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Abstract line of defense against XSS is the practicesahitiza-
I . . . . tion, where untrusted data is passed througaitizer
Web applications often use special strlng—manlpulatmga . .

function that escapes or removes potentially danger-

sanitizerson untrusted user data, but it is difficult to rea- ous strings. Multiple widely used Web frameworks offer
son manually about the behavior of these functions, lead-_"." L - 4
ing to errors. For example, the Internet Explorer cross-szgl.“.zer Tunctlons n I[t)_rarles(,j, and dev]?lopers often add
site scripting filter turned out to transform some webgr fJ?]?:Egn(;Tiftocn;nS;[?;Ir?ti s due to performance
pages without JavaScript into web pages with valid Java- y . o . )
Script, enabling attacks. In other cases, sanitizers may Unfortunately, implementing sanitizewrrectly is
fail to commute, rendering one order of application safeSUrPrisingly difficult. Anecdotally, in dozens of code re-

and the other dangerous. views performed across various industries, just about any

BEK is a language and system for writing sanitiz- custom-written sanitizer was flawed with respect to secu-
ers that enables precise analysis of sanitizer behaviofIty [38]. The recent SANER work, for example, showed

including checking idempotence, commutativity, and "”.‘WS.'” custom-written sanitizers used by ten web ap-
equivalence. For example,ER can determine if a tar- plications [9]. For another example, several groups of

get string, such as an entry on the XSS Cheat Sheet, (Sese_a_n_:hers have found_speciglly crafted pages that do
a valid output of a sanitizer. If so, our analysis synthe-nOt initially have Cross site _scnptmg_attapks, bl.n when
sizes an input string that yields that target. Our Ianguag@asseoI through anti-Cross-site scripting filters yield web
is expressive enough to capture real web sanitizers usétf-9¢S that cause JavaScript execution [10, 2_2]'
in ASP.NET, the Internet Explorer XSS Filter, and the ~ The problem becomes even more complicated when
Google AutoEscape framework, which we demonstrate&eonsidering that a web application megmposemulti-
by porting these sanitizers toeR. ple sanitizers in the course of creating a web page. In
Our analyses use a noveymbolic finite automata & ecent empirical analysis, we found that a large web
representation to leverage fast satisfiability modulo the@PPlication often applied the same sanitizers twice, de-
ories (SMT) solvers and are quick in practice, tak- SPite these sanitizers not being |dgmpqtent. This a_ngly&s
ing fewer than two seconds to check the commutativ-2so found that_ thg order of ap.plylng d|ff§rent sanitizers
ity of the entire set of Internet Exporer XSS filters, could vary, which is safe only if the sanitizers are com-
between 36 and 39 seconds to check implementationf@utative [32], providing further evidence suggesting that
of HTMLEncode against target strings from the XSS d_evelope_rs havg ad|ff|cul_t time writing correct sanitiza-
Cheat Sheet, and less than ten seconds to check equien functions without assistance.
alence between all pairs of a set of implementations of Despite this, much work in the space of detecting and
HTMLEncode. Programs written in Bk can be compiled ~preventing XSS attacks [19, 23, 25, 27, 39] has optimisti-
to traditional languages such as JavaScript and C#, mal€ally assumed that sanitizers are in fact both known and
ing it possible for web developers to write sanitizers sup-correct. Some recent work has started exploring the is-

ported by deep analysis, yet deploy the analyzed codgue of specification completeness [24] as well as san-
directly to real applications. itizer correctness by explicitly statically modeling sets

of values that strings can take at runtime [13, 26, 36, 37].
. These approaches use analysis-specific models of strings
1 Introduction that are based on finite automata or context-free gram-

. o } . mars. More recently, there has been significant interest
Cross site scripting ("XSS”) attacks are a plague in t0-jn constraint solving tools that model strings [11,17, 18,

day's web applications. These attacks happen becausg 31 34, 35]. String constraint solvers allow any client

the applications take data from untrusted users, and theéhalysis to express constraints (e.g., path predicates for
echo this data to other users of the application. Becausgingle code path) that include common

web pages mix markup and JavaScript, this data MaYring manipulation functions.
be interpreted as code by a browser, leading to arbitrary

i . . o . Sanitizers are typically a small amount of code, per-
code execution with the privileges of the victim. The first ypicaly b

haps tens of lines. Furthermore, application developers
* Authors are listed alphabetically. Work done while P. Hosjer ~ KNOW V_Vhen they are writing a new, (?UStom_Sanmzer or set
and P. Saxena were visiting Microsoft Research. of sanitizers. Our key proposition is that if we are will-




ing to spend a little more time on this sanitizer code, we We then use BK to perform security specific analy-
can obtain fast and precise analyses of sanitizer behavioses of these sanitizers. For example, we usg B de-
along with actual sanitizer code ready to be integratedermine whether there exists an input to a sanitizer that
into both server- and client-side applications. Our ap-yields any member of a publicly available database of
proach is EK, a language for modeling string transfor- strings known to result in cross site scripting attacks. Our
mations. The language is designed to be (a) sufficientlyanalysis is fast in practice; for example, we take two sec-
expressive to model real-world code, and (b) sufficientlyonds to check the commutativity of the entire set of In-
restricted to allow fast, precise analysis, without negdin ternet Explorer 8 XSS filters, and less than 39 seconds to
to approximate the behavior of the code. check an implementations tHEMLEncode sanitization

Key to our analysis is a compilation frome® pro-  function against target strings from the
grams tosymbolic finite state transduceran extension XSS Cheat Sheet [5].
of standard finite transducers. Recall that a finite trans- To experimentally demonstrate the difficulty of writ-
ducer is a generalization of deterministic finite automatdng correct sanitizers, we hired several freelance devel-
that allows transitions from one state to another to be anOPers to implemeniTMLEncode functionality. Using
notated withoutputs if the input character matches the BEK, we checked thequivalenceof the seven differ-
transition, the automaton outputs a specified sequence &t implementations ofiTMLEncode and used BK to
characters. In a symbolic finite transducer, transitiondind counterexamples: inputs on which these sanitizers
are annotated with logicdbrmulasinstead of specific behave differently. Finally, we performed scalability ex-
characters, and the transducer takes the transition on afigriments to show that in practice the time to perform
input character that satisfies the formula. We apply algoBEK analyses scales near-linearly.
rithms that determine if two BK programs are equiva-
lent. We also can check if aEX program can outputa 1.1 Contributions
specific string, and if so, synthesize an input
yielding that string.

Our symbolic finite state transducer representation e Language. We propose a domain-specific lan-
enables leveragingatisfiability modulo theories (SMT) guage, EK, for string manipulation. We describe a
solvers tools that take a formula and attempt to find in- syntax-driven translation from B« expressions to
puts satisfying the formula. These solvers have become  symbolic finite state transducers.

robust in the last several years and are used to solve com- 4 Algorithms. We provide algorithms for performing
plicated formulas in a variety of contexts. At the same composition computation and equivalence check-
time, our representation allows leveraging automata the-  jng, which enables checking commutativity, idem-
oretic methods to reason about strings of unbounded  potence, and determining if target strings can be
length, which is not possible via direct encoding to SMT output by a sanitizer. We show how JavaScript and
formulas. SMT solvers allow working with formulas C# code can be generated out o programs,

from any theory supported by the solver, while other  streamlining the client- and server-side deployment
previous approaches using binary decision diagrams are  of Bek sanitizers.

specialized to specific types of inputs. e Evaluation. We show that Ex can encode real-
After analysis, programs written ine can be com- world string manipulating code used to sanitize un-

piled back to traditional languages such as JavaScriptor  tyysted inputs in web applications. We demonstrate
C# . This ensures that the code analyzed and tested is  the expressiveness ofEB by encoding OWASP

The primary contributions of this paper are:

functionally equivalent to the code which is actually de- sanitizers, many IE 8 XSS filters, as well as func-
ployed for sanitization, up to bugs in our compilation. tions written by freelance developers hired through
This paper contains a number of experimental case  odesk.com andvworker . com for our experiments
studies. We conclusively demonstrate thatxBis ex- presented in this paper. We show how the analy-
pressive enough for a wide variety of real-life code by ses supported by our tool can find security-critical
converting multiple real world Web sanitization func- bugs or check that such bugs do not exist. To
tions from widely used frameworks, including those used improve the end-user experience when a bug is
in Internet Explorer 8’s cross-site scripting filter, t& B found, BEk produces a counter-example. We dis-
programs. We report on which features of thexBan- cover that only 28.6% of our sanitizers commute,

guage are needed and which features could be added ~79.1% are idempotent, and that only 8% are re-

given our experience. We also examine other code, versible. We also demonstrate that most hand-

such as sanitizers from Google AutoEscape and func-  written HTMLEncode implementations disagree on

tions from WebKit, to determine whether or not they can at least some inputs.

be expressed ase#& programs. We maintain samples of o A Scalable Implementation. BEk deals with Uni-

BEK programs onlink code strings without creating a state explosion. Fur-

thermore, we show that our algorithms for equiv-

Lhttp://code.google.com/p/bek/ alence checking and composition computation are




private static string EncodeHtml(string t)

7 {
( Bekfrontend ) W éﬁfw ﬂj if (t == null) { return null; }

if (t.Length == 0) { return string.Empty; }
Bek compiler v StringBuilder builder =
new StringBuilder("", t.Length * 2);
| Bek program foreach (char ¢ in t)
” representation {
if ((((e > 2¢) && (¢ < °{’)) |l

i ((c > @) & (c <[ Il (((c == ") ]

o Instance ((c > /) & (c <’:2))) Il (((c==".7) |l
Query Optimizations (c == ,7)) |l ((c =="=2) || (c =="_)INN{
builder.Append(c) ;
v
=
back end back end
}
}

} else {
builder.Append ("&#" +
((int) c).ToString() + ";");
Figure 1: BEK architecture. We use a representation_ ~ return builder.ToString();
based ormsymbolic finite state transduce(defined in-
text) to model string sanitization code without approxi-
mation.

JavaScript
back end

Figure 2: Code forAntiXSS.EncodeHtml version 2.0.

very fast in practice, scaling near-linearly with the case statements. If a character satisfies the condition of
size of the symbolic finite transducer representationthe case statement, the corresponding code is executed.
The main reason for this is the symbolic representaHereyield(c) outputs the current character

tion of the transition relation.

While the focus of this paper is on XSS attagkeur iter(cint) {b:=1;} {

language and analyses are more general and apply to case(=(b) A (c= " Ve= "))
any string manipulating function. For example Chetn b:=f; yield(<\*); yield(c); }
al. check interactions between firewall rules, finding re- case(c = \7) {

dundant and order-dependent rules in routers [40]. Cho b= —(b); yield(c): }

and Babic [12] check the equivalence between a specifi-
cation and an implementation for
state machines in SMTP servers.

case(t) {
b:=f; yield(c); }
}

2 Overview — :
The boolean variabliis used to track whether the previ-

Figure 1 shows an architectural diagram for tre®ys- ~ OUS character seen was an unescaped slash. For example,
tem. At the center of the picture is the transducer-base#ll the input\\" the double quote is not considered es-
representation of a B program. At the moment, we Ccaped,and the transformed outpus'. If we apply the
support a Bk language front end, although other front BEK program to\\\" again, the output is the same. An
ends that convert Java or C# programs intexBire also ~ interesting question is whether this holds for any output
possible. We provide motivating examples of theiB stri_ng. In other words_,_we may be interested in whether
language in Section 2.1 and discuss the applications ot given BEk program isdempotent

BEK to analyzing sanitizers in Section 2.2. If implemented incorrectly, double applications of
such sanitization functions can result in duplicate escap-
2.1 Introductory Examples ing. This in turn has led to command injection of script-

injection attacks in the past. Therefore, checkiohgm-

Example 1. The following Bek programis a basic san- htenceof certain functions is practically useful. We will
itizer that backslash-escapes single and double quotege in the next section howeR can

(but oqu if they are not escaped already). 'Iihev con- perform such checks. %4

struct is a block that uses a character variabbnd a

single boolean state variabbethat is initially f (false).

Each iteration of the block binds the character variable tdExample 2. The code in Figure 2 is from the public

a single character of the stririgiteration continues un- Microsoft AntiXSS library. The sanitizer iterates over

til no more characters remain. The block is broken intothe input character-by-character. Depending on the char-
pa— , L . acter encountered, a different action is taken, such as in-

e dual of the issue of code injection is data privac\gkBs . . . L
equally suitable to analyzing the corresponding data siegnfunc-  cluding the character V_erba“m or enC_Odmg it in some
tions. manner, such as numeric HTML escaping.




The BEK program corresponding EncodeHtml is

public static string EncodeHtml(string s)

iter (cin ¢){ I
case (j(p(c)){ if (s == null)
vield [ &, #' | +dec(c)+[ ;' |;} return null;
case(true){ int num = IndexOfHtmlEncodingChars(s, 0);
. if (num == -1)
yleld [C]; }} return s;

) o . StringBuilder builder=new StringBuilder(s.Length+5);
wheredec is a built-in library function that returns the int length = s.Length;

decimal representation of the character arnd) is the int startlndex = 0;
formula Label_002A:
if (num > startIndex)
3 1 13 L 13 L 3 1 {
(‘ a’ Sche< . z, ) Vv ( A ‘S, che S‘ ,Z ) v builder.Append(s, startIndex, num-startIndex);
(‘0 <cAhe<'9 ) Ve= Ve=".V }
c='"Ve="-"Ve="" char ch = s[num];

if (ch > ’>?)
The Bek program iterates over each character of the ¥ builder. Abpend ("B#") -
input. If the character satisfies the formuigr), then the bunder:Agend(((intS by
program outputs the character. Otherwise the program ToString (NumberFormatInfo.InvariantInfo));
escapes the character by outputting its decimal encod-  builder.Append(’;’);
ing, together with thek# prefix and semicolon. Note ¥

that this sanitizer is not idempotent, because applying the zlse
function twice to the strindz# will result in double es- char ch2 = ch;
caping. Our tool can detect this in under a secondX jEf (ch2 t=>"2)
Multiple implementations may exist of the “same” switch (ch2)

sanitizer. For example, Figure 3 shows the result of run- t case 1<
ning the Red Gate Reflector .NET decompiler on the Sys- builder.Append ("&lt;") ;
tem.NET implementation dfncodeHTML. We have con- goto Label_00D5;
verted this code to Bk as well, noticing that thgoto o
structure is the result of a loop after decompilation. Us- ca:w:L;bel 0005
ing our analyses, we can check these implementations for -
equivalence. Our implementation can detect in less than case ’>’:
one second that the System.NET implementation does builder. Append("&gt;") ;
not escape single quote characters, while the AntiXSS goto Label-00D;
implementation does, meaning that the two implementa- case ’&’:
tions are not equivalent. Failure to escape single quotes builder.Append("&amp;");
can lead to XSS attacks, so this ) goto Label_00D5;
difference is significant [33]. }

else

{

2.2 Security Applications builder. Append ("&quot; ") ;

Web sanitizers are the first line of defense against cross- _ *

site scripting attacks for web applications: they are func:—Labz1 00D5:

tions applied to untrusted data provided by a user that startIndex = num + 1;
attempt to make the data “safe” for rendering in a web  if (startIndex < length)
browser. Reasoning about the security properties of web

.. . . . R . num = IndexOfHtmlEncodingChars(s, startIndex);
sanitizers is crucial to the security of web applications

. . . . if (num != _1)
and browsers. Formal verification of sanitizers is there- {
fore crucial in proving the absence of injection attacks goto Label_002A;
§uch as _cross-sne and cross-channel scripting as well as builder.Append(s, startIndex, length-startIndex);
information leaks. 3

return builder.ToString();

2.2.1 Security of Sanitizer Composition ¥

Recent work has demonstrated that developers mafyigure 3: Code forEncodeHtml from version 2.0 of
accidentally compose sanitizers in ways that are nofystem.Net. This code is not equivalent to the AntiXSS
safe [32]. Bk can check two key properties of sanitizer library version.

composition: commutativity and idempotence.



Commutativity: Consider two default sanitizers in
Bool Variables b,...

the Google CTemplate frameworkavaScriptEscape_ Bool Constants B € {t,f}  Char Variables ¢

and HTMLEscape [4]. The former performs Uni- Char Constants d € & String Variables ¢

code encoding\gooxx) for safely embedding untrusted

data in JavaScript strings while the latter sanitizer per- Strings sexpr ::= iter(cin sexpr) {init} {case*}
forms HTML entity-encodingeit;) for embedded un- } ff;’;‘i;‘::gjﬁg:j j;f;’:)) s

trusted data in HTML content. It turns out that if init z= (b := B)"
JavaScriptEscape is applied to untrusted data before ST ARAR N AT N
the application oHTMLEscape, certain XSS attacks are (b := ebexpr; | yield(cexpr);)”
not prevented [32]. The opposite ordering does prevent : ggg;ggg’ggggigi)‘@ Ibb‘ ceond
these attacks. B< can check if a pair of sanitizers are ccond ::= Boolcomb(ccond) [cexpr = cexwpr
commutative, which would mean the programmer does ¢, srings

not need to worry about this class of bugs.

7\ cexpr < cexpr | cexpr > cexpr

= c | d| built-in-fnc(c) | cexzpr + cexpr
Idempotence: BEk can check if applying the sanitizer
twice yields different behavior from a single application.
For example, an extra JavaScript string encoding ma
break the intended rendering behavior in the browser.

Booleans

cexpr ::

Figure 4: Concrete syntax for B<. Well-formed Bek
expressions are functions of typering — string;

#he language provides basic constructs to filter and trans-
orm the single input string. Boolcomb(e) stands for
Boolean combination oé using conjunction, disjunc-

o . tion, and negation.

2.2.2 Sanitizer Implementation Correctness g
Hand-coded sanitizers are notoriously difficult to write

correctly. Analyses provided by help achieve cor- we first present the B< language. We then define the
rectness in three ways. semantics of BK programs in terms o§ymbolic finite

transducergSFTs), an extension of classidaiite state
transducers Finally, we describe several core decision
procedures for SFTs that provide an algorithmic founda-
tion for efficient static analysis

and verification of K programs.

Comparing multiple sanitizer implementations: Mul-
tiple implementations of the same sanitization function-
ality can differ in subtle ways [9]. Bk can check
whether two different programs written in theeB lan-
guage are equivalent. If they are nogBexhibits inputs
that yield different behaviors.

Comparing sanitizers to browser filters: Internet Ex- 3.1 TheBEk Language

plorer 8 and 9, Google Chrome, Safari, and Firefox em-_ ) ) )
ploy built-in XSS filters (or have extensions [3]) that ob- Figure 4 describes the language syntax. We define a sin-
serve HTTP requests and responses [1, 2] for attack§/€ String variable/, to represent an input string, and
These filters are most commonly specified as regulaft NUMber of expressions that can take either an-
expressions, which we can model witteB We can other expression as their input. ThptoLast(p,t) and

then check for inputs that are disallowed by browser fil-fromLast(,, ) are built-in search operations that ex-
ters, but which are allowed by sanitizers. For example!ract the prefix (suffix) oft upto (from) and excluding

BEK can determine that the AntiXSS implementation of (€ last occurrence of a character satisfying These
the EncodeHTML sanitizer in Figure 2 does not block constructs are listed separately because they cannot be

strings such asavascripte#ss; which are prevented by implemented using other language features. Finally, the
IE 8 XSS filters. These differences indicate potentialiter construct allows for character-by-character iteration
bugs in the sanitizer or the filter. over a string expression.

C_:hecking against public attgck sets: Several pub- Example 3. uptoLast(c = ‘. ,"wabc.org")

lic XSS attack sets are available, such as XSS cheat «

: o www.abc", fromLast(c = ‘. ,"w.abc.org")
sheet [5]. With Bk, for all sanitizers, for all attack vec-  _« |« X
i . : = org .
tors in an attack set, we can check if there exists an input
to the sanitizer that yields the attack vector. Theiter construct is designed to model loops that tra-
verse strings while making imperative updates to boolean
3 The BEK Language and Transducers variables. Given a string expressiose{pr), a char-

acter variablez, and an initial boolean statér(it), the
In this section, we give a high-level description of a statement iterates over charactersdmpr and evaluates
small imperative language B, of low-level string op- the conditions of the case statements in order. When a
erations. Our goal is two-fold. First, it should be possiblecondition evaluates to true, the statementssimt may
to model BEK expressions in a way that allows for their yield zero or more characters to the output and update the
analysis using existing constraint solvers. Second, wéoolean variables for future iterations. Thedcase ap-
want Bek to be sufficiently expressive to closely model plies when the end of the input string has been reached.
real-world code (such as Example 2). In this sectionWhen no case applies, this correspond to yielding zero



characters and the iteration continues or the loop termiThe following classification of finite transducers plays a
nates if the end of the input has been reached. central role in the sections discussing translation from
Bek and decision procedures for

3.9 Finite Transducers symbolic finite transducers.

Definition 3. A is single-valuedif for all v € 3%,
()] < 1.

We start with the classical definition 6hite state trans-
ducers The particular sublass of finite transducers thatl4
we are considering here are also caltggheralized se-

guential machine®r GSMs [29], however, this defini- 3.3 Symbolic Finite Transducers

tion is not standardized in the literature, and we there- bolic finite t d defined bel ”
fore continue to say finite transducers for this restricteoSym olc Tinite fransducers, as getined below, provide a

case. The restriction is that, GSMs read one symbol a§ymbolic representation of finite transducers using terms

each transition, while a more general definition allows
transitions that skip inputs.

Definition 1. A Finite TransducerA is defined as a six-
tuple(Q, ¢°, F, %, T, A), whereQ is a finite set obtates
¢° € Qistheinitial state, F C Q is the set ofinal states
Y is theinput alphabetI" is theoutput alphabetand A
is thetransition functiorfrom @ x X to 2@*I",

We indicate a component of a finite transdugeby
using A as a subscript. Fdiy,v) € Aa(p,a) we define

the notatiorp a—/v>A q, wherep,q € Qa, a € ¥4 and

v e I''y. We writep a—/”> g when A is clear from the

context. Given word® andw we letv - w denote the
concatenation of andw. Note thatv - e = € - v = v.
. a;/vi . . w/v
Giveng; —— 4 q;y1 fori < nwe writeqy —4 qn
whereu = ag-aq-...-ap_1 andv = vg-v1-...-vp_1. We

write alsoq E—/E>A g. A induces thdinite transduction
Ta:¥% — 204

def u/v

Ta(u) ={v|3q € Falqx )}

We lift the definition to setsT4(U) £ U,y T(w).
Given two finite transduction$; and 15, T o T, de-
notes the finite transduction that maps an input wota
the setl> (71 (w)). In the following letA and B be finite
transducers. A fundamental compositionAofind B is

thejoin composition ofA and B.

Definition 2. Thejoin of A and B is the finite transducer

AOBd:ef (QAXQBa(q,oéhq%)aFAXFBazAaFBaAAOB)
where, for all(p, ¢) € Q4 x Qp anda € X :

def

afe
{(@,q),€) | p—ap'}
U{((®,q).v) | GueTd)
p L4y, q'}

AAOB((pv q)a a)

The following property is well-known and allows us
to drop the distinction betweef andT'4
without causing ambiguity.

Proposition 1. Thop =Ty o Ts.

modulo a given background theofy. The background
universe) of values is assumed to beulti-sorted where
each sorto corresponds to a sub-univer3¢. The
boolean sort issooL and contains the truth valuas
(true) andf (false). Definition of terms and formulas
(boolean terms) is standard inductive definition, using
the function symbols and predicate symbolsjagflog-
ical connectives, as well aminterpreted constantsith
given sorts. All terms are assumed to be well-sorted. A
termt of sorto is indicated by : o. Given a termt and a
substitutior from variables (or uninterpreted constants)
to terms or valuesSubst(t, #) denotes the term resulting
from applying the substitutiofto ¢.

A modelis a mapping of uninterpreted constants to
values® A modelfor a termt is a model that provides
an interpretation for all uninterpreted constants that oc-
curint. (All free variables are treated as uninterpreted
constants.) Thénterpretationor valueof a term¢ in a
model M for t is given by standard Tarski semantics us-
ing induction over the structure of terms, and is denoted
by t™. A formula (predicate)y is true in a model\/
for o, denoted byM = ¢, if o™ evaluates to true. A
formula ¢ is satisfiable, denoted bisSat(p), if there
exists a modelM such thatM |= ¢. Any termt:o that
includes no uninterpreted constants is calledlae term
and denotes a concrete valg € V7.

Let Term7-(z) denote the set of all terms ifi of sort
~, wherez = g, ...,z,_1 may occur as the only un-
interpreted constants (variables). L@ted(z) denote
Term5°°(z). In order to avoid ambiguities in notation,
given a setE of elements, we writéey, ..., e,_1] for
elements oft*, i.e., sequences of elements frdin We
use botH] ande to denote the empty sequence. As above,
if e;,es € E*, thene; - e € E* denotes the con-
catenation ofe; with e5. We lift the interpretation of

terms to apply to sequences: far= [ug, ..., u,—1] €
Term-(z)* letu™ = [ud!, ... ul ] € (V)"

In the following letc:o be afixed uninterpreted con-
stant of sortr. We refer toc:o as theinput variable(for
the given sort).

Definition 4. A Symbolic Finite Transducer (SFT) fgr
is a six-tuple(@, ¢*, F, o, v, 6), whereQ is a finite set of
states ¢° € Q@ is theinitial state, ' C @ is the set of

3The interpretations of background functionsBfis fixed and is
assumed to be an implicit part of all models.
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Figure 5. Symbolic finite state transducer for
uptoLast(c=' .’ , input). This transducer is non-
deterministic; there are two transitions that match
from statey.

final stateso is theinput sort + is theoutput sort and

J is thesymbolic transition functiofrom Q x Preds(c)
to 2@ Term7-(c)* )

We use the notatiop 2% 4 ¢ for (¢, u) € d4(p,¢)
/

and callp 253, ¢ a symbolic transitiony/u is called
its label, ¢ is called itsinput (guard)andu its output

An SFT A = (Q,¢°, F,0,7,0) denotes the finite
transducefA] = (Q.¢°, F, V", V", A) wherep “;

q if and only if there exist® “’—/um q and a modelM/
such thatM |= ¢, M = a, uM = v.

For an STFA let the underlyingransductionT’sy be
Tja). For a state; € Q4 let T (v) (Tq 1(v)) denote
the set of outputs when starting erﬁ’WIIh inputwv. In
particular, ifg = ¢4 thenTe = T3 andTj,) = T[[

The following proposition follows directly from the def-
inition of [A].

T3(v)

Proposition 2. For v € E[[A]] andq € Qa:
Ty )

Example 4. Theidentity SFT Id (for sorta) is defined

follows. Id = ({q} q,{q}, 0,0, {q q}) Thus, for

alla € V7, ¢ —*[[Id]] q, and[Id](v) = {v} for all
e (Vo)*. X

Example 5. Assumeo is the sort for characters. The
predicatec = ‘.’ says that the input character is a dot.
The SFTUptoLastDot such that for all strings,
UptoLastDot(v) = uptoLast(c =" ." ,v),
whereuptoLast is the Bek function introduced above,
is shown in Figure 5. X

Composition works directly with SFTs, and keeps the
resulting SFTcleanin the sense that all symbolic transi-
tions arefeasible and eliminates states that anereach-
able from the initial stateas well as non-initial states
that arenot backwards reachable from any final stalte
order to preserve feasibility of transitions the algorithm
uses a solver for checking satisfiability of formulas in
Predr(c).

3.4 BEK to SFT translation

The basic sort needed in this section, bes@lesL, is

a sortCHAR for characters. We also assume the back-
ground relation< : CHAR x CHAR — BOOL as a strict
total order corresponding to the standard lexicographic
order over ASCII (or Unicode) characters and asstime

< and> to be defined accordingly. We also assume that
each individual character has a built-in constant such as
‘a’ :CHAR. For example,

( )V

( )V
descibes the regex character clasf all word char-
acters in ASCII. (Direct use of regex character classes
in BEK, such ascase(\w) {...}, is supported in the en-
hanced syntax supported in th&Banalyzer tool.)

Each sexpr e is translated into an SFTEFT (e).

For the string variablet, SFT(e) 1d, with Id
as in Example 4. The translation afptoLast(yp,e)
is the symbolic compositiorSTF(e) o B where B
is an SFT similar to the one in Example 5, except
that the conditionc = ‘. is replaced byy. The
translation offromLast(y, ¢) is analogous. Finally,
SFT(iter(c in e) {init} {case*}) SFT(e) o B
whereB = (Q, ¢°, Q, CHAR, CHAR, d) is
constructed as follows:

N <che<'Z (‘a' <ec¢ ‘z )V
(0} che<'9 )Ve=""

INIA
I/\ I/\

Step 1: Normalize. Transformcase* so that case con-
ditions are mutually exclusive by adding the nega-
tions of previous case conditions as conjuncts to all
the subsequent case conditions, and ensure that each
boolean variable has exactly one assignmentin each
cstmt (add the trivial assignment:= b
if bis not assigned).

Step 2: Compute states.Compute the set of stat&g.
Let ¢° be an initial state as the truth assignment to
boolean variables declared init.* Compute the
set@ of all reachable states, by using DFS, such
that, given a reached staie if there exists a case
case(p) {cstmt} such thatSubst(yp, q) is satisfi-
ablethen add the state
{b+— [Subst(1,q)

11b:=v¢ €cstmt} (1)

to Q. (Note thatSubst(w, q) is a value term.)

Step 3: Compute transitions. Compute the symbolic
transition functiond. For each statg € @ and
for each casecase(y) {cstmt} such thatyp =
Subst(p, q) is satisfiable. Lep be the state com-
puted in (1). Letyield(uop),...,yield(u,—1) be
the sequence of yields iastmt and let u
[wo, - .., un—1]. Add the symbolic

transitiong ¢—/u> ptod.

4Note thatg" is the empty assignmentifit is empty, which trivi-

alizes this step.



(eg{"",””"\'D/[e] The join composition algorithm constructs an SE® B

(e="\")/[d such thalj 4. 5] = Tjap0Tpy- The intuition behind the

_>/_N construction is that the outputs produced dare sub-
W stituted symbolicallyin as the inputs consumed by the
(el " 1)1V, B. The composition algorithm proceeds by depth-first

search, first computin@ 4.5 as constructed as a reach-
. _ . . able subset of) 4 x Qp, starting from(¢%,¢%). Here
Figure 6: SFT for Bek program in Example 1. This e use the SMT solver to determine reachability, calling

SFT escapes single and double quotes with a backslash:e solver as a black box to determine if a path from one
except if the current symbol is already escaped. The ap- P

plication of this SFT is idempotent state to another is feasible or not. This makes our con-
' structionindependenbf the particular background the-
ory. In general, this is not true for other recent exten-

The translation of end-cases is similar, resulting in sym-Sions of finite transducers such as streaming transduc-
bolic transitions with guard¢ = 1, where_L is a spe-  €rs [6], where compositionality depends on properties of
cial character used to indicate end-of-string. We assuméhe background theory that is being used.

1 to be least with respect ta. For example, assum- ~ Two SFTsA andB areequivalentf Ty = Ts. Let

ing that the Bk programs use concrete ASCII charac- ot

ters, L:CHAR is either aradditionalcharacter, or the null Dom(A) = {v | Ta(v) # 0}.

character\o’ if only null-terminated strings are consid-

ered as valid input strings. Although practically impor- Checking equivalence of and B reduces to two sepa-

tant, end-cases do not cause algorithmic complicationg,ate tasks:
gnd forthe_sake Qf clarity we avoid them 1. Deciding domain-equivalence Dom(A) =
in further discussion. Dom(B).

The algorithm uses a solver to check satisfiability of
guard formulas. If checking satisfiability of aformulafor 2. Deciding partial-equivalence for all v €
example times out, then it is safe to assume satisfiabil-  Dom(A) N Dom(B), Ta(v) = T (v).
ity and to include the corresponding symbolic transition. ) )
This will potentially add infeasible guards but retains the NOt€ that 1 and 2 are independent and do not imply
correctnes®f the resulting SFT, meaning that the under-€ach other, but together they imply equivalence. Do-
lying finite transduction is unchanged. While in most Main equivalence holds for all SFTs constructed lgxB

cases checking satisfiability of guards seems straighf?®cause all programs share the same domain, namely

forward, but when considering Unicode, this perceptionthat of strings. Checking partial equivalence is more in-

is deceptive. As an example, the regex character clag®!ved. We leverage the fact that all SFTs we construct
[w-0\p1] denotes an empty set singe is a subset of '€ single-valued. Our equivalence algorithm first com-

\w and\w (\p) is the complement ofw (\a), and thus, ~Putes the join composition ofl and B, then uses the
[wi-[\p1] is the intersection ofi and\a. Just the charac- SMT Solver to search for inputs that caugeto differ
ter classw alone contains 323 non-overlapping ranges inl"oM B. We have anonconstructiveproof of termina-
Unicode, totaling 47,057 characters. A naive algorithmtion for this algorithm: it establishes that # and B
for checking satisfiability (non-emptiness) pfi-[\p11 are equ_wglent, then the search must terminate in time
may easily time out. quadratic in the n_umber of states of the cqmposed au-
Consider the BK program in Example 1. The cor- tomata. In practice, the SM_T solver carries o_ut this
responding SFT constructed by the above translation i§€a"ch, and our results in Section 4 show scaling is closer
shown in Figure 6. There are two symbolic transitionst© linéar in practice. -
from stateg to itself. The first corresponds to the cases Eduivalence and join composition allow us to carry out
where the input charactemeeds to be escaped, and the@ Variety of other analyses. Idempotence of an SFT

second to cases where the input does not can be first checked by computii§ = A o A, then
need to be escaped. checking the equivalence dfandB. Ifthe two SFTs are

not equivalent, thent fails to be idempotent. Similarly,
commutativity of two SFTsA and B can be determined
by computing” = Ao B andD = Bo A, then checking
We now give an informal description of our core algo- equivalence. The idea is illustrated in Figure 7. We can
rithms for reasoning about SFTgin compositionand  also compute thewverse imagefa SFT with respectto a
equivalenceWe then show how these algorithms can bestrings, which lets us find out the set of inputs to the SFT
used to check properties such as idempotence, existentieat yields as an output. We use all of these analyses to
of an input yielding a target string, and commutativity. check sanitizers for security

Thejoin compositiond o B corresponds to a program properties in the next section.
transformation that constructs a single loop over the in- Our approach has an advantage over traditional finite
put string out of two consecutive loops in SFAfandB.  transducers (FTs), due to succinctness of SFTs. Suppose

3.5 Join Composition and Equivalence



AeA These experiments are based on an implementation that
A A consists of roughlys, 000 lines of C# code that imple-
&" ideg;zttem ments the basic transducer algorithms and Z3 [14] inte-
A gration, with anotherl, 000 lines of F# code for transla-

tion from BEK to transducers. Our experiments were car-
BeA ried out on a Lenovo ThinkPad W500 laptop with 8 GB

e 8 A P of RAM and an Intel Core 2 Duo P9600 processor run-
2 et e AeB §> | commutative ning at2.67 GHz, running 64-bit Windows 7.
A B

Figure 7: Using composition and equivalence of SFTs
to decide idempotence and commutativity.

4.1 Expressive Utility

Thus far, we discussed the expressiveness e Bri-

for example that the background character theig k- marily in theoretical terms. In this subsection, we turn
bit bit vector arithmetic wheré depends on the desired our attention to real-world applicability instead, thréug
character range (e.g., for Unicode= 16). An explicit @ case study that aims to demonstrate that a wide variety
expansion of a Bk SFT A to [A] may increase the size Of commonly used sanitizers can be ported to

(nr of transitions) by a factor df*. Partial-equivalence BEK with relative ease.

of single-valued FTs is solvabl@(n?) [15] time. Thus,

for an SFTA of sizen, using the partial-equivalence al-

gorithm for [A] takesO((2%n)?) time. In contrast, the 4.1.1 Frequency of Sanitizer use in PHP code.
partial-equivalence algorithm for X SFTs isO(n?).

When the background theory is linear arithmetic, thenPHP is a widely-used open source server-side scripting
the alphabet is infinite and a correspoding FT algorithmlanguage. Minamide’s seminal work on the static anal-

is therefore not even possible. ysis of dynamic web applications [26] includes finite-
transducer based models for a subset of PHP’s sanitizer
4 Evaluation functions. These transducers are hand-crafted in several

thousand lines of OCaml. We conducted an informal re-
In the following subsections, we evaluate the real-worldview of the PHP source to confirm that each transducer
applicability of BEk in terms of expressivess, could be modeled as ag& program.

utility, and performance: Our goal is to perform a high-level quantitative com-
parison of the applicability of Bk, on the one hand,
and existing string constraint solvers (e.g., DPRLE [17],
Hampi [20], Kaluza [30], and Rex [35]) on the other. For
this comparison, we assume that each Minamide trans-
ducer could instead be modeled as ekBorogram. We
then use statistics from a study by Hooimeijer [16] that
Mmeasured the relative frequency, by static count, of 111
distinct PHP string library functions. The Hooimeijer
e We put Bek to work to check existing sanitizers for study was conducted in December 2009, and covers the
idempotence, commutativity, and reversibility (Sec- top 100 projects 0BourceForge .net, or about 9.6 mil-
tion 4.2). lion lines of PHP code. The study considered most, but

o _ not all, sanitizers provided by Minamide.
e \We perform pair-wise equivalence checks on a num- o . . .
Out of the111 distinct functions considered in the

ber of portediTMLEncode implementations, as well o
as two outsourced implementations (Section 4.3). Hooimeijer study,27 were modeled as transducers by
Minamide and thus encodable inEB. In the sam-

e We evaluate effectiveness of existiiMLEncode pled PHP code, thesz? functions account fo68, 238
implementations against known attack strings takerout of 251, 317 uses, or about 27% of all string-related
from the Cross-site Scripting Cheat Sheet (Sec-all sites. By comparison, traditional regular expression
tion 4.4). functions modeled by tools like Hampi [20] and Rex [35]

Iz_;lccountforjust 29,141 call sites, or about 12%. We note

that Bek could be readily integrated into an automaton-

based tool like Rex, however, and our features are largely
complimentary to those of traditional string constraint

e We provide a short example to highlight the fact solvers. These results suggest thakBrovides a signif-
that BEk programs can be readily translated to othericant improvement in the “coverage” of real-world code
programming languages (Section 4.6). by string analysis tools.

e Section 4.1 evaluates whetheeB can model ex-
isting real-world code. We conduct an emperical
study of a large body of code to see how widely-
used Bek-modelable sanitizer functions are (Sec-
tion 4.1.1), and we evaluate whicheR features
are needed to model sanitizers from AutoEscape
OWASP, and Internet Explorer 8 (Section 4.1.2).

e We use a synthetic benchmark to evaluate the sca
ability of performing equivalence checks oreB
programs (Section 4.5).



4.1.2 Language Features Native Not Native

) X boolean multiple mult.
For the remainder of the experiments, we use a Sma“\lame vars iters regex lookahead arith. functions

dataset of ported-to48< sanitizers. We now discuss e
. . a. a
that dataset and the manual conversion effort requiredescapesrackets

The results are summarized in Figure 8, and described iryscapetetaindlink
. escapeString0
more detail below. escapeString
escapeStringSimple
getFileExtension
Google AutoEscape and OWASP. We converted san-  GAHtmlEscape

itizers from the OWASP sanitizer library t0EK pro-  oa ‘;ﬁjﬁzgig;

grams. We also evaluated sanitizers from the Go0QleGA CleanseAttrib
. GA CleanseCSS
AutoEscape framework to determine what language feaga ¢1canseUnLEsc

tures they would need to be expressed KB These  GAValidateURL

L. . . GA XMLE
sanitizers are marked with prefix@a and OWASP, re- OA JSPocs
spectively, in Figure 8. We verified that each of these GA JsNumber

L. . . GA URLQueryEsc
sanitizers can be implemented ireB. In several cases, ga jsonesc
we find additional non—native features that could be GAPrefixLine

. OWASPHTMLEncode
added to Bk to support these sanitizers. IEFilterl

IEFilter2
. . IEFilter3
Internet Explorer.  In addition, we extracted sanitizers 1efiltera

from the binary of Internet Explorer 8 that are used iiiiere
in the IE Cross-Site Scripting Filter feature, denoted 1EFiiter?
IEFilterl to IEFilter17 in Figure 8. For this study, Irrijcere
we analyze the behavior of the IE 8 sanitizers underieriiterio
the assumption the server performs no sanitization ofiriiseris
its own on user data. Of thegd sanitizers, we could  IEFilter13
convert17 directly into BEK programs. The remaining ~ 1oo. rer
sanitizers track a potentially unbounded list of character 1eriiteris
that are either emitted unaltered or escaped, depending®*****"
on the result of a regular expression matchekBloes  Figure 8: Expressiveness: different language features
not enable storing strings of input characters. used by the original corpus of different programs. A
cross means that the feature was not used by the pro-
The manual translation took several hours per sanigram in its initial implementation. A checkmark means
tizer. Figure 8 breaks down oure programs based on the feature was used by the program. boolean variables,
“Native” features of the Bk language, and “Not Native” multiple iterations over a string, and regular expressions
features which are not currently in theeB language. are native constructs ine. Multiple lookahead, arith-
Many of these features can be integrated modeled usingetic, and functions are not native t&B and must be
transducers, however, by enhancing the language of coremulated during the translation. We also show the dis-
straints used for symbolic labels. In addition, with the tinct boolean variables
exception oft Internet Explorer sanitizers, we found that used by the Bk implementation.
a maximum lookahead window of eight characters would
suffice for handling all our sanitizers. Finally, we discov- . )
ered that the arithmetic on characters was limited to righ@t medel with Bk Unfortunately, we found multiple
shifts and linear arithmetic, which can be expressed ifunctions that require features, such as bounded looka-
the Z3 solver we use. head and transducer composition, which are not yet sup-
We note that all “Not Native” features could be added POrted by the Bk language. o _
to the BEK language with few or no changes to the under- FOr example, we conslldered a function in the. Safari
lying SFT algorithms for join composition and equiva- implementation of WebKit that performs Javascript de-

lence checking: only the front end would need to change®°ding [7]. This function requires at a minimum the use
of functions to connect hexadecimal to ASCII, a looka-

head of5 characters, function composition, and scan-
ning for occurrences of a target character. While as
Ideally, we could use Bk to model the parser of an ac- noted above we believe these features could be added
tual web browser. Then, we could use our analyses t¢0 BEK without fundamentally changing the underlying
check whether there exists a string that passes throughalgorithms for symbolic transducers, th&#language
given sanitizer yet causes javascript execution. We perdoes not yet support them.

formed a preliminary exploration of the WebKit browser

to determine how difficult it would be to write such

0000000000000 000000O0SN\N0O0N\000000o0o0oosso
0000000000000 000O0NO000sNsNONO0s\ooooooooo
OOD000O00000O000O00NoNoNooosNo0o0osN00onononoooooooo
OooD0O00000000000N0NoDNoDoDooo0o0o0O0O0o0oNononoooooooo

FRPRPAMRMRNUIUUARNURARNURAWOOORNOONOORWOONRRRERRERR
CARARAARAARAAAAAAT00000000000000000< 0%

4.1.3 Browser Code



4.2 Checking Algebraic Properties Name States Idempotent? Reversible?

We argued in Section 2 that idempotence and commuta- a2vb2a 1 u v
L. . L. . escapeBrackets 1 v O
tivity are key properties for sanitizers. In addition, the  .gcapemetanndrink 1 v v
property ofreversibility, that from the output of a sani- escapegzr?ngo i E E
. . . . . escape rin,
tizer we can unambiguously recover the input, is impor- escaﬁesmngsmple 1 O O
tant as an aid to debugging. getFileExtension 2 u u
IEFilterl 6 v O
IEFilter2 9 v O
IEFilter3 19 v O
4.2.1 Order Independence IEFiltord 13 v 0
. . IEFilter5 13 v |
We now evaluate whethdr7 sanitizers used in |IE 8 are  1EFilters 16 v 0
order independentOrder independence means that the =i ter? s v .
sanitizers have the same effect no matter in what order 1eriiters 25 v 0
they are applied. If the order does matter, then the choice IEFi1terio e Y .
of order can yield surprising results. As an example, in  1erilteri2 11 v O
rule-based firewalls, a set of rules that are not order in- IEFilterts 14 v -
X X N IEFilter14 14 v O
dependent may result in a rule never being applied, even 1eriiter1s 1 v 0
though the administrator of the firewall believes the rule IEFilteris ! v -
IEFilterl7 1 v ]

isin use.
Each IE 8 sanitizer defines a speciffput seton Figure 9: For each E_K benchmark programs, we report
which it will transform strings, which we can compute the number of states in the corresponding syml:_)olilctrans—
from the BEk model. We began by checking aB6 pairs ducer. We then report whether th(_a transdl_Jcer is idempo-
of IE 8 sanitizers to determine whether their input setst€nt: and whether the transducer is reversible.
were disjoint. Only one pair of sanitizers showed a non-
trivial intersection in their input sets. A non-trivial in- gﬂtgzzg:g
tersection signals a potential order dependence, becausesruiencodes
the two sanitizers will transform the same strings. For ngifﬁigﬁ
this pair, we used Bk to check that the two sanitizers  gutsourceda2
output the same language, when restricted to inputs from_Outsourced3
their intersection. Bk determined that the transforma- Figure 10: Commutativity matrix for seven differentim-
tion of the two sanitizers on thesel inputs was exactly theplementations ofiTMLEncode. TheOutsourced imple-
same — i.e., the two sanitizers were equivalent on thenentations were written by freelancers from a high level
intersection set. We conclude that the IE 8 sanitizers ar@nglish specification.
in fact order independent, up to errors in our extraction

of the sanitizers and our assumption that no server-side

modification is present. against cross-site scripting attacks. Figure 10 shows a
commutativity matrixor the HTMLEncode implementa-
tions. A v indicates the pair of sanitizers commute,
while alJindicates they do not. The matrix contaits
We now examine the idempotence of severakBoro-  check marks out 02 total comparisons of distinct sani-
grams, including the IE 8 sanitizers. Figure 9 reportstizers, or28.6%. Our implementation took less than one
the results. The number of states in the symbolic finiteminute to complete a2 comparisons.

transducer created from eacle® program. For each

transducer, we then report whether it is idempotent angy 3 pifferences Between Multiple Implementations
whether it is reversible. This shows the number of states

acts as a rough guide to the complexity of the sanitizerMultiple implementations of the “same” functionality are
For example, we see that IE filtérout of 17 is quite ~ commonly available from which to choose when writing

complicated, witf25 states. a web application. For example, newer versions of a li-
brary may update the behavior of a piece of code. Differ-
ent organizations may also write independent implemen-
tations of the same functionality, guided by performance
We investigated commutativity of seven different imple- improvements or by different requirements. Given these
mentations oHTMLEncode, a sanitizer commonly used different implementations, the first key question is “do
by web applications. Four implementations were gath-all these implementations compute the same function?”
ered from internal sources. Three were created for oulhen, if there are differences, the second key question is
project specifically by hiring freelance programmers to“how do these implementations differ?”

create implementations from popular outsourcing web As described above, becaus&®Bprograms corre-
sites. We provided these programmers with a highspond to single valued symbolic finite state transduc-
level specification in English that emphasized protectioners, computing the image of regular languages under the

ONOOSSS
OsNgosss
OSNOOSNSsS
ooosgoog
oosooog
Osgosss
\oooooog

4.2.2 Idempotence and Reversibility

4.2.3 Commutativity



HTMLEncodel v v v 0 - v 0 HTML Attribute
HTMLEncode?2 v v v 0 — v 0 | | tati text text
EMLEncodes v v v o0 , mplementation contex contex
g”:“nwdz‘ll c. o o g j 0 2 HTMLEncodel 100% 93.5%
utsource: — — — —
Outsourcada v v v o 7 v o HTMLEncode?2 100% 93.5%
Outsourced3 0 0 ’ 0 0 0 Ng HTMLEncode3 100% 935%
- - - - - - HTMLEncode4 100% 100%
Figure 11: Equivalence matrix for our implementations Out a1 100% 93 50
of HTMLEncode. A v indicates the implementations are OutzzuideQ 100(; 93'5(;
equivalent. For implementations that are not equivalent, -~ >o" 0 7
q P d Outsourced3 100% 93.5%

we show an example character that exhibits different be-

havior in the two implementations. The symloalefers  Figure 12: Percentage of XSS Cheat Sheet strings, in

to the null character. both HTML tag context and tag attribute contexts, that
are ruled out by each implementationHIMLEncode.

function defined by a Bk program is decidable. By tak-
ing the image of2* under two different Bk programs, 4.4 Checking Filters Against The Cheat Sheet

we can determine whether they output the The Cross-Site Scripting Cheat Sheet (“XSS Cheat

same set of strings. - . ;
We checked equivalence of seven different impIemen—Sheet ) is a regularly updated set of strings that trigger

tations in C# (as explained above) of tHEMLEncode JavaScnpt execution on commonly used web browsers.
L : . These strings are specially crafted to cause popular web
sanitization function. We translated all seven implemen- . ) .
. . . browsers to execute JavaScript, while evading common
tations to BEK programs by hand. First, we discovered L : .
! : sanitization functions. Once we have translated a sani-

that all seven implementations had only one state Wherﬁzer 10 a proaram in BK. because BK uses svmbolic
transformed to a symbolic finite transducer. We then prog ' y

found that all seven are neither reversible nor idempotentﬂmte state transducers, we can take a "target” string and

: determine whether there exists a string that when fed to
For example, the ampersand charaétas expanded to " .
. . S the sanitizer results in the target. In other words, we
&amp; by all seven implementations. This in turn con-

tains an ampersand that will be re-expanded on futur§2" check whether a string on the Cheat Sheet fe-a

L o e imageunder the function defined by aeR program.
applications of the sanitizer, violating idempotence. We samplecks strinas from the Cheat Sheet. The
For each BK program, we checked whether it was P g )

equivalent to the otheHTMLEncode implementations. Cheat Sheet shows snippets of HTML, but in practice a

Figure 11 shows the results. For cases where thganmzer might be run only on a substring of the snip-

. . . . pet. We focused on the case where a sanitizer is run
two implementations are not equivalentgB derived : ) . .
. : . on the HTML Attribute field, extracting sub-strings from
a counterexample string that is treated differently by

the two implementations. For example, we diSCOV_the Cheat Sheet examples that correspond to the attribute
ered thaDutsourced1 eséapes the. chara,cter while parsing context. Whil@TMLEncode should not be used

' for sanitizing data that will become part of a URL at-
Outsourced2 does not. We also found that one of the

HTMLEncode implementations does not encode the sin-mbUte’ in practice programmers may accidentally use

. HTMLEncode in this “incorrect” context. We also added
gle quote character. Because the single quote charac-

ter can close HTML contexts, failure to encode it could Some strings specifically to check the handling of HTML

) attribute parsing by our sanitizers. As a result, we ob-
cause unexpected behavior for a web developer who uses. . !
o . ained two sets of attack strings: HTML and Attribute.
this implementation. For example, a recent attack on the . . . .
For each of our implementations, for all strings in

Goqgle Anglytlcs dashboard was enabled by failure toeach set, we then asked:B whether pre-images of that
sanitize a single quote [33].

This case study shows the benefit of automatic analy-Strlng exist. Figure 12 shows what percentage of strings

. : . . : . have no pre-image under each implementation. All seven
sis of string manipulating functions to check equivalence.

i . - . : implementations correctly escape angle brackets, so no
Without BEK, obtaining this information using manual _, = ~. .
. ) it . string in the HTML set has a pre-image under any of the
inspection would be difficult, error prone, and time con-~_ .~ . .
. . sanitizers. In the case of the Attribute strings, however,
suming. With Bk, we spent roughly days total trans-

: we found that some of the implementations do not escape

lating from C# to Bk programs. Then Bk was able s . S
. . the string“&#”, potentially yielding an attack. Only one

to compute the contents of Figure 11 in less than one . i L

: . . . of our implementations ciTMLEncode made it impos-
minute, including all equivalence . : . .
and containment checks sible for all of the strings in the Attribute set from ap-
' pearing in its output. Each set of strings took betw@&gn
and39 seconds for Bk to check the entire set of strings

against a sanitizer.
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Figure 13: Self-equivalence experiment.

4.5 Scalability of Equivalence Checking 4.6

Our theoretical analysis suggests that the speed ofve
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Figure 14: Commutativity experiment.

From BEK to Other Languages

have built compilers from B< programs to com-

queries to Bk should scale quadratically in the number MONly used languages. When the time comes for deploy-
of states of the symbolic finite transducer. All sanitiz- Ment, the developer can compile to the language of her
ers we have found in “the wild,” however, have a small choice forinclusion into an application.

number of states. While this makes answering queries
about the sanitizers fast, it does not shed light on the em,
pirical performance of Bk as the number of states in- __
creases. To address this, we performed two experimenE:t
with synthetically generated symbolic finite transducers g

These transducers were specially created to exhibit somg

// orginal Bek program
ogram test0(t);
ring s;

iter(c in t)

:= false;} {

of the structure observed in real sanitizers, yet have manycase ((c == ’a’)): i

more states than observed in
practical sanitizer implementations.

b :=
b :
b :
yield

1(b) && b;
b || b;
1(b);

(c);

case (true) :

Self-equivalence experiment. We generated symbolic
finite transducers! from randomly generatedeX pro-
grams having structure similar to typical sanitizers. The
time to check equivalence of with itself is shown in

};

//

yield (°$°);

Figure 13 where the size is the number of states plug/ JavaScript translation

the number of transitions id. Although the worst case
complexity is quadratic, the actual observed complexity
for a sample size of 1,000, is linear.

Commutativity experiment. We generated symbolic
finite transducers from randomly generatedkBpro-
grams having structure similar to typical santizers. For
each symbolic finite transducek, we checked commu-
tativity with a small Bk programUpToLastDothat re-

turns a string up to the last dot character. The time to
determine thatd o UpToLastDotandUpToLastDot A
areequivalenis shown in Figure 14 where the size is the
total number of states plus the number of transitions in
A. The time to check non-equivalence was in most cases
only a few milliseconds, thus all experiments exclude the
data where the result it equivalentand only include
cases where the resultégjuivalent Although the worst ¥

function testO(t) {
" var

function ($){
var result = new Array();
for(i=0;i<$.length; i++){

s =

var ¢ = $[i];

if ((c == String.fromCharCode(97))) {
b= (1(b) && b);
b= (b |l b);
b= 1(b);

result.push(c);

}
if () {
result.push(String.fromCharCode(36)) ;
}
};

return result.join(’’);

return s(t);

case complexity is quadratic, the actual observed comfigure 15: A small example Bk program (top) and its

plexity, over a sample size of 1,000
individual cases, was near-linear.

compiled version in JavaScript (bottom). Note the use of
result.push instead of explicit array assignment.



Figure 15 shows a small example of &Bprogram  static analysis algorithm for detecting security vulnera-
and the result of its JavaScript compilation. As part ofbilities in PHP code that is also enable to handle some
the compilation, we have taken advantage of our knowl-dynamic features. In contrast, our focus is specifically
edge of properties of JavaScript to improve the speed obn sanitizers instead of on full applications; we empha-
the compiled code. For example, we push characters intsize analysis precision over scaling to large code bases.
arrays instead of creating new string objects. The result Christenseret al’s Java String Analyzer is a static
is standard JavaScript code that can be easily included ianalysis package for deriving finite automata that charac-
any web application. By adding additional compilers for terize an over-approximation of possible values for string
common languages, such as C#, we can give a developeariables in Java [13]. The focus of their work is on an-
multiple implementations of a sanitizer that are guaran-alyzing legacy Java code and on speed of analysis. In
teed to be equivalent for use in different contexts. contrast, we focus on precision of the analysis and on

constructing a specific language to capture sanitizers, as
well as on the integration with SMT solvers.
5 Related Work Our work is complementary to previous efforts in ex-
) ) ] ] ~ tending SMT solvers to understand the theory of strings.
SANER combines dynamic and static analysis to validatganp) [20] and Kaluza [31] extend the STP solver to
sanitization functions in web applications [9]. SANER pgndle equations over strings and equations with mul-
creates finite state transducers for an over-approximatiOfi1p|e variables. Rex extends the Z3 solver to handle
of _the stri_ng_s accepted by the sanitizer using static ana'r'egular expression constraints [35], while Hooimeger
ysis of existing PHP code. In contrast, our work focusesy| show how to solve subset constraints on regular lan-
on a simple language that is expressive enough to CaptuRages [17]. We in contrast show how to combine any

existing sanitizers or write new ones by hand, but theryt these solvers with finite transducers whose edges can
compile to symbolic finite state transducers that preciselygye symbolic values in any of the theories

capture the sanitization function. SANER also treats th%upported by the solver.

?ssue pfinputsthatmay be tainted by an adversary, which The work in [28] introduces the first symbolic ex-
is notin scope for our work. Our work also focuses on ef-ioysion of finite state transducers callecpredicate-

ficient ways to compose sanitizers and combine the theaugmented finite state transdug@fst). A pfst has two
ory of finite state transducers with SMT solvers, which Ry
is not treated by SANER. kinds of transitions: 1p = ¢ wherey and are char-

. . . . / i
Minamide constructs a string analyzer for PHP code acter predicates of, or 2) p ~5 q. In the first case

then uses this string analyzer to obtain context free gramthe symbolic transition corresponds to all concrete tran-
mars that are over-approximations of the HTML outputsitions p “_/b> q such thatp(a) and(b) are true, the

by a server [26]. He shows how these grammars can . . . ala

be used to find pages with invalid HTML. The method second case corresponds_m!entltytransm_onSp 4
proposed in [21] can also be applied to string analysi or aII_c_haractersL. A pfs.t IS not expressive enough f(_)r
by modeling regular string analysis problemshigher- descrlbm_g an SFT. Besides |dent|F|es, it is not possible
order multi-parameter tree transducelMTTs) where to establish functional dependencies from mp_qt to out-
strings are represented as linear trees. While HMTTs a/PUt that are needed for example to encode sanitizers such
low encodings of finite transducers, arbitrary backgrounuaSEnCOdthml' . . - .
character theories are not directly expressibly in order to A recent symbolic extension of finite transducers is

encode SFTs. Our work treats issues of composition ana;reammg transducer$]. While the theoretical expres-

state explosion for finite state transducers by leveragin lveness of the_Ianguage introduced in [.6] exceeds that
recent progress in SMT solvers, which aids us in reason®! BEK. streaming transducers are restricted to charac-

ing precisely about the transducers created by transfol€r theories that are total orders with no other operations.

mation of BEk programs and by avoiding state space ey Also, composition of streaming transducers requires an

plosion and bitblasting for large character domains suclexplicit treatment of characters. Itis an interesting fatu
as Unicode. Moreover, SMT solvers provide a methodresearch topic to investigate if there is an extension of
of extractiné concrete c’ounterexamples SFTs or a restriction of streaming transducers that allows

Wasserman and Su also perform static analysis O?fﬂment symbolic analysis techniques to be applied.

PHP code to construct a grammar capturing an over-

approximation of string values. Their application isto 6 Conclusions

SQL injection attacks, while our framework allows us to

ask questions about any sanitizer [36]. Follow-on workMuch prior work in XSS prevention assumes the correct-
combines this work with dynamic test input generation toness of sanitization functions. However, practical expe-
find attacks on full PHP web applications [37]. Dynamic rience shows writing correct sanitizers is far from triv-
analysis of PHP code, using a combination of symbolicial. This paper presentse®, a language and a compiler
and concrete execution techniques, is implemented in théor writing, analyzing string manipulation routines, and
Apollo tool [8]. The work in [39] describes a layered converting them to general-purpose languages. Our lan-



guage is expressive enough to capture real web sanitize[s]
used in ASP.NET, the Internet Explorer XSS Filter, and
the Google AutoEscape framework, which we demon-
strate by porting these sanitizers teiB

We have shown how the analyses supported by our
tool can find security-critical bugs or check that suchyg
bugs do not exist. To improve the end-user experience
when a bug is found, Bk produces a counter-example. [17]
We discover that only 28.6% of our sanitizers commute,
~79.1% are idempotent, and only 8% are reversibe. We
also demonstrate that most hand-writl@TMLEncode
. ; . ; 18]
implementations disagree on at least some inputs. Un[-
like previously published techniquesgB deals equally
well with Unicode strings without creating a state ex- 1]
plosion. Furthermore, we show that our algorithms for
equivalence checking and composition computation are
extremely fast in practice, scaling near-linearly with the
size of the symbolic finite transducer representation.
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