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Abstract – We consider estimation of arbitrary range
partitioning of data values and ranking of frequently
occurring items based on random sampling, within
small number of samplings and prescribed accuracy.
These problems arise in the context of parallel-processing
of massive datasets, e.g. performed in data centers
of Internet-scale cloud services and large-scale sci-
entific computations. The range partitioning is a
basic block of parallel-processing systems based on
the paradigm of map and reduce.
For the range partitioning, we consider a direct esti-
mation method based on constructing an arbitrary-
height histogram and characterize the estimation
error. This approach provides substantial savings
in constructing unbalanced range partitionings with
respect to a standard approach based on equi-height
histograms; our results extend previous work re-
stricted to equi-height histograms. For the problem
of ranking of frequently occurring items, we use a
lumping of small frequency items that enables us to
obtain tighter bounds that are independent of the
total number of distinct items in a dataset. The
analysis deploys the framework of large deviations
that is well suited to typically large scale of data in
the considered applications.
We demonstrate tightness and benefits of our sam-
pling methods using a large data set of an oper-
ational cloud service that involves data at a scale
of hundreds of billions of records. Our results pro-
vides insights and inform design of practical sam-
pling methods.

1. INTRODUCTION
Cloud computing is considered to open a new era in com-
puting and has been recently gaining quite some attention
with major computer software and service companies de-
ploying data centres consisting of hundredes of thousands
of (commodity-hardware) machines [13, 20]. In this con-
text but also other (e.g. scientific computations e.g. [27]),
data-intensive computions are carried out on a daily basis
by owners of individual applications over massive amounts
of data, often in the order of tera (1012) or even peta (1015)
bytes. For example, such computations are routinely run in
production data centers of providers of Internet online ser-
vices and involve computations such as ranking of web pages,
computation of product recommendations for e-commerce
or media content consumption, social networking, and other
online services. It is important to note that computations
are typically performed by multiple owners of individual ap-
plications even within a single organization who thus com-
pete for typically large, albeit limited resources of data cen-
ters. It is crucial to enable efficient processing with respect
to processing time and the use of resources in data centers.

Several proposals have been recently made for parallel pro-
cessing of massive data sets, e.g. Mapreduce [11], Dryad [21],
SCOPE [5], most of which are also deployed in production
envioronments. Computations based on this paradigm can
also be performed by users through commercially available
services (e.g. Amazon Elastic Mapreduce [1]) and are also
available through open-source (e.g. Hadoop [19]). In these
systems, large volumes of data are typically processed by
multiple tasks that process individual pieces of the data in
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Figure 1: An example range partitioning in map-
reduce scenario: the histogram block (H) estimates
a range partitioning [0, s), [s, 100] using a sample from
data sources (S) which is used by map tasks (M) to
send output data to designated reduce tasks (R).

parallel across machines of a data center. The basic compo-
nent that facilitates this process is partitioning of data, in
particular, range partitioning where data is partitioned over
consecutive ranges with respect to values of the underlying
data set. Another basic component is identification of fre-
quently occuring data items on which specific computations
are performed. The sheer volume of data necessiates solving
these basic tasks approximately based on a sample of the
data set. It is crucial to perform these basic computations
with given accuracy and a small number of samples as this
implies time and storage efficiency.

In this paper we consider two problems that are used as
basic elements in variety of computations (P1) approximate
construction of arbitrary-height range partitioning and (P2)
approximate identification of frequently occuring data items.
For these basic computational tasks we ask the following
question:

(Q) How many samples are necessary and suf-
ficent for finding a solution within given error
tolerance?

Our results on arbitrary-height range partitioning provide
a direct and practical method for constructing arbitrary-
height histograms. We show that this method provides sub-
stantial reduction of the sampling costs over an indirect
approach that is based on equi-height histograms. To the
best of our knowledge, our work provides first results on
arbitrary-height range partitioning; previous work was re-
stricted to equi-height histograms (Chaudhuri et al [7]). Fur-
thermore, to the best of our knowledge, we provide first
characterization results for several natural variants of iden-
tifying frequently occuring items which yield constructive
algorithms for the underlying identification tasks. The ba-
sic computational tasks (P1) and (P2) are used in various
computations and is thus important to understand the com-
putational complexity of their solving; for concreteness, in
the following we describe the use of range partitioning in a
concrete application scenario.

Application scenario of map and reduce. Common to
popular systems [11, 21] is a parallel-processing paradigm



based on the phases of map and reduce. First, data is
chopped into pieces (e.g. blocks of 250M Byte) which is typ-
ically done by an underlying network file system. Second,
computation over these individual data blocks is assigned
to so called map tasks that are distributed across machines.
Third, upon completion of the map tasks the results are sent
to so called reduce tasks that are also distributed across ma-
chines and that perform the data aggregation. A computa-
tion typically consists of several such map and reduce phases
which is application specific. It is important that each re-
duce task is designated for a specific part of the output of
the map tasks. See Figure 1 for a typical example.

The partitioning of data over map and reduce tasks needs
to ensure load balancing so that the amount of workload
assigned to a task matches the processing capabilities of the
machine that runs the task. This is important as for many
applications the processing finishes and the results are of
use only when the last task completes. Furthermore, for
parallel-processing based on the map-reduce paradigm a new
map-reduce phase is initiated only after the preceding has
completed. Besides load balancing there may be additional
requirements such that each task processes only the data
from a specific range which requires range partitioning. It is
noteworthy that there exist systems where users are allowed
to implement their own data partitioning, e.g. [29].

The need for efficient arbitrary-height range parti-
tioning. While in many scenarios one would want to dis-
tribute ranges across tasks evenly, there are several scenar-
ios where an unbalanced range partitioning would need to
be performed. For example, this may be for the following
reasons:

• heterogeneous hardware resources – e.g. a system of com-
modity machines that differ in their processing capabilities
(e.g. CPU and disk I/O); such heterogeneous systems may
be commonplace in smaller enterprises, home environments,
or even operating systems (e.g. Barrel fish [2]);

• quantile-specific computations – e.g. additional attributes
are computed for the top 15% of most visited web pages or
10% most popular songs because they are expected to be
served to most of users;

• concurrent processing – e.g. machines have same speci-
fications but differ in the current CPU and I/O disk load
because of other applications that run on them.

The standard approach commonly deployed in practice is
based on estimating equi-height range parititiong [4]. While
this approach works well for balanced partitioning in sym-
metric scenarios where data is partitioned evenly over tasks,
it may perform poorely for constructing unbalanced parti-
tioning. For example, consider the following range partition-
ing over two ranges according to the partitioning 20% and
80% – using the standard approach, first, an equi-height his-
togram of 5 bins is constructed and then one bin is assigned
to the 20%-portion range and the remaining four bins are
assigned to the 80%-portion range. We will see that this
method can be grossly inefficient as it may require to esti-
mate equi-height histograms of small widths and much larger
number of bins than in fact needed; thus, in the (20%, 80%)

example, we need to estimate a histogram of 5 bins while
the end goal is to partition data in 2 bins.

Frequently occuring items. We further consider identi-
fication of frequently occurring items in a dataset. Specifi-
cally, we consider three ranking objectives that are increas-
ing in the amount of information about most frequently oc-
curring items: (1) top-k where the goal is to identify a set
of k most frequently occurring items; (2) top-k with ranking
whose objective is in addition to rank the items in the top-
k set in decreasing order with respect to their frequencies;
and (3) top-k with frequencies where the goal is also to report
frequencies of the items in the top-k set. These top-k prob-
lems arise in many applications where a computational task
requires identification of frequently occurring items such as
identification of most popular news, most played songs, or
most watched videos, which then can be used as an end re-
sult or to condition further processing of an underlying more
complex processing task.

It is important to note that the design of efficient sampling
methods is a key element for data-intensive computing sys-
tems where applications need to process massive amounts
of data within short time. Furthermore, the online aspect
of the estimation is important as one may not have a prior
information about the statistics of an underlying data set.

Summary of our Results. We summarize our contribu-
tions in the following points:

• We provide a characterization of the probability of er-
ror in constructing an arbitrary-height range partitioning
of data values within given accuracy. The results charac-
terize the trade-off between sample size and the accuracy
and tell how much samples suffices for given level of accu-
racy. In particular, it is found that the minimum height of a
bin plays a key role in determining the probability of error.
These results extend previous research [7] that considered
equi-height histograms and are of practical importance for
efficient estimation of unbalanced data partitions. The re-
sults are established using the methods of large deviations
which is a natural setting in view of the large scale of data
in typical scenarios of data-intensive computations.

•We characterize the probability of error for each of the top-
k ranking objectives. The results provide insights into how
much more sampling is needed for given level of accuracy as
we increase the amount of information that is being inferred
by each of the ranking objectives. We use a novel approach
based on the lumping of small frequency items to improve
and provide tighter bounds on the error probability. This
yields bounds that are independent of total number of dis-
tinct items in a data set, but depend only on the frequencies
of the items in the top-k set. We also consider sequential
sampling algorithms for our top-k set problems which do not
require any a prior information.

• We provide numerical results based on real-world data
and simulations. The data is from an operational cloud-
service that involves tens of datasets of hundreds of billions
of rows. Our numerical results are used to support the fol-
lowing points: (1) bounds established in this paper are near
to empirically observed; (2) sampling methods yield sub-



stantial savings with respect to the number of samplings;
(3) range partitioning based on estimating arbitrary-height
histograms can yield substantial savings with respect to the
number of samplings compared to the standard approach
based on estimating equ-height histograms; (4) lumping of
the small frequency items can yield substantial gains.

Outline of the Paper. Section 2 discusses related work.
In Section 3 we present our results on the estimation of range
partitioning. Section 4 contains results for each of the top-k
ranking objectives considered in this paper. In Section 5,
we show our numerical results. Finally, we conclude in Sec-
tion 6. Some of the proofs are deferred to Appendix.

2. RELATED WORK
Sampling-based approaches for estimation of various statis-
tics have been considered in the context of database systems
and data streams by many, e.g. [15, 18, 6, 24, 7, 16, 17,
25, 23, 28, 8, 22]. Here we only discuss work that is closely
related to ours.

Related to our range partitioning problem is the line of work
on estimating quantiles in one pass through a data set [16,
17] where space and sample complexities are for identifying
the item of a value of rank k is studied. The work that is
perhaps most closely related to ours is that of Chaudhuri
et al [7] that establishes results for equi-height range par-
titioning (or histograms). We admit the same definition of
the error in constructing a range partitioning as in [7] which
has quite some pratical appeal. Our results generalize the
results to arbitrary-height range partitioning which yields
a direct and practical method for efficient construction of
arbitrary-height range partitions which in general may not
be feasible by using equi-height histograms.

An early work on using random sampling to identify fre-
quent items in a set is that of Gibbons and Matias [15]
(therein referred to as ”hot list queries”). They introduce
two techniques of constructing and incrementally maintain-
ing random samples (therein refered to as concise and count-
ing samples) in one pass of the dataset. However, no explicit
tradeoffs are provided between the sample size (or footprint)
and the probability of failure in returning the top k set. Fur-
thermore, the problem formulation in [15] is a little different
from ours in that the objective is to identify items with
frequencies greater or equal to max(pk, ε) where pk is the
frequency of the k-th most frequent item and ε an input (er-
ror tolerance) parameter. The scheme may therefore return
fewer than k items. Our objective is that of identifying ex-
actly k items with frequency greater than pk − ε. Another
work using sparse sampling is [7] where the authors describe
one pass algorithms for the related problem of identifying
elements whose frequency exceeds a particular threshold.
Similar objective as for our top-k problem was considered
by Mannor and Tsitsiklis [26] but the authors therein focus
on a specific problem of approximately identifying the most
frequent item.

Finally, further related work is that on randomized hashing
schemes [6, 9, 23] that were used for the related problem
of estimating frequency moments [14]. The scheme involves
constructing hashes from the data stream where each hash
keeps count of some randomly chosen subset of elements

of the data stream. All these schemes, however, assume a
prior knowledge (and number) of all the distinct items in
the dataset which is used to construct the hash functions.
Such a strong assumption is not required for random sam-
pling based schemes where the sketch is simply defined as
the set of sampled items. Furthermore, random sampling-
based schemes may be more practical to implement in dis-
tributed environments than random hashing schemes – for
example, the distributed scheme [23] requires consistency on
the hash functions used by individual nodes and non-trivial
in-network aggregations of the hash values.

3. RANGE PARTITIONING
We consider the following range partitioning problem. Let
X = {x1, x2, . . . , xn} be a set of distinct values of n items
1, 2, . . . , n. The xi’s take value in an ordered domain; with-
out loss of generality, let the items be numbered so that x1 <
x2 < · · · < xn. Given is a distribution P = (p1, p2, . . . , pk)
that defines the height of each bin of a k-bin histogram of
values. We want to determine a range partition s0 < s1 <
· · · < sk such that fraction pi of items fall in the interval
(si−1, si]. See Figure 2 for an illustration. More precisely,
we define si for i = 1, . . . , k − 1 by

si = min

{

xj ∈ X : j ≥ d
i
∑

l=1

plne
}

.

and define s0 = x1 and sk = xn. If the distribution P is
such that every pi takes values in { 1

n
, 2

n
, . . . , n

n
}, then we

can write

pi =
|{xj ∈ X : si−1 < xj ≤ si}|

n
.

s0 s1 s2 s3s4 s5

p1

p2

p3
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Figure 2: A histogram for k = 5.

We estimate the range partition as follows: (1) we construct

a random sketch X̂ by taking all the values observed in t
samplings with replacement of the set X; (2) we sort the

items in X̂ by value and identify the range partition ŝ0 ≤
ŝ1 ≤ · · · ≤ ŝk with respect to the set X̂ and distribution P .
In particular ŝ0 = x1 and ŝk = xn and for i = 1, . . . , k − 1,

ŝi = min

{

x̂j ∈ X̂ : j ≥ d
i
∑

l=1

plte
}

.

We now define the heights of the bins Q = (q1, q2, . . . , qk) in-
duced by the separators ŝ0, ŝ1, . . . , ŝk of the random sketch.
The height qi is the fraction of items in the data set X that
falls in the range (ŝi−1, ŝi], i.e.

qi =
|{xj ∈ X : ŝi−1 < xj ≤ ŝi}|

n
.



Definition 3.1. A range partition induced by the sepa-
rators ŝ0 ≤ ŝ1 ≤ · · · < ŝk is said to be ε-approximation with
respect to distribution P if

|qi − pi| ≤ εpi for every i = 1, . . . , k.

For an ε-approximate range partitioning, the relative differ-
ence of the actual height qi and the desired height pi is at
most ε. The above approximation objective was originally
proposed in [7] and was used for analysis of equi-height his-
tograms. The objective is nautural and is compelling for
applications to bound the deviations of the bin heights rel-
ative with respect to the bin heights.

Throughout the paper, we denote with D(P ||Q) the Kullback-
Leibler divergence between two distributions P and Q, which
is defined as

D(P ||Q) =

m
∑

i=1

pi log
pi

qi

.

With a slight abuse of notation, we will denote with D(x||y)
for x, y ∈ [0, 1] the Kullback-Lieber divergence between two
binary distributions (x, 1− x) and (y, 1− y).

Let pe denote the probability that the estimated range par-
titioning is not ε-approximation with respect to the distri-
bution P . We prove the following bounds on pe.

Theorem 3.1. For every ε < (1− p1)/p1, the probability
of error satisfies

pe ≤ kn2e−tD(π||π(1+ε)) (1)

where π is the minimum height π = mini pi For small ε, we
have that

pe ≤ kn2e
−t( ε2π

2(1−π)
+O(ε3))

(2)

The upper-bound (1) has asymptotically exact error expo-
nent, i.e.

lim
t→∞

1

t
log pe = −D(π||π(1 + ε)).

Proof. The error probability pe is given by

pe = Pr(|qi − pi| > εpi, for some i).

The following chain of inequalities hold:

pe

(a)

≤
k
∑

i=1

Pr(|qi − pi| > εpi)

(b)
=

k
∑

i=1

∑

ŝi−1,ŝi:|qi−pi|>εpi

Pr(|qi − pi| > εpi)

(c)

≤
k
∑

i=1

∑

ŝi−1,ŝi:|qi−pi|>εpi

e−tD(pi||qi)

(d)

≤
k
∑

i=1

n2e−t minqi:|qi−pi|>εpi
D(pi||qi)

(e)
=

k
∑

i=1

n2e−t mini(D(pi||pi(1+ε)),D(pi||pi(1−ε)))

(f)
= kn2e−t(D(π||π(1+ε)),D(π||π(1−ε)))

(g)
= kn2e−tD(π||π(1+ε)) (3)

The inequality (a) follows by taking the union bound for
the probabilities of the errors resulting from deviations of
the individual bins. The equality (b) follows by splitting
the term Pr(|qi − pi| > εpi) into a summation of disjoint
probabilities corresponding to given separator pair ŝi−1, ŝi.
The inequality (c) holds due to the following reason: from
definition, a fraction pi of elements in the sketch are con-
tained in (ŝi−1, ŝi] while a fraction qi of elements in the
underlying set X are contained in (ŝi−1, ŝi]. Let us rep-
resent the values in X which lie in (ŝi−1, ŝi] by 1 and the
values which do not lie in (ŝi−1, ŝi] by 0. Then, the event
{|qi − pi| > εpi} for a given choice of ŝi−1, ŝi implies that
sampling uniformly t times from a Bernoulli(qi) distribution
results in a sketch with a portion pi of elements lying in
(ŝi−1, ŝi] and a portion 1 − pi of elements lying outside the
interval, i.e., a sketch with empirical distribution which is
Bernoulli(pi). By Sanov’s theorem [12], this probability is

upper bounded by e−tD(pi||qi).

The inequality (d) follows from an upper bound on the num-
ber of different separator pairs (ŝi−1, ŝi) that we need to
consider. Since each separator can assume one of n values,
the number of terms in the inner summation is bounded by
n2 and (d) follows by replacing every divergence term with
it’s minimum value. The equality (e) follows by choosing
qi as close to pi while violating the guarantee, i.e., choosing
qi = pi(1 + ε) or qi = pi(1− ε). 1 It can be shown that the
divergence terms are minimized by the pi with minimum
value and thus by defining π = mini pi, (f) follows.

The small ε approximation to (3) gives (2).

Finally, the last statement follows from the tightness of the
exponent of the error probability (Sanov’s theorem [12]).

Corollary 3.1. For given P , 0 < ε < (1 − p1)/p1 and
0 < δ < 1, in order for pe ≤ δ to hold it suffices to take t

1The reader may note that since the q′is have granularity
1/n, it may not attain a specific value, so the equality may
actually be an inequality.



samples with

t ≥ 2(1− π)

πε2

(

log
1

δ
+ 2 log n + log k

)

(1 + o(ε)), (4)

where π = mini pi.

Remark 3.1. The error typically occurs due to deviation
in the estimate of the smallest-height bin, i.e., a bin of height
π, by a relative factor of ε. This is reflected in (4) where t
is increasing with 1/π.

Remark 3.2. The above corollary extends previous work
by Chaudhuri, Motwani and Narasayya [7] to arbitrary-height
histograms. In [7], the authors also consider ε-approximate
range partitioning but only for balanced histograms, i.e., P
uniform. For this special case of pi = 1/k, Equation (4)
boils down to

t ≥ 2(k − 1)

ε2

(

log
1

δ
+ 2 log n + log k

)

(1 + o(ε)).

3.1 The Benefit over Indirect Approach
We now address the need and benefits of having estimates of
unbalanced range partitions in contrast to having estimates
of only balanced ranged partitions. The approach used in
practice consists of the following steps which we refer to as
an indirect approach. First, a balanced range partitioning
is estimated. Then, this range partitioning is used to assign
ranges to individual machines. If the goal is a balanced range
partitioning, i.e. each machine is assigned an equal portion
of items, then the indirect approach solves the problem – if
there are k machines, a balanced partitioning over k bins is
estimated, which are then allocated to machines according
to a one-to-one mapping.

The indirect approach can be used to produce unbalanced
range partitionings when the distribution P is such that for
every bin i, pi = Mi

M
for positive integers Mi and M such

that M1 + M2 + · · · + Mk = M . The indirect approach
can then be applied by first estimating a balanced parti-
tioning into k′ intermediate bins which are then grouped to
from a range partitioning over k bins with respect to the
distribution P where we set M/gcd(M1, M2, . . . , Mk). This
approach to unbalanced range partitioning using balanced
partitions can be grossly more expensive with respect to the
required number of samplings than by directly estimating
the unbalanced histogram. The minimum height of a bin by
the direct approach is π = min(M1, M2, . . . , Mk)/M while
for the indirect approach it is π′ = gcd(M1, M2, . . . , Mk)/M .
From our analysis (refer Corollary 3.1) it follows that for
any given probability of error δ and small ε, the number of
of samplings under the indirect approach is at least a factor
(1/π′)/(1/π) more than that under the direct approach, i.e.

1
π′

1
π

=
min(M1, M2, . . . , Mk)

gcd(M1, M2, . . . , Mk)
. (5)

This measures how much more samplings it is required by
the indirect approach relative to the direct approach and
can be shown in many cases to assume large values. In the
following we provide an example and provide more compre-
hensive evidence in Section 5.

Suppose M = 100 and M1 ∈ {1, 2, . . . , 50}. With the indi-
rect approach we construct an equi-height histogram with k′

bins where k′ = 100/gcd(M1, M2) For example, if M1 = 40,
then gcd(M1, M2) = 20 and k′ = 5; if M1 = 45, then
gcd(M1, M2) = 5 and k′ = 20. In Figure 3, we show the
ratio min(M1, M2)/gcd(M1, M2) and observe that it can as-
sume large values.
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Figure 3: Factor increase lower bounds the ratio of
the sufficient number of samples of the indirect and
the direct approach.

4. RANKING BY FREQUENCY
We consider a set of items X = {x1, x2, . . . , xn} where each
item from this set is an element of a set of m distinct items,
X = {1, 2, . . . , m}. For example, the set X could represent
a database column or a data stream and the set X repre-
sents all the distinct rows in the database column or the
data stream. For each i ∈ X , let ni denote the number of
occurences of item i in the set X. Define the distribution P
on the alphabet X as pi = ni/n for every i ∈ X . Without
loss of generality, let us assume that items in X are labeled
such that

p1 ≥ p2 ≥ · · · ≥ pm.

We would like to identify a set of 1 ≤ k ≤ m most frequently
occuring items. Specifically, we consider the following prob-
lems:

1. Top-k: identify a set of k most frequent items;

2. Top-k with ranking: identify a set of k most frequent
items and order them in decreasing order of their frequen-
cies;

3. Top-k with frequencies: identify and estimate the
frequencies of k most frequent items.

Note that the above described problems are in increasing
order of demand, i.e., top-k with frequencies provides addi-
tional information as compared to top-k with ranking, which
in turn provides additional information as compared to top-
k. In the following we define each of the top-k ranking objec-
tives more formally, after we introduce some notation that
we use throughout the paper.

Let T be a set that contains k items with frequencies greater
or equal to pk. Let t denote size of the sketch derived
by sampling with replacement from the dataset X and let
Q = (qi, i ∈ X ) denote the frequencies of items in the sketch.
The sketch is sorted in decreasing order of the frequencies Q
and the top k most frequently occuring items in the sketch
are reported as the top k set. In the case that their frequen-



cies are also required, the empirical frequencies are reported
along with the top k elements.

Let B be a set that contains items with frequencies less than
pk − ε, i.e. an item i is in the set B if pi < pk − ε; these are
the items that should not be reported as an answer.

Definition 4.1 (top-k). A set of items S is said to be
an ε-approximate top-k set (resp. relative ε-approximate), if
S contains any k distinct items from X and pi ≥ pk − ε
(resp. pi ≥ (1− ε)pk), for every item i ∈ S.

Definition 4.2 (top-k with ranking). A set of items
S is said to be an ε-approximate top-k ranked set (resp. rela-
tive ε-approximate), if S is a top k set and furthermore item
j is ranked above item i in S whenever pi < pj − ε (resp.
pi < pj(1− ε)).

Definition 4.3 (top-k with frequencies). A set of
items S along with the frequencies (qi, i ∈ S) is said to be
ε-approximate top-k with frequencies if S contains k distinct
items from X such that

1. pi ≥ pk − ε for every i ∈ S, and

2. |qi − pi| < ε
2
, for every i ∈ S.

Similarly, S, (qi, i ∈ S) is said to be relative ε-approximate
top-k with frequencies if item 1 holds with ε replaced with
εpk and item 2 holds with ε replaced with εpi.

Definition 4.4. A uniformly sampled sketch of size t pro-
vides a 1−δ guarantee if probability of error in reporting the
ε-approximation is within δ.

The Lumping of Small Frequency Items. Our objec-
tive is to derive tradeoffs between the number of samplings
required and the error probability of reconstructing the top-
k sets. In particular, we show that the number of sam-
plings does not scale with the alphabet size m. To obtain
tighter bounds on the error probabilities, we use a tech-
nique of “lumping” elements of small frequencies, described
in the following. We use the notation εk where εk = ε and
εk = εpk in the ε-approximate and relative ε-approximate
case, respectively. We define a lumped distribution P̃ from
P as follows: we iteratively merge any two items with fre-
quencies smaller than pk−εk

2
into “super-items” until either

none or one (super-)item is left with frequency smaller than

(pk − εk)/2. This defines a new set of distinct items X̃ that
has at most one item with frequency smaller than (pk−εk)/2.

We emphasize here that P̃ and X̃ constructed so are not nec-
essarily unique. All items in P with frequencies larger than
pk−εk

2
remain unmerged and hence retain their identity and

frequency as in P̃ . Items in P with frequencies smaller than
pk−εk

2
map to super-items in P̃ . Clearly, the size of X̃ is

bounded as:

|X̃ | ≤ 2

pk − εk

+ 1. (6)

We will use the distribution P̃ to provide tighter bounds on
the probability of error in the following sections. Roughly
speaking, this enables us to improve a pre-factor in the prob-
ability of error from order m to order 1/pk which in many
cases in practice can be orders of magnitude smaller. We
will also see that the lumping typically either does not ef-
fect or effects the error exponent only slightly, thus the error
exponent remains tight or nearly tight.

In the following sections, we describe the tradeoffs between
the error probability and the amount of sampling. The
proofs of the theorems are in the Appendix.

4.1 Top-k
An error may occur in reporting a correct ε-approximate
top-k if for an item j ∈ B and an item i ∈ T , the observed
frequencies qj and qi are such that qj ≥ qi. Therefore, we
consider the following probability:

pe = Pr

(

⋃

i∈T ,j∈B

{qj ≥ qi}
)

.

The following result characterizes the error probability pe

and absolute error tolerance.

Theorem 4.1. For every 0 < ε < pk,

pe ≤ k(m− k)
(

1− (
√

pk −√pl(k))
2)t (7)

≤ k(m− k)
(

1− (
√

pk −
√

pk − ε)2
)t

(8)

where l(k) is an item in B with maximum frequency. Fur-
thermore, the bound (7) has asymptotically tight exponent,
i.e.

lim
t→∞

1

t
log pe = log

(

1− (
√

pk −√pl(k))
2) . (9)

The result tells us that typical error occurs at the bottom
of the top-k where an item with the smallest frequency in
the set T gets sampled less than an item with maximum
frequency smaller than pk − ε. The key parameters that
determine the exponent of the error probability are the fre-
quencies pk and the largest frequency smaller or equal to
pk−ε. For the bound (8) the key parameter is the frequency
of the k-th most frequent item in the data set X.

With the lumping of small frequency items. Using
the lumping of small frequency items we can reduce the pre-
factor in the bound (8) as shown in the following result.

Theorem 4.2. For every 0 < ε < pk,

pe ≤ kK
(

1− (
√

pk −
√

pk − ε)2
)t

(10)

where

K = min

(

2

pk − ε
, m− k

)

.

In comparison with Theorem 4.2, the pre-factor of the bound
on the error probability is reduced from order k(m − k) to
O(k min(1/pk, m− k)).

We have the following corollary that characterizes the sam-
pling cost.



Corollary 4.1. For every 0 < ε < pk and 0 < δ < 1,
suppose that the sketch is of size t such that

t ≥ 4pk

ε2

(

log
1

δ
+ log (kK)

)

(1 + o(ε)) (11)

then, the probability of error pe is less or equal to δ.

The lumping argument provides tighter bounds to the er-
ror probability (alternatively sampling costs) whenever pk >

2
m−k

+ε which in many cases of practical interest would hold
true. In Section 5 we show cases from practice where pk is
orders of magnitude larger than 2

m−k
+ ε which provides

substantial reduction of the sketch size.

Relative error tolerance. For relative error tolerance we
have the following results.

Theorem 4.3. The same statements hold as in Theorem 4.2
by replacing ε with εpk and K replaced by K′ where

K′ = min

(

2

pk(1− ε)
, m− k

)

.

Corollary 4.2. For every 0 < ε < 1, 0 < δ < 1 suppose
that the sketch is of size t such that

t ≥ 4

ε2pk

(

log
1

δ
+ log(kK′)

)

(1 + o(ε)) (12)

then, the probability of error pe is less or equal to δ.

Notice that these results derive from those under absolute
error tolerance by replacing ε with εpk. By doing so, we
obtain the sampling cost that scales inversely proportional
to pk and the gain of the same order by using the lumping
of small frequency items.

4.2 Top-k with ranking
For the top k ranking problem, we have the following result.

Theorem 4.4. For every 0 < ε < pk,

pe ≤ (k(m− k) + k)

(

1−min
i≤k

(
√

pi −√pl(i))
2

)t

(13)

≤ (k(m− k) + k)
(

1− (
√

p1 −
√

p1 − ε)2
)t

. (14)

Furthermore, the bound (13) has asymptotically tight expo-
nent, i.e.

lim
t→∞

1

t
log pe = log

(

1−min
i≤k

(
√

pi −√pl(i))
2

)

. (15)

The results are different from that for top-k problem (The-
orem 4.1) in that, (1) the pre-factors in (13) and (14), since
for the top-k with ranking we need to compare pairs of items
within the set T , (2) the term mini≤k(

√
pi−√pl(i))

2 in (13)
and (15). The latter difference is due to the stricter need of
ranking in accordance with Definition 4.2. From (15), the
typical error occurs due to item l(i) being sampled more of-
ten than an item i in T that minimizes the gap

√
pi−√pl(i).

With the lumping of small frequency items. We have
the following result whose proof is along the same lines as
for Theorem 4.2 and is omitted.

Theorem 4.5. For every 0 < ε < pk,

pe ≤ kL
(

1− (
√

p1 −
√

p1 − ε)2
)t

where

L = min

(

2

pk − ε
+ 1, m− k + 1

)

.

In comparison to Theorem 4.4, the reduction of the pre-
factor is from order k(m−k+1) to O(k min(1/pk, m−k+1)).
The number of samplings for the top-k ranking problem is
given by

Corollary 4.3. For every 0 < ε < pk and 0 < δ < 1,
suppose that the sketch is of size t such that

t ≥ 4p1

ε2

(

log
1

δ
+ log (kL)

)

(1 + o(ε)) (16)

then, the probability of error pe is less or equal to δ.

Notice that the sampling cost of top-k with ranking with
absolute error tolerance is a factor p1/pk more than that for
top-k (Corollary 4.1). In Section 5 we quanitify how much
more samplings is needed if we require ranking of the top-k
elements using real-world datasets.

Relative error tolerance. For top-k with ranking under
relative error tolerance we have the following result:

Theorem 4.6. For the top-k ranking problem with rela-
tive error tolerance of ε, the probability of error pe satisfies

pe ≤ kL′
(

1− (
√

pk −
√

pk(1− ε))2
)t

.

where L′ = min
(

2
pk(1−ε)

+ 1, m− k + 1
)

.

Notice that unlike to top-k with ranking with absolute er-
ror tolerance (Theorem 4.4) it is the frequency pk of the
k-th most frequenty item that is a key parameter, not the
frequency p1 of the most frequent item.

Corollary 4.4. For a given ε, δ, we have that for pe ≤ δ
it suffices to take t samples with

t ≥ 4

ε2pk

(

log
1

δ
+ log kL′

)

(1 + o(ε)).

Interestingly, under relative error tolerance, the sampling
complexity of the top-k with ranking is the same as for top-k
(Corollary 4.2) although the underlying identification task is
more demanding. This happens as the typical error in both
cases occurs at the bottom of the top-k set.



4.3 Top-k with Frequencies
For the top-k with frequencies recall that we want every
declared item i to have frequency pi greater than pk−ε and,
moreover, we want the empirical frequency qi to be within
ε
2

of the frequency pi. Note that this ensures that from
the observed frequencies qi and qj of two declared items i
and j, we can correctly order them with respect to their
frequencies pi and pj provided the gap between the latter
two frequencies is sufficently large. Specifically, if pi > pj+ε,
then if we observe qi > qj then it follows that pi > pj with
probability at least 1− δ.

Theorem 4.7. For the error probability pe of the top-k
with frequencies we have

pe ≤ 2m exp
(

−tmin
i

Di

)

(17)

where

Di = D(min(pi, 1− pi) +
ε

2
||min(pi, 1− pi)). (18)

Furthermore,

lim
t→∞

1

t
log pe = −min

i
Di. (19)

Note that Di = D(pi + ε
2
||pi) in all the cases but for the

largest frequency item i = 1 if pi > 1/2. We make the
following observations:

Fact 4.1. mini Di is achieved by an item i with frequency
min(pi, 1− pi) greater or equal to pl(k).

However, if ε is sufficiently small then mini Di is achieved
by the item with highest frequency. More precisely,

Fact 4.2. If ε ≤ 2(1 − 2p1) then mini Di is achieved by
item 1 and mini Di = D(p1 + ε

2
||p1).

In this case, typical error occurs due to oversampling of the
item with highest frequency.

It follows that for small ε, we have

lim
t→∞

1

t
log pe ≤ ε2

8p1(1− p1)
(1 + o(ε)). (20)

With the lumping of small frequency items. For the
top-k with frequencies, we have the following result:

Theorem 4.8.

pe ≤ 2M exp
(

−t min
i

Di

)

(21)

where

Di = min
(

D(min(pi, 1− pi) +
ε

2
||min(pi, 1− pi)),

D(min(pk, 1− pk)− ε

2
||min(pk, 1− pk)− ε)

)

and

M = min

(

2

pk − ε
+ 1, m

)

.

The result yields a reduction of the pre-factor in the bound
on the probability of error from order m to O(min(1/pk, m))
which in many cases can provide significant reductions (see
Section 5). The slight difference in the above exponent com-
pared to (18) is due to accounting for a “super-item” close
to p∗

ε
2

(see Appendix).

Corollary 4.5. Given ε, δ we have that pe ≤ δ provided
that the number of samplings t satisfies

t ≥ 8p1(1− p1)

ε2

(

log
1

δ
+ log(2M)

)

(1 + o(ε)) (22)

Notice that in comparison to top-k (Corollary 4.1) and top-
k with ranking (Corollary 4.3), for given error probability,
the top-k with frequencies requires approximately a factor
2p1/pk and a factor 2 more samplings, respectively.

Relative error tolerance. Under relative error tolerance,
we have the following result:

Theorem 4.9. The error probability for the top-k set with
frequencies and relative tolerance of ε satisfies

pe ≤ 2M ′ exp

(

− tD
(

pk(1− ε)(1 +
ε

2
)||pk(1− ε)

)

)

(23)

where

M ′ = min
( 2

pk(1− ε)
+ 1, m

)

.

Corollary 4.6. For a given ε, δ, we have that for pe ≤ δ
it suffices to take t samples with

t ≥ 8(1− pk)

ε2pk

(

log
1

δ
+ log 2M ′

)

(1 + o(ε)).

Notice that unlike to under absolute error tolerance (Corol-
lary 4.5), the key parameter is the frequency of k-th most
frequent item. In comparison to top-k (Corollary 4.2)and
top-k with ranking (Corollary 4.4) under relative error tol-
erance, for same error probability the top-k with frequencies
requires about twice as many samples.

4.4 Comparison of the Sampling Complexity
In this section we summarize the comparison on the sam-
pling complexity of different top-k ranking objectives. In
Table 1 we provide a summary of the sampling complexity
for the various top-k problems for both absolute and relative
error guarantees.

We make the following observations:

(i) The sampling cost t varies inversely with the square of
the tolerance ε and directly with the logarithm of the error



Table 1: Sampling complexity of various top-k problems.
Ranking Sampling cost (abs tol) Sampling cost (rel tol)

top-k 4pk

ε2

(

log 1
δ

+ log(kK)
)

4
pkε2

(

log 1
δ

+ log(kK ′)
)

top-k with ranking 4p1
ε2

(

log 1
δ

+ log(kL)
)

4
pkε2

(

log 1
δ

+ log(kL′)
)

top-k with frequen-
cies

8p1(1−p1)
ε2

(

log 1
δ

+ log(2M)
) 8(1−pk)

pkε2

(

log 1
δ

+ log(2M
′)
)

probability δ. In other words, the error probability expo-
nentially decays with the number of samples.

(ii) The sampling cost increases with increasing order of de-
mand of the top-k set problem. In particular, for absolute
error guarantees for the top-k set problem, t depends on the
k-th largest frequency pk, while for the top-k ranking and
frequency problems, t depends on the largest frequency p1.
As observed before, this is due to the qualitative difference
in the typical error events: In the former case, typical error
occurs due to over sampling an item from B as compared to
an item from T , while in the latter case, typical error is due
to deviations of the item with largest frequency.

(iii) In contrast, for relative error guarantees, the sampling
costs varies inversely with the k-th largest frequency pk for
all variants of the problem. The reason is, for a given relative
tolerance, deviations are more likely to occur for elements
with smaller frequencies. In the present case, typical error
is due to the violation of relative error guarantees by an
element with k-th largest frequency.

(iv) We also note that the sampling costs do not scale a
log(m) but instead as log(O(min(1/pk, m)). The saving is
due to the lumping arguments used.

4.5 Sequential Sampling
In the preceding text we considered the sample size for top-k
estimation problems for given probability of error. The sam-
ple sizes that we derived depend on some parameters of the
underlying distribution P ; for example, on the frequency of
the k-th most frequent item pk. These could be seen as nui-
sance parameters in the same vein as variance is a nuisance
parameter in estimating a confidence interval. The derived
sample sizes can be applied for top-k estimation provided
that one has a prior information about the values of the nui-
sance parameters; e.g. using a two-phase procedure where
in the first phase the nuisance parameters are estimated,
and then in the second phase, top-k estimation is performed
for the number of samples determined by the previously-
estimated nuisance parameters. In this section we outline a
procedure that does this all at once using a well known se-
quential sampling approach where unknown parameters are
estimated on-line and the sample size is determined by a
stopping rule that depends on the observations.

In order to derive a stopping rule we use the posterior distri-
bution of the error event; let pe(y1, . . . , yt) denote the poste-
rior distribution given the observed samples y1, . . . , yt. The
estimation is stopped at a number of samples T when the
posterior distribution pe(y1, . . . , yT ) is less than or equal to
given δ. We use standard Bayesian approach to characterize
the posterior probability of error where a prior distribution
is admitted for P . As standard, let P ′ be a vector by taking

all but one coordinate of the distribution P ; say the omit-
ted coordinate is for item m. Let Q′ be the corresponding
vector of the observed frequencies. By asymptotic Bayesian
theory [3, 10], we have that for large t, Z = P ′−Q′ is asymp-
totically a multivariate Gaussian random variable with zero
mean and covariance matrix Σ where Σ is the inverse of the
Fisher’s information matrix

I(P ) =

[

− ∂2

∂pi∂pj

t
∑

s=1

log(Pr(Xs = ys|P ))

]

that is evaluted at the maximum-likelihood estimate Q′.
Since in our case X1, . . . , Xt is a sequence of independent
and identically distributed random variables where the dis-
tribution of Xs is multinomial, it is not difficult to show that
Σ = [σi,j ] where σi,i = 1

t
qi(1 − qi) and σi,j = − 1

t
qiqj for

i 6= j. We use the fact that for large sample size, the distri-
bution of the random variable Z is asymptotically Gaussian
to evaluate the posterior probability of error.

Top-k. The posterior probability of error, given the ob-
served samples y1, . . . , yt is

pe(y1, . . . , yt) = Pr(∪i∈T ,j∈B{pj ≥ pi}|Q)

where T and B are defined as earlier but with respect to the
distribution Q. We use

Pr(∪i∈T ,j∈B{pj ≥ pi}|Q) ≤ |T ||B| max
i∈T ,j∈B

Pr({pj ≥ pi}|Q).

Now, we consider the event {pj ≥ pi} for any given item
i and item j, conditional on Q. We have that pj − pi is
asymptotically Gaussian with mean qj − qi and variance
E((Zj − Zi)

2). It is not hard to derive that

E((Zj − Zi)
2) =

1

t
[qi + qj − (qi − qj)

2]. (24)

Let zx be the (1− x)-quantile of a normal random variable,
i.e. 1− Φ(zx) = x where Φ() is the cumulative distribution
function of a normal random variable. Under assumption
that Z is a multivariate Gaussian random variable we have
that the posterior probability of error is less than or equal
to δ provided it holds

qi − qj
√

E((Zi − Zj)2)2
≥ z∆ for every i ∈ T , j ∈ B

where ∆|T ||B| = δ. Using (24) note that the last inequality
is equivalent to

t ≥ max
i∈T ,j∈B

qi + qj

(qi − qj)2
z2
∆

=
qk + ql(k)

(qk − ql(k))2
z2
∆. (25)

This yields a stopping rule for the top-k problem; see Fig-
ure 1 for a pseudo code of the sequential algorithm. Note



that (25) yields similar number of samples as that in Theo-
rem 4.1.2

Algorithm 1 Sequential sampling for top-k

1: Input: δ, ε

2: Procedure: fk(Q) =
qk+ql(k)

(qk−ql(k))
2

3: Init: Q = 0, T = 1
4: while 1 do
5: x← sample of an item from the dataset X
6: Q←

(

1− 1
T

)

Q

7: qx ← qx + 1
T

8: if T > fk(Q)z2
∆ then break

9: end if
10: T ← T + 1
11: end while
12: Output: a set of k items with largest frequencies qi

Top-k with Frequencies. We preserve notation with the

change ∆(Q) := δ(qk−ε)
2

. Same stopping rule applies as for

top-k but with fk(Q) = maxi qi(1−qi)
ε2

. The stopping rule is
derived by choosing t so that the posteriori error probability
given by pe = Pr(∪i|pi − qi| > ε

2
|Q) is bounded by δ.

5. NUMERICAL RESULTS
In this section we present numerical results that we obtained
by simulations and using frequencies of items that we in-
ferred from datasets of an operational cloud service. The
goals of this section are: (1) to demonstrate tightness of
our bounds by comparison to empirical counterparts; (2)
to demonstrate sampling gains by using direct construction
of arbitrary-height range partitioning; (3) to demonstrate
sampling gains of approximate solving of top-k problems and
evaluate the sampling complexity with respect to k; (4) eval-
uate the gain of using the lumping of small frequency items;
(5) demonstrate the validity of the sequential sampling al-
gorithm for top-k set problems.

Data. Our data consists of a database of an operational
cloud service for provisioning of media content that is used
by hundreds of thousands of users and involves tens of mil-
lions of media items. The database consists of tens of tables
and more than a hundred of data columns; the datasets that
we use in our analysis consists of more than fifty columns
from this database whose number of rows span the range of
a few million rows to hundreds of billions. These datasets
would be representative of typical online services where var-
ious events are recorded over time associated to individual
users and product items.

Range partitioning. For range partitioning, we use simu-
lations on artificial datasets as the results apply to any set of
items whose values are from an ordered set of items. In Fig. 4
we show the estimated probability of error versus the sam-
ple size alongside with our bounds (Corollary 4.1) for three-
bin range partitioning. The results confirm tightness of our
bounds and illustrate the fact that the probability of er-
ror is larger for smaller minimum height of the partitioning.

2To see this, note that
qk+ql(k)

(qk−ql(k))
2 ≤ 2qk/ε2 and z2

∆ ≤
2 log( 1

∆
) and using these we recover the same number of

samples as in Corollary 4.1.
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Figure 4: Probability of error vs. sample size for
three-bin range partitionings; the sample size is
given as the percentage of the total number of items
in the dataset.
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Figure 5: Range partitioning for different histogram
heights P but common minimum height mini pi.

The latter is further illustrated in Fig. 5 where we observe
same decay rate of the probability of error with the sam-
ple size for different range partitions P = [0.05, 0.05, 0.9],
[0.05, 0.25, 0.7], [0.05, 0.35, 0.6], and [0.05, 0.45, 0.5] that all
have common minimum bin-height mini pi = 0.05.

In Fig. 6 we evaluate the benefit of using the direct esti-
mation method for arbitrary-height range partitioning over
the indirect approach. Recall that in Section 3.1 we already
showed that the indirect approach requires the number of
samplings that is at least a factor given in Eq. (5) of that
under the direct approach. In Fig. 6 we evaluate (5) for
different partitionings as follows. Given positive integers M
and k we sample partitions of M into k bins uniformly at
random from the set of all possible partitions of M into k
partitions. For each given M and k we take 104 such samples
and compute the mean and standard deviation of the values
(5). Fig. 6 indicates that the benefit of the direct approach
is larger for larger values of M and smaller number of the
bins k and it can be substantial.

Top-k. We first compare our bounds for the sample size
of the top-k set problems. In Fig. 7 we show the estimated
probability of error versus the sample size for top-1 set and
top-10 set problems along with analytical bounds (Theo-
rem 4.2). The results confirm that error probabilites from
simulations are indeed within the bounds (plotted in broken
lines). We confirm that the required sample size for top-k
set problem with given absolute error tolerance ε and proba-
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Figure 6: The benefit of the direct estimation
method over the indirect approach for range par-
titioning.
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Figure 7: Probability of error vs. sample size for
top-1 set and top-10 set problems with absolute er-
ror tolerance ε = 1.8 · 10−3. The corresponding fre-
quencies are p1 = 6.9 · 10−3 and p10 = 3.3 · 10−3.

bility of error scales as pk. Indeed, in Fig. 7 observe that for
given probability of error, the top-1 set requires about twice
as many samples as the top-10 set problem which conforms
to the value of the frequency p1 being about twice the value
of the frequency p10.

A similar plot is shown in Fig. 8 for the top-1 set with fre-
quencies problem and for two distinct values of the absolute
error tolerance ε. The results confirm validity of our bounds
(Theorem 4.7) and further demonstrate that the required
sample size for given probability of error scales as 1/ε2; this
is indicated in the figure as the required sample size for given
probability of error under ε = 0.9 · 10−3 is about four times
of that under ε = 1.8 · 10−3.

The next set of plots quantify the difference between 1/pk

and m for practical data sets. The distribution of the values
of the ratio (1/pk)/m over a range of datasets is plotted in
Fig. 9. It is observed that the median values are smaller than
1/100 for a wide range of values of k. Since our sampling
costs scale as log(min(1/pk, m)), the bounds we obtain from
lumping arguments are tighter by a factor of 5 as compared
to the bounds from standard arguments which is a significant
reduction.

The sampling costs that are established in Section 4 for dif-
ferent top-k problems depend on the frequencies of items
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Figure 8: Probability of error vs. sample size for
top-1 set problem with absolute error tolerances ε
as indicated. The frequency of the most frequent
item in the dataset is p1 = 6.9 · 10−3.
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Figure 9: CDF of the values of the ratio (1/pk)/m for
k = 1, 10, and 100.

in a dataset. This can provide a useful guideline in un-
derstanding the sampling costs for the different variants of
the top k problem. In particular, we have shown that for
absolute tolerance guarantees, the ratio of sampling com-
plexity for the top-k set problem and the top-k ranking (or
frequency) problem varies as pk/p1. In Fig. 10 we show the
ratio pk/p1 versus k for three different datasets. In partic-
ular, we observe the value of pk/p1 of about one half for
k = 10 which indicates that solving the top-10 set prob-
lem with frequencies can require twice as many samples as
compared to identifying just the top-10 set.

Finally, we demonstrate validity of the sequential sampling
algorithm that we described in Section 4.5. Specifically, we
consider top-k set problem for k = 1, absolute error toler-
ance ε = 1.8 · 10−3, and estimate the probability of error
based on 20,000 simulation repetitions. Fig. 11 shows the
probability versus the sample size alongside with input prob-
ability of error δ. The simulation and analytical results are
in conformance.

6. CONCLUSION
We considered the estimation of arbitrary-height range par-
titioning and identification of frequently occuring items, two
basic computational tasks that are of interest in the context
of data-intentive compuations; the results provide insights
into sampling complexity and simple and practical sampling
algorithms.
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Figure 10: pk/p1 vs. k; the right graph is a zoomed
version of the left graph.
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APPENDIX

Proof of Theorem 4.1
The error probability pe satisfies the following

pe = Pr (∪i∈T ,j∈B{qj ≥ qi})
≤

∑

i∈T ,j∈B

Pr(qj ≥ qi) (26)

where the inequality is by the union bound.

For the probability of the event {qj ≥ qi}, for any i ∈ T and
j ∈ B, using Chernoff’s bound we have the following lemma



whose proof is in Appendix.

Lemma .1. For any i ∈ T and j ∈ B the following holds

Pr(qj ≥ qi) ≤
(

1− (
√

pi −√pj)
2)t .

We use the following uniform bound for the probabilities
Pr(qj ≥ qi), i ∈ T , j ∈ B,

max
i∈T ,j∈B

Pr(qj ≥ qi) ≤ max
i∈T ,j∈B

(

1− (
√

pi −
√

pj)
2
)t

=
(

1− (
√

pk −√pl(k))
2)t. (27)

The last equality follows since
√

pi − √pj is minimized by
choosing i as large as possible within the set T and j as small
as possible within the set B. Thus, pi = pk and pj = pl(k)

where l(k) is the item with largest frequency in B.

From (26) and (27), we have

pe ≤
∑

i∈T ,j∈B

Pr(qj ≥ qi)

≤ |T ||B|
(

1− (
√

pk −√pl(k))
2
)t

≤ k(m− k)
(

1− (
√

pk −√pl(k))
2
)t

where the last inequality is because |T | = k and |B| ≤ m−k.

The proof is completed by noting that as we use Chernoff’s
bound, by Cramer’s theorem the error exponent is tight.

Proof of Lemma .1
Let Ix(y) be an indicator defined by Ix(y) = 1 if y = x and
Ix(y) = 0, otherwise. Suppose (y1, y2, . . . , yt) are the items
of the sketch. Then,

Pr(qj ≥ qi) = Pr

(

t
∑

k=1

Zk ≥ 0

)

. (28)

Note that Zk := Ij(yk)−Ii(yk), k = 1, 2, . . . , t, is a sequence
of independent and identically distributed random variables.
By Chernoff’s bound we have, for any real number x and any
positive integer t,

Pr

(

t
∑

k=1

Zk ≥ xt

)

≤ exp

(

−t sup
θ>0

Λ(θ, x)

)

(29)

where

Λ(θ, x) = θx− log E(eθZ1).

Now, note

eθZ1 =







eθ with prob. pj

e−θ with prob. pi

1 with prob. 1− pi − pj .

It follows

E
(

eθZ1

)

= 1− pi − pj + eθpj + e−θpi

and

Λ(θ, x) = θx− log
(

1− pi − pj + eθpj + e−θpi

)

. (30)

Let θx be the maximizer in (29) for given x. We are inter-
ested in Λ(θx, x) for x = 0. We will show that the following
holds

Λ(θ0, 0) = − log
(

1− (
√

pi −
√

pj)
2) (31)

The maximizer θx satisfies ∂
∂θ

Λ(θ, x) = 0 at θ = θx. Com-
bining with

∂

∂θ
Λ(θ, x) = x− pje

θ − pie
−θ

1− pi − pj + pjeθ + pie−θ

we obtain

(1− x)pje
2θx − x(1− pi − pj)e

θx − (1 + x)pi = 0.

This is a quadratic equation for eθx whose solution for x = 0

is eθ0 =
√

pi

pj
. Plugging this in (30) for x = 0, we obtain

(31). This completes the proof.

Theorem 4.2
Whenever an item in B is sampled more often than an item
i ∈ T with respect to the distribution P , this implies that
the corresponding super-item in B̃ is sampled more often
than item i with respect to the distribution P̃ . Therefore,

pe = PrP (∪i∈T ,j∈B{qj ≥ qi})
≤ PrP̃

(

∪i∈T ,j∈B̃{qj ≥ qi}
)

(32)

where PrP (·) and PrP̃ (·) are the probabilities under the sam-

pling from the distribution P and the distribution P̃ , respec-
tively. The rest of the proof follows the same steps as that
of Theorem 4.1.

Proof of Theorem 4.6
From the arguments as for the absolute error guarantees, it
holds that

pe ≤ kL′
(

1−min
i≤k

(
√

pi −√pl(i))
2
)t

where l(i) is the element with maximum frequency less than
pi(1− ε). Note that

(
√

pi −√pl(i))
2 ≥ ε2p2

i

(
√

pi +
√

pi(1− ε))2
.

Therefore, it holds that

pe ≤ kL′
(

1−min
i≤k

(
√

pi −√pl(i))
2
)t

≤ kL′
(

1−min
i≤k

ε2p2
i

(
√

pi +
√

pi(1− ε))2

)t

= kL′
(

1− ε2p2
k

(
√

pk +
√

pk(1− ε))2

)t

= kL′
(

1− (
√

pk −
√

pk(1− ε))2
)t

.

Proofs of Fact 4.1 and Fact 4.2
We use the following lemma.

Lemma .2. For every fixed a ∈ [0, 1
2
], D(x+a||x) achieves

a minimum over x ∈ [0, 1− a] at a point p∗
a that lies in the

interval [ 1−a
2

, 1
2
].



Proof. Let f(x) := D(x + a||x) for x ∈ [0, 1 − a]. We
have

f ′(x) = log

(

(x + a)(1− x)

(1− x− a)x

)

− a

x(1− x)
.

Let

f1(x) :=
(1− x)(x + a)

x(1− (x + a))
and f2(x) := e

a
x(1−x) .

Condition f ′(x) = 0 is equivalent to f1(x) = f2(x).

On the one hand, function f1(x) is non-negative and tends
to infinity at 0 and 1 − a. It is readily checked that f1(x)
has a unique minimum at the point (1− a)/2. On the other
hand, function f2(x) over [0, 1] has a unique minimum at
1
2
, is symmetric around 1/2, and tends to infinity at 0 and

1. Therefore, it must be that f1(x) and f2(x) intersect at a
point in the interval [ 1−a

2
, 1

2
] which completes the proof.

Proof of Fact 1: We will establish that for p∗
ε
2

defined in

Lemma .2 the following holds,

p∗
ε
2
≥ min(pk, 1− pk)− ε

from which the result follows. By Lemma .2, p∗
ε
2
≥ 1

2
− ε

4

which we use in the following. For k > 1, min(pk, 1− pk) =
pk and thus suffices that pk−ε ≤ 1

2
− ε

4
which indeed holds as

pk ≤ 1/2. For k = 1 and p1 ≤ 1
2
, the same argument applies.

Finally, for k = 1 and p1 > 1
2
, min(pk, 1−pk) = 1−p1 hence

it suffices that 1− p1 − ε ≤ 1
2
− ε

4
which indeed holds under

p1 > 1
2
.

Proof of Fact 2: Note that mini Di is achieved for an item
i such that min(pi, 1 − pi) is either first to the left or first
to the right of the point p∗

ε
2
. Hence, if min(pi, 1− pi) ≤ p∗

ε
2

for every i, then Di is smallest for an item i with largest
min(pi, 1 − pi), which if p1 < 1/2 is item 1. In view of the
lower bound on p∗

ε
2

in Lemma .2, Di is smallest for i = 1

provided that p1 ≤ (1− ε
2
)/2. Eq. (20) follows.

Proof of Theorem 4.7
For the probability of error pe we have

pe = Pr
(

∪m
i=1

{

|qi − pi| ≥
ε

2

})

≤ m max
i

Pr
(

|qi − pi| ≥ ε

2

)

.

Note

Pr
(

|qi − pi| ≥ ε

2

)

≤ Pr
(

qi − pi ≥
ε

2

)

+ Pr
(

qi − pi ≤ −
ε

2

)

.

Indeed, qi is the empirical mean based on t samples from a
Bernoulli distribution with mean pi. By Chernoff’s bound,
we have, for ε ≤ 2(1− pi),

Pr
(

qi − pi ≥
ε

2

)

≤ exp
(

−tD(pi +
ε

2
||pi)

)

and, for ε ≤ 2pi,

Pr
(

qi − pi ≤ − ε

2

)

≤ exp
(

−tD(pi − ε

2
||pi)

)

.

Therefore, we have (17) with

Di := min
(

D(pi +
ε

2
||pi), D(pi − ε

2
||pi)

)

.

We note the following fact whose proof is provided in Ap-
pendix.

Fact .1.

Di =

{

D(pi + ε
2
||pi), pi ≤ 1

2

D(pi − ε
2
||pi), pi > 1

2
.

Noting that D(pi− ε
2
||pi) = D(1− pi + ε

2
||1− pi), it follows

that Di satisfies (18).

Since we used Chernoff’s bounds the error exponent is tight
so (19) holds.

Proof of Fact .1
The claim follows once we establish the following: for every
fixed y ∈ [0, 1

2
],

D(y + x||y) ≤ D(y − x||y), for every x ∈ [0, y]. (33)

Note that this also means that if y ∈ [ 1
2
, 1], then D(y +

x||y) ≥ D(y − x||y), for every x ∈ [0, 1 − y]. This follows
from (33) by using the substitution z = 1− y and using the
correspondences D(y+x||y) = D(z−x||z) and D(y−x||y) =
D(z + x||z).

Let f(x) := D(y +x||y)−D(y−x||y) for x ∈ [0, y]. It is not
difficult to show that

f ′(x) = log

(

(1− y)2

y2

y2 − x2

(1− y)2 − x2

)

.

Function f(x) is equal to 0 at x = 0. Therefore, (33) follows
if f ′(x) ≤ 0 for every x ∈ [0, y]. But note that this is
equivalent to saying

y2 − x2

(1− y)2 − x2
≤ y2

(1− y)2

which indeed holds as equality holds for x = 0 and the left-
hand side is non-increasing with x under our assumption
y ≤ 1

2
.

Proof of Theorem 4.9
The error probability pe is upper bounded as

pe ≤ Pr





⋃

i:pi>pk(1−ε)

{

|qi − pi| ≥ pi
ε

2

}

⋃

i:pi≤pk(1−ε)

{

|qi − pi| ≥ pk

ε

2

}



 .

Observe that in the above expression, lower frequency ele-
ments (pi ≤ pk − ε) can deviate upto absolute amount εpk

2
.

This condition along with the restriction on the deviation of
the counts of the top frequency (pi ≥ pk) elements ensures
that the count of lower frequency elements does not exceed
the count of the higher frequency elements. For k ≥ 2 or for
k = 1 and p1 < 0.5, it can be easily checked that the error
probability is bounded by (23).


