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Abstract – In this note we establish several new results for sampling-based information
dissemination strategies considered in [1] (version with proofs – [2]). First, we establish
the computational complexity and an algorithm for computing the target set of subnets for
the optimum static sampling strategy,OPT-STATIC [1], given the densities of susceptible hosts
over subnets. Second, we identify the worst-case and best-case placements of initially infected
hosts, so as to maximize or minimize, respectively, the number of samplings required to
reach a given fraction of susceptible hosts. Finally, we study the effect of target fraction of
infected hosts on the optimum number of samplings, and consider simple approximations for
the optimum number of samplings to reach a given target fraction of hosts. The surprising
accuracy of our simple approximation provides insights on the qualitative and quantitative
impact of system parameters on the optimum number of samplings. We illustrate some of
our results using the empirical distributions of hosts over subnets that were used in [1].

1 Introduction

In this note we provide several new results on sampling-based information dissemination strategies
considered in [1] (version with proofs [2]). We summarize the setting and some of the results from
[1] which we use in this note.

1.1 Model and Notation

We consider an address space of sizeΩ partitioned intoJ subnets. Subnetj occupies a fraction
ωj ≥ 0 of the address space. Of theΩ addresses,N addresses are occupied by vulnerable (or
susceptible) hosts. The fraction of vulnerable hosts residing in subnetj is denoted bynj. We
useIj(t) andSj(t) to denote the number of infected and susceptible hosts, respectively, in subnet
j at time t ≥ 0. We useij(t) =

Ij(t)

N
andsj(t) =

Sj(t)

N
to denote the normalized versions of

the corresponding variables. We denote withi(0) the initial fraction of infected hosts over all
subnets, thusi(0) =

∑J
j=1 ij(0). We use the following vector notation~n = (n1, . . . , nJ), ~s(t) =

(s1(t), . . . , sJ(t)), and~ω = (ω1, . . . , ωJ). We assume that~n and~s(0) may be known, but the
identities (addresses) of these hosts is unknown.

For each subnetj, let dj = sj(0)/ωj, and let((1), (2), . . . , (J)) denote a sorted permutation of
the subnet indices so that the following holds:

d(1) ≥ d(2) ≥ · · · ≥ d(J).

1.2 Summary of Optimal Sampling Strategy

In [1, Theorem 2, Corollary 6], it was established that for a given initial fraction of infected hosts,
i(0), the minimum number of samplings per host,u (=

∫∞
0

i(t)1i(t)<i0dt), to reach a given final
fraction of infected hosts,i0, is given by:

u(~s(0), ~ω, i0) =

∑J ′

k=1 ω(k)

β

log

 1

1− i0−i(0)
PJ′

k=1 s(k)(0)

−D(~ωJ ′||~sJ ′
(0))

 (1)
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whereβ = N
Ω

denotes the number of vulnerable hosts per address,

J ′ = max

{
j :

s(j)(0)

ω(j)

>

∑j
k=1 s(k)(0)− (i0 − i(0))∑j

k=1 ω(k)

}
, (2)

andD(~ωJ ′||~sJ ′
(0)) is the Kullback-Liebler divergence of the following two distributions

~ωJ ′
=

(
ω(j)∑J ′

k=1 ω(k)

, j = 1, . . . , J ′

)
, ~sJ ′

=

(
s(j)(0)∑J ′

k=1 s(k)(0)
, j = 1, . . . , J ′

)
.

From (1), we have thatf(~d) := βu can be written in the following form

f(~d) =
J ′∑

k=1

ω(k) log d(k) −

(
J ′∑

k=1

ω(k)

)
log
(
BJ ′(~d)

)
(3)

where,

Bj(~d) =
s0 −

∑J
k=j+1 ω(k)d(k)∑j
k=1 ω(k)

denotes the final density of vulnerable hosts within the target set, if the target set is{(1), . . . , (j)}
and the sampling probabilities are chosen optimally. Using the above notation, we can rewrite (2)
as

J ′ = max
{

j : d(j) > Bj(~d)
}

. (4)

Let A = {(1), . . . , (J ′)}. Intuitively, the above equation characterizes the optimal target setA as
the largest set of subnets such that the initial density of vulnerable hosts in each of the subnets in
A is larger than the final density of vulnerable hosts in the setA.

It is further shown [1, Corollary 5] that the optimum number of samplings per host (1) can be
achieved by sampling over the subnets of the target setA with either time-invariant (OPT-STATIC),
or time-varying probabilities of sampling a subnet in the target setA. While there are multiple dy-
namic strategies which are optimal with respect to the number of samplings, the following intuitive
dynamic strategy is also optimal with respect to the time to reach the target population:

OPT-DYNAMIC

At any timet ≥ 0, each infected host samples an address uniformly at random from the address
space of the subnets in the setS(t), whereS(t) contains the densest subnets with respect to the
densitiessj(t)/ωj.

We will use the equivalence between the number of samplings for the above dynamic strategy
and the number of samplings for the optimal static scheme to establish results regarding the latter.

1.3 Structure of this Note

In Section 2 we establish the computational complexity and an algorithm for computing the op-
timum set of subnets to target with scans, given the densities of susceptible hosts per subnet.
Section 3 establishes various properties for the optimum number of samplings.
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2 Computation of the Target Set

We begin by considering a generalization of the problem of computing the optimal target setA:
Consider a set of itemsI such that each itemij ∈ I is is associated with a valuevj, and weightwj.
Let x be an input parameter,x ∈ [0, 1]. The problem TOP-SET is defined as follows:

TOP-SET
FindS ⊆ I such thatij ∈ S if and only if

vj >

∑
k∈S wkvk − x∑

k∈S wk

.

The computational complexity of solving TOP-SET is specified by the following result.
Proposition 1. The time-complexity of problemTOP-SETis Θ(|I|). Further, problemTOP-
SET is solved by algorithmFIND TOP-SETin O(|I|) time.

Proof. To solve TOP-SET one must inspect each item in the setI, hence we needΩ(|I|) time.
The result follows by the algorithm below that solves the problem inO(|I|) time.

Algorithm FIND TOP-SET
Input : Set of itemsI = {i1, . . . , iJ}
vj = value of itemij
wj = weight of itemij
x = target volume
Output : S ⊆ I such thatij ∈ S ⇐⇒ vj ≥

P
k∈S wk·vk−x
P

k∈S wk

Initialize : S = ∅, T = I, a = b = 0
while T 6= ∅ do

m← median ({vj|ij ∈ T}) ;
L← {ij|ij ∈ T, vj > m} ;
R← {ij|ij ∈ T, vj < m} ;
M ← T \ (L ∪R) ;
a′ ←

∑
k∈L∪M wk · vk ;

b′ ←
∑

k∈L∪M wk ;
if m ≥ a+a′−x

b+b′
then

a← a + a′ ;
b← b + b′;
S ← S ∪ L ∪M ;
T ← R

else
T ← L ;

end
end

Each iteration of the while loop in the above algorithm takesO(|T |) time (there is a determin-
istic linear time algorithm for finding median, as well as a much simpler randomized algorithm
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that runs in linear time with high probability [3, Chapter 9]), and we reduce the size of|T | by at
least half in each iteration. Therefore, algorithm FIND TOP-SET runs inO(|I|) time.

Finding the optimum target set A. Define the item values asvj = dj, weights aswj = ωj,
and let the input parameter bex = (i0 − i(0)).

3 Properties of the Optimum Number of Samplings

In this section we examine the dependence of the optimum number of samplings on the system
parameters via bounds and approximations. In Section 3.1, we present results regarding the place-
ment of initially infected nodes that maximize or minimize the optimum number of samplings,
and thus give us bounds on the effect of placement of initially infected nodes. In Section 3.2, we
present results characterizing the effect of target fraction of infected nodes on the optimum num-
ber of samplings. In Section 3.3, we consider the special case where the initially infected hosts are
uniformly placed among the vulnerable hosts. Finally, Section 3.4 presents simple approximations
and bounds for the optimum number of samplings.

3.1 Placement of Initially Infected Hosts

In this section, we identify the worst-case and best-case placement of initially infected hosts that,
respectively, maximize and minimize the optimum number of samplings.

3.1.1 Worst Placement

We consider the maximum optimum number of samplings over all distributions of infected hosts
over subnets given that the total fraction of infected hosts isi(0). We want to solve the following
problem

MAX-SAM :

maximize f(~d)

over d(k) ∈
[
0,

n(k)

ω(k)

]
, k = 1, . . . , J

subject to
∑J

k=1 ω(k)d(k) = s(0)

wheref(~d) is given by (3).
Proposition 2. The initial placement of the infected hosts over subnets that maximizes the num-
ber of samplings is obtained by starting with the system with no infected hosts and then contin-
ually adding infected hosts to most dense subnets (where density of a subnetj is d(j)).

In what follows we provide a simple intuitive proof of the above proposition. We provide
an alternate proof in Appendix A, which establishes additional structural properties regarding the
OPT-STATIC strategy.

Proof. To prove the proposition we will make use of [1, Corollary 5] that implies that for any given
target fraction of infected hostsi0 ∈ [i(0), 1] the schemes OPT-DYNAMIC and OPT-STATIC require
the same number of samplings which is smallest possible. Recall that OPT-DYNAMIC corresponds
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to sampling the currently densest subnets at all times, where density of a subnetj at timet ≥ 0 is
equal tos(j)(t)/ωj.

For OPT-DYNAMIC scheme, the number of samplings to reach the target fraction of infected
hostsi0 can be represented as

u(i0) =
1

β

∫ i0

i(0)

di

δ(i)

whereδ(i) is the density of a densest subnet when the total fraction of infected hosts isi. Indeed,
this follows from

d

dt
i(t) = βδ(i(t))i(t)

and then noting that

u(t) =

∫ t

0

i(v)dv =

∫ t

0

1

β

di(v)

δ(i(v))

from which the assertion follows.
Now, for any giveni0, u(i0) is maximized ifδ(i) is minimum for eachi ∈ [i(0), i0]. This is

clearly achieved by starting with no infected hosts, and simulating the OPT-DYNAMIC strategy for
first i(0) fraction of infected hosts. That is, by adding the initially infected hosts to the densest
subnets with respect ton(j)/ω(j), j = 1, . . . , J . The result then follows from [1, Corollary 5], as
the minimumu(i0) under OPT-DYNAMIC can be achieved under OPT-STATIC.

3.1.2 Best Placement

We consider the minimum optimum number of samplings over all distributions of initially infected
hosts over subnets given that the total fraction of initially infected hosts isi(0). Formally, we
consider

MIN-SAM :

minimize f(~d)

over d(k) ∈
[
0,

n(k)

ω(k)

]
, k = 1, . . . , J

subject to
∑J

k=1 ω(k)d(k) = s(0).

Proposition 3. The initial placement of the infected hosts over subnets that minimizes the num-
ber of samplings is obtained by starting with the system with no infected hosts and then contin-
ually adding infected hosts to least dense subnets (where density of a subnetj is d(j)).

Proof. We proceed exactly as in proof of Proposition 2, using the observation that for any given
target fraction of infected hostsi0 ∈ [i(0), 1] the schemes OPT-DYNAMIC and OPT-STATIC require
the same number of samplings. Further, for any giveni0, the optimum number of samplings
under OPT-DYNAMIC is minimized ifδ(i), the density of the densest subnets when the fraction of
infected hosts isi, is maximum for eachi ∈ [i(0), i0]. This is clearly achieved by assigning all the
initially infected hosts to sparsest subnets with respect ton(j)/ω(j), j = 1, . . . , J .
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Figure 1: The number of samplings per host vs. the initial fraction of hosts for worst-case, best-
case, and uniform placement (see Section 3.3) of initially infected hosts. The target fraction of
infected hosts is set toi(0) + x(1− i(0)), wherex = 0.1 (top row) andx = 0.9 (bottom row).

3.1.3 Numerical Results

In Fig. 1 we show the results for the optimum number of samplings versus the initial fraction of
infected hosts for three different placements of infected hosts over subnets. The results suggest
that for realistic distributions of vulnerable hosts over subnets, the placement of initially infected
hosts may have significant impact only if the total fraction of initially infected hosts is sufficiently
large (e.g., order 1 out of 100 hosts, or more). Further, for large target population (x = 0.9), while
the performance of best-case placement approaches that of uniform placement for a large range
of values of the fraction of initially infected hosts, best-case placement still provides appreciable
gains for largei(0).

3.2 Effect of Final Fraction of Infected Hosts

Proposition 4. The optimum number of samplings per host,u (given in Eq. (1)), is an increas-
ing, convex function of the final fraction of infected hostsi0.

Proof. We again use the equivalence between the optimum number of samplings for strategies
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OPT-STATIC and OPT-DYNAMIC . From the proof of Proposition 2, we have:

∂u

∂i0
=

1

βδ(i0)

where, recall,δ(i0) denotes the density of susceptible hosts in the densest subnets under OPT-
DYNAMIC when the fraction of infected population isi0. It is not hard to see thatδ(i0) is a
positive, continuous, decreasing, piece-wise linear, convex function. Therefore,(∂/∂i0)u is a
positive, increasing function and the proposition follows.

3.3 Uniform Distribution of Initially Infected Hosts

In this section, we consider the special case where initially infected hosts are placed uniformly
among the vulnerable hosts. This is a natural assumption – it holds when, initially, each vulnerable
host is equally likely to be infected. In this case, we have

sj(0) = (1− i(0))nj, j = 1, . . . , J.

Under the above assumption, we have the following result characterizes the optimum number of
samplings.

Proposition 5. Under assumption (A), the optimum number of samplingsu given by Eq. (1)
is a function of three parameters(x, ~n, ~ω) wherex is the relative decrease of the number of
susceptibles, i.e.x = (i0 − i(0))/(1− i(0)). Specifically, we have

u(x, ~n, ~ω) =

∑J ′

k=1 ω(k)

β

log

 1

1− x
PJ′

k=1 n(k)

−D(~ωJ ′||~nJ ′
)


J ′ = max

{
j :

n(j)

ω(j)

>

∑j
k=1 n(k) − x∑j

k=1 ω(k)

}

where~nJ ′
=

(
n(j)

PJ′
k=1 n(k)

, j = 1, . . . , J ′
)

.

Note that Proposition 5 says that if, initially, the infected hosts are placed uniformly, then the
initial fraction of infected hosts,i(0), and the final fraction of infected hosts,i0, influence the
optimum number of samplings only via the ratiox = i0−i(0)

1−i(0)
. This is also highlighted in Figure 1,

where the optimum number of samplings is independent ofi(0) under uniform placement.
From Proposition 4, we know that for a fixedi(0), the optimum number of samplings is an

increasing convex function ofi0, and hencex. However, using Proposition 5, we further have the
following.

Corollary 1. The optimum number of samplings per subnetu(x, ~n, ~ω) is an increasing, convex
function ofx.
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Figure 2: The number of samplings per host vs.x wherex = (i0 − i(0))/(1− i(0)).

3.4 Lower Bounds and Approximations

Proposition 6. The total number of samplings per host to infect the fraction of hostsi0 satisfies

u ≥ 1

βρJ ′
(i0 − i(0))−D(~ωJ ′||~sJ ′

(0))

whereρJ ′ is the initial density of susceptible hosts over the target set, i.e.

ρJ ′ =

∑J ′

k=1 s(k)(0)∑J ′

k=1 ω(k)

.

Proof. The result follows directly from (1) and using the inequality− log(1 − x) ≥ x for x <
1.

In [1], we presented empirical evidence for the fact that under real world distributions for hosts,
the KL-divergence term (D(~ωJ ′||~sJ ′

)) is negligible compared to the leading term in the expression
for optimum number of samplings,u. We thus propose the following approximation:

u ≈ 1

βρJ ′
(i0 − i(0)). (5)

Note that the optimum number of samplings in the above approximation depends on two parame-
ters: (1) the fraction of hosts to infect, and (2) the density of susceptible hosts in the subset of the
address space spanned by the optimal target set.

3.4.1 Numerical Results

In Fig. 2 we show the results for the number of samplings versus the final fraction of infected
hosts using the exact expression, and approximation (5). The results demonstrate the excellent
agreement of our approximation with the exact solution over a wide range of values for the final
fraction of infected hosts.
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[2] M. Vojnović, V. Gupta, T. Karagiannis, and C. Gkantsidis. Sampling strategies for epidemic-
style information dissemination. Technical Report MSR-TR-2007-82, Microsoft Research,
2007.

[3] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.Introduction
to Algorithms. The MIT Press, 2nd edition, 2001.

A Alternate Proof of Proposition 2

Let J ′ andBJ ′(~d) be fixed and denoteb := BJ ′(~d). Under the latter two constraints, maximizing
f(~d) amounts to solving the following problem

MAX-SAM (b) :

maximize
∑J ′

k=1 ω(k) log d(k)

over d(k) ∈
(
b,

n(k)

ω(k)

]
, k = 1, . . . , J ′

subject to
∑J ′

k=1 ω(k)d(k) = s(0)− s0 +
∑J ′

k=1 ω(k)b.

Lemma 1. The solution ofMAX-SAM (b) is given by

d(k) = min

[
µ(b),

n(k)

ω(k)

]
, k = 1, . . . , J ′ (6)

whereµ(b) > b is the solution of the following equation

J ′∑
k=1

ω(k) min

[
µ(b),

n(k)

ω(k)

]
= s(0)− s0 +

J ′∑
k=1

ω(k)b. (7)

Proof. Let xk := d(k) − b. Problem MAX-SAM(b) can be rewritten as

MAX-SAM ′(b) :

maximize
∑J ′

k=1 ω(k) log(b + xk)

over xk ∈
(
0,

n(k)

ω(k)
− b
]
, k = 1, . . . , J ′

subject to
∑J ′

k=1 ω(k)xk = s(0)− s0.

Let us define the Lagrangian function

Λ(x, λ) =
J ′∑

k=1

ω(k) log(b + xk)− λ

(
J ′∑

k=1

ω(k)xk − (s(0)− s0)

)
.
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For fixedλ > 0 we first solve

maximize Λ(x, λ)

over xk ∈
(
0,

n(k)

ω(k)
− b
]
, k = 1, . . . , J ′.

Note that the latter problem separates intoJ ′ problems, for eachk = 1, . . . , J ′,

maximize log(b + xk)− λxk

over xk ∈
(
0,

n(k)

ω(k)
− b
]
.

It is easily checked that the solution of the above problem is

xk = min

[
1

λ
,
n(k)

ω(k)

]
− b.

Plugging intod(k) = b + xk and lettingµ := 1/λ, the assertion (6) follows. Eq. (7) follows from

the constraint
∑J ′

k=1 ω(k)xk = s(0)− s0 in MAX-SAM’ (b).

We next assumeJ ′ is fixed and optimize overb. Note that we established that MAX-SAM can
be rewritten as

MAX-SAM :
maximize g(b)
over b ∈ B

where

g(b) =
J ′∑

k=1

ω(k) log
min

[
µ(b),

n(k)

ω(k)

]
b

and

B =

[∑J ′

k=1 n(k) − i0∑J ′

k=1 ω(k)

,

∑J ′

k=1 n(k) − (i0 − i(0))∑J ′

k=1 ω(k)

]
andµ(b) is given by (7).

Lemma 2. Functiong(b) is decreasing overb ∈ B.

Proof. Note that we have

g′(b) =
J ′∑

k=1

ω(k)

(
µ′(b)

µ(b)
1µ(b)<n(k)/ω(k)

− 1

b

)
.

From (7) note

µ′(b) =

∑J ′

k=1 ω(k)∑J ′

k=1 ω(k)1µ(b)<n(k)/ω(k)

.

Hence

g′(b) =

(
J ′∑

k=1

ω(k)

)(
1

µ(b)
− 1

b

)
.

From (7) we have thatµ(b) > b, and thusg′(b) < 0. The result follows.

10



Finally, note that

b =

∑J ′

k=1 n(k) − i0 +
∑J

k=J ′+1 ik(0)∑J ′

k=1 ω(k)

. (8)

Hence, under the condition thatJ ′ is fixed we have that decreasingb is equivalent to relocating the
infected hosts from subnets{J ′ + 1, . . . , J} to subnets{1, . . . , J ′}.
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