
From RankNet to LambdaRank to
LambdaMART: An Overview

Christopher J.C. Burges
Microsoft Research Technical Report MSR-TR-2010-82

Abstract
LambdaMART is the boosted tree version of LambdaRank, which is based on
RankNet. RankNet, LambdaRank, and LambdaMART have proven to be very suc-
cessful algorithms for solving real world ranking problems: for example an ensem-
ble of LambdaMART rankers won Track 1 of the 2010 Yahoo! Learning To Rank
Challenge. The details of these algorithms are spread across several papers and re-
ports, and so here we give a self-contained, detailed and complete description of
them.

1 Introduction

LambdaMART is the boosted tree version of LambdaRank, which is based on
RankNet. RankNet, LambdaRank, and LambdaMART have proven to be very suc-
cessful algorithms for solving real world ranking problems: for example an ensem-
ble of LambdaMART rankers won the recent Yahoo! Learning To Rank Challenge
(Track 1) [5]. Although here we will concentrate on ranking, it is straightforward to
modify MART in general, and LambdaMART in particular, to solve a wide range
of supervised learning problems (including maximizing information retrieval func-
tions, like NDCG, which are not smooth functions of the model scores).

This document attempts to give a self-contained explanation of these algorithms.
The only mathematical background needed is basic vector calculus; some familiarity
with the problem of learning to rank is assumed. Our hope is that this overview is
sufficiently self-contained that, for example, a reader who wishes to train a boosted
tree model to optimize some information retrieval measure they have in mind, can
understand how to use these methods to achieve this. Ranking for web search is used
as a concrete example throughout. Material in gray sections is background material

Christopher J.C. Burges
Microsoft Research, Redmond, WA. e-mail: chris.burges@microsoft.com

1

2 Christopher J.C. Burges Microsoft Research Technical Report MSR-TR-2010-82

that is not necessary for understanding the main thread. These ideas were originated
over several years and appeared in several papers; the purpose of this report is to
collect all of the ideas into one, easily accessible place (and to add background and
more details where needed). To keep the exposition brief, no experimental results are
presented in this chapter, and we do not compare to any other methods for learning
to rank (of which there are many); these topics are addressed extensively elsewhere.

2 RankNet

For RankNet [2], the underlying model can be any model for which the output of the
model is a differentiable function of the model parameters (typically we have used
neural nets, but we have also implemented RankNet using boosted trees, which we
will describe below). RankNet training works as follows. The training data is par-
titioned by query. At a given point during training, RankNet maps an input feature
vector x ∈ Rn to a number f (x). For a given query, each pair of urls Ui and U j
with differing labels is chosen, and each such pair (with feature vectors xi and x j)
is presented to the model, which computes the scores si = f (xi) and s j = f (x j). Let
Ui BU j denote the event that Ui should be ranked higher than U j (for example, be-
cause Ui has been labeled ’excellent’ while U j has been labeled ’bad’ for this query;
note that the labels for the same urls may be different for different queries). The two
outputs of the model are mapped to a learned probability that Ui should be ranked
higher than U j via a sigmoid function, thus:

Pi j ≡ P(Ui BU j)≡
1

1+ e−σ(si−s j)

where the choice of the parameter σ determines the shape of the sigmoid. The use
of the sigmoid is a known device in neural network training that has been shown to
lead to good probability estimates [1]. We then apply the cross entropy cost function,
which penalizes the deviation of the model output probabilities from the desired
probabilities: let P̄i j be the known probability that training url Ui should be ranked
higher than training url U j. Then the cost is

C =−P̄i j logPi j − (1− P̄i j) log(1−Pi j)

For a given query, let Si j ∈ {0,±1} be defined to be 1 if document i has been la-
beled to be more relevant than document j, −1 if document i has been labeled to
be less relevant than document j, and 0 if they have the same label. Throughout
this paper we assume that the desired ranking is deterministically known, so that
P̄i j = 1

2 (1 + Si j). (Note that the model can handle the more general case of mea-
sured probabilities, where, for example, P̄i j could be estimated by showing the pair
to several judges). Combining the above two equations gives

From RankNet to LambdaRank to LambdaMART: An Overview 3

C =
1
2
(1−Si j)σ(si− s j)+ log(1+ e−σ(si−s j))

The cost is comfortingly symmetric (swapping i and j and changing the sign of Si j
should leave the cost invariant): for Si j = 1,

C = log(1+ e−σ(si−s j))

while for Si j =−1,

C = log(1+ e−σ(s j−si))

Note that when si = s j, the cost is log2, so the model incorporates a margin (that
is, documents with different labels, but to which the model assigns the same scores,
are still pushed away from each other in the ranking). Also, asymptotically, the
cost becomes linear (if the scores give the wrong ranking), or zero (if they give the
correct ranking). This gives

∂C
∂ si

= σ

(
1
2
(1−Si j)−

1
1+ eσ(si−s j)

)
=− ∂C

∂ s j
(1)

This gradient is used to update the weights wk ∈ R (i.e. the model parameters) so
as to reduce the cost via stochastic gradient descent1:

wk → wk−η
∂C
∂wk

= wk−η

(
∂C
∂ si

∂ si

∂wk
+

∂C
∂ s j

∂ s j

∂wk

)
(2)

where η is a positive learning rate (a parameter chosen using a validation set; typi-
cally, in our experiments, 1e-3 to 1e-5). Explicitly:

δC = ∑
k

∂C
∂wk

δwk = ∑
k

∂C
∂wk

(
−η

∂C
∂wk

)
=−η ∑

k

(
∂C
∂wk

)2

< 0

The idea of learning via gradient descent is a key idea that appears throughout
this paper (even when the desired cost doesn’t have well-posed gradients, and even
when the model (such as an ensemble of boosted trees) doesn’t have differentiable
parameters): to update the model, we must specify the gradient of the cost with
respect to the model parameters wk, and in order to do that, we need the gradient
of the cost with respect to the model scores si. The gradient descent formulation of
boosted trees (such as MART [8]) bypasses the need to compute ∂C/∂wk by directly
modeling ∂C/∂ si.

1 We use the convention that if two quantities appear as a product and they share an index, then
that index is summed over.

4 Christopher J.C. Burges Microsoft Research Technical Report MSR-TR-2010-82

2.1 Factoring RankNet: Speeding Up Ranknet Training

The above leads to a factorization that is the key observation that led to LambdaRank
[4]: for a given pair of urls Ui, U j (again, summations over repeated indices are
assumed):

∂C
∂wk

=
∂C
∂ si

∂ si

∂wk
+

∂C
∂ s j

∂ s j

∂wk
= σ

(
1
2
(1−Si j)−

1
1+ eσ(si−s j)

)(
∂ si

∂wk
−

∂ s j

∂wk

)
= λi j

(
∂ si

∂wk
−

∂ s j

∂wk

)
where we have defined

λi j ≡
∂C(si− s j)

∂ si
= σ

(
1
2
(1−Si j)−

1
1+ eσ(si−s j)

)
(3)

Let I denote the set of pairs of indices {i, j}, for which we desire Ui to be ranked
differently from U j (for a given query). I must include each pair just once, so it is
convenient to adopt the convention that I contains pairs of indices {i, j} for which
Ui BU j, so that Si j = 1 (which simplifies the notation considerably, and we will
assume this from now on). Note that since RankNet learns from probabilities and
outputs probabilities, it does not require that the urls be labeled; it just needs the
set I, which could also be determined by gathering pairwise preferences (which is
much more general, since it can be inconsistent: for example a confused judge may
have decided that for a given query, U1 BU2, U2 BU3, and U3 BU1). Now summing
all the contributions to the update of weight wk gives

δwk =−η ∑
{i, j}∈I

(
λi j

∂ si

∂wk
−λi j

∂ s j

∂wk

)
≡−η ∑

i
λi

∂ si

∂wk

where we have introduced the λi (one λi for each url: note that the λ ’s with one
subscript are sums of the λ ’s with two). To compute λi (for url Ui), we find all j for
which {i, j} ∈ I and all k for which {k, i} ∈ I. For the former, we increment λi by
λi j, and for the latter, we decrement λi by λki. For example, if there were just one
pair with U1 BU2, then I = {{1,2}}, and λ1 = λ12 =−λ2. In general, we have:

λi = ∑
j:{i, j}∈I

λi j − ∑
j:{ j,i}∈I

λi j (4)

As we will see below, you can think of the λ ’s as little arrows (or forces), one
attached to each (sorted) url, the direction of which indicates the direction we’d like
the url to move (to increase relevance), the length of which indicates by how much,
and where the λ for a given url is computed from all the pairs in which that url is
a member. When we first implemented RankNet, we used true stochastic gradient
descent: the weights were updated after each pair of urls (with different labels) were
examined. The above shows that instead, we can accumulate the λ ’s for each url,

From RankNet to LambdaRank to LambdaMART: An Overview 5

summing its contributions from all pairs of urls (where a pair consists of two urls
with different labels), and then do the update. This is mini-batch learning, where
all the weight updates are first computed for a given query, and then applied, but
the speedup results from the way the problem factorizes, not from using mini-batch
alone. This led to a very significant speedup in RankNet training (since a weight
update is expensive, since e.g. for a neural net model, it requires a backprop). In fact
training time dropped from close to quadratic in the number of urls per query, to
close to linear. It also laid the groundwork for LambdaRank, but before we discuss
that, let’s review the information retrieval measures we wish to learn.

3 Information Retrieval Measures

Information retrieval researchers use ranking quality measures such as Mean Re-
ciprocal Rank (MRR), Mean Average Precision (MAP), Expected Reciprocal Rank
(ERR), and Normalized Discounted Cumulative Gain (NDCG). NDCG [9] and ERR
[6] have the advantage that they handle multiple levels of relevance (whereas MRR
and MAP are designed for binary relevance levels), and that the measure includes a
position dependence for results shown to the user (that gives higher ranked results
more weight), which is particularly appropriate for web search. All of these mea-
sures, however, have the unfortunate property that viewed as functions of the model
scores, they are everywhere either discontinuous or flat, so gradient descent appears
to be problematic, since the gradient is everywhere either zero or not defined. For
example, NDCG is defined as follows. The DCG (Discounted Cumulative Gain) for
a given set of search results (for a given query) is

DCG@T ≡
T

∑
i=1

2li −1
log(1+ i)

(5)

where T is the truncation level (for example, if we only care about the first page of
returned results, we might take T = 10), and li is the label of the ith listed URL. We
typically use five levels of relevance: li ∈{0,1,2,3,4}. The NDCG is the normalized
version of this:

NDCG@T ≡ DCG@T
maxDCG@T

where the denominator is the maximum DCG@T attainable for that query, so that
NDCG@T ∈ [0,1].

ERR was introduced more recently [6] and is inspired by cascade models, where
a user is assumed to read down the list of returned urls until they find one they like.
ERR is defined as

n

∑
r=1

1
r

Rr

r−1

∏
i=1

(1−Ri)

6 Christopher J.C. Burges Microsoft Research Technical Report MSR-TR-2010-82

where, if lm is the maximum label value,

Ri =
2li −1

2lm

Ri models the probability that the user finds the document at rank position i rel-
evant. Naively one might expect that the cost of computing ∆ERR (the change in
ERR resulting from swapping two document’s ranks while leaving all other ranks
unchanged) would be cubic in the number of documents for a given query, since the
documents whose ranks lie between the two ranks considered contribute to ∆ERR,
and since this contribution must be computed for every pair of documents. How-
ever the computation has quadratic cost (where the quadratic cost arises from the
need to compute ∆ERR for every pair of documents with different labels), since it
can be ordered as follows. Let ∆ denote ∆ERR. Letting Ti ≡ 1−Ri, create an array A
whose ith component is the ERR computed only to level i. (Computing A has linear
complexity). Then:

1. Compute πi ≡∏
i
n=1 Tn for i > 0, and set π0 = 1.

2. Set ∆ = πi−1(Ri−R j)/ri.
3. Increment ∆ by

(Ti−Tj)
(

Ri+1

ri+1
+

Ti+1Ri+2

ri+2
+ . . .+

Ti+1 . . .Tj−2R j−1

r j−1

)
πi−1

≡ (Ti−Tj)
(

A j−1−Ai

Ti

)
4. Further increment ∆ by

πi−1

r j
Ti+1Ti+2 . . .Tj−1 (TiR j −TjRi) =

π j−1

r j

(
R j −

TjRi

Ti

)
.

Note that unlike NDCG, the change in ERR induced by swapping two urls Ui
and U j, keeping all other urls fixed (with the same rank), depends on the labels and
ranks of the urls with ranks between those of Ui and U j. As a result, the curious
reader might wonder if ERR is consistent: if Ui BU j, and the two rank positions are
swapped, does ERR necessarily decrease? It’s easy to see that it must by showing
that the above ∆ is nonnegative when Ri > R j. Collecting terms, we have that

∆ =
πi(Ri−R j)

Ti

(
1
ri
− Ri+1

ri+1
− Ti+1Ri+2

ri+2
− . . .−

Ti+1 . . .Tj−2R j−1

r j−1
−

Ti+1 . . .Tj−1

r j

)
Since ri+1 > ri, this is certainly nonnegative if

Ri+1 +Ti+1Ri+2 + · · ·+Ti+1 · · ·Tj−2R j−1 +Ti+1 · · ·Tj−1 ≤ 1.

But since Ri +Ti = 1, the left hand side just collapses to 1.

From RankNet to LambdaRank to LambdaMART: An Overview 7

Fig. 1 A set of urls ordered for a given query using a binary relevance measure. The light gray
bars represent urls that are not relevant to the query, while the dark blue bars represent urls that are
relevant to the query. Left: the total number of pairwise errors is thirteen. Right: by moving the top
url down three rank levels, and the bottom relevant url up five, the total number of pairwise errors
has been reduced to eleven. However for IR measures like NDCG and ERR that emphasize the top
few results, this is not what we want. The (black) arrows on the left denote the RankNet gradients
(which increase with the number of pairwise errors), whereas what we’d really like are the (red)
arrows on the right.

4 LambdaRank

Although RankNet can be made to work quite well with the above measures by
simply using the measure as a stopping criterion on a validation set, we can do
better. RankNet is optimizing for (a smooth, convex approximation to) the number
of pairwise errors, which is fine if that is the desired cost, but it does not match well
with some other information retrieval measures. Figure 1 is a schematic depicting
the problem. The idea of writing down the desired gradients directly (shown as
arrows in the Figure), rather than deriving them from a cost, is one of the ideas
underlying LambdaRank [4]: it allows us to bypass the difficulties introduced by
the sort in most IR measures. Note that this does not mean that the gradients are not
gradients of a cost. In this section, for concreteness we assume that we are designing
a model to learn NDCG.

8 Christopher J.C. Burges Microsoft Research Technical Report MSR-TR-2010-82

4.1 From RankNet to LambdaRank

The key observation of LambdaRank is thus that in order to train a model, we don’t
need the costs themselves: we only need the gradients (of the costs with respect to
the model scores). The arrows (λ ’s) mentioned above are exactly those gradients.
The λ ’s for a given URL U1 get contributions from all other URLs for the same
query that have different labels. The λ ’s can also be interpreted as forces (which are
gradients of a potential function, when the forces are conservative): if U2 is more
relevant than U1, then U1 will get a push downwards of size |λ | (and U2, an equal
and opposite push upwards); if U2 is less relevant than U1, then U1 will get a push
upwards of size |λ | (and U2, an equal and opposite push downwards).

Experiments have shown that modifying Eq. (3) by simply multiplying by the
size of the change in NDCG (|∆NDCG|) given by swapping the rank positions of
U1 and U2 (while leaving the rank positions of all other urls unchanged) gives very
good results [4]. Hence in LambdaRank we imagine that there is a utility C such
that2

λi j =
∂C(si− s j)

∂ si
=

−σ

1+ eσ(si−s j)
|∆NDCG| (6)

Since here we want to maximize C, equation (2) (for the contribution to the kth
weight) is replaced by

wk → wk +η
∂C
∂wk

so that

δC =
∂C
∂wk

δwk = η

(
∂C
∂wk

)2

> 0 (7)

Thus although Information Retrieval measures, viewed as functions of the model
scores, are either flat or discontinuous everywhere, the LambdaRank idea bypasses
this problem by computing the gradients after the urls have been sorted by their
scores. We have shown empirically that, intriguingly, such a model actually opti-
mizes NDCG directly [12, 7]. In fact we have further shown that if you want to
optimize some other information retrieval measure, such as MRR or MAP, then
LambdaRank can be trivially modified to accomplish this: the only change is that
|∆NDCG| above is replaced by the corresponding change in the chosen IR measure
[7].

For a given pair, a λ is computed, and the λ ’s for U1 and U2 are incremented
by that λ , where the sign is chosen so that s2− s1 becomes more negative, so that
U1 tends to move up the list of sorted urls while U2 tends to move down. Again,
given more than one pair of urls, if each url Ui has a score si, then for any particular
pair {Ui,U j} (recall we assume that Ui is more relevant than U j), we separate the

2 We have switched from cost to utility here since NDCG is a measure of goodness (which we
want to maximize). Recall also that Si j = 1.

From RankNet to LambdaRank to LambdaMART: An Overview 9

calculation:

δ si =
∂ si

∂wk
δwk =

∂ si

∂wk

(
−ηλ

∂ si

∂wk

)
< 0

δ s j =
∂ s j

∂wk
δwk =

∂ s j

∂wk

(
ηλ

∂ s j

∂wk

)
> 0

Thus, every pair generates an equal and opposite λ , and for a given url, all the
lambdas are incremented (from contributions from all pairs in which is it a member,
where the other member of the pair has a different label). This accumulation is
done for every url for a given query; when that calculation is done, the weights are
adjusted based on the computed lambdas using a small (stochastic gradient) step.

4.2 LambdaRank: Empirical Optimization of NDCG (or other
IR Measures)

Here we briefly describe how we showed empirically that LambdaRank di-
rectly optimizes NDCG [12, 7]. Suppose that we have trained a model and that
its (learned) parameter values are w∗

k . We can estimate a smoothed version of
the gradient empirically by fixing all weights but one (call it wi), computing
how the NDCG (averaged over a large number of training queries) varies, and
forming the ratio

δM
δwi

=
M−M∗

wi−w∗
i

where for n queries

M ≡ 1
n

n

∑
i=1

NDCG(i) (8)

and where the ith query has NDCG equal to NDCG(i). Now suppose we plot
M as a function of wi for each i. If we observe that M is a maximum at
wi = w∗

i for every i, then we know that the function has vanishing gradient
at the learned values of the weights, w = w∗. (Of course, if we zoom in on the
graph with sufficient magnification, we’ll find that the curves are little step
functions; we are considering the gradient at a scale at which the curves are
smooth). This is necessary but not sufficient to show that the NDCG is a max-
imum at w = w∗: it could be a saddle point. We could attempt to show that the
point is a maximum by showing that the Hessian is negative definite, but that
is in several respects computationally challenging. However we can obtain an

10 Christopher J.C. Burges Microsoft Research Technical Report MSR-TR-2010-82

arbitrarily tight bound by applying a one-sided Monte Carlo test: choose suf-
ficiently many random directions in weight space, move the weights a little
along each such direction, and check that M always decreases as we move
away from w∗. Specifically, we choose directions uniformly at random by
sampling from a spherical Gaussian. Let p be the fraction of directions that
result in M increasing. Then

P(We miss an ascent direction despite n trials) = (1− p)n

Let’s call 1−P our confidence. If we require a confidence of 99% (i.e. we
choose δ = 0.01 and require P≤ δ), how large must n be, in order that p≤ p0,
where we choose p0 = 0.01? We have

(1− p0)n ≤ δ → n≥ logδ

log(1− p0)
(9)

which gives n ≥ 459 (i.e. choose 459 random directions and always find that
M decreases along those directions; note that larger value of p0 would require
fewer tests). In general we have confidence at least 1−δ that p≤ p0 provided
we perform at least n = logδ

log(1−p0) tests.

4.3 When are the Lambdas Actually a Gradient?

Suppose you write down some arbitrary λ ’s. Does there necessarily exist a
cost for which those λ ’s are the gradients? Are there general conditions un-
der which such a cost exists? It’s easy to write down expressions for which
no function exists for which those expressions are the partial derivatives: for
example, there is no F(x,y) for which

∂F(x,y)
∂x

= 1,
∂F(x,y)

∂y
= x

It turns out that the necessary and sufficient conditions under which func-
tions f1(x1, . . . ,xn), f2(x1, . . . ,xn), . . . , fn(x1, . . . ,xn) are the partial derivatives
of some function F , so that

∂F
∂xi

= fi

From RankNet to LambdaRank to LambdaMART: An Overview 11

are that

∂ fi

∂x j
=

∂ f j

∂xi
(10)

under the condition that the domain D of F be open and star-shaped (in other
words, if x∈D , then all points joining x with the origin are also in D) (see for
example [10]). This result is known as the Poincaré lemma. In our case, for
a given pair, for any particular values for the model parameters (that is, for a
particular sorting of the urls by current model scores), it is easy to write down
such a cost: it is the RankNet cost multiplied by ∆NDCG. However the general
expression depends in a complicated way on the model parameters, since the
model generates the score by which the urls are sorted, and since the λ ’s are
computed after the sort.

5 MART

LambdaMART combines MART [8] and LambdaRank. To understand LambdaMART
we first review MART. Since MART is a boosted tree model in which the output of
the model is a linear combination of the outputs of a set of regression trees, we first
briefly review regression trees. Suppose we are given a data set {xi,yi}, i = 1, . . . ,m
where xi ∈ Rd and the labels yi ∈ R. For a given vector xi we index its feature values
by xi j, j = 1, . . . ,d. Consider first a regression stump, consisting of a root node and
two leaf nodes, where directed arcs connect the root to each leaf. We think of all
the data as residing on the root node, and for a given feature, we loop through all
samples and find the threshold t such that, if all samples with xi j ≤ t fall to the left
child node, and the rest fall to the right child node, then the sum

S j ≡ ∑
i∈L

(yi−µL)2 + ∑
i∈R

(yi−µR)2 (11)

is minimized. Here L (R) is the sets of indices of samples that fall to the left (right),
and µL (µR) is the mean of the values of the labels of the set of samples that fall to
the left (right). (The dependence on j in the sum appears in L, R and in µL, µR).
S j is then computed for all choices of feature j and all choices of threshold for that
feature, and the split (the choice of a particular feature j and threshold t) is chosen
that gives the overall minimal S j. That split is then attached to the root node. For the
two leaf nodes of our stump, a value γl , l = 1,2 is computed, which is just the mean
of the y’s of the samples that fall there. In a general regression tree, this process is
continued L−1 times to form a tree with L leaves3.

3 We are overloading notation (the meaning of L) in just this paragraph.

12 Christopher J.C. Burges Microsoft Research Technical Report MSR-TR-2010-82

MART is a class of boosting algorithms that may be viewed as performing gra-
dient descent in function space, using regression trees. The final model again maps
an input feature vector x ∈ Rd to a score F(x) ∈ R. MART is a class of algorithms,
rather than a single algorithm, because it can be trained to minimize general costs (to
solve, for example, classification, regression or ranking problems). Note, however,
that the underlying model upon which MART is built is the least squares regression
tree, whatever problem MART is solving. MART’s output F(x) can be written as

FN(x) =
N

∑
i=1

αi fi(x)

where each fi(x)∈R is a function modeled by a single regression tree and the αi ∈R
is the weight associated with the ith regression tree. Both the fi and the αi are learned
during training. A given tree fi maps a given x to a real value by passing x down the
tree, where the path (left or right) at a given node in the tree is determined by the
value of a particular feature x j, j = 1, . . . ,d and where the output of the tree is taken
to be a fixed value associated with each leaf, γkn, k = 1, . . . ,L, n = 1, . . . ,N, where
L is the number of leaves and N the number of trees. Given training and validation
sets, the user-chosen parameters of the training algorithm are N, a fixed learning rate
η (that multiplies every γkn for every tree), and L. (One could also choose different
L for different trees). The γkn are also learned during training.

Given that, say, n trees have been trained, how should the next tree be trained?
MART uses gradient descent to decrease the loss: specifically, the next regression
tree models the m derivatives of the cost with respect to the current model score
evaluated at each training point: ∂C

∂Fn
(xi), i = 1, . . . ,m. Thus:

δC ≈ ∂C(Fn)
∂Fn

δF (12)

and so δC < 0 if we take δF = −η
∂C
∂Fn

. Thus each tree models the gradient of the
cost with respect to the model score, and the new tree is added to the ensemble with
a step size ηγkn. The step sizes γkn can be computed exactly in some cases, or using
Newton’s approximation in others. The role of η as an overall learning rate is similar
to that in other stochastic gradient descent algorithms: taking a step that is smaller
than the optimal step size (i.e. the step size that maximally reduces the cost) acts as
a form of regularization for the model that can significantly improve test accuracy.

Clearly, since MART models derivatives, and since LambdaRank works by spec-
ifying the derivatives at any point during training, the two algorithms are well
matched: LambdaMART is the marriage of the two [11].

To understand MART, let’s next examine how it works in detail, for perhaps the
simplest supervised learning task: binary classification.

From RankNet to LambdaRank to LambdaMART: An Overview 13

6 MART for Two Class Classification

We follow [8], although we give a somewhat different emphasis here; in particular,
we allow a general sigmoid parameter σ (although it turns out that choice of σ does
not make affect the model, it’s instructive to see why).

We choose labels yi ∈ {±1} (this has the advantage that y2
i = 1, which will be

used later). The model score for sample x ∈ Rn is denoted F(x). To keep notation
brief, denote the modeled conditional probabilities by P+ ≡ P(y = 1|x) and P− ≡
P(y =−1|x), and define indicators I+(xi) = 1 if yi = 1, 0 otherwise, and I−(xi) = 1 if
yi =−1, 0 otherwise. We use the cross-entropy loss function (the negative binomial
log-likelihood):

L(y,F) =−I+ logP+− I− logP−

(Note the similarity to the RankNet loss). Logistic regression models the log odds.
So if FN(x) is the model output, we choose (the factor of 1

2 here is included to match
[8]):

FN(x) =
1
2

log(
P+

P−
) (13)

or

P+ =
1

1+ e−2σFN(x) , P− = 1−P+ =
1

1+ e2σFN(x)

which gives

L(y,FN) = log(1+ e−2yσFN) (14)

The gradients of the cost with respect to the model scores (called pseudoresponses
in [8]) are:

ȳi =−
[

∂L(yi,F(xi)
∂F(xi)

]
F(x)=Fm−1(x)

=
2yiσ

1+ e2yiσFm−1(x)

These are the exact analogs of the Lambda gradients in LambdaRank (and in fact
are the gradients in LambdaMART). They are the values that the regression tree is
modeling. Denoting the set of samples that land in the jth leaf node of the mth tree
by R jm, we want to find an approximately optimal step for each leaf, that is, the
values that minimize the loss:

γ jm = argmin
γ

∑
xi∈R jm

log
(

1+ e−2yiσ(Fm−1(xi)+γ)
)
≡ argmin

γ
g(γ)

The Newton approximation is used to find γ: for a function g(γ), a Newton-Raphson
step towards the extremum of g is

14 Christopher J.C. Burges Microsoft Research Technical Report MSR-TR-2010-82

γn+1 = γn−
g′(γn)
g′′(γn)

Here we start from γ = 0 and take just one step. Again let’s simplify the expressions
by collapsing notation: define Si(γ)≡ 1+ e−2vi ≡ 1+ e−2yiσ(Fm−1(x)+γ). We want to
compute

argmin
γ

g(γ)≡ argmin
γ

∑
xi∈R jm

logSi(γ)

Now

g′ = ∑
xi∈R jm

1
Si

(−2yiσe−2vi)

g′′ = ∑
xi∈R jm

−1
S2

i
(−2yiσe−2vi)2− 2yiσ

Si
(−2yiσ)e−2vi

= ∑
xi∈R jm

4
S2

i
y2

i σ
2e−2vi

But

ȳi ≡
2yiσ

1+ e2yiF
⇒ g′ = ∑

xi∈R jm

− 2yiσ

e2viSi
= ∑

xi∈R jm

−ȳi

Also

g′′ = ∑
xi∈R jm

4y2
i σ2

(1+ e2vi)2 e2vi

Since y2
i = 1 we have

|ȳi|=
2σ

1+ e2vi

so

|ȳi|(2σ −|ȳi|) =
4σ2e2vi

(1+ e2vi)2

giving simply

γ jm =− g′

g′′
=

∑xi∈R jm ȳi

∑xi∈R jm |ȳi|(2σ −|ȳi|)

(This corresponds to Algorithm 5 in [8]). Note that this step combines both the
estimate of the gradient (the numerator) and the usual gradient descent step size (in

From RankNet to LambdaRank to LambdaMART: An Overview 15

this case, 1/g′′). To include a learning rate r, we just multiply each leaf value γ jm by
r.

It’s interesting that for this algorithm, the value of σ makes no difference. The
Newton step γ jm is proportional to 1/σ . Since Fm(x) = Fm−1(x) + γ , and since F
appears with an overall factor of σ in the loss, the σ ’s just cancel in the loss function.

6.1 Extending to Unbalanced Data Sets

For completeness we include a discussion on how to extend the algorithm to
cases where the data is very unbalanced (e.g. far more positive examples than
negative).

If n+ (n−) is the total number of positive (negative) examples, for unbal-
anced data a useful way to count errors is:

error rate =
number false positives

2n−
+

number false negatives
2n+

The factor of two in the denominator is just to scale so that the maximum error
rate is one. We still use logistic regression (model the log odds) but instead
use the balanced loss:

LB(y,F) =− I+
n+

logP+−
I−
n−

logP− =
(

I+
n+

+
I−
n−

)
log(1+ e−2yσF)

The equations are similar to before. The gradients yi are replaced by

z̄i =−
[

∂LB(yi,F(xi))
∂F(xi)

]
F(x)=Fm−1(x)

= ȳi

(
I+
n+

+
I−
n−

)
and the Newton step becomes

γ
B
jm =− g′

g′′
=

∑xi∈R jm ȳi

(
I+
n+

+ I−
n−

)
∑xi∈R jm |ȳi|(2σ −|ȳi|)

(
I+
n+

+ I−
n−

) (15)

(Note that this is not the same as the previous Newton step with ȳi replaced
by z̄i.)

16 Christopher J.C. Burges Microsoft Research Technical Report MSR-TR-2010-82

7 LambdaMART

To implement LambdaMART we just use MART, specifying appropriate gradients
and the Newton step. The gradients ȳi are easy: they are just the λi. As always in
MART, least squares is used to compute the splits. In LambdaMART, each tree
models the λi for the entire dataset (not just for a single query). To compute the
Newton step, we collect some results from above: for any given pair of urls Ui and
U j such that Ui BU j, then after the urls have been sorted by score, the λi j’s are
defined as (see Eq. (4))

λi j =
−σ |∆Zi j|

1+ eσ(si−s j)
,

where we write the utility difference generated by swapping the rank positions of Ui
and U j as Zi j (for example, Z might be NDCG). We also have

λi = ∑
j:{i, j}∈I

λi j − ∑
j:{ j,i}∈I

λi j

To simplify notation, let’s denote the above sum operation as follows:

∑
{i, j}
I

λi j ≡ ∑
j:{i, j}∈I

λi j − ∑
j:{ j,i}∈I

λi j

Thus, for any given state of the model (i.e. for any particular set of scores), and for a
particular url Ui, we can write down a utility function for which λi is the derivative
of that utility4

C = ∑
{i, j}
I

|∆Zi j| log
(

1+ e−σ(si−s j)
)

so that

∂C
∂ si

= ∑
{i, j}
I

−σ |∆Zi j|
1+ eσ(si−s j)

≡ ∑
{i, j}
I

−σ |∆Zi j|ρi j

where we’ve defined

ρi j ≡
1

1+ eσ(si−s j)
=

−λi j

σ |Zi j|

Then

∂ 2C
∂ s2

i
= ∑

{i, j}
I
σ

2|∆Zi j|ρi j(1−ρi j)

4 We switch back to utilities here but use C to match previous notation.

From RankNet to LambdaRank to LambdaMART: An Overview 17

(using ex

(1+ex)2 =
(
1− 1

1+ex

) 1
1+ex) and the Newton step size for the kth leaf of the

mth tree is

γkm =
∑xi∈Rkm

∂C
∂ si

∑xi∈Rkm
∂ 2C
∂ s2

i

=
−∑xi∈Rkm ∑{i, j}
I |∆Zi j|ρi j

∑xi∈Rkm ∑{i, j}
I |∆Zi j|σρi j(1−ρi j)

(note the change in sign since here we are maximizing). In an implementation it is
convenient to simply compute ρi j for each sample xi; then computing γkm for any
particular leaf node just involves performing the sums and dividing. Note that, just
as for logistic regression, for a given learning rate η , the choice of σ will make no
difference to the training, since the γkm’s scale as 1/σ , the model score is always
incremented by ηγkm, and the scores always appear multiplied by σ .

We summarize the LambdaMART algorithm schematically below. As pointed
out in [11], one can easily perform model adaptation by starting with the scores
given by an initial base model.

Algorithm: LambdaMART
set number of trees N, number of training samples m, number of leaves per tree L,
learning rate η

for i = 0 to m do
F0(xi) = BaseModel(xi) //If BaseModel is empty, set F0(xi) = 0

end for
for k = 1 to N do

for i = 0 to m do
yi = λi

wi = ∂yi
∂Fk−1(xi)

end for
{Rlk}L

l=1 // Create L leaf tree on {xi,yi}m
i=1

γlk =
∑xi∈Rlk

yi

∑xi∈Rlk
wi

// Assign leaf values based on Newton step.

Fk(xi) = Fk−1(xi)+η ∑l γlkI(xi ∈ Rlk) // Take step with learning rate η .
end for

Finally it’s useful to compare how LambdaRank and LambdaMART update their
parameters. LambdaRank updates all the weights after each query is examined. The
decisions (splits at the nodes) in LambdaMART, on the other hand, are computed
using all the data that falls to that node, and so LambdaMART updates only a few
parameters at a time (namely, the split values for the current leaf nodes), but using
all the data (since every xi lands in some leaf). This means in particular that Lamb-
daMART is able to choose splits and leaf values that may decrease the utility for
some queries, as long as the overall utility increases.

18 Christopher J.C. Burges Microsoft Research Technical Report MSR-TR-2010-82

7.1 A Final Note: How to Optimally Combine Rankers

We end with the following note: [11] contains a relatively simple method for
linearly combining two rankers such that out of all possible linear combina-
tions, the resulting ranker gets the highest possible NDCG (in fact this can
be done for any IR measure). The key trick is to note that if s1

i are the out-
puts of the first ranker (for a given query), and s2

i those of the second, then
the output of the combined ranker can be written αs1

i +(1−α)s2
i , and as α

sweeps through its values (say, from 0 to 1), then the NDCG will only change
a finite number of times. We can simply (and quite efficiently) keep track
of each change and keep the α that gives the best combined NDCG. How-
ever it should also be noted that one can achieve a similar goal (without the
guarantee of optimality, however) by simply training a linear (or nonlinear)
LambdaRank model using the previous model scores as inputs. This usually
gives equally good results and is easier to extend to several models.

Acknowledgements The work described here has been influenced by many people. Apart from
the co-authors listed in the references, I’d like to additionally thank Qiang Wu, Krysta Svore, Ofer
Dekel, Pinar Donmez, Yisong Yue, and Galen Andrew.

References

[1] E.B. Baum and F. Wilczek. Supervised Learning of Probability Distributions by Neural Net-
works. Neural Information Processing Systems, American Institute of Physics, 1988.

[2] C.J.C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton and G. Hullender.
Learning to Rank using Gradient Descent. Proceedings of the Twenty Second International
Conference on Machine Learning, 2005.

[3] C.J.C. Burges. Ranking as Learning Structured Outputs. Neural Information Processing
Systems workshop on Learning to Rank, Eds. S. Agerwal, C. Cortes and R. Herbrich, 2005.

[4] C.J.C. Burges, R. Ragno and Q.V. Le. Learning to Rank with Non-Smooth Cost Functions.
Advances in Neural Information Processing Systems, 2006.

[5] O. Chapelle, Y. Chang and T-Y Liu. The Yahoo! Learning to Rank Challenge.
http://learningtorankchallenge.yahoo.com, 2010.

[6] O. Chapelle, D. Metzler, Y. Zhang and P. Grinspan. Expected Reciprocal Rank for Graded
Relevance Measures. International Conference on Information and Knowledge Management
(CIKM), 2009.

[7] P. Donmez, K. Svore and C.J.C. Burges. On the Local Optimality of LambdaRank. Special
Interest Group on Information Retrieval (SIGIR), 2009.

[8] J.H. Friedman. Greedy function approximation: A gradient boosting machine. Technical
Report, IMS Reitz Lecture, Stanford, 1999; see also Annals of Statistics, 2001.

From RankNet to LambdaRank to LambdaMART: An Overview 19

[9] K. Jarvelin and J. Kekalainen. IR evaluation methods for retrieving highly relevant documents.
Special Interest Group on Information Retrieval (SIGIR), 2000.

[10] M. Spivak. Calculus on Manifolds. Addison-Wesley, 1965.
[11] Q. Wu, C.J.C. Burges, K. Svore and J. Gao. Adapting Boosting for Information Retrieval

Measures. Journal of Information Retrieval, 2007.
[12] Y. Yue and C.J.C. Burges. , On Using Simultaneous Perturbation Stochastic Approximation

for Learning to Rank, and the Empirical Optimality of LambdaRank. Microsoft Research
Technical Report MSR-TR-2007-115, 2007.

