogously Remark that in any case all the eigenvalues are strictly

smaller thanl. On the other hand, if botlh and m

for z1(t) + a(t). _ . are even, then-1 is an eigenvalue with eigenvector
We have showed that the dynamics for a b|cyclﬁ’_1’1’_1’” .1,—1)7, and otherwise, all the eigen-
is eventually according to a linear system, which g, es are strictly larger than1. Therefore, if botH and
specified as follows: m are even, then the asymptotic behavior of system (11)
is periodic, while otherwise, it is globally asymptotigall
Z(t+1) Z(t) stable.
Tt+1) [ =A Z@) | +0b (11)  As a byproduct, similarly to Theorem 4, we can
gt +1) y() establish that from an instance at which the system
became linear, the convergence time scales as follows.
where Theorem 5:For a bicycle withn matched edges in
T, Q 0 the stem andn and! matched edges in the loops, the
A=|P T, P convergence timg’ satisfies the following. lin or [ is
0o Q T, even, then for every) < a < 1 (anda = 1 if both m

and! are even),

with the given matrix blocks defined by

T= %(Qn—km—i-l)z -1+ 0(1)]

Tl Ql Tn P . .
P T, and Q T, otherwise, ifm andn are odd, then for evely < o < 1,

2 1
are the matrices that correspond to two blossoms forméd = - max (mz, ?, g (2n+m+ l)2> “[1+o(1)].
by loop 1 and cross-bar, and cross-bar and loop 2,
respectively. Therefore, the convergence timeG¥ (I + n + m)?),
The pair (A,b) admits four possible values, correi.e. quadratic in the number of matched edges.
sponding to all possible combinations of two cases for
each of the loops (Case 1 and Case 2 in Section IlI-C): IV. THE PATH BOUNDING PROCESS

1) Both P"andP as in C?se 1 We consider a bounding process for natural dynamics
b=(1/2, \0""70,’ 1/2)%, on a path, which was introduced in [4]. The bounding

, . lntm=2 i process, referred to asimplified dynamics provides
2) P"asin Case 1P as in Case 2, . lower and upper bounds for the original dynamics by
b=(1/2,0,...,0, 1/2’\0’ 0 1/2)7, appropriately choosing initial and boundary conditions.

o -1 mtn—2 This simplified dynamics is defined as follows. We
3) P’ as In Case 2P as in Case 1, T consider a path of. edges where nodes are enumerated
b= (1/2’u’ _1/2’u’ 1/2)", as0,1,...,n and letA/ denote an alternating matching
,  HAn=2 m—1 on this path. Letu(t),v(t), ¢t > 0, be arbitrary real-
4) BothP’ andP as in Case 2, yalued sequences and lat> 0. Then, the simplified
b=(1/2,0,...,0,1/2,0,...,0,—1/2,0,...,0,1/2) SO
NCARGEL AR \ y dynamics is given by
-1 n—2 m—1
In the following, we will only consider the case under ~ Zo1(t+1) = Zo.1(t) + a(u(t) — Lo (t))

item 1 as the same end results hold for other cases. Th&, ,—1(t +1) = Zpn-1(t) +a(v(t) — Tpn-1(t))



while fori =1,2,...,n—1, in Lemma 27 [4]. As a consequence, the convergence
time upper bound in [4] can be improved to

Tigr1(t+1) = Ziis1(t) + yi-1,i(t) — £i,i41(1)) s
Tig—1(t+1) = Zii1(t) + (yigri(t) — Tii-1(t)) T<ClW/o+loglo/e)]-n
Where where W is an upper bound on the maximum edge

. . X o weight, o is the gap parameter, and C' and ¢ are
yis(t) = { 3 (wij N 2ig(t) + 254(t)), (i,5) € M positive constants.
’ wij — & 5(t), otherwise
A path boundary process is a procesg) satisfying V. RELATED WORK
the following property: given two simplified dynamics The concept of balanced outcomes was introduced by
55’(,5) and 5/(,5), |Zii41(t) — @;JH@)‘ < Zii(t) and Nash in [6] for the case of two players with exogenous
Iiz+1,z(t)—§3§+1,i(t)| < Ziy1.4(t), for every edgéi, i+1) profit options. This concept follows from a set of axioms

andt > 0. and different axioms were subsequently considered; e.g.
It was showed in [4] that such a path boundingee [11].
process can be defined as follows. L&t 1(0) = Kleinberg and Tardos [1] considered the concept of
Ziv14(0) = ||Z(0) — &’(0)||o, for i = 0,1,...,n — 1. Nashbargaining solutions on graphs where profit options
For an unmatched edgé, i + 1), we let available to a player are not exogenously given but
determined by her position in the graph. They estab-
i1 (t) = Tiir () + lished relations between stable and balanced outcomes
e <£f'i—1,i(t) +Zii-a(t) 3 i+1(t)> i>0 and devised a polynomial time algorithm for computing
2 ’ ’ balanced outcomes. Their work left open the question on
Tir1i(t) = Tig1i(t)+ existence and properties of local dynamics.
I . A local dynamics for Nash bargaining on graphs was
+a <$Z+2’Z+1(t) ; Zirtiva(t) - :i"i+1,i(t)> recently considered by Azar et al [3]. This paper assumed
a fixed matching of nodes and considered a local, so
while for a matched edgg, i + 1), called edge-balanced dynamics, for outcome vegtor
Fiip1(t) =Tii41(t) + 0 (Fo14(t) — Fripa (1)) They established that fixed points of this dynamics are

B _ balanced outcomes. The assumption that matching is
Titr1,i(t) =Tivra(t)+ fixed was removed by Kanoria et al in their natural
+ a (Tiy2,i+1(t) — Zit14(t)) i <n—1  dynamics studied in [4] and [5]. In [4], they established
and that provided that there exists a unique Nash bargaining
_ _ _ solution and the graph satisfies the positive gap 0
Toa(t+1) =To(t) + a(u(t) — Zoa(t)) condition (Section II-C), the natural dynamics converges
Tnn-1(t +1) =Tnn-1(t) + a(l —u(t) = Znn-1(t))  to this Nash bargaining solution in a polynomial time.

whereu(t) is an arbitrary{0, 1}-valued sequence. Specifically, they showed that there exists a constant
The following theorem provides a stronger result thap > 0 such that the convergence time is upper bounded
in Lemma 27 [4]. by C[W/o + log(a/e)]nS*°, where W is an upper

Theorem 6:Supposen is odd,n > 1, andu(t) is an bound on the maximum edge weight,> 0 is the gap
arbitrary {0, 1}-valued sequence. Then, for initial valu@nd €, 0 > 0. In [5], using a different approach, they
Ziip1(0) = Ziy1,4(0) = 0, for every edge(i,i + 1), we established that if maximum matching is unique, then
have that for every > 0, there existsT = O(n'/g*) such that for every initial

value the natural dynamics induces the maximum-weight
Z;j(t) <1 (12) matching, for everyt > T heren is the number of the
nodes and; is the difference between the total weight
_ _ 1 of the maximum-weight matching and that of the second
max(Lo(t) Fn-1a(t)) < 1= 2. 13 pest matching, which we refer to as timatching weight
gap.

The proof of the theorem is based on analysis of aFinally, another related work is that on maximum-
tridiagonal linear system and is provided in Appendix Mveighted matchings on graphs because of a close con-

The improvement of the theorem is in the last assertadction between stable outcomes and maximum weight
inequality where we provide tighter bourdd— 1/n in  matchings and similarity of distributed algorithms con-
comparison withl — ¢/n? for a constant > 0 asserted sidered for solving the two problems. Bayati et al [12]

and



10

considered an auction-like algorithm, which is similar in APPENDIX
spirit to the natural dynamics for solving the balancegl proof of Theorem 1
allocation problem, and showed that for complete bipar-
tite graphs with a unigue maximum-weight matchinqh
the convergence time i©)(Wn/g) where W is the

An eigenvalue\ and associated eigenvector of
atrix A satisfy

maximum edge weighty is the matching weight gap P lv
andn is the number of nodes. oo
1 1 .
A\v; = 5212‘_1 + §Ui+1, l<i<n
VI. CONCLUSION o, = Lo
n 2 n—1-
In this paper we showed that some known Naghising A = cos(¢) and v; = sin(¢i), for ¢ > 0

bargaining dynamics on graphs can (eventually) be chg- the above equations, along with some elementary
acterized by linear dynamical systems and this enablgghonometric calculus, it readily follows that = Tk
us to derive tight characterizations of their convergengg . = 1,2, ... n.

rates. An interesting direction for future work is t0 sjnce —1 < A, < 1 for everyk and \; > 0 has the
investigate tightness of the convergence time boung@$gest modulo, the convergence time is givenTby=
derived under different assumptions such as the positiyg (1 — o+ .\, ). Noting that; = 1 — 2+ 0(1/nh),
gap condition of the KT procedure or the matchinghe asserted result follows.

weight gap.

B. Proof of Lemma 1
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where the last inequality is because of the fagt, = and, thus, sinceély;—1/\| < 1, for everyl < i <
vg,1 for k odd andvy, ,,, = —vy, 1 for k even. Furthermore, [m/2],

~T7 _ Tn(s) 1 —zp(s)
WHE) = v Ty 1) + yn(t) = 1= ==X [AG0) + o(1)].
= Tk for k£ odd ) ]
2 Finally, item 5 holds as
Therefore,
/\Qi_l )\3 47‘1’
= =1-—+0(1
yi(t) + ym(?) 7 1= max| =] < A 7 +0(1/m?).
= Z <>\Z2vk,1ﬁg§(0) + ZAZ_S_IU%1> For an arbitrarye > 0, we have|\y_1/\1|t < ¢, for
k odd every: > 1, provided that time is such that
1— X
= Y <)\Z2vk 10 7(0) + ky ) log (1 loo (1
9 . g € Og €
% odd = t> (1) = 4(2)m2[1+0(1)]-
log (;) d
= <>\ 24/ 1\/1—A2*T
% odd me Hence,Ty = O(m?).
+(1 = A}
HL- M2 ) |
9 9 D. Eigenvalues for a Blossom
= — (1+)\k)—— (1+/\k . . ~
m+1 +1 Remark that an eigenvalug and eigenvectorr’ of
£ odd £ odd . . i, .
- matrix A satisfy A7 = A7, i.e.
m + T =
—2\/7\/1—)\% T (0)) AL )
51)2 = )\2}1 (14)
It remains only to show that 1 1
5 51),-_1 + §Ui+1 = A, 1<i<n+m (15)
+ odd _51}1 + §vn+m—l = Apim (16)
\évln:i: follows readily by elementary trigonometric caIS uppose A _ cos(¢) and 7 _

(sin(e),sin(2¢),...,sin((n + m)¢))T. Then, by
elementary trigonometric identities we note that (14)
C. Proof of Theorem 3 and (15) hold for everys. On the other hand, (16) is
The statements of the theorem derive from Lemmaetjuivalent to
as follows. Item 1 clearly holds as the function (8)
depends only on the initial valug(0). Item 2 follows sin((n +m — 1)¢) = sin(ng) + 2 cos(¢) sin((n +m)¢)
from (8) because all the eigenvalugsare real and with
modulo strictly smaller thari. Item 3 holds from the which by using elementary trigonometric identities is
fact that the largest modulo eigenvalue of matAxis equivalent to
A= cos<m+1) = 1 — 7 + O(1/m*) and hence  mamad ot 1
R =1log(1/A\1) = £ + O(1/m*). Item 4 holds as the sin <f¢> cos <—¢>
sum in (8) is asymptotically dominated by the largest
modulo eigenvalue\y; 1 such thatu?, ,7(0) # 0, i.e. Therefore is either
the mode associated to the eigenvalyg ;| is excited.
Let us consider the case where such an eigenvalue is . o = Zky —1
A1 and m is even; the other cases follow by similar 2n+m+1 m—+ 1"
arguments. From Lemma 1, we haygt) + y,,(t) =

121
- 1_m2+ oA (fl(gj(t))) + Y fai1((0))
=2

wherek; andks are arbitrary integers. Since cosine is a
<)\2, 1>t) periodic function, it can be readily checked that(¢;)

attains all possible values over=1,2,... ,n+ [m/2]

! and similarly forcos(¢2) overk =1,2,...,[m/2].
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E. Eigenvalues for a Bicycle Using the properties of determinants of block matri-
ces, we observe that eigenvaluesB®ftonsist of eigen-
values of matrice® andR. Therefore, the eigenvalues
of matrix B, and by similarity of matrixA, are

If A is an eigenvalue of matriA with eigenvector,
then we have

Av 11) 11)
1 = 527 3Vi+1
2 2 2% — 1
1 1 cos <M> Ck=1,...,[1/2], (17)
i = vt svig,i =2, n+m41-1 I+1
| 2 LICLIE) ) B a8)
AUpymyl = 3 Untmti-1 = 5U4n cos 1 ) e m/2],

. . 21k
In the remainder, we separately consider two case®s <#> ck=1,...,n+|1/2] + |m/2(19)
depending on whether eitheor m is even, or otherwise. nltm

Case 1/ orm is odd. . _ where (17) are eigenvalues of mati which is easily
Without loss of generality, supposkis odd. Let gerived and thus omitted, and (18) and (19) are eigenval-

us introduce the following one-to-one linear transfoges ofR which we have already showed in Section I11-C.

mation 2 = Su where matrixS is defined byz; = ;s not difficult to see that the above eigenvalues hold

vi + vy, ford =1, [1/2], and z; = 2v; for \ynenever eithet or m is odd.

i=1[l/2]+1,...,n+ 1+ m. It is not difficult to verify Case 2 bothl andm are even.

that S is non-singular and thus a matri® such that

A — S-!BS is similar to A and, therefore, has the We use a similar but different one-to-one transforma-

same eigenvalues [13][Theorem 1.3.3]. E.On_ajlf?fr Cfisreiki:l/giivll_iﬂ':Loj_zlj_l;l'/'é’Zga
Using the transformatiod = S7 and A7 = A\, we ~*~ ¢ "t N o ’
have Zitntl = Untivi T Umgnti—iy1 fOri=0,...,m/2. We
have that
1
)\21 = =Z2 1
2 /\Zl = ZZ2
AZlj2)+1 = 2|12 % .
1 1 - Z Z
AZnymil = §Zn+m+l—1 - §Zn+l AZU? 2zl/2_1 + 2zl/2
1 1
and fori =2,...,[l/2] andi = |1/2] +2,...,n+1+ Moptlbm/za = GEntlrm/2 T 5%ntlim /241
m — 1, 1
1 1 AZnymtl = §Zn+m+l—1
Az = 5 %=1 + o Fit -
_ . . - and fori = 1/2+1,....,n+1+m/2—1andi =
Notice that\? = SAS~!'7 = BZ, and from the above n4l+m/2+1 ntmal—1
identities Y ’

(P 0 1 1
B_<Q R) )\Zizizi—1+§zi+1-

whereP is a [1/2] x [1/2] tridiagonal matrix given by gimjjarly as for Case 1, using the properties of deter-

0 1/2 0 - 0 minants of block matrices, we have that the eigenvalues
of A are
12 T e T
. . . 2k —1
P=| o -~ =~ =~ 0 |, cos(%),kzl,...,l/z
/2 .o1/2 (2 — 1)

0 0 1 0 COS<T_H>,k:1,...,m/27
Qisa(n+m+|l/2]) x [1/2] matrix with all elements mk b1 1/2 9_1
equal to zero but the element in the first row and last S\t 1/2+m/2)’ e /24m/ ’
column equal tal /2, andR is a(n+m+ [1/2]) x (n+ and — 1
m + [1/2]) matrix that corresponds to a blossom with
n+[1/2] matched stem edges andmatched loop edgeswhere (1, 1,1, —1,...,1,—1)7 is the eigenvector of

and is of the form (9) under Case 1 in Section IlI-C. eigenvalue—1.
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F. Proof of Theorem 6 dynamics of this process boils down to a simpler linear

Let us start by noting that there are two possibféynamical system. Notice that knowing these state values
alternating matchinga/: (1) defined by letting the edge@t €ven times, the corresponding state values at odd times
(0,1) be matched and (2) otherwise. The number &f€ determined by the original state updates. To this end,
unmatched edges in the two casegrnig2] and [n/2], letus define, for >0 andi=1,2,...,m,
respectively. The analysis follows the same steps for the ;. (3) .— Toi1.2:(2t) andy; (t) == Zg;0i_1(21).
two cases, thus we consider only the first case.

The first assertion (12) clearly holds for every initiaFrom (20), we have fot > 0 andi = 1,2,...,m,
value such thad < z;;(0) < 1, for every edge(i, j). 1 1
This follows by induction because the states are updated zi(t+1) = 536"‘1(0 T §yi(t) (21)
to convex combinations of values f, 1]. (t+1) = lw-(t) n 1 )

In the remainder of this section, we show asser- Yi 27" gYit1

tion (13) through the following steps: (1) we firsiwherexq(t) andy,,1(t) are arbitrary input sequences
identify a tridiagonal system that describes the systegking values in{0, 1} such thatzo () + ym.1(t) = 1,
evolution; (2) we then show that for evey > 0, for everyt > 0.

max(71,0(t), Tn—1,,(t)) iS maximum by taking either Note that of our particular interest age(t) andz,, (t)
u(t) = 1 or u(t) = 0, for everyt > 0; (3) in this as
step, we show thatim; max(.il,o(t),in_l,n(t)) = Fro(t+ 1) = Zo1(t) = y1(1)
uw where0 < p < 1 — 1/n; and (4) we show ~ -

that from the initial value as assumed in the theorem, Tn-1a(t +1) = Tn-2p-1(t) = 2m(t).
max(Z1,0(t), Tn—1,(t)) converges tq: from below. Fi-  From (21), it is not difficult to observe that for every
nally, we put pieces together at the end of this section.> 0, y;(t) = z;+1(¢t) fori =1,2,...,m—1. Therefore,
Step 1: a tridiagonal-system representationlt suffices we can fully describe the dynamics by the following
to consider the case = 1 as takingd < o < 1 only discrete-time linear system, for> 0,

(22)

affects the rate of convergence. Under this assumption, 1 1
the path bounding dynamics boils down to the following: vt +1) = gwo(t) + 52a(t)
o For an unmatched edde, i + 1): 1 1
fedde sl 1) = s+ s
Tigr(t+1) = §fz'—1,z'(t) + 5@',@'—1(15), fori>0 :
_ 1 1 1 1
Tip(t+1) = STirzira(t) + 5Tit1ira(t) Tmoa(t+1) = Samoa(t) + 5Tm(b)
« Otherwise, for a matched edgg i + 1): 1 1
geit1) E(t+1) = S (8) + 5yt
Tigr1(t+1) = #i1,(t) 1 1
Tong(t+1) = Tivog(t), fori<n—1 Y1) = o) + 5ymn ()

wherez 1 (t) andz,, .1 (t) are arbitrary input sequencegvith the initial valuese: (1) = z0(0)/2, (1) = 0, for
taking values in{0, 1} such thatzg 1 (t)+Znn_1(t) = 1, 1 <i<m, andy, (1) = ym11(0)/2.

for everyt > 0. In other WOde, Z(t) =
From the above dynamics, we observe that for ufit1(t), z2(t), ..., zm(t),ym(t))” is defined by the
matched edgesi,i + 1), i.e. fori = 1,3,...,2m — 1 initial point Z(1) = (20(0)/2,0,...,0,ym+1(0)/2)"
wherem = [n/2] is the total number of unmatched m—1
edges, we have far> 0, and .
2t +1) = AZ(t) + b(t), t >0, (23)

1 1
Tiia1(t+1)==T;_0,;,_1(t—1 —Tir1i(t—1 . -
Tt +1) = gFiain (=D 5Tt =1 oo A s the (m + 1) x (m + 1) tridiagonal

Tipri(t +1) = §fz+3,z+2(t—1)+—fz',z'+1(t—1) matrix with elements given by (4), and(t) =

2 L20(t),0,...,0,yme1(t)/2)7.
m—1
wherez_ o(t — 1) = Zo,1(t) andZopm422m+1(t — 1) = In view of (22), notice that of our interest arg(t)
Zpp—1(t). and z,,(t) becausey; (t) = z2(t) andz,,(t) = 2 (t).

We consider the dynamics of the values,; ;(t) Step 2: extremal input sequenceWe will show that
andz;1,;(t) for unmatched edges at even times as thlee input sequencey(s) = 1, for s > 0 is extremalin
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the following sense: for every given> 0, it maximizes Step 3: limit point. Since all the eigenvalues of the
zoam/(t) @and minimizesz,,\2(t). Indeed, by symmetry, system (23) are real and with modulo strictly smaller
xo(s) = 0, for s > 0 is extremal in the sense ofthan1, the system is globally asymptotically stable, i.e.
minimizing zean, (t) and maximizingz,,2(t), for any it converges to a unique limit point from any given initial

givent > 0.

Let us defines;(t) = z;(t) + zm—it2(t) andd;(t) =
zi(t) — zZm—it2(t), fori =1,2,..., m+ 1 andt < 0.
From these definitions, it is readily observed that

si(t) = sm—it2(t) (24)

and
di(t) = —dpm—i42(t) (25

and, thus, it suffices to consider only the following

vectorss(t) = (s1(t),sa(t), ..., spmy21 ()" andd(t) =

(dl(t)> dQ(t)v s 7d(m/2] (t))T'
Using (23), it is not difficult to derive that, foi =
1,2,...,[m/2], andt > 0,

1

si(t+1) = %Si—l(t) +58i1(t) (26)
wheresy(t) = 1, and
di(t+1) = %di—l(t) + %dz’—l—l(t) 27)

wheredy(t) = 2zo(t) — 1.
Remark that fori = [m/2], s;+1(t) = s;(t) while

diy1(t) = 0 if m is even andd;;1(t) = —d;(t),
otherwise.
It is readily observed that for=1,2,...,m + 1,
1 1
Zi(t) = §Si(t) + §dl(t)
Form = 1, we can write
1 1
21(t) = gs1(t) + 5du(?)
1 1
Zg(t) = 581@) — 5(11(75)

where the last equality is by using (24) and (25), whil?

otherwise, form > 1, we can write

Zg(t) = %Sg(t) + %dg(t)
1 1 (28)
Zm(t) = 532(75) - §d2(t)

where the last equality is by using (24) and (25).

From (26) and (27), note that th&tt) evolves accord- Let  us
ing to an autonomous linear system whilg) evolves A = > ;7

value. The rate of convergence is determined by the
largest modulo eigenvalue, and the dominant asymptotic
term of the rate of convergenceﬁfb—z, for largem.

We identify the limit point of the system (23) for the
input sequenc€zy(t), ym+1(t)) = (a,b), for t > 0,
wherea andb are positive constants. This accommodates
the aforementioned extremal input sequence by choosing
a =1 andb = 0. A fixed point 2’ is a solution of the
following system of linear equations:

F7=AZ+0b
whereb = (a/2,0,...,0,b/2).
~——

m—1
It can be readily checked that there is a unique solution
given by

—ati—2 fori=1,2,....m+1.
12
Therefore,
9 P
= (1-— _c
= < m+2>a+m+2
= 2 + (1 2 b
mo = e m+2)"

In particular, fora =1 andb = 0, we have

1— - form=1
max(zg, 2y, ) = 2 = m#l’
(22, 2m) = Z2pm {1_—mi2’ for m > 1.

Step 4: convergence to the limit point We consider
max(z2(t), zm(t)), for ¢ > 0, for the input sequence
xo(t) =1, for t > 0. We consider only the case > 1
as the casen = 1 can be considered by similar steps.
From (28), we note thaiax(z2(t), 2z, (t)) = 22(t),
or t > 0, and thus it suffices to considex(t), for
t > 0.

Notice thatZ(1) = b(0) and thus from (23), fot > 0,

t—1
2ty =Y ATIT(s).
s=0

use the

m+1 /\kgkﬁlz

spectral decomposition
where )\, is an eigenvalue

according to a non-autonomous linear system with inp@@d 7 the corresponding eigenvector of matrix,

sequencex(t) — % From (27), we observe that(¢),

1 <i < [m/2], are maximized for the input sequence
xo(t) =1, for t > 0. In view of the above identities, we

have that the latter sequence is extremal.

which we identified in Section IlI-A. Noting that

m+1t—1

) = D Nl b(s)

k=1 s=0



and

- m 4+ 2
Wy =5~

f <<>{> ()
- 3 zo(s)) 1k even}

m + 2

St
S

we obtain

t—1

[ﬁ 1 even » A0 (1 = ao(s ))]-

s=0
From this, it is not difficult to derive
m+1
— )\2 1 )\ )\H-l
2(t) m + 2 Z +
4 m+1
- 1= A\ 1 .
) (1= X)) Xe1k even
k=1
t—1
D AT = wo(s).
s=0

For the extremal input sequeneg(t) = 0 for ¢ > 0,
we have

4 [m/2] m+1
2o(t) = —— )\z S (1+ )\k)/\?l-
m+2 m+ 2
k=1 k=1
Using the identity
ol m/2
ST+ AN = 2517 A2 ¢ even
= © T 2l ¢ odd
we have
4 [m/2]
2= m+ 2 Z Mk = Ae(1+ ALy even .

Since0 < A\, < 1 for 1 < k < [m/2] we observe
that zo(¢) is increasing with, i.e. it approaches its limit
point from below.

Proof of the theorem We showed that for every> 0,

1 - ﬁ 1<n<?2
_ =) < m
max(Z1,0(t), Tn_1n(t)) < 1— L§J2+2 n>2

and showed that there exists an extremal input sequence
(Zo,1(t), Zppn-1(t)), t > 0, for which the equality is
achieved asymptotically asgoes to infinity.

The asserted bount — 1/n in (13) readily follows
from the above displayed inequality, which completes
the proof.
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