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Abstract—We consider a weighted proportional allocation of resesithat allows providers to discriminate us-
age of resources by users. This framework is a generalizafivell-known proportional allocation accommodating
allocation of resources proportional to weighted bids @pprtional to submitted bids but with weighted payments.

We study a competition game wheegeryone is selfishproviders choose discrimination weights aiming at
maximizing their individuakrevenueswvhile users choose their bids aiming at maximizing theimiodial payoffs.
We analyze revenue and social welfare of this game. We findhbaevenue is lower bounded ky(k+ 1) times
the revenue under standard price discrimination schemerendn set ok users is excluded. For users with linear
utility functions, we find that the social welfare is at ledgt1+ 2/4/3) of the maximum social welfare (approx.
46%) and that this bound is tight. We extend the efficiencyltés a broad class of utility functions and to multiple
competing providers. We also describe an algorithm usethdyptovider to adjust the user discrimination weights
without a prior knowledge of user utility functions and diish convergence to equilibrium points of our game.

Our results show that, in many cases, weighted proportishating achieves competitive revenue and social
welfare, despite the fact that everyone is selfish. The nresimeallows for resource constraints described by general
polyhedrons, thus accommodating a variety of resourcekjding bandwidth of communication networks, systems
of computing resources, and sponsored search ad slots.

1 Introduction

Auctions-based Resource AllocationsProvisioning of computer systems and services ugipgy-per-use pricing

has proliferated over recent years. For example, majorigeas of cloud computing services use either fixed prices
or auctions to sell compute instances. The two forms of daes their own advantages and disadvantages. While
fixed price schemes are simple to implement, in many scestirgy are not robust and not very flexible. For instance
when the users’ demands are inelastic, a small change iespeen translate to a dramatic change in the demands
that can cause congestion and system failure. Furtherrmo@der to update prices, providers usually need to
gather enough data from sales, this inflexibility can canséficiency for the systems and result in low revenues.
In recent years, using auction-based schemes for allgcatid selling resources in computing systems has become
more popular. Sales using auctions are known to be more ligesital can extract information from users faster. The
fact that both users and providers can adjust their bids amahgeters in auctions in a more dynamic way reflects
in the tremendous improvement of the system efficiency orelienue obtained by the providers. Moreover, the
disadvantages of the auction-based approaches such alffithdties for users to find optimal strategies and for
providers to change their platforms, have been greatly dmgat in recent years with availability of software that
helps users to optimize the bidding strategies and seveliakoservices offering auction platforms.

Examples of using auctions for resource allocation inckeliing of Amazon EC2 spot instances [1]; selling of
sponsored search ad sldtsadvertisers by major providers of online services anaaneuch interest widely across
engineering systems, includirgdectricity marketg26] that have been gaining momentum due to a pressing need to
accommodate renewable energy sources. Furthermore, ousnauction-based proposals for allocation of system
resources have been made such as allocation of disk I/O riaggtsystems [7] and allocation of computational
resources [4] and it was even showed that sharing of netvasdurces in the Internet by TCP connections may be
seen as an auction [13, 11].

Discriminative Schemes in Auctions-based Allocationdt is well known that in practice with fixed price schemes
providers usually apply different prices to different s selling identical goods or services. This schemepofte
called price discrimination, is very common in practiceislhot surprising that similar discriminative schemes are
also used extensively in auction-based allocations. Téreréwo main reasons for such a discriminative framework.
First, different users require different subsets of resesiowned by the provider (e.g. transmission rate for differ
paths through a network), thus, by discriminating amongsubes provider can improve the efficiency of the system.
Second, different users have different valuations of thewar of resource received (e.g. different valuation of
transmission rates); in this case, the providers once pdeirned this information can try to take advantage and
use discrimination to improve the revenue.

The most well known example of auctions using such a disoation scheme is the generalized second price
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Figure 1: Examples of polyhedron constraints: (left) sntphk, (middle) a network of links, (right) assignment
costs of a workflow to machines.

auction currently used by search engines to allocate adhisimechanism, the providers assigns different weights
to different users (advertisers) and the mechanism is raacan weighted bids.

The Framework. In this paper, we consider a class of auctions that alloagigers to discriminate among different
users. Specifically, we are interested in auctions thatiargla in terms of the information provided by users, and
are easy to describe to users. We consider two natural ceari weighted proportional allocation: (&ighted bid
auctionwhere the allocation to a user is proportional to the bid sttbohby this user weighted with a discrimination
weight that is selected by the provider, and the paymentdydser is equal to his own bid, and {@gighted payment
auctionwhere the allocation to a user is proportional the bid of tissr and the payment is equal to the weighted
bid, where the weight is selected by the provider. The weigliid auction is a novel proposal while weighted
payment auction was recently proposed by Ma et al [18].

As in the network pricing literature [20], we consider thedlecation problems in th&ull information setting.
The justification for this setting is the fact that in praetilocation auctions are run repeatedly and thus, pravider
can learn about the behavior and private information ofsis@s discussed in the beginning of this section, even
in this setting there are several advantages of using ptiopal sharing-like auctions over fixed price schemes.
Namely, both of the auctions that we consider are akin andgralagjeneralizations of well-known proportional al-
location (e.g. [13, 11, 8], see related work discussed lat#ris section). Thus, this class of mechanisms inherits
many natural properties of the traditional proportionarshg rule making ieasy and robust to implemeint prac-
tice. First, these mechanisms are simple for bidders, thgyreed to know the total of others’ bids. Second the
allocation is a natural and continuous function of the bidtee and, therefore, it can be robustly implemented in a
distributed way (as will be shown later in our paper). Froneagineering point of view, this is an important feature
of practical allocation rules. For example, when users del®are inelastic (users’ utilities are close to linear)
proportional sharing-like mechanisms are much prefewdikéd price schemes.

Another important reason that motivates us to study thesghitesl proportional rules is the fact that in settings
where providers’ goal is tonaximize revenyehe weighted proportional sharing is preferred over thaditional
proportional sharing. As will be shown later, while weightaroportional sharing always generates near-optimal
revenue, the revenue of traditional proportional sharirayipes no such guarantee, and in fact, can be arbitrarily
bad.

We study these allocation rules general convex environmentisat capture many special cases of resource
allocation problems such as the network bandwidth shasipgnsored search, and scheduling of resources in cloud
computing (see Figure 1 for an illustration). We provide el discussion of these applications in Appendix A.
We consider a provider that offers a resource to a set of Userq1,2,...,n} wheren > 1 (for the case of multiple
providers, the auctions as described in the following angiegh by each individual provider). We denote with
X=(X1,X2,...,%,) andd= (01,0, - - .,0n) the vector of allocations and payments by users, respéctiliee resource
owned by the provider is allowed to be an arbitrary infinitgilyisible resource with constraints specified by a convex
set, sayP € IR".. An allocation vector is said to bdeasibleif X € . The provider discriminates users by assigning
adiscrimination weight €> 0, for every user. Each user, submits a bidv; > 0.

Our weighted bid auction determines the allocation and gagrfor each user as follows:



WEIGHTED BID AUCTION

For user with bid w;:

Allocation X =GC; Ejz:ljiwj

Payment g =w

where discrimination weight€ are chosen such thatis feasible. We may interpret the discrimination weight
as the maximum allocation determined by the provider for usedx; is the actual allocation set to a fraction
Wi/ ¥ jeu Wj of this user-specific maximum allocation.

On the other hand, the weighted payment auction determiireealiocation and payment by each user as given
in the following:

WEIGHTED PAYMENT AUCTION

For useri with bid w;:
, A~ w
Allocation X =Cs "5

Payment g =GCw,

whereC is the maximum allocation to a user and the discriminatiorgtteC; determines the payment by user

Compared with the traditional proportional allocatione tveighted bid auction is more suitable for general
convex resource constraints. This is not the case for waigb&yment auction; while the relative allocation across
users can be arbitrary by appropriate choice of user bids,niplicit assumption of the allocation rule is that
yiX = C, i.e. the provider is required to a priori commit to allocagtia total amount of resourc@ > 0. While
this is not restrictive for allocating an infinitely diviséresource of capacit¢ > 0O, this allocation rule cannot
accommodate more general polyhedral constraints. Thukjdrpaper we will mainly focus on the weighted bid
auction but also consider some properties of the weightgthpat one as it is an alternative auction that allows for
user discrimination, though for special type of resouraestr@ints.

Questions Studied in this Paper We consider a general competitive setting with multipleviters and users
whereeveryone is selfisheach provider aims at maximizing own revenue and each user & maximizing own
payoff. Ideally, an allocation mechanism would guarantigg revenueto a provider and higlefficiencywhere by
efficiency we mean social welfare (i.e. the total utility @ss all users) compared with best possible social welfare.
In a competitive setting where everyone is selfish, it iseatinclear whether the two goals could be simultaneously
achieved. Intuitively, one would expect that selfishnesssefs and providers may well result in either poor revenue
or efficiency. For example, providers that aim at maximizimgir revenue may well have an incentive to misreport
availability of their resourcés Our main questions in this paper are:

Q1: How much revenue can a provider obtain using weighted prigraal sharing rules?

Q2: What is the efficiency loss in the complex system where eneiycelfish?

Overview of our Results Our results can be summarized in the following points:

e Revenue We show that the revenue of weighted bid auction is at lkadt+ 1) times the revenue under
standard price discrimination scheme with a sdt afers excluded, which we describe in more detail in Section 3
The comparison of the revenue of a mechanism with maximureneey obtained under another optimal pricing
scheme where some users are excluded is standard in the misectdesign literature (e.g. [9]) and our revenue
comparison result is novel and of general interest. Thetresables us to understand conditions under which the
revenue of weighted bid auction is competitive to that uriderbenchmark pricing scheme, e.g. the case of many
users.

1A famous example of such a market manipulatiorCilifornia electricity criseswhere, in 2000 and 2001, there was a shortage of
electricity because energy traders were gratuitousiyntattieir plants offline at peak demand in order to sell at highiees [27].
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o Efficiency We establish that for linear user utility functions, weaghbid auction guarantees the social welfare
of at least ¥(1+ 2/+/3) ~ 0.46 times the maximum social welfare (price of anarchy), dmel thound is tight. We
also show a tight efficiency bound of 2 for the weighed payment auctions. We extended our effigiezsult of
the weighed bid auction to a broad class of utility functione call d-utility functions, whered > 0. We show that
many utility functions found in literature aReutility functions, in many cases with < 2, and show that this class
of utility functions is closed to addition and multiplicati with a positive constant. We then show that if the utility
functions ared-utility functions, then the social welfare is at least(1+ 2/+/3+ &) times the maximum social
welfare, and establish that this guarantee holds for asystemultiple competing providers. A similar extension
for the weighted payment auction is also shown.

e Convergence and distributed algorithmd/e demonstrate how a provider can adjust discriminatioighise
in an online fashion so that allocations and payments cgevier Nash equilibrium points of the competition game
that we study. This shows that the information about uséityutiinctions needed by the provider can be estimated
from the bids submitted by users in an online fashion. Werilessa distributed iterative scheme and the estimation
needed, and prove convergence to Nash equilibrium for the ahlinear user utility functions.

Finally, we note that our results also provide insights om plerformance of systems where providers would
claim to use traditional proportional allocation but thérategically manipulate the information signaled to users
with the aim to earn higher revenue.

Related Work. The concept of allocating resources proportional to spegific weights has a long and rich history
in the context of computer systems and services. For exantpl@derlies the objective of generalized proces-
sor sharing [21, 2], sharing of bandwidth in communicati@tworks [13], has been considered for allocation of
storage [7] and compute instances [4]. Our weighted bidi@uatould be seen as a generalization of traditional
proportional allocation that allows to discriminate usansl accommodates general convex resource constraints.

Previous work primarily focused on analyzing social efficig of proportional allocation in competitive envi-
ronments where only users are assumed to be selfish. Kellg$tablished that under price taking users that submit
a single bid for a set of resources of interest (e.g. allooatif bandwidth at each link along a path of a network
connection), the proportional allocation guarantees 16€iigiency. In a subsequent work, Johari and Tsitsiklis [11]
showed that the social efficiency is at least 75% under pritieipating users and assumption that each user submits
an individual bid for each individual resource of interesf( a bid submitted for each link along a path of a network
connection). The latter result was extended by Nguyen ando$g19] for more general polyhedral constraints.
Finally, Yang and Hajek [8], in turn, showed that the worase efficiency is 0% if users are restricted to submitting
a single bid for a set of resources of interest. Our work standontrast to this line of work in that we consider a
competitive environment where everyone is selfish.

The weighted payment auction studied in this paper was ficgigsed by Ma et al [18] where they focused on
maximizing social welfare. We provide revenue and efficjeresults for weighted payment auctions in environ-
ments where everyone is selfish.

Our setting of multiple providers bears quite similaritythvihat found in the context of ISP multihoming (e.g. [6,
22,10]) and to that of multi-path congestion control, 5§, §nd may also inform about competition in time-varying
markets using the approach in [15].

Outline of the Paper. Section 2 introduces the resource competition game me@galy. Section 3 presents our
main revenue comparison result (Theorem 1). In Section 4yrnesent our results on the efficiency guarantees for
the case of a single provider and users with linear utilityctions (Theorem 2). Section 5 extends the efficiency
result to more general class of user utility functions andemgeneral setting of multiple providers (Theorem 4). We
discuss convergence to Nash equilibrium points and diggtbschemes in Section 6. In Section 7, we conclude.
Some of the proofs are presented in Appendix.

2 The Resource Allocation Game where Everyone is Selfish

We consider a system afusers competing for resources of a single provider; wedlite the setting with multiple
providers later in Section 5.1. Recall that (x1,Xo,...,X,) andd = (qi,d, . -,qn) denote the vector of allocations



and payments by users, respectively. The allocation veG®feasible only ifX € ¢ where? is a set inR}. We
assume thaf is a convex set of the for? = {X € R : AX< b} for some matrixA and a vectoib with non-
negative elements. (Note thatandb can have arbitrarily many rows, so we refer to “convex” caaists, instead
of to polyhedrons.)

Suppose that; (x;) is the utility of allocationx; to useri. Throughout this paper we assume that for evgdy(x)
is a non-negative, non-decreasing and continuously difteable concave function. The payoffs for the provider and
users are defined as follows. The payoff of the provider igktputhe revenue, i.e. the total payments received from
all usersR= ;. On the one hand, the payoff for a usés equal to the utility minus the payment, ilé.(x) —
for allocationx; and paymentg;; for useri.

The competition game that we study can be seen as the folidwinrstage Stackelberg gamia the first stage,
the provider announces the discrimination weightnd then, in the second stage, users adjust their bids ifishsel
way aiming at maximizing their individual payoffs. In thestiistage, the provider anticipates how users would react
to given discrimination weight€ and sets them in a selfish way aiming at maximizing own revehueynamic
setting, the two stages of this game would alternate over (ime discuss this in Section 6).

In the reminder of this section we characterize Nash equilib for weighted-bid and weighted-payment auc-
tion.

Equilibrium of Weighted Bid Auction . We show a relation between the revenue gain and the albocafi an
outcome. Given a discrimination weightand the sum of the bidg; wj, each userselects a bidy; that maximizes
his surplus, i.e. solves

USER: maxy; <LQ> —W. Q)
w; >0 ZJ#'WJ + W

Under the assumed behavior of users, one can analyze theelyasibbrium of the game. It turns out that a Nash
equilibrium exists and is unique, and at Nash equilibriumrdation between revenue and allocation is captured by
an implicit function.

For the provider, he would like to choose the rate to maxirtiizerevenue. We first show the following relation
between the revenue and the allocation vegtor

Lemma 1 Given discrimination weight§, there is a unique allocatiok corresponding to the unique Nash equilib-
rium. Conversely, given an allocatiof there is a weigh€ such thak is the corresponding outcome. Furthermore,
the corresponding revenug® is a function oiX given by

Z u/( X. +R ® @)
Given this result, we obtain the following optimization ptem of the provider.

PROVIDER: maximizeR(X) overX € P. 3)

In the rest of this section we provide a proof of Lemma 1.

of Lemma 1 We have

Wi
_C 4
% =GCi > W, 4)
and USER problem can be written as:
.. W,
maximizeU; (mq> —w; overw; > 0. 5)
AW i

Note that the objective function in (5) is concaveni hence, at an optimum solution eithgr= 0 or the derivative
of the objective function is zero. Setting the derivativeéoo is equivalent to:

2j#W

) Gtz e

=1, forx > 0.



It follows ’

Giw) _ R (6)
CiZj;éin Ci(R—Wi)

where recall the revenue is equal to the sum of the paymenitsdbydual users, i.eR= 3 ;wj. Combining with
w; = xR/C; that follows from (4), we have

Ui (x) =

me—aﬁ—@qu<xr~»=R @)

Now,y & =1, thus, condition (7) is exactly the condition for maximigi
3y o (1-g )
. Xi
overX € IR} and subject toy c = 1

Since ' GU/(t) (l— %) dt; is a strictly concave function with respectgothere exists a unique Nash equilibrium.
It remains to show that for an equilibrium allocatignthe revenudr is given by

Z U x. + R =1 (8)
From (7), we have
R R C R
)= e T TG D % T Ul
X U

G U/(x)x+R
Combining withy; x;/C; = 1 which follows from (4), we obtain (8). Note that all the fantas above are applied
for the case > 0 only; nevertheless, i = 0, we haveJ(x)x = 0, and therefore, the equation (8) holds for any
optimum allocation vectox.
Finally, we note that in equilibrium, the vector of discrimation weight<C and the vector of bid& are functions
of the equilibrium allocatiorx given as follows: for every,

R(%)

G = X'+U|(X.)

andw; =

Equilibrium of Weighted Payment Auction. The analysis follows similar steps as for the weighted bictian; in
this case the revenue at Nash equilibrium can be represestad explicit function of the allocation vectrGiven
a discrimination weighC;, useri solves the following surplus maximization problem:

USER: maxU; (LC> —CGiw;. 9
w; >0 ZJ#I Wj + W

Lemma 2 Given a vector of discrimination weigh@, there is a unique allocatioR corresponding to the unique

Nash equilibrium. Conversely, given an allocatignsuch thaty;x = C, there is a vecto€ of discrimination
weights such that is an outcome. Furthermore, the corresponding reven@@ iR given by

= Ul0x (1)



Proof. For the USER problem (9) we have that eithe¢r= 0 or the derivative of the objective function is zero, i.e.

2jWi— W
(3jwj)?
Combining with the allocation rule of weighted bid auctidris easy to observe that the last equality is equivalent

to

U/ (%) —C =0.

C—x

U/ (%
KN)ZﬂM

Ci.
Therefore,
Wi
2 Wi
which combined withx; = Cwi/ ¥ jw; yields the asserted revenue in the lemma. It is straightfcivio see that
givenX such thaty; x; = C, we can findC; andw; such that the condition of the Nash equilibrium is satisfiexi aa

R=7% CGwi = U/(%)(C—x)

3 Revenue

Revenue of Traditional Proportional Sharing. We demonstrate poor performance of traditional propoaiichar-

ing with respect to revenue for the example of a parking-&tvork that is a canonical example used in the context
of networking (Figure 2). The resource consists of a serigs® 1 links, each of a capacit@ > 0 (without loss

of generality we assum@& = 1). The example consists of+ 1 users; user 0 is multi-hop userthat requires a
connection through links,2, ... n while a usei is asingle-hop usethat requires a connection through linkor
i=1,2,...,n. User utility functions are assumed to tdair, i.e. fora > 0 anda # 1, we haveJ;(x) = %xl‘u,
andU;(x) = w;log(x), for a = 1, wherew; > 0 (in our example, we consider a symmetric case where 1, for

every user). The resource constraints in this examplexarexy < 1, for every linki=1,2,....n.

o[ [N )
X1 X2 Xn

Figure 2: Parking-lot example.

Under proportional sharing mechanism, user 0 submits adbidech o links while useti,i=1,2,...,n, only
bids for the linki. Using the known conditions for Nash equilibrium of the gaf@g. [11, 19]), one can show that
there is a unique equilibrium that is a solution of the foliogvproblem:

maximize_i/o)q U/(y)(1—y)dy

overx € R
subjectto +x <1,i=1,2,...,n.

Furthermore, the revenue at Nash equilibrium alloca%imthe sum of all the bids on every links. As shown in [19],
on linki, the total bid is equal to/(x)(1—X;), thus the revenue of the traditional proportional sharirghanism is
S .U/ (%) (1—x). For our example, by a straightforward calculation, onesteow that Nash equilibrium allocation

is Xp for user 0 and + xg for each user=1,2,...,n, wherexg = HT}«M) The revenue of this mechanismdé_‘%a.

For large network sizg, it is not difficult to observe that the revenue!)(;na%l). Hence, the revenue @&n) for every
fixeda > 0. The intuition behind why the revenue is low is quite cldéarjarge network size, user 0 has to compete
with many users, therefore, the payment on each link thatubér can afford is becoming smaller. Consequently,



the competition at each link is reduced. If, on the other harftked price scheme is used, the provider can charge a
unit price on each link and receive a revenue.of

The question that we investigate in this section is how meaelemue the weighted bid auction can achieve in
comparison with a best fixed price scheme (with discrimomgti We will answer this question in the remainder of
this section.

Revenue of Weighted Bid Auction We will compare the revenue of weighted bid auction with tifaa benchmark
that uses a standard fixed-price scheme [24]. In this preahgme, the provider charges user-specific prices per unit
of resource for different users. Suppgsés the price per unit of resource for us';ethen user surplus maximization
problem is maJ;(x;) — pix; overx; > 0. The solution of this problem is given by/(x;) = pi. Therefore, the revenue

of the provider iR = ; pixi = 3;U/ (X )%, and thus the optimal revenueRS = max{z, /(X)X 1 X € P}.

However, comparing with such a benchmark would be too amistbecause with auctlon based allocation the
provider cannot announce fixed prices, but instead thegece induced from the demand of users. Thus, instead,
we will compare our revenue witR* in a setting wheresome users are excludedhat is, we will compare the
revenue achieved by an auction fousers with the revenue achieved by fixed pricesferk users, for O< k < n.

We note that this is a standard way of revenue comparisoreithéory of auctions [9].

In the parking-lot example introduced above, if we considlarge enough, then the optimal revenue is of order
n, which can be achieved if the provider charges every sihgfeuser a unit price of 1 and charges the multi-hop
user a unit price ofi. Now, if we exclude an arbitrary set bk n users, then the optimal revenueis k. Therefore,
if kis much smaller compared with then one can think of this aslarge marketsituation where the effect of the
fact that a few users do not participate in the market is gezé.

Having discussed the intuition, we can now state our maialtres the revenue guarantee of weighted bid
auctions. LeR:_, be the optimal revenue under our benchmark, i.e.

R = min maxzsUi’(x.)x.

Sc{L,...,n}: [S)=n—k Xe? &
The revenue guarantee of weighted bid auctions can be statetlows.

Theorem 1 Suppose that for each i;/(k)x is a concave function. Let R be the optimum revenue of tighteei bid
allocation mechanism, then

foreveryl<k<n: R> kklR”

The revenue guarantee of the theorem above is rather stropgrticular, by taking as a benchmark the system
with just one user excluded, we obtain that the revenue unvdeghted bid auction is a factor/2 of the revenue
under standard price discrimination with one less user é&lexclusion reduced the revenue the most). Informally,
the result tells us that for systems with many users with @nadge utility functions, the revenue under weighted
bid auction would be close to the revenue under standard grgcrimination. As discussed above such a guarantee
cannot be provided by traditional proportional sharing.

Proof. ForR(X) given by (2), it is easy to observe that for evérg P,
ZU $)X — maxU (X% <RX) < ZU (10)

Suppose that for each<d k < n, there exist € P such that both of the following two conditions hold

(i) iU/ (x)x >Ry
(i) Ui(xa)xg === Uk+1(xk+1)xk+1 > -+ > Up(%n) %,

where, without loss of generality, the users are enumematel thatJ;(x1)x; > -+ > U/ (X2)X,. Under conditions
(i) and (ii), the theorem follows because

>ZU )X — maxU § (X))X]

k
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We show that such a vectg@rexists by induction ovek. Base stepk = 0. The vectoX that maximizesy; U/ (X )
overX € P satisfies both conditiondnduction step Let X € ? be a vector such that both condition (i) and condi-
tion (ii) hold for k. We then show that there exists another vectaP such that these conditions hold fo#- 1. Note
thatR;_, > R:;_(kﬂ) as allowing to exclude a larger set of users cannot incrgasg In the following, without loss
of generality, we assume that users are enumerated sudb;iixajx; > --- > U, (Xn)%n. Lety € P be an optimum
solution of the provider’s problem under our benchmarkipgscheme and the constrajt= ... = y;1 =0, i.e.
with users 12,... k+ 1 excluded. We have that Uf (yi)yi > R\ ;1)

Now, let us consider the vectd(t) defined by

V(t) =(1—1t) - (U1 (Xa)X1, - - - ,Up (%) Xn)+
+t- (Ui(Yo)ys, -, Un(¥n)yn), fort € [0,1].

Note that as increases from 0, thie+ 1 largest coordinates @(t) decrease, while all the other coordinates either
increase or do not change. Thus, there exists [0, 1] such that the largedt+ 2 coordinates ofi(t) are equal.
Furthermore, a§; U/ (x)x > R;f(kﬂ) andy;U/(yi)yi > R::—(k+1)’ we have thag; vi(t*) > R:l(ku)- Finally, since
for eachi, U/(x)x is concave, there exists a vectbe P such that(U;(z1)z,...,U.(zn)z,) = V(t*). By this, we
showed that the vect@rsatisfies conditions (i) and (ii) fdt+ 1 which completes the proof. =

Remark For the weighted payment auction, observe that the maxinewenue is given by
max< Y U/ (x)x(1—x/C):Xe R, $x=C;.
{3u 13

On the other hand, the optimal revenue under the price digwation scheme is
R'=max{ SU/(x)x:XeRY, $x=C;.
PUTEEELS:

Therefore, giverk > 1, there will be at mosit users who get at lea€/k. For other users, we have<C/(k+1),
thusU/ (x)x (1 —x /C) > @klUi'(Xi)Xi- If we chooseC; such that the outcome of the game is the allocation vettor
that maximizedR*, we can also obtain a similar revenue lower bound for the ohseighted pay auction with an

additional constraint thas, (x)x; is nondecreasing.

4 Efficiency for Linear User Utility Functions

In this section, we analyze the efficiency of the system fercdiise of single provider and linear user utility functions.
From a technical point of view, although this result is forpedal class of utilities, it provides us with basic
techniques for a more general result established in theseetion.

4.1 Efficiency of Weighted Bid Auction

We show the following theorem.

Theorem 2 Assume that the provider maximizes the revenue and for esgeh, he utility function is linear, {x) =
vix, for some yv> 0. Then, the worst-case efficiencyli§(1+2//3) (approx. 46%). Furthermore, this bound is
tight.

Remark Before proving the theorem, note that the worst-case dffigican be achieved asymptotically as the
number of users tends to infinity. One example is when we have the resourcst@nt 5;x < 1, and there is

a unique user with largest marginal utility, say this is useand all other users have identical marginal utilities
equal to(2 — \B)Zvl ~ 0.0718/;. At the Nash equilibrium, user 1 obtains.28% of the resource and the rest
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is equally shared by the remaining users. Thus, the effigitogs occurs only when there is an unbalance in the
marginal utilities by the users. One can actually show thamthere is a higher competitiveness among the users,
the efficiency increases. More precisely, we show that ifettage at leask users with the largest marginal utility,
then the efficiency is at Ieast—l%( +0(1/k). The proof of this result is Appendix C.

We first need the following lemma about theasi-concavityf the objective function optimized by the provider.
Recall thatR(X) is the function given by (2). LéR* be the optimum revenue, i.B* = max{R(X) : X P}. We note
the following fact.

Lemma 3 The set,, := {X € IR : R(X) > p} is convex, for every g [0,R"].

Proof. We want to show that
Li:={Xe R} :R(X) >}

is convex, where

ViX
2 VX +RE®) L

|
It is clear thatR(X) is a monotone increasing function in eaghtherefore ify > X, andX € £,,, then alsgy € £,,.

It is enough to see that givehandy such thatR(X) = R(Y) = p then for every other vectd on the interval
connectingX andy we haveR(Z) > p. SinceR(Z) is a monotone function in ead it is enough to prove that

z Viz >1
Viz + U

Figure 3: Convexity of the revenue.

Assumez = aX+ (1—a)y. Since the function;7%; is concave for every, we have

Viz >a ViX +(1-a ViYi ‘
Viz+H ViXi + | Viyi + 1

Summing oveir, we obtain the desired inequality.

In the remainder of this section, we prove Theorem 2.

Proof of Theorem 2 The example showing that the bound is tight is given in thearkmabove; we now prove that
the efficiency is at least/11+2/+/3).

Since for ever) € P, R(X) < R*, the two convex setsg- and? do not have common interior points. Lidtbe
a hyperplane that weakly separates these two sets. Thisdhgpe can be written as

wai =1, with y; > 0 for eachi. (11)
|

Consider the game where the provider has the feasibl®set{X € IR : T;yix < 1}, then the allocation that
maximizes the revenue ove} is the same as in the original game. Sirte Q, the optimal social welfare of the

10



Figure 4: Reduction to a simple constraint.

new game is at least the social welfare of the original ganteréfore, it is enough to prove a lower bound on the
efficiency for the class of games where the provider has thabie setQ. See Figure 4.

The observation above allows us to reduce the analysis tpl&imptimization problems. In particular, the
optimal social welfare in this new game is maxy;; the condition for Nash equilibrium, as argued above, is the
condition forX to maximizeR(X) overX € IR"} such thaty;yix; = 1, which we derive in the following. Taking the
partial derivative with respect tq on both sides in (2), withJj(x) = vix;, we have

0 ViXi

~ =0&
an IZViXi +R
o9 0 ViXj VX
0% (ViXj +R) ; axJ (vixi + R)?
Note that
0 Vvix; Ry OR VX

%) Vixj R (vjxj +R)2 9xj (Vjxj +R)?’
Thus, we have
Ry ~ OR ViXi
x+R? 0 2 (ux +RP
SinceR(X) achieves the optimum valu® over the sefX € IR") : 3;yix < 1}, we have eithek; =0 or aiXJ_R: AY;
whereA > 0 is a parameter (the Lagrange multiplier associated todhstrinty; yix < 1). It follows that

eitherx; =0
Vi/Vi A ViX (12)
or—+ % - §__— 1 —np
(i +R)2 R ,Z (Vix; +R¥)2 P

By this, we obtain a condition that at the Nash equilibriutocdtion (viziﬁe*)z are equal to a common valye> 0.
Therefore, ifv; /y; is large then the denominatowx; + R*)? needs to be large as well. At the same time, the optimal
solution of social welfare distributes all the resourceh® tiser with the highest/yi. This is the intuition for the
fact that the efficiency is bounded by a constant.

First we will scale the variables to make the equations easiéollow. We will use a new set of variables,
namelyz = yix; andg = v;/y;. One way to think about this new variables is to think of arotlame where the
resource constraint ig;z = 1 and user’s utility is gz. Without loss of generality, we assume that= max a;.

The optimal social welfare is
WopT_ max v,x| = max a.z. =a.
iYixi=1

We now introduce new variablgg i =1,2,...,n, deflned by
Yi=Vixi/(vix +R) =az/(az +R").

Because of (2), we havg, yi = 1. The goal of introducing these variables is to bound thax@tsocial welfare and
the social welfare of a Nash equilibrium as functiongioNow, fromy;, = &z /(az + R"), we have

Y andz =R Y

S = LA -
4z 1-y a(l-y)

11



Next, we are going to bound the social welfare of a Nash dayitilin and the optimal solution.
The social welfare at the Nash equilibrium, which we densi&gsn, can be bounded using the relations above
as follows

WhasH = ) aiz ZR*Z—i

> R*

(13)

The above inequality uses the fact t% >yiandy;yi = 1.
On the other hand, the optimal social welfare, as arguedegli®v

Wopt = Mmaxa; = a;.
|

To bounda; as a function ofy;, we multiply a; with 5z, which is 1, and use the relation betwegandy; to have
Wopt as a function ofy;. Specifically,

WopT= a1 =&y (ZZ) :alR*Zﬁ' (14)

Now, we use the condition for Nash equilibrium. (Note thas ik the only place in the proof that uses (12).) First
we rewrite the condition for the variablesanda;. Replacings; = vi/yi andvix = &z = R*l%‘yi in to the condition
for Nash equilibrium (12), we can derive

a(1—y)?

eithery; = 0 or o,

=p>0.
From this condition, we hava (1—v;)? = a;(1—y1)?> whenevely,y; > 0, henceg (1—y;) = al(llf}’l)z Replacing
this equality in the optimal social welfare (14), we have

i R*
Worr=aiR 3 2ty = (- yar LY

< Gy <y1<1—y1>+_;yi>.

The last inequality uses the fact thatl —y;) <y;. Using this and replacing;-,y; = 1—yi1, we obtain

R* 1-y?
Wopt < ———— (a(1—y1) +1—y1) = R'-——1_.
OPT = (1_y1)2(Y1( y1) y1) 1—_y)?

(15)

From (13) and (15), we have the following lower bound for tifeency

V\4\JASH>)’§—Y1+1
Wopt = y1+1

By a simple calculus, one can show that the right-hand sie lisast ¥(1+ 2/+/3), which is what we needed to
prove. [
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4.2 Efficiency of Weighted Payment Auction

For weighted payment auction, we establish the followirsyite

Theorem 3 Assuming that the provider maximizes the revenue, theegitigiis bounded by 1/2 for weighted pay-
ment auction, and this bound is tight.

Proof. The revenud(X) at the Nash equilibrium allocatighof the weighted payment auction is given by Lemma 2.
Therefore R(x) is maximized over € IR} subject to the constrairgt; x; = C, when

d (Ui (1= X0 — :
ax (Ui ()% (1— E)) = A > 0 whenever; > 0.

In the case of linear utility functions); (x;) = viX;, this means

Vi (1— 22) = A > 0 whenevek; > 0.

We assume that; > v, > --- > v,,. From the condition above, one has:

. A X1
if X, > 0, thenvy; _1_72% >)\_Vl(l_26)'

Therefore, the social welfare at Nash equilibrium alloma is 5 vix;, and is at least

V1X1 + V1 (l— 2%) <i_ixi> =ViX1+Vq (1— 2%) (C—xq).

By a straightforward calculation, one can see that compartitthe optimal social welfare, which Bv;, the value
above is at least 1/2 of the optimal social welfare.
1

The bound can be achieved, for example Mfor= 1 andv, = v3 = --- = v, = = asn goes to infinity.

5 Extension to Multiple Providers and General User Utilities

In this section, we will extend the efficiency result of theyious section to the case of multiple competing providers
and a broad class of utility functions. Our main result irsthéction shows a surprising fact that even in complex
competitive environments, the efficiency can be bounded dnnatant independent of the number of providers and
users (Theorem 4). We first define the framework for multiptevjglers.

5.1 Multiple Providers

In a system of multiple competing providers, each providiercates resources according to the weighted propor-
tional allocation. We assume that each providdras constraints specified by a convex Bethat is allowed to
be different from one provider to another. We assume thdt eaer can receive resources from any provider and
is concerned only with the total allocation received ovépedviders. Note that both of these assumptions can be
relaxed, as we can encode some constraints in the conve.séte will use the following notation. Le¢ denote
the allocation to usdrby providerk. For each useir the utility of an allocationx¢, k=1,...,m) is Uj(3, X). Let
% = 3 X denote the total allocation to usesver all providers. We denote wit ¥ = x;, — XX the total allocation to
useri over all providers except providér See Fig. 5 for an illustration.

LetX= (x}‘, i=1...,n, k=1...,m) be an allocation under weighted proportional sharing meisha It is
analog to the argument in Section 2 that gi%eeach providek can find the Weightséc'f,c'g, ...,CK) such thai is
the equilibrium of the weighted proportional sharing in thaltiple providers’ setting. In this setting the payment
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Figure 5: The setting of multiple providers competing ineoiffig resources to users.

of useri to providerk is wk, and the user’s goal is to maximizi(y, X) — 5, WK, wherext = Ckwk/ 5wk, The
providerk, on the other hand, obtains the revefigwhich satisfies the following

k UI/(Xlik—i_Xlk)Xlk -1 (16)
F—K Kk L pk
2016 A R
In order to gain some intuition, note that if for every;(x) is a concave function, tham’(xi‘ker,k) decreases
with x(k. From this, we can see that the marginal utility for a usehwitproviderk decreases if the user already
received allocations from other providers. As a resultyigler k may extract smaller revenue due to competition
with other providers. With this in mind, we now define an eidpuilm in the case of multiple providers.

Definition 1 We callx an equilibrium allocation if for every k, the allocationater % = (X, ..., xk) maximizes R
given by (16) over the sé&,.

We note that in the multiple providers setting, we can thihkhe game as the providéfs strategy set i¥. The
discrimination weights and the revenue then can be catmlilatcording to the allocation vectéof all providers.
With these discrimination weights, under users’ selfishalvedr X will be an outcome of the game. From the
providers’ perspective, an equilibrium allocation is do@dtionX where no provider has an incentive to unilaterally
change its allocation vector. Note that when there is onky provider, this game is the same as the two-stage
Stackelberg game considered in Section 2.

5.2 A Class of Utility Functions
We introduce a class of utility functions defined as follows.

Definition 2 Let U(x) be a non-negative, increasing, and concave utility fumcéad let ¥ > 0 be the value max-
imizing U'(x)x. We call Ux), &-utility, if, in addition, the following two conditions hal (i) U’(x)x is a concave
function over|0,%o], and (i) there exist® € [0, ), such that, for every & [0,Xo],

U(b) - [U'()a]'b < 8U (a)
where b is such that Ub) = [U’(a)a]’ =U’(a) +U"(a)a> 0.

In Figure 6, we show geometric interpretations of the lattfinition.

While the definition may appear somewhat technical, in fiatias strong connections with the theory of third-
degree price discrimination [24], which we discuss in ApfierD. Furthermore, the class accommodates many
utility functions commonly considered in literature. Sifieally, we can show that a linear function or a truncated
linear function is O-utility, a polynomidl (x) = (c+x)® for ¢ > 0 is a3-utility for any 0 < a < 1, or a logarithmic
function is a 2-utility; we provide a detailed list and predh Appendix E. We briefly comment that truncated
linear utility functions or logarithmic functions were cfidered representative of real-time traffic requirements
in communication networks [23], concave marginal utiitiere considered in [20], polynomial utility functions
were used in many models of economics [2d}fair utility functions [14] were widely used in the conteat
communication network resource sharing and a class dfytilnctions that characterize TCP-like connections [12].
Finally, we note the following result whose proof is avai@aBppendix B.1.
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Figure 6:V£v < d where (left)L andW are lengths of the line segments and (right} the shaded and/ is the hatched area.

Lemma 4 If f and g ared-utilities, then so are: ef, for ¢c > 0; truncation of f with a positive number; and+g.

As a consequence, every polynomial of the farnax™ wherea; > 0 and 0< a; < 1 is a3-utility function.

5.3 Efficiency Bound

We now state and prove our main theorem on the efficiency afhvted bid auctions.

Theorem 4 Assume that for every user i and every &, U/(x+ a)x is a continuous and concave function. Then,
there exists an equilibrium in the case of multiple provideefined as above. Furthermore {&H-x) are &-utilities,
then the efficiency at any equilibrium is at leagt1+2/1/3+9).

Note that when the utility functions are linear, i.@~= 0, we have Theorem 2 as a special case. The result of
Theorem 4 is rather surprising as it is not a priori clear that complex system where both users and providers aim
at selfishly maximizing their individual payoffs (objeatis which often conflict each other), the efficiency would be
bounded by a constant that is independent of the number of ase the number of providers.

Before going into the proof of Theorem 4 provided below, wiefty describe the main ideas. The key idea of the
proof is to bound the social welfare of the system, which israglicated optimization problem over the Minkowski
sum of the set®, where the resource s@k of the providerk can be different. If the utility functions are linear,
then this optimization problem can Iseparatedinto a collection of optimization problems over each $gtand
the optimal value is the sum of these optimal values. Usiigjidiea, we will bound the utility function by an affine
function that is a tangent to the concave utility at the pdifined by the value at the Nash equilibrium. This idea is
illustrated in Figure 7. It will be shown that because of theperty ofd-utilities, the valueg; in the figure is at most
3U; (), which will be a key inequality of the prodt.

Figure 7: The key bounding &;(x) with the affine functionV;(x) such that/(y;) = U/(x) + U/ (%) maxx¢ and
Vityi) = Ui(yi).-

2We note that our proof technique is rather general and thahias result for weighted payment auctions can also beinbthusing
this framework. However, we omit to provide details as owufis on weighted bid auctions that allow for much more ganesource
constraints.
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Proof. The proof for the first part of the theorem about the existeri@eNash equilibrium uses standard fixed point
theorem argument. A formal proof is given in Appendix refdigp

For the second part, the key idea of the proof is to bound thialseelfare by an affine function which allows
separating the maximization ovet,...,X") € 3 % to maximizations over the se#, wherey, A = {Z1 +--- +
7" X e B, k=1,...,m}is the Minkowski sum of the setg. Once the optimization problem is separated, we can
use a similar bound as in Section 4 ( see Lemma 5 below) as algirt® to prove the theorem. Now, let

VE=U/ (%) +U/" ()X, for eachi, andv; = mkinvf(.

Since for every, U;(x) is a concave function)/’(x) is non-positive, and thus,

vi=U{(x) +U/"(x )(maxxi) U () + U (%)

The last inequality is because of the fact 3, xX.

Now, let us defind/(x) = a + vix whereg; is chosen so thaf;(x) is a tangent tdJ;(x). Lety; be the point at
which the function®/;(x) andU;(x) intersect. We will us&i(x) as an upper bound &f;(x) for everyx > 0. We have
a =Ui(yi) — (U (x) + U/ (x)x)yi. By the definition ofd-utility functions,a < dU;(x;).

Therefore,

> a <8y Ui(x). (17)
| |
SinceU;(x) is a non-negative concave function, we hayex) < V;(x). Hence,

max Y Ui(z) < maxZVi(z.)

Ze5k B4 O
= 8+ max » viz
T Zey B 7
= i max» Vjz. 18
Za'JFZ?e?kZ iZ; (18)

The last is the key inequality as it enables us to use the ffiatyiz; are linear functions, therefore, instead of
considering the maximization over the gt we can bound; vz over eachr.

By similar arguments as in the proof of Theorem 2, we can ptioedollowing lemma whose proof is provided
in Appendix B.3.

Lemma5 For ever k,

AW 1 -
> U/ ()X > HZ/\@ggngIZVFZ.. (19)

|
We now use this lemma to prove our main result. On the one hfing, sum the left-hand side of (19) over &ll

we have
ZU X< —ZU X|<ZU (20)

where the last inequality is true becaliiéx) is a non-negative and concave function for evei®n the other hand,
if we sum the right-hand side of (19) over &Jlwe obtain

maxy viz (21)

Zl+2/\/§ = ZVFZ' - 1"‘2/\/_;26% ,

where in the last inequality¥ are replaced by;, which recall is equal to mjnv .
Combining (19)—(21), we derive

ZU(ML 1+2/fzz£kx Viz
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= (1+ 2/\/5 Z max vI (22)
Finally, from (17), (18) and (22), we have
max Y Ui(z) < (3+1+2/v3) Y Ui(x)

Zey K 4

which establishes the asserted result. n

6 Convergence and Distributed Algorithms

In this section we demonstrate how a provider may adjust diserimination weights by an iterative algorithm
whose limit points are Nash equilibrium points of the reseurompetition game that we studied in earlier sections.
We focus on weighted bid auctions but note that similar typanalysis can be carried out for weighted payment
auctions. Our aim in this section is to show how such iteeadilgorithms can be designed in principle.

One of the main ideas is to relax polyhedron constraints tpdiuicing apenaltyfunction P(X) that is chosen
so that to confine the allocation vectomithin the feasible set specified by our polyhedron constsahx < b.
Intuitively, function P(X) would be chosen to assume small values for every feasildeadibn vectorX that is
sufficiently away from the boundary of the feasible set andldigrow large as the allocation vectapproaches the
boundary of the feasible set. We assume B(&) is continuously differentiable and convex function. Sfeally,
we assume that for a collection of functios one for each of the constraints, we have

]
Indeed, ifR is continuously differentiable and convex function forsMe then so ig2. We define/ (X) = R(X) — P(X)
whereR(X) is the revenue given by (2). The provider’s problem is re@efito

PROVIDER': maximizeV (X) overX € IR'}..

In the remainder of this section, we first show how the pravideuld adjust discrimination weights assuming
that the provider knows user utility functions and estdblisnvergence to the Nash equilibrium points in this case.
This provides a baseline dynamics that we then approximatillbws. We consider a provider who a priori
does not know user utility functions but estimates the néddéormation in an online fashion while adjusting
the discrimination weights. The main idea here is to use gnnaent based oseparation of timescaleshere
discrimination weights are adjusted by the provider at wetdimescale in comparison with the rate at which bids
are received from users, allowing the provider to estimateieeded information about the user utility functions for
every given set of discrimination weights. We will formudaterative algorithms as dynamical systems in continuous
time as this is standard in previous work, e.g. [13], andatlily suggests practical distributed algorithms.

User Utility Functions a Priori Known . Suppose that user utility functions are a priori known by piovider
(this may be the case if profiles of users are known to the geove.g. from the history of previous interactions).
The provider announces discrimination weigﬁ(ﬂ;) at every time > 0 that are adjusted as follows. The provider
computes the allocation vectgft) according to the following system of ordinary differentegjuations, for some

a >0,

%x'()—o(x'()(;V(X(t)), i=12,...,n (23)

For every timet > 0, the provider announces to users the discrimination vme@(t) where the discrimination
weight for useii is:

R(X(t))
U/ (xi(t))

3Note that it is beyond the scope of this paper to fully spesifine of the implementation details such as online estimafithe elasticity
of user utility functions and address the stability in presseof feedback delays.

Gi(t) =x(t) +
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Notice that the right-hand side in the system (23) requiresmedge of the gradient of the revenue functi(X),
which is given by

0 - IO
ax = O T+ R )
where R(%
ox) = U(-/(X)J')XJ

2 U7 % +RE)?

The convergence to optimal solution of PROVIDER’ is showethe following result.

Theorem 5 Suppose that for every user i; )x is continuously differentiable and concave function drat £(X)
is a strictly convex function. Then, every trajectdyjt), t > 0) of the system (23) converges to a unique maximizer
of the function \(X).

The proof is based on standard application of Lyapunov Isatiieorem and is thus omitted here. It amounts
to showing that the functiow is a Lyapunov function for the system (23) that increasesgtvery trajectoryk(t),
thus implying convergence to the unique maximizeY of

User Utility Functions a Priori Unknown . We now discuss how the user discrimination weights woulddjested
by a provider who does not a priori know the user utility fuoes. The key idea is to usesaparation of timescales
the provider adjusts the discrimination weights at a slaimeescale than the timescale at which bids are adjusted by
users. Informally speaking, this allows the provider toaif for every fixed set of discrimination weights, users
adjust their bids instantly to Nash equilibrium bids.
From (6) and the allocation rulg = Ciw;/ ¥ ; w; one readily observes that the following identities hold ashl
equilibrium:
U/00% = R andUf )% + R= =
00X = g AndUT06)X + R= o=

whereR = ¥ ; wj. Using these identities, we observe that the gradient in¢ad be expressed as follows

| i N 2 UM (%)X
0 RSB E-R) TR .
% Ry .
% ZJ R R

Notice that the gradient is fully expressed as a functiomefiector of user bid® except for the term that involves
the second derivative of the user utility function. For tase of linear user utility functions, we hau¢ (x;) = 0 for
everyi, and thus, in this case the gradient of the reveR(® is fully described by the vector of bidg.
In general, we assume that at every titrie 0, the provider sets the user discrimination weight for uszs
follows
R(W(t))
Wi (t)

For the case of linear utility functior¥(t) is assumed to evolve according to the following system ofnairy
differential equations, for sonee > 0, and every =1,2,...,n,

d

Gi(t) = % (t).

g8 (O = alvi(wi(t), RW(t))) —x (1) pi(X(t)] (26)
where
B T Yeu.y

pi(X) = Zal,i



In general, each useélis assumed to adjusts its bid(t) using the following natural dynamics for solving his
USER problem:

Wi(t)
d Wi
W (0) = U 06(0))% (£) — RO()) — (27)
1= rway

The following result establishes convergence for the cddaear user utility functions, which are a priori
unknown by the provider.

Theorem 6 Suppose that user utility functions are linear. For everffisiently smalla > 0, the allocation vector
under system (26)-(27) approximates that of the systemw@3)an approximation error diminishing witt.

We note that this proof is based on applying theeraging theoryof non-linear dynamical systems [16]. It
establishes global asymptotic stability of the system {@rjhe allocation vectok(t) fixed to an arbitrary feasible
allocation vecto for everyt > 0, which is of independent interest as it applies also forliogar utility functions.

Proof. We first assume that(t) is fixed to an arbitrary feasible allocatiof) for everyt > 0, and then establish
global asymptotic stability of the system (27), i.e. thatmtrajectoryw(t) converges to a unique limit point. Let
us use the notatioa = U/ (x)x;, for everyi. LetL : IR — IR be the function defined as follows

< | — - Wi
Z og(w;) —log lej ;j.

We show that for every trajectomy(t) of the system (27), we havgL (W(t)) > 0, for everyt > 0. Indeed,

2
. . Wi
—Lw w a————
S Ea( T m)( 1—rw;wj>

which is non-negative for every € IR}. Now, for the system (27) there exists (a positive invariset) S that is
compact and such thatif(0) € S thenw(t) € S for everyt > 0. For example, it is not difficult to establish that one
such set isS= [0,w]", wherew = max{max{v;,w;(0)}}. By LaSalle’s theorenfe.g. Theorem 4.4 [16]) we have
that every solution(t) started inS converges to the maximizer of the functibw), which is unique and given by
w; = Ra/(a + R) whereRis such thaty; a;/(a; + R) = 1.

Having established the above convergence, it is not difftoubbserve that for every

. 0
tim 3 [ 100 - xR ®Idt=x V()

and 1 T 0
?/O U(t) =P (R)]dt—x 3V (%)

whereu;(t) := vi(w;(t),R(W(t))) andc is a strictly decreasing, continuous, and bounded fundtiahconverges to
zero asT goes to infinity.

Finally, letX(t), fort > 0, be the solution of the systefd/dt)X(t) = %(t) 4V (X(t)). Then, by theaveraging
theoremTheorem 10.5 [16], we have thatXfat) is within the domain for every & t < b/a andX(0) — x(0) €

<c(T)

O(c(a)), then for every sufficiently smath > 0, we havex(t) — x(at) = a)), for every 0<t < b/a This
shows that the solution of the averaged dynamics of the rsy(été) 27) approxmates that of the system (23) and
completes the proof. =

Same approach applies more generally for non-linear usity fiinctions but one would need to use an online
estimator of the second derivative of the utility function(R5) from the observed bids submitted by userism

4Notice that the need to infer these second derivatives ofititiey functions is not an artifact of the auction schematttve use, but is
intrinsic to any revenue maximization problem.
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Figure 8: Convergence to equilibrium points for the parKioigexample: (Left) a priori known utility functions and

(Right) a priori unknown utility functions.
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Figure 9: Another example for the convergence to equilirpoints for the parking-lot: (Left) a priori known utility
functions and (Right) a priori unknown utility functions.

principle, this can be done by observing the effect of pbitg the allocation for a user on the bid submitted by
this user, which we briefly discuss in the following. From &)d the allocation rules = Giw;/ ¥ ;wj, we have
U/(x) = %% /(1— ). Taking the derivative with respect i@ we obtain

Plugging this in (25), we have

L R i(ﬂ)
0 3R(A-R)-R(A-F) xRS

Therefore, the gradient of the revenue can be fully expcesséerms of the bidsv and the termgd/dx)(w;/R),
which can be estimated in an online fashion by perturbingtlogation of user and observing the resulting change
of wj /R.
Parking-Lot Example. We demonstrate convergence of the iterative scheme 229 ))¢r the example of parking-
lot network which we introduced in Section 3 (Figure 2). REkttwat the resource consists of> 1 links, each of
capacity 1, with a multi-hop user 0 with allocatigg at each link and a single-hop user with allocatigrat each
link i. User utility functions are assumed to be linegfx) = vix, for x > 0, wherev; = vy, fori=1,2,...,n, and
Vo, V1 > 0.

The Nash equilibrium allocation and the corresponding maeeare specified in the following lemma whose
proof is simple and thus omitted.
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Lemma6 Letn = % z—é For the parking-lot scenario, the Nash equilibrium alléica is 1 — x; for userO and
x; for each user = 1,2,...,n, where
1
D=t forn<1/2 ' (28)
1, forn>1/2

The revenue at the Nash equilibrium is given by

R= W{n)(”— v, forn<1/2
(N—1)vy, forn>1/2.

We note that the Nash equilibrium allocation to a single-begr is increasing with the ratio of the valuations
V1 /Vo, from 1/2 for vy /vo = 0 to 1 forvy /vo = n/(n— 1)2 and beyond this at each link the single-hop user is allocated
the entire link capacity.

In the remainder of this section we illustrate convergermeto particular cases. In either case we consider
the case witm = 5 links and linear utility functions specified gy =5 andv; =v, = --- = v, = 1. The link cost

functions are defined as
/ 0, 0<x<po,
P(x) = (1 1 \P

i_l_po) ) pO<X§1

wherep > 0 and in particular we usp = 2 andpy = 0.8. We show results for initial allocatioR(0) such that
X1(0) = %2(0) = --- = Xy(0), so that due to symmetn (t) = Xx(t) = - - - = Xn(t), for everyt > 0. This simplifies the
exposition. Indeed, we validated convergence for varidherdnitial values other choices of other parameters but
for space reasons confine to the above asserted setting.

We first demonstrate convergence for a closed system witled §igt of users. In Figure 8 we show trajectories
for the allocationg(t) andxy (t) for both a priori known utility functions (left) and a priaunknown utility functions
(right), with o set to 01. The results indeed validate convergence to the Nashileguih allocation, which are
indicated with dashed lines. Our other example consists @ipgen system where at a specific tipe> 0 a single-
hop user departs the system and then another such usesatrtiret, > t;. In particular, we use the valugs= 30,

t, =70, anda = 0.8. Figure 8 well validates convergence to the Nash equilibrallocation in this case.

7 Conclusion

We considered a simple mechanism for allocation of a regomnmed by a provider to users that allows for discrim-
ination of users and general resource constraints spetifiesbnvex polyhedrons, thus allowing for provisioning
of a variety of systems and services. We showed that in a ditmpdramework where everyone is selfish, in a
wide set of cases, the mechanism guarantees nearly opéweaue to the provider and competitive social efficiency
(including a setting with multiple providers). Besides lgs& of equilibrium points of the underlying competition
game, we also showed how one would design an iterative #igothat converges to the equilibrium points.

The work suggests several interesting directions for &utasearch. First, it would be of interest to study revenue
and efficiency properties for classes of user utility fumes that are not accommodated by our framework, e.g.
other tham-utility functions. Second, it would also be of interest torge a more in-depth analysis of convergence
properties of the algorithms in this paper; in particulbwauld be of interest to consider implementation detail$ an
address the stability properties of the underlying schemes
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A Applications of General Polyhedral Environments

We explain some applications of the resource allocatioblpro with general polyhedral constraints.

Network bandwidth sharing

The most natural example is the bandwidth sharing game,endamh provider owns a network of capacitated links,
each user is sending traffic along a path andx; is the data transfer rate for usein this case we have a resource
constraint associated to each lieky;...p Xi < Ce Wherece is the capacity of linle.

Keyword auctions

The general convex constraints can also capture a genedslmbkeyword auctions. The auction is for a single
keyword, and there ameadvertisers bidding to have their ad appear as a sponsaechgesult. There are finite set
of outcomes, depending on which bidder gets displayed ichvyhosition. We describe each of these outcomesias a
dimensional vector whose coordinates are the expected enuphblick that the corresponding advertiser gets. More
precisely, le§, ...,y be all the possible outcome vectors, ghe= (&, ..., ¥K), wherexX is the expected number of
clicks that advertiseirreceives at outcomie To think of keyword auctions as a convex resource allonatie need

to allow randomization in the allocation of bidders to pisis. Choosing between the deterministic allocations by
the probability distributiorp = (py, ..., pn), We have thay ; p;¥! is the vector whose coordinates correspond to the
expected number of clicks of an advertiser. Now the set oéetgul allocation vectors obtained this way is exactly
the convex hulconyy*,... . YN) = {X: X =3 p;y’, pj € [0, 1] for everyj and 3 ; p; = 1}.

In this model, we will assume a natural condition on the exdbkties of the click-through rates: if we remove
an ad from a position (by simply showing one fewer ad), theeetgrd number of clicks received by the remaining
ads does not decrease. Under this assumption, it is not biaektthat the set of all possible randomized allocation
vectors, that is the convex hudbnyy?,...,¥V), can be written as a polyhedron, which is exactly the comstcd
the problem considered in this paper.

Traditional keyword auctions use an assignment of ads titigas (ordering) that depends on the bids times an
individual weight, and do not use randomization [17, 3].tRermore, the most commonly used framework does not
capture the externalities among ads. Our description obtlhieomes associates an arbitrary honnegative vector of
click-through rates with each selection of bidders alleddb a positions. Therefore, this allows us to model the most
general type of externalities between the ads shown. Eadites in keyword auctions are natural and important,
for example, the valuation of a bidder for being, say, in posi2 depends on what ad is showed in position 1. For
example, NKE in position 1 makes position 2 less valuable $meakerscompared to having an unknown brand
name in position 1.
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To compete the description of the application in sponsoeadch auctions, we now give a formal definition and
a proof about the externalities among advertisers in thiicgions.

We say that the a resource allocation problem with a feasitlef allocation? in IR, satisfies th@ssumption
of non-positive externalitiei for any allocationX € P, and any coordinatk, there is an allocatioR € ? such that
(1) x, =0, and (2)x = 0 impliesx| = 0, andx > x; for all i # k.

Claim 1 The convex hull of some non-negative vecidrs. .,y that satisfy the assumption of non-positive exter-
nalities can be written a$xX € IR" : Ax < b}, for some matrix A and vectdr.

Proof. Let C be the convex hull of?,...,yN. We will show that if these vectors satisfy the assumptiomari-
positive externalities, then for a vect@ire C, and any vectov such that 6< V < w s also inC. With this property,
it is not difficult to see from basic convex geometry that teeCscan be written as a polyhedron.

We prove this property by induction on the number of non-zmvordinates of#. The claim is trivial when
w; = O for everyi. Consider a vectol € C. The seC is the convex hull of*, ..., §N, hence there exist non-negative
real numbersxy,...,ay such thaty;a; = 1, andw = 5 aix. Letk be the coordinate that minimizes the ratigw;
for w; # 0, and leth denote this ratio. By definitiory < 1, and thus ifA = 1, there is nothing to prove. We use the
definition of non-positive externalities for eaghto obtain a vecto? e C with zL =0, and lew =5; a;Z. Consider
the vecto\w+ (1— AW € C. By definition ofA, we have the following facts

e W eC;

e W has more zero coordinates tharfnamely thekth coordinate);

e thekth coordinate oAW+ (1 —A)W is equal tov;

o AW+ (1—A)W >V (asw; > w; for all coordinatesj # K);

e AW < V which follows asA was the minimum ratio mjwv; /w;.
The last two properties guarantee that there is a vectoR’0< W such that\w-+ (1 —A)V = V. Now, we use the
induction hypothesis t@/ € C and 0< V < W to show that/ € C, and hencey = AW+ (1—A\)W € C. m
Scheduling jobs in data centers

This is a problem of allocating data center resources tcsuserthis application, typically each user needs to finish
a job which requires reading many different blocks of dat@s& machines in a data center. Dﬂtbe the amount

of data of typej that jobi needs to process. The utility function of each jadrelated to its finishing timg, which

is the maximum processing time of the job across all typesatsd that it requests. Equivalently, one can model that
each jobi tries to maximize the utilityJ; (%), wherex; = 1/t;. In other wordsy; is the minimum among)iJ /q‘,
wheres/ is the speed that jobcan process data of tyge Typically, data centers are complex systems consisting
of many clusters of machines and data has many copies abestusters. The constraints ghare complex, but

in many cases it can be captured by convex constraints. fbinerehe allocation vectax can also be captured by
convex constraints. In this example, it is unrealistic teige a mechanism that requires every job to know exactly
the complex constraints ofi Simple mechanisms are crucial in these applications.

B Missing Proofs

B.1 Proof of Lemma 4

Items (i) and (ii) are straightforward to show. In the foliog, we show item (iii).
Leth= f +g. Givena > 0, letb > 0 be such that

[ (a)a)’ = H (b). (29)
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We need to show that

which corresponds to

f(b) — f'(b)b+g(b) — g (b)b < &(f(a) +g(a)). (30)

Let b; andb, be such that
[(f'(@a’ = f'(b) (31)
g(@d" = d(b) (32)

and, without loss of generality, assuilme< b,.
Sincef andg ared-utilities, the following two relations hold

f(b]_) — f/(bl)bl < 6f(a)
g(bz) —g(b)b, < &g(a).
Hence,
f(by) — f'(by)by +g(b2) — g'(b2)bp < 8(f(a) +9(a)). (33)
In view of (30) and (33), it suffices to show that
f(b) — f'(b)b+g(b) — g (b)b < f(by) — f'(by)by +g(b2) — g (b2) 2. (34)

Note thath'(a)a)’ = [f'(a)a)’ + [d (a)a)’. Combining with (29), (31), and (32), we observe
f'(b1) +d (b2) = f'(b) +d (b).
Using this identity it is not difficult to conclude thhi < b < b, and that we can rewrite (34) as
f(b) — f'(by)b+g(b) — g'(b)b < f (1) — f'(b1)by + g(b2) — g (b2)b2.
The latter inequality indeed holds if the following two inggities hold

(by)(b—by)

fb)— f(by) < f'
g'(b2)(b2 —b)

g(b2) —g(b)

but the latter two inequalities are indeed truédas< b < b, and bothf andg are concave functions.

<
>

B.2 Proof of the first part of Theorem 4

For both price taking users and price anticipating usersashNequilibrium is determined by a set of allocation
vectors(XL, ..., X™) € P, x --- x P, Consider the conventional best-response function

F:Pix  XPn—Prx X Pn

such that(y*,...,y™") = F(x%,...,X™), whereyX is the allocation vector that maximizes the revenue for joenk,
assuming other providers do not change their allocatioftss Mapping is continuous and thus by the fixed-point
theorem, there exists an allocation vector where no prowaan increase his revenue by changing the allocation
vectorx¥, which is a Nash equilibrium.
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B.3 Proof of Lemma 5

By similar argument as in the proof of Theorem 2, we can assbatehe convex sef is of the form

wa}‘ = 1, with y; > 0 for eachi,
|

and we can derive the condition, for sompe- 0,

either;, = 0
B 1 L . )
U/OOX+RZ (oo +R)Z
Let us use the following notation, for each uger
v U’( )>9
a=— and = '7 36
Without loss of generality, we assume that> a, > --- > a,. From(36), we have
U = RS T > R . _
IZ i (%)% .Zl_Yi 1 Y1 Ezy.
-y1+1
Rk< - ):R‘L n 37
iy, (1-y1) 1oy, (37)

while

maxz vz = maxa, = ay.
ze P i

It is straightforward to observe that the following hold&x)xk = Rk Y Therefore, for every,

R W
U/(x)1-yi

yix =R

However,

Therefore, we have
g Y oLy

=R —.
Y% U/(x)1-yi = al-y
Thus, y
— Dy <Ry —
a al(lzZ')\ﬁXi <aR Zai(l—Yi)
We also have
eithery; = 0 or M =p>0. (38)

(R)?
From the latter, the analysis follows the same steps as iprtbedf of Theorem 2, which yields the result

AW 1 -
2 Vit = 1+2/\@22%XZVFZ'
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C Efficiency in Competitive Environments

Lemma 7 Admit same setting as in Theorem 2 and, in addition, assuatddahat least k users;v= max; v;. Then,
the efficiency is at leadt— 4 + o(1/k).

Proof. Following the same steps as in the proof of Theorem 2, we lheatétte social welfare at the Nash equilibrium

is at least c
y
— 4+ (1-k
1_y+( y)

and the maximum social welfare is at most

Ty =Y +1-ky

for some 0<y < 1/k. It follows that the efficiency is at least

_ 2-y
W) = (1) (1 s 1)
for some 0<y < 1/k. It remains only to establish that

1
inf  f(y)=1— = 1/k).
nt () =1+ 0(1/k)

This follows by noting that for a minimizey, f,(y) = 0, which is equivalent to
5 2 1 2
A <2+E>y_ﬁ = 0.

Sincey < 1/k, we neglect the terry* as it is of smaller order than other terms, which amounts ldrepa quadratic
equation whose solution i, 1/k] is given by

1 1 6 1
It readily follows thaty = %( +0(1/k) and plugging intofy(y) yields the asserted claim. [

D Relations with Other Concepts of Utilities

Relation to the efficiency of monopoly pricing. The dependency of the efficiency on the properties of the util
ity functions holds in general, not is not particular to oueahanism. Consider the classical case of monopoly
pricing [25] — a single seller sells to buyers with utilityniction U (x) and there is a constant marginal produc-
tion costc > 0. The seller optimizes the prige so as to maximize the profit. For given pripe buyers choose
the quantityx that maximizedJ (x) — px, so thatU’(x) = p. The sellers finds the quantit/" that maximizes
p(x)x —cx = U’(x)x — cx, thus[U’(X")x™’ = c. The social welfare is maximum at a quantiythat maximizes

U (x) — cx, thusU’(x®) = c. It follows that the efficiency iU (X™) — cxX™) /(U (x°) — ), which in the geometric
interpretation in Figure 10 corresponds to the r&i/L. Note that if the utility function is such that for some
y € [0,1], the efficiency of the monopoly pricing is greater or equa} for any marginal cost > 0, then the utility
function is a%—utility.
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Figure 10: Efficiency for monopoly pricind"l\_—”.

Relation to the elasticity of demand. It is natural to consider how the definition &utility compares to existing
characterizations of utility functions. A standard measisthe so-callectlasticity of demandvhich is used to
characterize the third-degree price discrimination [28, Ret p(x) = U’(x) wherep(x) is interpreted as the price at
the outputx, and the inverse functiox(p) is known as the demand function. The elasticity of demanHeabtitput
x is defined by—(dx/x)/(dp/p). Note that this corresponds tt(x) /(—U” (x)x). Now, instead of considering the
elasticity of demand at particular values of the outpwe consider the following uniform bound, ket> 0 be such

that
U'(x)
—U”(x)x
Note that in Figure 6, the left-hand side corresponds todtie of the length of the line segmejia, 0), (a,U’(a))]
and the length of the line segme(a, [U'(a)a)’), (a,U’(a))]. Intuitively, we want this ratio to be large as we want the
areal to be small relative to the ar&d. This indeed conforms to the fact that linear utility funcis have infinite
elasticity of demand, and by Lemma 9 we know that lineartytilinctions are O-utilities.
The following lemma provides a relation between the elagtaf demand and-utility.

>¢, forallx>0. (39)

Lemma 8 Suppose Wx) is a non-negative utility function such that) is non-increasing and concave and (39)
holds. Then, Ux) is a%-utility function.

Proof. For a concave functiob’(x), the ared_ in Figure 6 is less than or equal to the area of the triangleeeéfi
by the intersection of the lines= 0,y = [U’(a)a)’, and the tangent to the functidif(x) atx = a. The area of this
triangle is—2U" (a)a. Hence,

L _ ~2U"(a)a>  —2U"(a)al’(a)a - —2U"(a)a

2
W=" U@ U@ U@ - U@ “t

where the first inequality follows a$'(a)a < U (a) holds for any non-negative concave utility functidiia) (which
holds adJ’(a) is assumed to be non-increasing) and the last inequality (8%). ]
E A Catalogue of Utility Functions

The following lemma shows that many utility functions founditerature ared-utilities.

Lemma 9 We have the following properties:
(i) U(x) = ax, fora > 0, or a truncated linear functiot is a 0-utility;

(i) U (x) such that U(x) is a concave function is 2-utility;

5That is,U (x) = min{ax,y}, for everyx > 0O, for somey > 0.
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(iii) U (x) =log (&), for c> 0, is a 2-utility;

(iv) U(X) = (c+X)% forc>0and0< a < lisa(1—oa)a Ta-utility for 0< o < 3, and al-utility for 3 <o <1;
simpler but weaker, it is é—utility forO<a<1.

(v) U(x) = l‘“_";u(c+x)1*°‘, for a € [0,1) U (1,0), and U(x) = wlog(c+ X), for a = 1, with w> 0 and any ¢> O,
is a 1-utility for 0 < a < % and aa(l—a)*LTu—utility for % < a < 1; simpler but weaker, it is §—uti|ity for
0<a<1.

(vi) U(x) = a-arctan(2), for a > 0, is a2-utility.

Proof. We show proofs for each item in the following.

Item (i)

It suffices to consider truncated linear functions, i.e. dor 0 andy > 0, U (x) = min{ax,y}, x > 0, as linear
functions are a special case with- . Clearly, we havéJ (b) —U’(b)b = 0, for anyb > 0, henced = 0.

Item (ii)

Consider the tangent td’(x) at the pointx = a; see Figure 11. This tangent forms the triang[@F. Note that the
areal is less or equal to the area of the trianBBF. The sideDF of the triangle is of length-2U" (a)a. The side
FB of the triangle is of length@ Hence, the area of the triangle is equaHaU”(a)a®. Now, note that the area
W is greater or equal to the area of the rectasIEEF. The sides of this rectangle are of lengthl”(a)a anda.
Hence, the area of the rectangle-i8”(a)a?. It follows thatL /W < 2.

X
Figure 11:U’(x) concave.
Item (iii)
We have c
/ o I I _
(x) T x and[U’(x)x] e
FromU’(b) = [U’(a)al’ we have
N S c
(b) c+b (c+a)?
and
b (c+x?*
o
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It follows

U(b)-U'(b)b _ 2log(%?) + (g55)° 1
U(a) B log (££2)

2log(u) —u?+1 e w—-1
log(u) log(u)

whereu = ¢/(c+a). Since(u? —1)/log(u) > 0, we havep(u) < 2, for allu € [0,1]. This bound is tight; achieved
atu=0.

= 0(u)

Item (iv)
We have
Ux) = (c+x)° (40)
U'(x) = a(c+x)%1t (41)
UK = a(c+x)°t [1_ (1_0()%(] . (42)
It follows
U(b)-U’(b)b a ] Ta
T_(l—a) [1—(1—0)m] +
c a
+ac+—a [1— (1_0()(:+—EJ . (43)
Remark Note that forc = 0, we have
U(b)-U’(b)b s
U@ (1—a)a

which is independent ai > 0.

Let us consider the right-hand side with the following chao§variabless = a/(c+ a),
fo(U) := (1—a)[1— (1—a)u] T + a(1—u)[1— (1—a)u].

It is not difficult to note thatf/ (u) is non-decreasing of), 1], hencefy(u) is a convex function off0, 1]. It follows
that the functionfy(u) overu € [0,1] achieves maximum at either= 0 or u = 1, with valuesfy(0) = 1 and
fa(1l) = (1—a)a . We claim

max fq(u) =

(1-a)a s 0<a<1i
ue(0,1]

1 F<a<l

Indeed, f4 (0) < fo(1) if and only if a® < (1— o). The functionx* is non-decreasing, thus the last inequality
holds if and only ifa <1—a,i.e.a <1/2. The claim follows.

We now show thatl—a)a~ T3 < 3, foralla € [0,1]. Indeed, the functiori (a) := (1— a)a~Te achieves the
maximum value at the same points as the functjar = log f (a). We have

9(a) =log(1 o) — —— log(c).

It is straightforward to obtain

d(a) = [2+ 1_10( Iog(a)] :




At a pointa* at whichg(a) is maximum, we haveg'(a*) = 0, which is equivalent to

It follows

15
5
&
E

j=3

@]

o

% 0.5 1

a

Figure 12: The functiorfil — o)a T versusa.

Remark. The result establishes a uniform bound that holds for agyo0< 1, equal toe/2 ~ 1.359. This bound is

not tight and can be improved, albeit slightly. Figure 12vwfohe function(1— a)a ™ -«. Finding the maximum
value numerically, we obtain the valuel96.

Item (v)

We have, forr > 0,

a
w
UXx)=(——) .
=)
It is not difficult to check that the functiod’(x)x is a concave function only if & a < 1. Therefore, in the following

we considen € [0,1].
Case 1 a € [0,1). By straightforward calculus, we have

1-a

M:a[l_aci} ’ -1-(1—0()L {1—0( a }

U(a) c+a c+a

Note that this is the same as (43) in Section E,duéeplaced with - a, helnce the results in Section E apply by
replacinga with 1 —a. We obtain thab= 1 for 0< a < 3, andd=0a(1—a)~ 7, for 1 < a < 1. From the analysis
above, we can také=e/2 for% <a<l1.

Case 2 a = 1. Consider the case= 0. Note that)’(b) = [U’(a)a]’ is equivalent to

Thus,b = «, from which it follows

U(b)—U’(b)b _ log(b)—1
U@  log@)

This shows thad = «, and hence foo = 1, U (x) is not ad-utility.

= oo, for any finitea > 0.
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Item (vi)

We have )
U'(x) =

02 — X2
02 1 %2 (@2 +x2)2°
Note that[U’(x)x]’ > 0 if and only ifx < a, and[U’(x)x]’ is non-increasing if0, a], hence, condition (i) of Defini-

tion 2 is verified withxg = a.
FromU’(b) = [U’(a)a]’ it follows

and|U’(x)x]' = a?

2_ g2 24 g2
I o Qf—a __ [3oc+a

We need to show that

da(a) = U (b)) —Utz;()b(a))b(a) <2, forallac[0,q]
where
a- arctan(gw /352 *;22) an?y qzagiagaZJraz
ba(@) = o -arctan(2) '

Note thatpy(a) = ¢p1(a/a), hence it suffices to considés (a) over|0,1].
Condition¢4(a) < 2, fora € [0,1], can be rewritten as

3+a?
arctan| a — 2arctana) <
( 1- az) a) <

(1-a?)(3+a?)
<a
(14 a2)?
Clearly, the right-hand side is greater or equal to zerolfaa a [0, 1]. The claim follows by noting that the left-hand
side is less than equal to zero for ak [0,1]. To see this, note

€ 10,1].

1—

= arctan| a 3+ — arctan 2a
- 1—a 1-a2

where equality follows from the elementary identity ar¢tan= 2arctar<ﬁxl+7). Henceg(a) < 0 if and only if

a 3+a? - 2a
l1—-a2~1—-a?

but this can be rewritten g4 — a%)? > 0, hence the proof. It can be easily checked that the equaliy(a) < 2 is
achieved foa= 1, henced = 2 is tight.

3 2
ga) = arctan(a +ZZ) — 2arctarfa)
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