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Abstract – In this paper we present and analyze
a model in which users select among, and subse-
quently compete in, a collection of contests offering
various rewards. The objective is to capture the
essential features of a crowdsourcing system, an en-
vironment in which diverse tasks are presented to a
large community. We aim to demonstrate the pre-
cise relationship between incentives and participa-
tion in such systems.

We model contests as all-pay auctions with in-
complete information; as a consequence of revenue
equivalence, our model may also be interpreted more
broadly as one in which users select among auctions
of heterogeneous goods. We present two regimes in
which we find an explicit correspondence in equi-
librium between the offered rewards and the users’
participation levels. The regimes respectively model
situations in which different contests require similar
or unrelated skills. Principally, we find that rewards
yield logarithmically diminishing returns with re-
spect to participation levels. We compare these re-
sults to empirical data from the crowdsourcing site
Taskcn.com; we find that as we condition the data
on more experienced users, the model more closely
conforms to the empirical data.

1. INTRODUCTION
Methods of soliciting solutions to tasks via open calls to

large-scale communities have proliferated since the advent
of the Internet; the term crowdsourcing was recently coined
to refer to these approaches. Examples of tasks found on
crowdsourcing sites are the graphical design of logos, the
creation of a marketing plan, the identification and labeling
of an image, and the answering of an individual’s question.
Many crowdsourcing sites exhibit a similar structure – a task
is described, a reward and time period are stated, and during
the period users compete to provide the best submission. At
the conclusion of the period, a subset of submissions are se-
lected, and the corresponding users are granted the reward.

The rewards offered may be monetary or non-monetary;
non-monetary rewards can take the form of reputation points
in community Q&A sites, and confer a measure of social sta-
tus within these communities. In either case, the rewards
directly influence user participation, and so it is important
that they are designed to induce the appropriate levels of
participation and quality of submissions. It appears, how-
ever, that most crowdsourcing sites rely on ad-hoc design
choices or trial and error when determining these incentives,
and current research seems limited to a few empirical stud-
ies [14, 4].

The goal of this paper is to provide a better understand-
ing of the relationship between rewards and participation
in the context of crowdsourcing sites. Toward this end, we
model crowdsourcing as a two-stage game in which strategic
users (i) select among contests offering different rewards and
(ii) upon joining a contest, those who selected it compete
amongst themselves for the reward. In this model, the users
are endowed with a private skill at producing a submission
for each type of contest; skills for different users are drawn
independently at random according to a commonly known
distribution. In the second stage of the game, we model
the contest as an all-pay auction, a well-studied mechanism
that is frequently employed in the contest literature [2]. We

summarize our main contributions in the following.
In Section 3, we develop and rigorously analyze a model

in which users strategically choose a contest and then com-
pete in their chosen contest. We show the existence of an
equilibrium under general assumptions.

In Section 4, we explore a special case in which each user
has the same skill for all contests; this corresponds to a
situation in which users’ skills are principally determined
by their opportunity cost, or all tasks are similar in nature.
We fully characterize the equilibrium assignment of users to
contests. We find that there is a threshold reward below
which users will choose not to participate in contests, and
that users are partitioned according to their skill; users with
higher skills choose to restrict their attention to contests
with higher rewards, while users with lower skills participate
broadly. Additionally, we find a closed-form correspondence
between rewards and the average number of users, and show
that it exhibits decreasing returns when rewards are used to
incent users to participate.

In Section 5, another special case is explored, in which a
user’s skill for each contest is drawn independently; this cor-
responds to a situation in which contests are dissimilar and
skills are uncorrelated. We analyze the asymptotic proper-
ties of equilibria in this setting, and establish that the same
closed-form correspondence between rewards and participa-
tion holds approximately for large systems.

Section 6 concerns relaxations of some of our assump-
tions. In particular, we examine the consequences of al-
lowing asymmetry in distributions of different skills, and
imposing minimum levels of quality on submissions.

In Section 7, we pose a design problem in which a system
operator must select the rewards in order to induce partic-
ipation and maximize a well-defined welfare objective. In
those situations in which the the offered rewards are cen-
trally controlled, or in which those offering the rewards co-
operate, a social welfare optimization problem may be posed
and solved within our framework.

Finally, in Section 8, we complement our analysis with
an interpretation of empirical data from the “witkey” site
Taskcn, which presents tasks to users in a manner similar to
that in our model. We discuss other relevant design factors,
which we suggest as extensions for future models.

Proofs of our results are presented in the appendix.

2. RELATED WORK
Some recent studies of empirical data have analyzed the

effects of incentives in crowdsourcing sites. Yang, Adamić,
and Ackerman in [14] explore users of the site Taskcn. This
Chinese site is an intermediary where users submit solutions
for various tasks (such as designing a logo for a business); the
solution chosen as the winner earns a monetary reward (fixed
in advance) for its creator. The authors find that while users
who are new to the site fare poorly by unrealistically choos-
ing tasks with high rewards, those that repeatedly use the
site pursue a more profitable strategy by better balancing
the magnitude of the rewards with the likelihood of success.
The results suggest that users who remain on the site learn
to behave more strategically. Another investigation of users’
responses to incentives is provided by Chen, Ho, and Kim
in [4]. They study Google Answers, a now-defunct site in
which users answered questions in exchange for monetary
rewards. They found that questions offering more money
received longer answers. This and [14] motivate the search



for a better understanding of how strategic users should be-
have in these environments, and how a designer might select
the appropriate incentives.

Our model owes a debt to auction theory – this is due to
our choice to model contests as all-pay auctions. The all-pay
auction mechanism is well-studied in the contest literature;
the authors in [2] characterize equilibria under the assump-
tion that skills are public knowledge, and cite numerous ex-
amples in which all-pay auctions have been used to model
contests such as political races, R&D, and job promotion.
We assume, however, that skills are private knowledge, in
line with auction theory in the vein of [8]; the sites we study
involve a higher degree of uncertainty than one might find
in a simple contest with a small number of players. Our
assumptions satisfy the requirements of the Revenue Equiv-
alence Theorem [6]; consequently the all-pay nature of our
auction may be elided for much of our analysis (with some
noted exceptions).

Our work differs from single-item auction theory in that
several rewards are simultaneously offered on crowdsourcing
sites. In [10], Moldovanu and Sela explore the design of
contests in which multiple rewards are available to users.
Different from their setting, in our model users must select
which reward they are pursuing; the crowdsourcing model
we consider is more akin to a collection of separate contests
than to a single contest with multiple rewards.

There are several examples in the literature of models in
which users must choose among auctions. In [7], McAfee
explores a dynamic environment in which many sellers of
identical items choose mechanisms to present to buyers. He
finds an equilibrium in which sellers conduct an auction with
an efficient reserve price, and buyers randomize over sell-
ers. In [13], Wolinsky likewise examines a dynamic model
in which identical sellers conduct first-price auctions with
reserve for a large number of bidders that are randomly se-
lecting sellers; bidders learn their valuation after meeting
the seller. The line of inquiry of these two models is con-
tinued by [12], where the number of bidders is endogenized,
by [11], which examines a common value environment, and
by [5]. Our work differs from these settings in that we as-
sume that ‘sellers’ have heterogeneous items. Additionally,
the mechanism design question is different, as revenue maxi-
mization is not necessarily the principal objective in contest
design – for instance, we may be more concerned with the
number of submissions or the quality of the best submission
than with aggregate quality.

Ashlagi, Monderer, and Tennenholtz in [1] explore the rev-
enue properties of competing advertisement auctions; among
other situations, they examine in detail a setting in which
two auctions with different click-through rates (and hence
proportionally different user valuations) are conducted, and
users choose between the two auctions. This may be viewed
as a special case of the setting examined in Section 4.

3. THE MODEL
At a broad level, many crowdsourcing websites may be

viewed as systems in which tasks are associated with re-
wards and presented to users; each user selects a task, and
effortfully creates a submission. For each task, the sub-
missions are judged, and a subset of users (often a single-
ton) are granted the associated reward. For instance, on
TopCoder.com, users may select between several contests
asking for submission of a Quality Assurance plan for a piece

of software, each offering different rewards. On Taskcn,
a business may solicit logo designs, offering money to the
creator of the best logo; users have many such projects to
choose from.

It is natural to view the competitive nature of the submis-
sion phase as a contest; indeed, sites such as TopCoder.com
label them as such. In light of evidence that users of these
sites become more strategic in their decisions over time [14],
game-theoretic tools may be of use.

We consider a one-shot game in which players select a
contest, exert effort (at a cost that depends on their skill),
and in each contest the player with the best effort wins
a prize. Specifically, consider a game in which N players
choose among J contests. Let Rj denote the reward offered
in contest j ∈ {1, · · · , J}. Associated with each player i is
a vector of skills ~vi = (vi1, · · · , viJ), where vij represents
player i’s skill at contest j. We suppose that the skill vector
for each player is drawn from a continuous joint probability
distribution over [0, m]J , that skill vectors for different play-
ers are drawn independently from each other, and that the
distribution is known to all players but that skill vector ~vi is
known only to player i. In subsequent sections we will make
stronger assumptions about this distribution. The parame-
ter m represents a maximum possible skill, corresponding to
an upper limit on the amount of effort a player can obtain
from unit cost.

The game consists of two stages. In the first stage, each
player i selects a contest j and a bid bij . In the second
stage, in each contest j, the prize is awarded to the player
with the highest bid among those who selected the contest.
Since bids represent effort (which cannot be unspent), all
bids are collected. The payoff to player i is vijRj − bij if he
submitted the highest bid, and −bij otherwise. In the event
of a tie, a winner is selected uniformly at random among the
high bidders.

These payoffs reflect our decision to model the contests
as all-pay auctions – these are auctions in which the high
bidder receives the object, but all bidders pay their bid to the
auctioneer. All-pay auctions capture the essential properties
of contests and have been used to model rent-seeking, R&D
races, and political contests among other applications [2].
To see the connection between contests and all-pay auctions,
suppose we were to model the skill of player i at contest j by
a unit cost of effort cij . If he exerts effort bij and wins, his
payoff is Rj − cijbij ; if he loses, he still pays the cost cijbij .
Scaling his payoffs by dividing by cij , we recover the game
above when vij = 1

cij
. Thus, in our setting a player’s skill

vij may be interpreted as the amount of effort he is able to
exert per unit cost.

While a given player does not know the skills of the other
players, he is aware of the underlying distribution. Addition-
ally, all other information is public – all players are aware
of the number of players N , the number of contests J , and
the reward offered in each contest. In other words, ours is
a model of incomplete information – the assumption that
players have only distributional knowledge of others’ skills
directly influences the resulting equilibria, and is in contrast
to cases of complete information contests that have also been
studied [2]. The presumption of incomplete information is
motivated by the fact that players in large systems typically
have only limited statistics about the performance of other
players, and there may be large uncertainty about which
players will choose to participate in a given task.



A mixed strategy for player i with skills ~vi consists of a
probability distribution ~πi = (πi1, · · · , πiJ) over the contests
together with a bid bij for each contest j. (The players could
choose a random bid as well – this does not arise in the
equilibria we study.) Player i’s payoff is the expected payoff
in the all-pay auction, with the expectation taken over his
own mixed strategy and i’s beliefs about other players’ types
and strategies. His mixed strategy is a best response if it
yields him at least as high a payoff as any other strategy. We
are interested in a symmetric Bayes-Nash equilibrium, which
specifies a mixed strategy for each possible skill vector ~v such
that each mixed strategy is a best response, assuming other
players also follow these strategies [9]. In such a setting, ~πi

is independent of the player i and we write πj(~v) to denote
the probability that a player with skills ~v joins contest j.

Proposition 3.1. There exists a symmetric equilibrium
to this game.

The proof of the proposition makes several uses of the
Revenue Equivalence Theorem; one may note that neither
the precise form of the auction nor the disclosure of the num-
ber of players has any impact on players’ surplus or contest
selection. This is because participants are risk neutral and
in each contest face symmetric, independent bidders with
private values.

We will focus on the symmetric equilibrium. In this set-
ting, let pj be the probability that a player selects con-

test j, F̂j(v) be the cumulative distribution over skill for
a player in contest j given that he selects this contest, and
F̂ c

j (v) = 1 − F̂j(v). Then a player with skill v would win

contest j with probability (1 − pjF̂
c
j (v))N−1, as this is the

probability that none of the other N−1 players joins contest
j with a higher skill.

Let gj(v) denote the expected profit of a player with skill
v for contest j were he to select that contest. From the
Revenue Equivalence Theorem [6], a player’s surplus is the
integral of his probability of winning, and so we have

gj(v) = Rj

∫ v

0

(1− pjF̂
c
j (x))N−1dx. (1)

In equilibrium, a player i will only participate in those con-
tests j that maximize gj(vij).

The symmetric equilibrium has the property that the num-
ber of players in contest j is a binomial distribution with
success probability pj . Additionally, we would like to work
with a symmetric case such that pj = pk whenever Rj = Rk.
This generally requires a corresponding symmetry in the
joint probability distribution. Such a symmetry yields that
the class of all contests having a particular reward has a
common pj and F̂j(v). This is formalized in the following
proposition.

Proposition 3.2. If the distribution of skills is symmet-
ric with respect to contests that have the same rewards, then
there is an equilibrium that is also symmetric with respect to
contests that have the same rewards.

We focus on the equilibrium in Proposition 3.2. We do so
despite the existence of equilibria that violate the symme-
tries we are imposing. Consider, for instance, a setting with
two players and two identical contests – suppose moreover
that each player’s skills for the two contests are perfectly

correlated (though the skills between players are uncorre-
lated). It would clearly benefit the players if player 1 joined
contest 1 and player 2 joined contest 2, regardless of their
skills, for they could then receive the reward without ex-
pending any effort. We presume that coordination of this
variety does not occur, as the analogous situation in a large
system would either require the assistance of the system op-
erator or an exceptional amount of communication between
the players.

The following corollary refers to the equilibrium in Propo-
sition 3.2 and may be observed from this symmetry and the
property that surplus is increasing in skill.

Corollary 3.1. Suppose there are Jk contests having re-
ward equal to Rk, and a player has skills v1, v2, · · · , vJk for
these contests. Then if the player participates in any of
these, he participates in those having maximum skill; and
if more than one skill obtains this maximum, he selects over
such contests uniformly at random.

The Large-System Limit. We are interested in proper-
ties of the player decisions as the system becomes large. Pop-
ular crowdsourcing sites are by definition well-populated,
and often dramatically so; Yahoo! Answers has posed mil-
lions of questions to its community, and Taskcn has seen
hundreds of thousands of submissions.

Accordingly, we define what it means for this system to
scale. Consider a sequence of these games. We allow the
number of players N and the number of contests J to in-
crease, supposing asymptotically that J ∼ 1

λ
N , so that the

number of players per contest remains roughly constant at
λ > 0. (For sequences an and bn, we write an ∼ bn when
an
bn
→ 1 as n →∞.) A site for which this proportion cannot

be bounded becomes too crowded or sparse; a similar scal-
ing concept is utilized in [5, 11, 12]. Implicitly, as J grows
we have a sequence of joint probability distributions over
[0, m]J – in later sections where specific cases are examined,
the evolution of this sequence will be made more precise.

Additionally, we assume that as the system grows there re-
main only finitely many different values of Rj – that is, that
for some constant K, we have R1 > R2 > . . . > RK , with
the reward for each contest taking on one of these values.
Thus the contests are naturally partitioned into K classes.
Let Jj be the number of contests of class j . Then we sup-
pose that asymptotically, Jj ∼ νjJ for some νj ≥ 0, so
that the proportion of contests that are in a given class is
roughly constant. Since

∑K
j=1 Jj = J , we must also have∑K

j=1 νj = 1.
In the large limit, due to this symmetry, the binomial dis-

tribution over players will approach a common Poisson limit
for each contest in a given class. Let λj be the mean number
of players in a given contest in class j. Since λ is the aver-
age number of players per contest, we have

∑K
j=1 νjλj ∼ λ;

hence, for a large enough number of contests,
∑K

j=1 νjλj ≤
λ + ε, for ε > 0. Note that the sequence of vectors of λj is
thus confined to a compact space – hence the sequence has
a limit vector which corresponds to a Poisson distribution of
players per contest. In the cases examined in later sections,
we show that this limit is unique, and that all equilibria
converge to it.

4. PLAYER-SPECIFIC SKILLS
In this section we assume that each player is endowed with

a skill that applies across all contests. More concretely, for



each player i the skill vector ~vi is equal to (v, v, . . . , v) where
v is drawn from the distribution F (v) independently of the
skills of other players.

This assumption is justified for systems where the ability
to successfully perform in individual contests predominantly
depends on a player’s skill in a way that is independent of
the particular contests – for example, when the underlying
tasks are closely related or require a similar kind of talent.
Another example is when all players would require the same
amount of time to put forth effort, but different players face
different hourly opportunity costs.

On the other hand, this assumption may not apply to sys-
tems that are comprised of tasks that require diverse special-
ized skills. That case would be better accommodated by the
underlying assumption in Section 5, as its primary feature
is a lack of correlation between a player’s skill at performing
different tasks.

In Section 3 we established that a symmetric equilibrium
exists under general assumptions. In the following, we show
show uniqueness of equilibrium under the additional assump-
tion of player-specific skills.

Proposition 4.1. Under the assumption of player-specific
skills, there is a unique symmetric equilibrium.

We fully characterize the symmetric equilibrium for any
given number of players N > 1. This characterization is
presented in the two main theorems of this section. The
theorems are stated under the assumption that F (v) is an
atomless distribution over [0, m], where m is the maximum
skill and lies in the support of F (v).

Recall that we have K classes of contests with rewards
R1 > R2 > . . . > RK . In the sequel, we will use the notation
~R = (R1, . . . , RK) and, for any subset A ⊆ {1, . . . , K}, let

HA(~R) =

(∑
k∈A

Jk

JA
R
− 1

N−1
k

)−1

(2)

JA =
∑
k∈A

Jk. (3)

Additionally, for A = {1, . . . , `} we write A = [1, `].

Theorem 4.1. Under the player-specific skills, the sym-
metric equilibrium satisfies the following two properties.
1. Threshold reward. A contest is selected by a player
with strictly positive probability only if the reward offered by
this contest is one of the K̃ highest rewards, where

K̃ = max

{
i : R

1
N−1
i >

(
1− 1

J[1,i]

)
H[1,i](~R)

}
. (4)

2. Participation rates. A player selects a particular con-
test of class j with probability pj given by

pj =


1−

(
1− 1

J[1,K̃]

)
H[1,K̃](

~R)

R
1

N−1
j

, if j ≤ K̃

0, otherwise.

(5)

Item 1 tells us that there exists a threshold reward below
which, with probability 1, a contest attracts no players. In
other words, all players select from the set of contests that
offer one of K̃ highest rewards where K̃ is explicitly deter-
mined by (4). An explicit characterization of the correspon-
dence between the equilibrium mean number of players per
contest Npj and the offered rewards is readily seen from (5).

m

0
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v4

1

2

3

4
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1

2

3

4

skill

levels

contest

classes

Figure 1: Selection of contests in equilibrium under
player-specific skills. Players are partitioned over
skill levels. A player of skill level ` selects from the
set of top ` reward contests.

In the following theorem, we establish how in equilibrium,
contests are selected by players of given skill.

Theorem 4.2. In the equlibrium, players select contests
as given in the following.
1. Skill levels. Players are partitioned over K̃ skill levels
such that a skill level ` corresponds to the interval of skill
values [v`+1, v`), where

F (v`) = 1− J[1,`]

1−
R

1
N−1
`

H[1,`](~R)

 , (6)

for ` = 1, . . . , K̃, and v` = 0 for ` = K̃ + 1, . . . , K.
2. Contest selections vs. skill. A player of skill v selects
a particular contest of class j with probability πj(v) given by

πj(v) =


R
− 1

N−1
j∑`

k=1 JkR
− 1

N−1
k

, for j = 1, . . . , `

0, for j = ` + 1, . . . , K,

(7)

for v ∈ [v`+1, v`). Thus, a player of skill level ` selects a
contest that offers one of ` highest rewards.

Item 1 says that in equilibrium, players are partitioned
over a finite set of skill levels. Item 2 tells us that a player
of skill level ` randomly selects a contest among those that
offer one of ` highest rewards. Note that a smaller value
of ` indicates a higher skill. The players of skill level `
select contests that offer the `-th highest reward with the
largest probability and those that offer larger reward are se-
lected with smaller probability. Indeed, (7) establishes that
a player of skill level ` selects a contest that offers the j-th
highest reward where j = 1, . . . , `, with probability inversely

proportional to R
1/(N−1)
j .

In Fig. 1, we provide an illustration of the equilibrium
selection of contests for K = 5 and K̃ = 4. The thickness
of the arrows indicate the likelihood that a player joins that
particular contest. Here, contest 1 has the highest reward,
and players with skills in level 1 are in the highest segment
of [0, m].



4.1 The Large-System Limit
In this subsection, we consider the properties of the equi-

librium under the large-system scaling, which was intro-
duced in Section 3.

Theorem 4.3. In the large-system limit, the number of
players that participate in a given contest of class j is a
Poisson random variable with mean λj given by

λj =


λ

ν[1,K̃]
+ log

Rj∏K̃
k=1 R

νk/ν[1,K̃]
k

, j = 1, . . . , K̃,

0, j = K̃ + 1, . . . , K,

where

K̃ = max

{
i : Ri >

(
i∏

k=1

R
νk/ν[1,i]
k

)
e
− λ

ν[1,i]

}
. (8)

The result reveals that for large systems, the participation
rate λj for contest j is logarithmic in the offered reward Rj ,
provided that the reward is larger or equal to the threshold
reward RK̃ . Hence, the participation rates exhibit diminish-
ing returns as the rewards increase.

Additionally, we also note the following refined asymptotic
characterization:

λj ∼ λ

ν[1,K̃]

+ log
Rj∏K̃

k=1 R
νk/ν[1,K̃]
k

+

log

∏K̃
k=1 R

νk/ν[1,K̃]
k

Rj

 1

N
, large N,

for j = 1, . . . , K̃. This tells us that as N goes to infinity the
mean participation over contest classes become more imbal-
anced as the term that contains 1/N is positive (negative)
for contests that offer smaller (larger) rewards.

Moreover, we can invert Theorem 4.3 to obtain rewards
as a function of participation rates.

Corollary 4.1. Given (λ1, . . . , λK) with λj > 0 for j =

1, . . . , K̃ for some 1 ≤ K̃ ≤ K and λj = 0 otherwise, the
rewards R1, . . . , RK̃ are uniquely determined up to a multi-
plicative constant. For any c > 0, we have

Rj = ceλj , for j = 1, . . . , K̃,

and

Rj < ce

−λ+
∑K̃

k=1 νkλk
ν[1,K̃] , for j = K̃ + 1, . . . , K.

The threshold in (8) admits the following interpretation.
Suppose there are two contest classes – the first offers a
guaranteed reward of Ri, while the other offers the reward∏i

k=1 R
νk/ν[1,i]
k ; we would bid zero in both, but win the latter

only if we are lucky enough to be the only player. The
threshold is the largest i for which we prefer Ri in such a
situation.

We have the following analogue of Theorem 4.2.

Corollary 4.2. In the large-system limit, we have the
following.

1. Skill levels. Each skill level ` corresponds to the interval
of skill values (v`+1, v`] where v` is given by

F (v`) = 1−
ν[1,`]

λ
log

∏`
k=1 R

νk/ν[1,`]
k

R`
,

for ` = 1, . . . , K̃, and v` = 0, otherwise.
2. Contest selections vs. skill.

πj(v) =

{
1

J[1,`]
, j = 1, . . . , `

0, j = ` + 1, . . . , K,

for v ∈ [v`+1, v`).

Item 2 reveals the following insensitivity property that
holds in the large-system limit. A player of skill level `
selects a contest uniformly at random from those that offer
any of ` highest rewards. This may be of interest to sys-
tem designers – the result suggests that for large systems,
the mapping of the skill to the set of contests to choose
from may be more important than the precise probabilities
at which the contests are selected within this set. For ex-
ample, this may inform the design of recommendations that
would match the player skill to the contest rewards.

Interestingly, Theorems 4.1 and 4.3 reveal that the partic-
ipation rates are independent of the underlying probability
distribution. Indeed, only Item 1 of Theorem 4.2 (and re-
spectively, Corollary 4.2) is dependent on F (v) – the distri-
bution influences which players join which contests, but the
resulting participation rates are invariant.

5. CONTEST-SPECIFIC SKILLS
In contrast with the previous section, it is also natural

to examine situations in which the talents required for con-
tests are very diverse. In such situations, a player’s intrinsic
skills for different contests would exhibit little correlation.
Toward this end, we now suppose that skills are drawn in-
dependently across not only players but also across contests
for each player.

Let Fj(v) be an atomless distribution on [0, m] from which
the skills for contests of class j are drawn. We assume that
m is in the support of this distribution.

An implication of Corollary 3.1 is that each player needs
only pay attention to his highest skill in each class of contests
(since the distribution is atomless, a tie is a zero-measure
event). If there are Jk contests in class k, then the highest

skill among these contests will have distribution F
Jk
k (v) and

each contest in this class is equally likely to have the highest
skill (and hence be the only candidate for participation).

We explore the large-scale limit of this environment. Let
(λ1, · · · , λK) be a limit of the vector of the mean number
of players per contest of each type, and consider a sequence
of equilibria that lead to this limit. Uniqueness of the limit
will follow from Theorem 4.3; in the interim we may abuse
notation and refer to this limit by the definite article.

In this sequence, limN→∞Npj = λj , where pj is the prob-
ability of a player selecting one particular contest of type j.
Recall that F̂j(v) is the distribution of a player’s skill con-
tingent on his selecting a contest of class j.

Lemma 5.1. Suppose λj > 0. Then we have

lim
N→∞

F̂j(v) =

{
0, if v < m

1, if v = m.



For the purpose of developing intuition, we can again con-
sider (via revenue equivalence) a situation in which the num-
ber of players is revealed after players join the contest. As
the distribution approaches one in which all participants
have maximal skill, the player’s surplus becomes increas-
ingly dependent on the outcome in which no other players
compete (a contest between two equally skilled players will
give both zero surplus). Since the number of players ap-
proaches a Poisson limit, the probability of this event for a
contest of class j is e−λj .

For notational convenience, define ρj for each contest type
j by ρj = Rje

−λj .

Lemma 5.2. For each j and v ∈ [0, m], we have

gj(v) ∼ ρjv, for large N.

Moreover, for any ε > 0, we have for all sufficiently large N

|gj(v)− ρjv| ≤ ε uniformly for all v ∈ [0, m].

Proposition 5.1. In the large-scale limit, whenever λj >
0, we have ρj ≥ ρk for all contest classes k.

Note that this implies a single value of ρj for all contest
classes attended by a positive fraction of players in the limit.

Let K̃ be such that λj > 0, for j = 1, . . . , K̃, and λj = 0,
for j = K̃ +1, . . . , K. For contests i and j such that λi, λj >
0, we have from Proposition 5.1,

λj = λj+1 + log

(
Rj

Rj+1

)
, j = 1, . . . , K̃ − 1.

Hence,

λj = λK̃ + log

(
Rj

RK̃

)
, j = 1, . . . , K̃ − 1. (9)

These relationships suffice to determine λj for all classes
j as in the following corollary. Asymptotic rates of conver-
gence are explored in Appendix C.4.

Corollary 5.1. For the large-system limit, precisely the
same limit holds as is stated in Theorem 4.3. Moreover, the
reverse mapping in Corollary 4.1 also holds.

In the proof of Lemma 5.1, we see that as the system
grows, a player’s skill at each contest class becomes closer
to m, and hence his skills at any two contest classes become
more alike. Consequently in a large system we are very
nearly in a situation in which a player has a common skill
for all contests – thus in the limit we observe the same player
participation as in Section 4.

6. EXTENSIONS
In this section we explore situations in which some of our

previous assumptions are relaxed. In the following subsec-
tion we explore the consequences of allowing distributions
for different skills to have different supports. Subsection 6.2
examines the impact of imposing a minimum effort require-
ment on participating players.

6.1 Asymmetric Skills
Recall that our maximum skill m enforced a lower bound

on the unit cost of effort; we may be interested in cases where
this bound varies by contest class. Thus we observe that in
Section 5 the use of the same maximum skill level m for each

contest class may be generalized. For instance, suppose we
wish to use distributions Fj(v) with maximum skill level mj

for each class j (i.e. mj is the supremum of the support of
Fj(v)). If we scale to distribution F ∗j (v) = Fj(mjv) for v ∈
[0, 1] and reward R∗j = mjRj , then the players face precisely
the same decisions in the two games. For instance, in this
setting, observe the following generalization of Theorem 4.3.

Corollary 6.1. Suppose the maximum skill in contest
class j is mj. In the large-system limit, the number of play-
ers that participate in a given contest of class j is a Poisson
random variable with mean λj given by

λj =


λ

ν[1,K̃]
+ log

mjRj∏K̃
k=1(mkRk)

νk/ν[1,K̃]
, j = 1, . . . , K̃,

0, j = K̃ + 1, . . . , K,

where

K̃ = max

{
i : miRi >

(
i∏

k=1

(mkRk)νk/ν[1,i]

)
e
− λ

ν[1,i]

}
.

The relaxation of this assumption raises interesting model-
ing and informational requirements. As distributional knowl-
edge is common to players in our game, the set of values mj

must also be known by the players. Additionally, it raises
the question of how these values might be inferred from ob-
serving the participation levels of a system. An interesting
future direction would be to model these parameters en-
dogenously, since it is reasonable to assume that a player’s
surplus at the maximum skill would bear some relationship
to his outside option.

6.2 Minimum Effort
Some contests may require entrants to put forth a mini-

mum level of effort. For instance, a software design contest
may disqualify all programs that are unable to process a
particular set of inputs, the remaining entrants to compete
on the basis of elegance of code, general performance, or less
rigid criteria. In joining such a contest, a player bears the
cost of this effort – in the auction setting, this corresponds
to a minimum bid, or reserve price. In all-pay auctions, a
reserve price is particularly restrictive for the bidders, and
is roughly equivalent to an entry cost (presuming a player
joined the auction intending to bid, and that bids are de-
clared before the number of opponents is revealed).

Suppose that players may exit the system if they antici-
pate negative surplus upon seeing their skills (alternatively,
we may suppose there is an additional contest offering neg-
ligible reward and requiring zero minimum effort), and that
contests of class j enforce a minimum effort requirement of
ej . We assume that Rj ≥ ej

m
, for otherwise we are assured

that no players would participate in such a contest class.
Then for each contest class j, there is a minimum type vj

who puts forth minimal effort and receives zero surplus, ac-
cording to the equation

Rjvj(1− pj)
N−1 = ej .

Note that the left-hand side is the expected effort that would
be excerted from a player with skill vj if this player selected
to participate in a contest of class j; in the corresponding
all-pay auction, Rjvj is the value and (1 − pj)

N−1 is the
probability of winning for the given player. We have that
no type below vj would willingly join this contest. Note that



the imposition of minimum effort influences both pj and the

posterior distribution F̂j(v) – that is, its effect must be fully
integrated into the equilibrium.

The techniques leading to closed-form solutions of equilib-
ria and participation do not carry over to this setting. Qual-
itatively, however, it may be shown that analogous results
hold – participation is roughly logarithmically increasing in
reward and logarithmically decreasing in required minimum
effort. The interested reader may refer to Appendix D.1 for
related discussion.

7. SYSTEM OBJECTIVES
In those situations in which the the offered rewards are

centrally controlled, or in which those offering the rewards
cooperate, it is natural to inquire as to the optimal specifi-
cation of rewards for contests. Toward this end, this section
explores possible social welfare objectives that may be de-
sired by such a system. We make use of the characterization
results, established in the preceding sections, on the rela-
tionship between reward and participation.

Suppose that each contest j is associated with a utility
Uj(λj) for the mean number of participants in this contest
λj ≥ 0. Suppose also that each contest j is associated with

a cost Cj(~R) for a vector of given nonnegative rewards ~R =

(R1, · · · , RK). We assume ~R takes values from a given set
R that is a subset of [0,∞)K .

We consider the system welfare problem defined as follows:

SYSTEM

maximize

K∑
k=1

νk[Uk(λk(~R))− Ck(~R)]

over ~R ∈ R

subject to

K∑
k=1

νkλk = λ.

For the mapping between rewards ~R and the mean num-
ber of contest participants, we may use the participation
rates derived in Theorem 4.1, or alternatively the formula
specified by Theorem 4.3 and Corollary 5.1. In the former
case, we inspect a finite system under the player-specific
skill assumption; in the latter case, we use the large sys-
tem limit, which yields the same populations for both the
player-specific and contest-specific skill assumptions.

In the following sections, we consider specific instances
of the SYSTEM problem. First, we consider the special
case where for each contest there is zero cost of offering any
reward, i.e. Ck(·) ≡ 0 for each contest k. Such zero-cost
contests are of interest for systems where rewards are non-
monetary, e.g. reputation points in a Q&A system. Second,
we consider cases where the utility for a contest is increasing
with the expected revenue.

7.1 Zero-Cost Contests
We consider the SYSTEM problem with Ck(·) ≡ 0 for

each contest k and rewards taking values on R = [0,∞)K .
Suppose that for each contest class k, Uk(λk) is an in-

creasing, strictly concave function of λk ≥ 0. Let U ′k denote
the marginal utility and U ′k

−1
its inverse.

Proposition 7.1. Under player-specific skills, optimal re-
wards are unique up to a multiplicative constant. Moreover,

for any c > 0,

Rj = c

(
1−

U ′j
−1

(µ)

N

)−(N−1)

, j = 1, . . . , K, (10)

where µ is a unique solution of

K∑
k=1

νkU ′k
−1

(µ) = λ.

For the large-system limit under both player- and contest-
specific skill assumptions, we have the following optimal al-
location of rewards. The proposition may be demonstrated
by an analogous argument, employing Theorem 4.3 in lieu
of Theorem 4.1.

Proposition 7.2. In the large-system limit, optimal re-
wards are unique up to a multiplicative constant. Moreover,
for any c > 0,

Rj = ceU′
j
−1(µ), j = 1, . . . , K, (11)

where µ is a unique solution of

K∑
k=1

νkU ′k
−1

(µ) = λ.

Figure 2: Optimal rewards versus the mean number
of players per contest λ with willingness to pay pa-
rameters w1 = 30 and w2 = 20. With fewer players
per contest, rewards are higher.

7.2 Revenue Optimal Rewards
In the large-system limit under the assumption of contest-

specific skills, consider the revenue for a contest of class j
given by

Πj(λj) = Rjmj

(
1− (1 + λj)e

−λj

)
(12)

where Rj is the offered reward, mj is the maximum skill
and λj is the expected number of participants for contest
j in equilibrium. This revenue corresponds to the total
amount of effort put forth by players in this contest, and
may be derived from the Revenue Equivalence Theorem. (It
corresponds to a revenue of mj when two or more players
are present, and 0 otherwise.) We note that this revenue
is not relevant in all circumstances; in many contests, only



Category Number of tasks Submissions per task Median submission Median reward Median total
period (days) (RMB) submissions per user

(observed on Feb ’09)
Graphics 2,392 44.66 16.97 200 n/a

Logos 571 50.36 16.96 240 24
2-D 1,431 49.14 17.68 200 23

Characters 613 323.75 17.15 80 n/a
Miscellaneous 565 38.47 12.29 79.85 n/a

Table 1: Summary of dataset basic properties.

(i) Graphics (ii) Characters (iii) Miscellaneous

Figure 3: The mean number of submissions versus the reward. The bars indicate 95% confidence intervals.
The lines are linear regressions.

the effort put forth by the strongest player is important.
Nonetheless, in contests where the players’ effort may be
usefully aggregated, this quantity warrants inspection.

We consider the SYSTEM problem with

Uj(λj) = Vj(Πj(λj)),

where Vj(Πj) is the utility from contest j when the rev-
enue in that contest is Πj . We also suppose that the cost
is Dj(Rj) for reward Rj if the contest is attended by at least

one player; this corresponds to Cj(~R) = (1−e−λj(~R))Dj(Rj).
We can solve SYSTEM by a two-step procedure as follows.

By Corollary 4.1 we have that for some r > 0, Rj = reλj ,
whenever λj > 0. The first step amounts to solving, for
fixed r > 0, and j = 1, . . . , K,

maximize Vj

(
reλj mj

(
1− (1 + λj) e−λj

))
− (13)

(1− e−λj )Dj(re
λj )

over λj ≥ 0.

This yields a solution λj(r). The second step amounts to

finding r ≥ 0 such that
∑K

k=1 νkλk(r) = λ.
Example. Let us consider two contest classes with the

following utility and costs. The utility functions are given
by Vk(x) = wk log(x), x ≥ 0, k = 1, 2, where wk > 0 is a
willingness to pay parameter. Suppose also that cost func-
tions are linear: Dk(x) = x, x ≥ 0, k = 1, 2. We assume that
the contest classes contain the same number of contests, i.e.
ν1 = ν2 = 1/2.

We inspect the solution near the limit when there are a
large mean number of participants in each contest (i.e. weak
competition). In this case we have that the objective func-
tion in (13) is approximately wjλj − reλj . It follows that
the optimal values of λj are given by λj = log wj − log r.

Combining this with
∑K

k=1 νkλk = λ, we obtain log r =

log
√

w1w2 − λ. Hence,

λj =

{
λ + 1

2
log w1

w2
, j = 1,

λ− 1
2

log w1
w2

, j = 2.

It follows that, in the prevailing limit, Rj = wj , j = 1, 2,
i.e. the rewards offered by contest classes are equal to the
respective willingness to pay parameters.

The interaction between these two contests may be ex-
plored by examining how the rewards change as the number
of players per contest changes. Intuitively, for smaller λ the
contests would offer higher rewards since they must more
intensely court a smaller number of players. This effect is
illustrated by Fig. 2, where a numerical solution is presented.

8. EMPIRICAL RESULTS
In this section we compare the results of our empirical

analysis with the predictions of our analytical model. To
this end, we use data collected from the crowdsourcing site
Taskcn, covering a year-long period. We first provide basic
information about the data set and then present our results.

8.1 Data
Taskcn groups posted tasks into a few broad categories,

together with subcategories. The categories are Graphics,
Characters, Miscellaneous, and Super Challenge. Graph-
ics and Characters respectively concern graphic design and
writing-oriented tasks. Miscellaneous is a diverse category,
containing programming tasks, odd jobs, and the catch-all
“other.” Super Challenge is a small collection of miscella-
neous high-reward tasks.

In Table 1, we summarize the basic properties of the tasks
that we consider. We consider only the tasks posted in year
2008 for which a single winner was chosen. We observed that
for all categories (and all but one subcategory) the major-
ity of the tasks had a single winner. Furthermore, for each



(i) Subcategory: Logos

(ii) Subcategory: 2-D

Figure 4: The mean number of submissions versus the reward for the subcategories (i) Logos and (ii) 2-D.
From left to right, the conditioning is on users who submitted at least X solutions with X = 1, 10, 100, 200.
The bars indicate 95% confidence intervals. The thick lines indicate the result of Theorem 4.3. The more
experienced the users are (i.e. the larger the threshold X), the better the fit to the model.

subcategory of the category Graphics, more than 80% of the
tasks awarded a single winner. In some of our analysis we fo-
cus particularly on the subcategories Logos and 2-D Design,
which account for the bulk of the Graphics category. We
do so under the conjecture that the tasks in these subcat-
egories are roughly homogeneous in terms of the required
skills, thus avoiding the modeling difficulty mentioned in
Section 6.1 and lending some support to the player-specific
skill assumption.

As previously noted, our model is independent of the un-
derlying distribution of players’ skills for large systems; it
does not appear to be simple to infer this distribution from
the data. We note incidentally that, in agreement with [14],
we found that there is small group of users that accounts for
a surprisingly large number of successful submissions. For
instance, in the subcategory 2-D, there were 14,197 distinct
users (individuals who participated at least once) responsi-
ble for a bit over 70,000 submissions. Of the 1431 tasks,
there were 774 distinct winners. However, a group of only
122 users accounted for 50% of all winning submissions.

8.2 Participation vs. Rewards
In Figure 3 we show the mean number of submissions per

task versus the task reward for the categories (i) Graphics,
(ii) Characters, and (iii) Miscellaneous. The results for (i)
and (ii) indicate an increasing trend for participation with
the reward over a wide interval of rewards. There is some
noticeable drop in participation at high rewards. For (iii),
there is a lack of apparent trend which may be due to the
heterogeneity of the tasks in the given category. The em-
pirical results for (i) and (ii) support the hypothesis that
the level of participation depends on the reward. The re-

lationship between the rewards and the mean participation
established by our model in Theorem 4.3 predicts a linear
increase of the mean participation with the logarithm of the
reward. The linear regression lines in Figure 3-(i) and (ii)
suggest a faster increase than predicted by our model (which
predicts a slope of 1

log10 e
≈ 2.3). In the following, we discuss

this discrepancy in more detail.
To more closely examine the relationship between reward

and participation, we turn our attention to the experience of
the users. We consider the same statistics as in the preced-
ing paragraph but restrict our attention to those users who
submit to several tasks in their lifetime. This enables us to
filter out submissions from users who submitted only a few
times and perhaps never learned an effective strategy. In-
tuitively, one would expect that a user would become more
proficient at strategically selecting tasks with the acquired
experience; this was confirmed in [14].

Consider a threshold X such that we restrict our attention
to those users who submit at least X solutions in total (as
observed early February 2009). We examine thresholds X
taking values 1, 10, 100, and 200. For a user who was active
the entire year, these respectively correspond to submitting
approximately (i) any number of tasks, (ii) once a month,
(iii) every fourth day, and (iv) every second day, over this
period. In Figure 4 we provide the same plots as in Figure 3
but for subcategories Logos and 2-D, and we condition on
these thresholds. The data suggests that as we condition on
more experienced users, we more closely obtain the relation-
ship predicted by the model.

8.3 Other Considerations
While we focus on the influence of rewards on participa-



tion, this is not the only factor capable of influencing user
participation. Users may avoid a task that is poorly worded
or posted by someone with a poor reputation. Addition-
ally, we have examined the influence of the duration of the
submission period on participation, and found that is a sig-
nificant factor in some cases; we omit further discussion due
to space constraints. While a thorough factorial analysis of
user participation is of interest, it is beyond the scope of the
present paper.

9. CONCLUSION
In this paper we have presented and analyzed a model of

crowdsourcing in which strategic players select among, and
subsequently compete in, contests. Our focus is on the rela-
tionship between participation and incentives; in the regimes
we have studied, we find that participation rates are loga-
rithmically increasing as a function of the offered reward.
Despite the simplicity of our model, it appears to be consis-
tent with data from Taskcn, when the data is restricted to
include only those who repeatedly use the site.

Nonetheless, we have noted that reward is not the only
factor that can influence participation levels. Future work
should consider the impact of the duration for which the task
is posted, and how this might affect users in a dynamic set-
ting. This introduces another dimension of empirical analy-
sis as well.

These characterizations and the game-theoretic perspec-
tive lead naturally to the questions of how best to structure
the incentives, and how to aid users in their selection of
tasks. We have considered how the former might be posed
in our framework; the latter question invites inquiry into
how users’ skills might be ascertained, and in what manner
users respond to offered suggestions. Currently, the tasks
on Taskcn are chiefly presented to users in order of recency;
given even rudimentary information about users’ skills and
interests, there is room for improvement.
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APPENDIX
A. APPENDIX FOR SECTION 3

A.1 Proof of Proposition 3.1
Consider a simpler game in which players select contests,

but do not submit bids. After the assignment of players to
contests is realized, the players’ skills are revealed and each
player receives his outcome under a second-price auction.
(The auction is not actually conducted – these outcomes
are simply used as a payoff function.) Note that the action
spaces are finite and the types of the players are independent
– these together with the boundedness of the payoffs satisfy
the technical conditions for existence of mixed-strategy equi-
libria in [9]. Since the game is symmetric, we may select a
symmetric equilibrium.

Next, consider the two-stage game in which players first
select contests, and then the number of players is revealed
and an all-pay auction is carried out. By the Revenue Equiv-
alence Theorem [6], players’ expected surplus in the second
stage (under symmetric all-pay auction equilibrium bidding)
is equal to their surplus in the previous game. Another ap-
plication of the Revenue Equivalence Theorem establishes
that they would also receive the same surplus if they were
to bid before the number of players is revealed. This is our
original game.

A.2 Proof of Proposition 3.2
In the simplified context of Proposition 3.1, we examine

a similar game in which this equilibrium symmetry is ap-
parent, and then observe that the resulting equilibrium is
an equilibrium in the original game. This yields an equi-
librium in the simplified setting with the desired properties,
which corresponds to an equilibrium in our model via the
argument in Proposition 3.1.

In the modified game, after players select a contest, for
each player Nature selects a random permutation of simi-
lar contests, and modifies the player’s skills and selection
accordingly. Effectively, Nature’s move enforces symmetry
of the actions of each player – even if a player selects dif-
ferent actions for different contests with the same rewards,
such a strategy is payoff-equivalent to one that randomizes
uniformly over these actions. It is clear that since the dis-
tribution of skills is symmetric with respect to similar con-
tests, examining a player’s symmetric post-Nature equilib-
rium strategy yields a symmetric strategy that is also an
equilibrium in our original game.

B. APPENDIX FOR SECTION 4
In this section we first establish some properties that hold

for any symmetric equilibria of the game under the player-
specific skill assumption. We then provide proofs for Theo-
rem 4.1, Theorem 4.2, and Proposition 4.1.

The equilibrium expected payoff gj(v) to a user with skill
v in a contest of class j is given by (1). For each j, the
marginal equilibrium expected payoff g′j(v) = (d/dv)gj(v)
satisfies

g′j(v) = Rj(1− pjF̂
c
j (v))N−1, v ∈ [0, m]. (14)

By the definition of conditional probability, we have

pjF̂
c
j (v) =

∫ m

v

πj(x)dF (x), v ∈ [0, m]. (15)

Hence,

pj =

∫ m

0

πj(x)dF (x). (16)

The expected payoff gj function, for any j, satisfies the
following properties; these properties hold generally and do
not depend on the assumption of player-specific skills.
(G1) gj is a non-decreasing function;
(G2) gj is a continuous convex function;
(G3) g′j is a continuous function;
(G4) gj(0) = 0;
(G5) g′j(m) = Rj .

Note that (G1) follows from (1) as the integrand therein
is positive. (G2) follows from (1) as the integrand is non-
decreasing with v for v ∈ [0, m]. (G3) follows from (14)
and (15) and non-atomicity. (G4) follows from (1). Finally,

(G5) derives from (14) and the fact that F̂j is a distribution

function with support in [0, m], hence F̂ c
j (m) = 0.

The following holds for any symmetric equilibrium with
the probability distribution ~π. If for some v ∈ [0, m],
(E1) πj(v) > 0, then gj(v) ≥ maxk gk(v);
(E2) If gj(v) < gk(v) for some k 6= j, then πj(v) = 0.

The following lemma presents a key property of any sym-
metric equilibrium.

Lemma B.1. Suppose that for some v0 ∈ [0, m], and i, j ∈
{1, . . . , K} such that gi(v0) ≥ maxk gk(v0), we have

g′j(v0) < g′i(v0).

Then,

gj(v) < max
k

gk(v), for all v ∈ (v0, m].

Proof. To contradict, suppose that gj(v) = maxk gk(v)
for some v ∈ (v0, m] and let v1 denote the infimum of such
v. Hence

gj(v1) = max
k

gk(v1). (17)

Fix ε > 0 such that g′i(v0) − g′j(v0) > ε. By property
(E2), πj(v) = 0, for all v ∈ (v0, v1) and hence by (14)–(15),
g′j(v) = g′j(v0) for all v ∈ [v0, v1). By (G2), g′i(v) ≥ g′i(v0),
for all v ∈ [v0, v1). Thus

g′i(v)− g′j(v) > ε, for all v ∈ [v0, v1).

From (G3), it follows that g′i(v) − g′j(v) > ε, for all v ∈
[v0, v1]. This along with the assumption gi(v0) ≥ gj(v0)
yields

gi(v1)− gj(v1) = gi(v0)− gj(v0) +

∫ v1

v0

(g′i(v)− g′j(v))dv

≥
∫ v1

v0

(g′i(v)− g′j(v))dv

> 0,

which is a contradiction.

The lemma entails the following corollary.

Corollary B.1. For any j such that pj > 0,

g′j(0) ≥ g′k(0), for all k.



Proof. To contradict, suppose that pj > 0 and g′j(0) <
maxk g′k(0). Apply Lemma B.1 with v0 = 0 to conclude
that gj(v) < maxk gk(v), for all v ∈ (0, m]. By (E2) we have
πj(v) = 0 for all v ∈ (0, m], and hence by (16), pj = 0, a
contradiction.

Futhermore, combining Lemma B.1 with (E2) and (15)
we have

Corollary B.2. Under the assumptions of Lemma B.1,

(i) πj(v) = 0, for all v ∈ (v0, m];

(ii) F̂ c
j (v0) = 0, if pj > 0.

Lemma B.2. If pj > 0 and pi = 0 then Rj > Ri.

Proof. To contradict, suppose that Rj ≤ Ri. By Corol-
lary B.1, g′j(0) ≥ g′i(0), i.e. Rj(1−pj)

N−1 ≥ Ri. Combining
with pj > 0, it follows Rj > Ri, which is a contradiction.

For each contest class j, we define vj ∈ [0, m] by

pjF̂
c
j (v) > 0 for all v ∈ [0, vj)

pjF̂
c
j (v) = 0 for all v ∈ [vj , m].

Note that if pj = 0 then vj = 0. We define vK+1 = 0.

Lemma B.3. For any symmetric equilibrium, we have

(i) vj ≤ vi for Rj < Ri;

(ii) g′j(v) = g′1(v) for j = 1, . . . , ` and v ∈ [v`+1, v`);

(iii) g′j(v) < g′1(v) for j = ` + 1, . . . , K and v ∈ [v`+1, v`).

Proof. Item (i). In view of Lemma B.2 and the fact
vj = 0 if pj = 0, item (i) is true if pj = 0 or pi = 0. It thus
suffices to consider only contests for which pj > 0.

We proceed progressively over [0, m], starting at v = 0.
Let A = {k : pk > 0}. By Corollary B.1, g′j(0) = g′i(0)
for all i, j ∈ A. Let v′ be smallest value in [0, m] such that
g′j(v

′) < maxk∈A g′k(v′) for some j ∈ A. Then, it must hold
that Rj = mink∈A Rk. To contradict, suppose that there
exist i ∈ S such that Ri < Rj . By Corollary B.2-(ii) and
(G3) we have g′j(v

′) = Rj . Combining the last two relations
with g′i(v

′) ≥ g′j(v
′) we conclude g′i(v

′) > Ri, which cannot
hold as by (14), g′k(v) ≤ Rk, for all k. This establishes item
(i) for j∗ such that Rj∗ = mink∈A Rk.

The result follows by continuing the argument over [v′, m]
with A = {k : pk > 0} \ {j∗}.

Items (ii) and (iii). These items can be shown via ar-
guments similar to those in the proof of item (i).

B.1 Proof of Theorem 4.1
Let A be defined as follows

A = {j ∈ {1, . . . , K} : pj > 0}. (18)

By Corollary B.1, we have that for some C > 0,

Rj(1− pj)
N−1 = C, for all j ∈ A. (19)

Now, using the fact
∑

k∈A Jkpk = 1, we obtain

C =

(
1− 1

JA

)N−1

HA(R)N−1

where HA(R) is defined in (2). From (19), it follows

pj = 1−
(

1− 1

JA

)
HA(R)

R
1

N−1
j

, for j ∈ A. (20)

It remains to show that A = {1, . . . , K̃} with K̃ as as-
serted in (4). From Lemma B.2, we have that A = {1, . . . , n}
for some n ∈ {1, . . . , K}. From (20), it is readily checked
that pj > 0 for all j = 1, . . . , n is equivalent to

φ(n) < 1 (21)

where

φ(n) = J[1,n] −
n∑

k=1

Jk

(
Rn

Rk

) 1
N−1

.

In addition, n must satisfy pn+1 = 0, by the definition (18).
Combining pn > 0 and pn+1 = 0 with Corollary B.1, we have
that it must hold Rn+1 ≤ Rn(1−pn)N−1. Using (20), it can
be readily checked that the latter condition is equivalent to

φ(n + 1) ≥ 1. (22)

It is easy to check that φ(n) is non-decreasing with n and

thus (21) and (22) imply n = K̃.

B.2 Proof of Theorem 4.2
In Lemma B.3 we found that for any symmetric equilib-

rium there exists a sequence 0 = vK+1 ≤ vK ≤ ... ≤ v2 ≤
v1 = m such that the expected payoffs satisfy (ii) and (iii)
in Lemma B.3. In the remainder we refer to the conditions
(ii) and (iii) of Lemma B.3.

From (1) and (ii), we have

Rj

(
1− pjF̂

c
j (v)

)N−1

= R1

(
1− p1F̂

c
1 (v)

)N−1

for all j = 1, . . . , ` and v ∈ [v`+1, v`). It follows that

pjF̂
c
j (v) = 1− aj + ajp1F̂

c
1 (v) (23)

with

aj =

(
R1

Rj

) 1
N−1

,

for j = 1, . . . , ` and v ∈ [v`+1, v`).
From Corollary B.2 and (iii), we have

F̂ c
j (v) = 0, (24)

for all j = `, . . . , K and v ≥ v`.
By the property of conditional probability,

K∑
k=1

JkpkF̂ c
j (v) = F c(v), v ∈ [0, m]. (25)

Plugging (23) and (24) in the last relation, we obtain

p1F̂
c
1 (v) = 1−

J[1,`]∑`
k=1 Jkak

+
1∑`

k=1 Jkak

F c(v)

for v ∈ [v`+1, v`). Combining with (23), we have

pjF̂
c
j (v) = 1−R

− 1
N−1

j H[1,`](R)

(
1− 1

J[1,`]

F c(v)

)
(26)

for j = 1, . . . , ` and v ∈ [v`+1, v`) where H[1,`](·) is defined
in (2).

From p`F̂
c
` (v`) = 0 and (26), we obtain Eq. (6). This

establishes item (i).
Item (ii) is derived upon differentiating both sides in (15)

and using (26).



B.3 Proof of Proposition 4.1
The asserted uniqueness follows by the uniqueness of the

equilibrium constructed in the proof of Theorem 4.2.

B.4 Proof of Theorem 4.3
In the proof, we repeatedly use the asymptote, for any

a > 0, ax ∼ 1 + log(a)x, for small x.
Consider (5) in Theorem 4.1. We have

H[1,K̃](
~R) ∼ 1 + log

 K̃∏
k=1

R
νk/ν[1,K̃]
k

 1

N
, large N. (27)

Furthermore, for large N ,

H[1,K̃](
~R)

R
1

N−1
j

∼ H[1,K̃](
~R)

(
1− log Rj

N

)

∼ 1 + log

∏K̃
k=1 R

νk/ν[1,K̃]
k

Rj

 1

N

where the last asymptote follows from (27). Using (28) in
(5), we obtain

pj ∼
1

J[1,K̃]

+ log

 Rj∏K̃
k=1 R

νk/ν[1,K̃]
k

 1

N
, large N,

for j = 1, . . . , K̃. Similarly, (8) derives from (4).
We have showed that for each j,

lim
N→∞

Npj = λj ,

where λj is as asserted in the corollary. The asserted Poisson
limit then follows by recalling that in equilibrium, the num-
ber of players that select a contest of class j is a binomial
random variable with parameters N and pj .

C. APPENDIX FOR SECTION 5

C.1 Proof of Lemma 5.1
Suppose v < m. Since m is in the support of Fj(·) we have

Fj(v) < 1. Also, F̂j(v) ≤
F

Jj
j (v)

Jjpj
∼

λF
Jj
j (v)

νjNpj
. The inequal-

ity follows from conditional probability, and the asymptote

from νjN ∼ λJj . Then Npj → λj and F
Jj

j (v) decreases

exponentially in N , and we have F̂j(v) → 0.

C.2 Proof of Lemma 5.2
In Eq. (1), taking the large scale limit and using domi-

nated convergence, we have for large N ,

gj(v) ∼ Rj

∫ v

0

 lim
N→∞

(
1−

NpjF̂
c
j (x)

N

)N−1
 dx.

Since F̂ c
j (x) → 1 and Npj → λj , the integrand is simply

e−λj . The second part of the lemma follows from the ob-
servation that gj(m)− ε

2
≤ gj(m− ε

2Rj
) ≤ gj(m); hence we

may take this convergence at a point strictly bounded away
from m. This ensures uniformity, since F̂ c

j (x) is decreasing
in x.

C.3 Proof of Propositon 5.1
Suppose for the sake of contradiction that λj > 0 but

ρj(1 + ε) = ρk for some ε > 0. The probability of a player

joining a contest of class j is asymptotically Jjpj ∼ λjνj

λ
>

0. Let the random variables vj and vk denote a player’s
highest skill in classes j and k respectively. Then since par-
ticipation in class j requires his surplus to be higher there
than in class k, we must have Jjpj ≤ P[gj(vj) ≥ gk(vk)].
By Lemma 5.2, for all N large enough we have P[gj(vj) ≥
gk(vk)] ≤ P[ρjvj + ρj

ε
2
≥ ρkvk]. But the right hand side is

P[vj ≥ vk + ε
2
] ≤ Fk(m− ε

2
)Jk → 0, a contradiction.

C.4 Convergence to the Limit
We briefly discuss the convergence to the limit established

in Corollary 5.1. Our objective is to examine, as the sys-
tem grows, how quickly player populations approach the
limit populations. Let us consider the case of two contest
classes. Let ρ(N) be a sequence such that for v ∈ [0, m],
ρ(N) ∼ g2(v)/g1(v), for large N . In view of Lemma 5.2, we
have limN→∞ ρ(N) = ρ2/ρ1. It is readily checked that ρ(N)
satisfies the following asymptote

R1

R2
ρ ∼ e

1
ν1

(λ−Np2)
, large N. (28)

Note further that

Np2 ∼
λ

ν2

∫ m

0

F (ρv)
ν1
λ

NdF (v)
ν2
λ

N , large N. (29)

Example. Suppose F (v) = (v/m)a, v ∈ [0, m], for any
a > 0. From (29), we have

Np2 ∼ λρ
ν1
λ

aN , large N. (30)

Thus (28) reads as

R1

R2
ρ ∼ e

λ
ν1

(
1−ρ

ν1
λ

aN
)
, large N. (31)

Case 1: R2 < R1e
− λ

ν1 . By Theorem 4.3, limN→∞Np2 = 0

and hence from (31), limN→∞ ρ(N) = R2
R1

e
λ
ν1 . From (30), it

then follows

Np2 ∼ e
−[

ν1
λ

log
R1
R2
−1]aN

, large N.

This establishes the exponential convergence of Np2 to 0 as
N tends to infinity.

Case 2: R2 ≥ R1e
− λ

ν1 . From (28),

Np2 ∼ λ + ν1 log
R2

R1
− ν1 log ρ, large N.

From (30),

ρ ∼
(

Np2

λ

) λ
ν1

1
aN

, large N.

Combining with the fact limN→∞Np2 = λ2 > 0 (from The-
orem 4.3), it follows

Np2 ∼ λ2 + λ log

(
λ

λ2

)
1

aN
, large N.

This establishes the 1/N convergence of Np2 to λ2. Hence,
in this example, both participation levels quickly converge
to their respective limits.



D. APPENDIX FOR SECTION 6

D.1 Discussion of Minimum Effort
In this section, we consider special cases under the player-

specific and contest-specific skills settings. We present the
following to demonstrate where the complexities arise and
to show qualitative impacts of minimum effort requirements
on participation.

D.1.1 Player-Specific Skills
Obtaining a closed-form relation for the mean participa-

tion levels and rewards appears difficult. This is already
demonstrated for the case of two contest classes that we
consider in the following. Consider the case of two contest
classes with respective rewards R1 and R2. Let e1 and e2

denote the minimum efforts for the contest classes 1 and
2, respectively. Without loss of generality, let e1 ≥ 0 and
e2 = 0.

If the minimum effort e1 is larger than the maximum pos-
sible user payoff R1m, i.e. e1 > R1m, then in equilibrium,
no user selects a contest of class 1 and in this case we have
p1 = 0. In the sequel, we consider the case e1 ≤ R1m.

Proposition D.1. Suppose e1 ∈ (0, R1m]. If

R1 ≤ R2

(
1− 1

J2
+

1

J2
F (e1/R1)

)N−1

(32)

then p1 = 0. Otherwise, p1 = 0 if and only if

R1 ≤
e1

v∗
+ R2

1

v∗

∫ v∗

0

(
1− 1

J2
+

1

J2
F (x)

)N−1

dx (33)

where v∗ = m if R1 ≥ R2 and

F (v∗) = 1− J2

(
1−

(
R1

R2

) 1
N−1

)
, (34)

otherwise.

Proof. p1 = 0 is equivalent to

g1(v) < g2(v) almost everywhere on [0, m]. (35)

Under p1 = 0, we have

g1(v) =

{
0, v ∈ [0, e1/R1]

R1v − e1, v ∈ [e1/R1, m]

g2(v) = R2

∫ v

0

(
1− 1

J2
+

1

J2
F (x)

)N−1

dx, v ∈ [0, m].

It follows that condition (35) is equivalent to

φ(v) > 0 almost everywhere on [e1/R1, m] (36)

where for v ∈ [e1/R1, m],

φ(v) = R2

∫ v

0

(
1− 1

J2
+

1

J2
F (x)

)N−1

dx−R1v + e1.

Note that

φ′(v) = R2

(
1− 1

J2
+

1

J2
F (v)

)N−1

−R1

is increasing for each v ∈ [e1/R1, m].
Suppose that (32) holds. Note that this is equivalent to

φ′(e1/R1) ≥ 0. By the fact that φ′(v) is increasing with v,

we have φ′(v) ≥ 0 for all v ∈ [e1/R1, m]. Combinined with
φ(e1/R1) ≥ 0, we have that (36) holds.

In the remainder, we consider the cases when (32) does not
hold. If R1 ≥ R2 note that φ′(v) ≤ 0 for all v ∈ [e1/R1, m]
and hence (36) is equivalent to φ(m) > 0. This is the same as
(33). If R1 ≤ R2, then (36) is equivalent to φ(v∗) > 0 where
v∗ is the minimizer of φ(v) over [e1/R1, m]. The minimizer
satisfies φ′(v∗) = 0, which is the same as (34).

In the sequel, we discuss the equilibrium under the as-
sumption that p1 > 0. We argue that the equilibrium is
such that for some 0 ≤ v ≤ v ≤ m, the probability of
selecting the contest class 1, π1(v), satisfies the following.
First, π1(v) = 0, for v ∈ [0, v]. Second, 0 < π1(v) < 1 for
v ∈ (v, v). Finally, if R1 ≥ R2, π1(v) = 1, for v ∈ [v, m], and
otherwise, π1(v) = 0 for v ∈ [v, m]. We next characterize
the threshold skills v and v. It is readily seen that these
thresholds need to satisfy the following properties.

g1(v) < g2(v), for v ∈ (0, v) (37)

g1(v) = g2(v) (38)

g′1(v) = g′2(v), for v ∈ [v, v] (39)

Case 1: R1 ≥ R2. First note that for v ∈ [0, v],

g1(v) = max(R1v(1− p1)
N−1 − e1, 0)

g2(v) = R2

∫ v

0

(1− p2F̂
c
2 (x))N−1dx.

The threshold v is a solution of Eq. (38) that we can
rewrite as

R1v(1− p1)
N−1 − e1 = R2

∫ v

0

(1− p2F̂
c
2 (x))N−1dx. (40)

The latter is equivalent to

v (J − 1 + F (v))N−1 − e1
R2

(J1rN + J2)
N−1

=
∫ v

0

(
J − 1− J1

J2
rNF (v) +

(
1 + J1

J2
rN

)
F (x)

)N−1

dx

(41)

where rN =
(

R2
R1

) 1
N−1

. In the sequel, we show equivalence

of (41) and (40).
From (15) and π2(v) = 1 for v ∈ [0, v], we have

J2p2F̂
c
2 (v) = F (v)− F (v) + p2F̂

c
2 (v), for v ∈ [0, v]. (42)

Eq. (39) can be written as

R1(1− p1F̂
c
1 (v))N−1 = R2(1− p2F̂

c
2 (v))N−1, v ∈ [v, v].

Using (25), it follows that

p2F̂
c
2 (v) =

J1

(
R
− 1

N−1
1 −R

− 1
N−1

2

)
+ R

− 1
N−1

2 F c(v)

J1R
− 1

N−1
1 + J2R

− 1
N−1

2

, (43)

for each v ∈ [v, v]. Combined with (15), we have

π2(v) =
R
− 1

N−1
2

J1R
− 1

N−1
1 + J2R

− 1
N−1

2

, v ∈ [v, v]. (44)

Note

p1 =

∫ v

v

π1(x)dF (x) +
1

J1
F c(v).



Using (44) and J1π1(v) = 1− J2π2(v), we obtain

J1p1 = 1− J1R
− 1

N−1
1

J1R
− 1

N−1
1 +J2R

− 1
N−1

2

F (v)−

J2R
− 1

N−1
2

J1R
− 1

N−1
1 +J2R

− 1
N−1

2

F (v).

(45)

The threshold v is determined by the condition F̂ c
2 (v) = 0.

From (43) we have

F (v) = 1− J1

(
1−

(
R2

R1

) 1
N−1

)
. (46)

The equivalence of (41) and (40) follows by using (45) with
F (v) replaced by the right-hand side in (46), using (42) with

p2F̂
c
2 (v) replaced by the right-hand side in (43) evaluated at

v, and simple calculus.
Case 2: R1 < R2. By the same arguments as in Case 1,

one can check that the threshold skill v satisfies (41). The

threshold skill v is now obtained by the condition p1F̂
c
1 (v) =

0 which yields

F (v) = 1− J2

(
1−

(
R1

R2

) 1
N−1

)
.

D.1.2 Contest-Specific Skills
Consider the contest-specific skill assumption in the pres-

ence of minimum effort requirements. Suppose that the min-
imum effort for a contest of class j is ej ≥ 0.

Let vj be such that

Rjvj(1− pj)
N−1 − ej = 0.

Then a player’s surplus in this regime becomes

gj(v) = Rj

∫ v

vj

(1− pjF̂
c
j (x))N−1dx.

The equivalent of Proposition 5.1 in this setting is

gj(v) = ρjv − ej = ρj(v − vj), v ∈ [vj , m],

which yields the following.

Proposition D.2. In the large-scale limit, whenever λj >
0, we have ρjm− ej ≥ ρkm− ek for all contest classes k.

Let A = {j : λj > 0}. By Proposition D.2, there exists
a constant C such that ρj − ej/m = C, for all j ∈ A. It
follows that

λj =

{
log Rj − log

(
C +

ej

m

)
, j ∈ A

0, otherwise

where C is given by the implicit function∏
j∈A

(
C +

ej

m

)νj

=

(∏
j∈A

R
νj

j

)
e−λ.

The latter follows from
∑

j∈A νjλj = λ.
Unlike the case without minimum effort requirements, it

does not seem tractable to obtain a closed-form correspon-
dence, in general. An explicit characterization can be ob-
tained in some special cases.

Example. Suppose we have two contest classes with
R1 > R2 and e1 > e2 = 0. Suppose further that ν1 =

ν2 = 1
2
, and that λ1 > 0 and λ2 > 0 in the limit. Let

C = ρ1 − e1/m = ρ2. Then from ν1λ1 + ν2λ2 = λ, we find
that C must satisfy

C2 +
e1

m
C − e−2λR1R2 = 0.

We can solve this to find

λ1 = log R1 − log

(
1

2

√(e1

m

)2

+ 4R1R2e−2λ − 1

2

e1

m

)
,

λ2 = log R2 − log

(
1

2

√(e1

m

)2

+ 4R1R2e−2λ +
1

2

e1

m

)
.

The restrictions λ1 > 0 and λ2 > 0 yield conditions nec-
essary to ensure that e1 is not too high nor R2 too low to
ensure positive participation in both contest classes.

Although the presence of more contest classes results in a
higher-order polynomial in C, it is possible to demonstrate
that when νj is sufficiently small, slightly changing Rj or ej

does not greatly perturb C. This in turn may be used to
show in general that λj increases logarithmically in Rj and
decreases logarithmically in C + ej (and hence in ej).

E. APPENDIX FOR SECTION 7

E.1 Proof of Proposition 7.1
From (5) we have

λj = N

1−
(

1− 1

J

)
H[1,K̃](

~R)

R
1

N−1
j


for j = 1, . . . , K̃, and λj = 0, otherwise. We perform the

optimization in SYSTEM by first fixing H[1:K̃](
~R) = r, for

given r > 0. We can then consider λj as a function of Rj

only. Note that λj is a strictly concave function of Rj . By

composition [3], Uj(λj(~R)) is also a strictly concave function
of Rj . It thus follows that for any given r > 0, the concave
program SYSTEM has a unique solution.

Rewards ~R are optimal if and only if the following holds:

U ′k(λk) = µ + δk, k = 1, . . . , K,

where µ is the Lagrange multiplier associated with the con-
straint, r = H[1:K̃](

~R), and δk = 0 for k = 1, . . . , K̃ and
δk > 0, otherwise. The Lagrange multiplier µ is given by∑K

k=1 νkλk = λ, which is equivalent to

K̃∑
k=1

νkU ′k
−1

(µ) = λ.

Now, noting that for each k, λk = U ′k
−1

(µ+ δk) and observ-

ing that U ′k
−1

(x) > 0 for any x ≥ 0, we have that K̃ = K.
The result follows from (5) by substituting pk = λk/N =

U ′k
−1

(µ)/N .
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