
1

An Object-oriented Core for XML Schema

Suad Alagić and Philip A. Bernstein

Microsoft Research

Redmond, USA
alagic@usm.maine.edu
philbe@microsoft.com

ABSTRACT

This paper presents object-oriented interfaces that capture the

essence of the structural complexity of XML Schema. We develop

two such interfaces: a lightweight object-oriented interface that

hides some of the complexity of XML Schema by simplifying the

particle and type hierarchies, and a more complete but more

complex interface that contains explicit specification of XSD

groups. We define a meta level that can store the full details of

XSD schemas, such as content models, type derivations for simple

and complex types, and identity constraints, which is available to

application programmers via reflection. The applicability of the

developed interfaces is demonstrated through a collection of

complex object-oriented queries.

1. INTRODUCTION

1.1 The Problem
XML Schema Definition language (XSD for short) is a widely-

used standard for specifying structural features of XML data [20].

In addition, XSD allows specification of constraints that XML

data is required to satisfy. But producing an object-oriented

schema that reflects correctly the source XSD schema and adheres

to the type systems of mainstream object-oriented languages

presents a major challenge. Such an object-oriented interface is

required by database designers, users writing queries and

transactions, and application programmers in general when

processing XML data that conforms to XSD.

There are two broad types of features in XSD: structural and

constraint-based. The structural features are represented by the

features of the type system. This includes elements, attributes, and

various grouping mechanisms such as sequence, choice and all

groups, and complex types (which group elements and attributes).

Typical XSD constraints are range constraints that specify the

minimum and maximum number of repeated occurrences, rules

for type derivation by restriction that restrict the set of valid

instances of a type, and identity constraints that define keys and

referential integrity. Unfortunately, object-oriented type systems

have severe limitations in representing these XSD constraints.

Most of the existing object-oriented interfaces to XSD exhibit a

number of problems due to the mismatch of XML and object-

oriented type systems. Some of those problems are:

 Not distinguishing between elements and attributes in the

object-oriented representation or not representing attributes

at all.

 Not being able to represent repetition of elements and

attributes with identical names (tags).

 Failing to represent correctly the particle structure of XSD

(with elements and groups) and the range of occurrences
constraints in particular.

 Confusing the particle hierarchy (with elements and groups)

and the type hierarchy (with simple and complex types and
type derivations) of XSD.

 Not distinguishing different types of XSD groups in the

object-oriented representation (sequence versus choice) or
not representing groups at all.

 In the object-oriented representation, not distinguishing the

two type derivation techniques in XSD: by restriction and by

extension.

 Failing to represent accurately XSD type derivation by
restriction, facets and range constraints in particular.

 Having no representation of the XSD identity constraints

(keys and referential integrity) and thus no way of enforcing
them.

Object-oriented database designers, database users, and

application programmers are seldom willing to suffer through the

complexities and peculiarities of XML Schema. Hence there

exists a real practical need to offer an object-oriented view of the

XML Schema. The existing interfaces typically present a view

that is very remote from the XSD source and hence there is little

that the type system can do to enforce the structural rules of XSD

when the corresponding object instances are manipulated.

The key question is whether it is possible to develop an object-

oriented interface that captures the core XSD structural features

while avoiding at least some of the above problems. Such an

interface has not been published so far. The main reason lies in

the complexity of XSD, its semantics, and its mismatch with
features of object-oriented type systems.

1.2 Contributions
Our research contributions are as follows:

 We isolate the structural core of XSD which contains the

essential structural features of XSD and abstracts away a

variety of other XSD features (Section 2).

2

 We specify a light-weight object-oriented interface to

schemas expressed in the XSD core that is structurally

simple, matches closely the structure of the XML instances,

hides much of the complexity of XSD, and simplifies

programming (Section 2) and queries (Section 4).

 We specify a more elaborate object-oriented interface to

schemas expressed in the XSD core for more sophisticated

users who require a deeper understanding of more complex

XSD structures (Section 3).

 We demonstrate the utility of our interfaces by giving a

variety of typical object-oriented queries (Section 4).

 We specify the object-oriented meta-level which consists of a

full representation of features of the XSD core including par-

ticle structures (elements and groups), types and type deriva-

tions, content models and identity constraints (Section 5).

 We compare our approach to related work (Section 6).

Unlike most other object-oriented interfaces to XSD, we reflect

the presence of at least some of the semantic constraints in the

target object-oriented schemas. However, due to the limitations of

object-oriented type systems, we can do this only structurally. We

summarize some examples which are described in detail in the

paper: In the generated object-oriented schemas, range constraints

are present as minOccurs and maxOccurs methods that return the

bounds. The distinction in the semantics of different types of

groups is represented by different interfaces whose default

implementation is required to support different semantics. Type

derivation by restriction is represented using not only inheritance,

but also a hierarchy of interfaces representing different types of

facets and overriding minOccurs and maxOccurs methods. Full

details of the XSD schema are represented at the meta level. The

XSD identity constraints are represented at the meta level by a

hierarchy of interfaces representing different types of identity

constraints. The same applies to the content models and the type

derivation hierarchies.

2. XML Schema Light

2.1 The Basics of XSD Light
In this section, we define the lightweight object-oriented interface

to the XSD core, which we call XSD Light. It has two type

hierarchies just like in XML Schema.

The particle hierarchy contains a direct specification of the actual

XML instances, which are documents. An XML document is a

single element, which is the basic case of the XSD notion of a

particle. In general, a particle consists of a sequence of other

particles, which may be elements or more general particles. The

range of occurrences in a sequence is determined by invoking

methods minOccurs and maxOccurs, but this range cannot be

enforced by the type system.

interface XMLParticle

{ int minOccurs();

 int maxOccurs();

 XMLSequence<XMLParticle> particles();

}

An element is a particular case of a particle. An element has a

name (i.e., a tag) and a value. The value of an element may be

simple or complex. The default values of minOccurs and

maxOccurs are both equal to 1. The types of values of elements

are structured into a separate hierarchy. If an element has a value

of a complex type, that type contains the specification of the

complex element structure.

interface XMLElement: XMLParticle

{ XMLName name();

 XMLanyType value();

}

XMLSequence is an immutable parametric type that extends the

type IEnumerable which represents an immutable sequence as in

C#.

interface XMLSequence<T>: IEnumerable<T>

In the lightweight representation in Figure 1, the notion of an

XML group is hidden from the users. A group is represented as a

sequence of particles. This representation fits XSD specifications

of sequence-groups and choice-groups. In the case of an all-group

the particles are elements (i.e., not more general particles) and the

ordering is irrelevant.

Types of values of elements are structured into the type hierarchy

specified below. The root of this type hierarchy is XMLanyType:

interface XMLanyType {...}

An XML type may be simple or complex, hence the two

immediate subtypes of XMLanyType are XMLanySimpleType

and XMLanyComplexType.

interface XMLanySimpleType: XMLanyType {...}

Specific simple types are derived from XMLanySimpleType,

for example:

interface XMLString: XMLanySimpleType {...}

A value of an XML complex type in general consists of a set of

attributes and a content model, where the latter is represented in

this interface by its particle structure:

interface XMLanyComplexType: XMLanyType {

 XMLSequence<XMLAttribute> attributes();

 XMLParticle particle();

}

Although the ordering of attributes is irrelevant in XSD, the

sequence representation for a set of attributes is used above to

allow access by methods like those in the interface

IEnumerable.

 So if the value of an element is complex, the type of the

element’s value will be derived directly or indirectly from

XMLanyComplexType. Hence the element is in general

equipped with a set of attributes and a particle structure, which

consists of other particles. This representation of the structure of a

complex element corresponds to its structure in XSD, except that

the XSD specification of the particle structure is more elaborate

XMLParticle

XMLElement

XMLanyType

XMLanySimpleType XMLanyComplexType

XMLAttribute

Figure 1 Lightweight XSD Representation

3

and includes groups. But in the actual element instance, groups

appear as sequences of particles.

An attribute has a name (its tag) and a value. The value of an

attribute is required to be simple, hence the following

specification of an attribute type:

interface XMLAttribute {

 XMLName name();

 XMLanySimpleType value();

}

2.2 Sample representation
This XML example consists of a single element whose name is

addressBook and whose type is AddressList. AddressList is a

complex type whose particle structure is specified as a sequence

group. The repeated elements in the sequence are of another

complex type AddressType. The particle structure of

AddressType is a sequence-group consisting of three element

types. The types of these elements are simple.

<xsd: element name ="addressBook" type ="AddressList "/>

<xsd: complexType name = "AddressList" >

 <xsd:sequence >

 <xsd: element name = "address" type = "AddressType"

 minOccurs= "0" maxOccurs = "unbounded " />

 </xsd:sequence>

</xsd: complexType>

<xsd: complexType name ="AddressType">

 <xsd:sequence >

 <xsd: element name = "name" type = "xsd: string" />

 <xsd: element name = "zip" type ="xsd: int" />

 <xsd: element name = "street" type = "xsd: string" />

 </xsd:sequence>

</xsd:complexType>

In the full, most elaborate representation of the above XML

fragment, each element type is specified separately as a type

derived from the type XMLElement. The result type of the

method value is overridden covariantly to a specific XML type.

Types XMLString and XMLInt are types derived from

XMLanySimpleType.

interface NameElement: XMLElement {

 new XMLString value();

}

Interfaces ZipElement and StreetElement follow the

same pattern.

The type AddressType is derived from the type

XMLanyComplexType. Since there are no attributes in this

example, specification of the type AddressType contains only

its particle structure. The prefix new is a C# peculiarity which

would not occur in Java.

interface AddressType: XMLanyComplexType {

 new Address particle();

}

The particle Address is a type derived from the type

XMLParticle. This particle is a sequence of elements, hence

the result type of the method particles is overridden

covariantly to be an XMLSequence of XMLELement, not just of

XMLParticle. This overriding of the result type departs from

the rules of mainstream object-oriented languages. The reason is

that “B is a subtype of A” does not imply “C is a subtype of

C<A> for a parametric class C<T>”. However, in spite of that, the

covariant overriding given above is in fact type safe because

XMLsequence is an immutable type. XMLSequence does not

have any mutator or binary methods, just like IEnumerable.

Overriding covariantly the result type of an inherited method is a

very frequent situation in developing an object-oriented interface

to XSD. This feature fits the recent changes in the type systems of

mainstream object-oriented languages except in the case discussed

above where the result type is an instantiated parametric type

whose actual parameter is overriden covariantly. Although this is

type safe in the views that we are presenting, we could regard this

situation as another instance of the mismatch of what XSD

naturally requires and what the mainstream object-oriented

languages will allow.

In this example the elements of this particle are also specified.

There is an obvious condition that the XMLsequence of par-

ticles representing the result of the method particles consists

exactly of the specified elements (i.e., name, zip, and street),

but this condition cannot be specified in a type system alone.

interface Address: XMLParticle

{ new XMLSequence<XMLElement> particles();

 NameElement name();

 ZipElement zip();

 StreetElement street();

}

This dual representation of the members of Addressas a

sequence of elements and as specifically-typed members is

novel as far as we know. It reconciles the more abstract

representation of the members in the interface XMLParticle

with the more specialized and easier-to-use specifically-typed

members. The cost of this reconciliation is that it places a

requirement on the implementation to keep these two

representations in sync.

AddressListType is a complex type, hence it is derived from

XMLanyComplexType. There are no attributes belonging to

this type, hence only its particle structure is specified.

interface AddressListType: XMLanyComplexType {

 new AddressList particle();

}

AddressList is a particle which consists of a sequence of

Address particles. minOccurs and maxOccurs must be

overridden accordingly, so their values are specific to the type

AddressList.

interface AddressList: XMLParticle {

 new int minOccurs();

 new int maxOccurs();

 new XMLSequence<Address> particles();

}

It is now possible to justify a shorthand representation for

Address that makes programming easier. It is based on knowing

that Address is a sequence of elements. This list of elements is

available as the result of the overridden method particles. In

addition we can specify the element names and their types as

members of the type Address. These members do not appear to

be of type XMLElement, which avoids one level of indirection

in using the method value to get the element value. The value

can now be accessed directly using the corresponding member of

4

the interface Address; for example, name is specified to be of

type XMLString, not of type NameElement.

interface Address: XMLParticle {

 new XMLSequence<XMLElement> particles();

 XMLString name();

 XMLInt zip();

 XMLString street();

}

2.3 Type derivations
An example of simple type derivation by restriction is given

below. StateType is derived from its base type string by

specifying an enumeration of values of the base type that belong

to the derived type.

<xsd: simpleType name = "StateType" >

 <xsd: restriction base = "xsd:string" >

 <xsd:enumeration value = "Alabama" />

 <xsd:enumeration value = "Alaska" />

 <!- other enumeration values ->

 </xsd: restriction>

</xsd: simpleType >

In the object-oriented representation, type derivations are

represented using inheritance:

interface StateType: XMLString {
 // enumeration of values as constants

}

The XSD type derivation by extension allows extending the set of

attributes and extending the particle structure of a complex type.

There are no attributes in the example below. The particle

structure of the base type AddressType is extended by specifying

particles to be appended to the base particle structure.

<xsd:complexType name = "ExtendedAddressType" >

 <xsd: extension base = "AddressType" >

 <xsd: sequence >

 <xsd:element name= "city" type = "xsd:string" />

 <xsd:element name ="state" type= "StateType" />

 </xsd:sequence>

 </xsd:extension>

</xsd:complexType>

In the object-oriented representation, ExtendedAddress is a

particle that extends the particle Address.

ExtendedAddressType is a complex type that extends the

complex type AddressType.

interface ExtendedAddressType: AddressType {

new ExtendedAddress particle();

}

interface ExtendedAddress: Address {

 cityElement city();

 stateElement state(); }

3. Programming with XSD groups
A more accurate and more complex programming model than

XSD Light is obtained by recognizing that sequences of particles

are specified in XSD not only by range constraints, but also by

three types of groups (see Figure 2). More precisely, a particle

amounts to a sequence of terms. A term is either an element or a

group. Since a range constraint may be associated with any type

of a term, in a slightly simplified view, elements and groups are

viewed as particles, which have range constraints.

So we have:

interface XMLElement: XMLParticle { ... }

interface XMLGroup: XMLParticle {

 XMLSequence<XMLParticle> particles();

}

There are three types of groups in XSD. Each of them is specified

as a sequence of particles. For an all-group these particles must be

elements. Hence the result of the method particles is

covariantly overridden in the all-group as previously explained.

interface XMLSequenceGroup: XMLGroup {

}

interface XMLChoiceGroup: XMLGroup {

}

interface XMLAllGroup: XMLGroup {

 new XMLSequence<XMLElement> particles();

}

The semantics of sequence-group and choice-group are very

different in XSD. An instance of a sequence-group is a sequence

of particle instances. An instance of a choice-group contains just

one of the particles specified in the choice-group. Specification of

this semantic difference cannot be expressed in an object-oriented

type system alone. The underlying classes implementing the

above interfaces have to correctly implement this semantics.

The following is an example representation of choice that appears

in the syntactic specification of expressions. An expression is

defined below in XSD as a choice-group, i.e., it is either a

constant or has the form of an additive expression:

<xsd:complexType name = "Exp" >

 <xsd:choice>

 <xsd:element name = "const" type = "xsd:int"/>

 <xsd:element name = "add" type= "Add" />

 <xsd:choice>

</xsd:complexType>

An Add expression is binary so it is specified as a sequence-group

with left and right components of type expression.

<xsd: complexType name="Add" >

 <xsd:sequence >

 <xsd:element name= "left" type ="Exp" / >

 <xsd: element name = "right" type = "Exp" />

 </xsd:sequence>

</xsd:complexType>

In the object-oriented representation Add is defined as a complex

type whose particle structure is a sequence-group. Exp is a

complex type whose particle structure is a choice-group:

XMLParticle

XMLElement XMLGroup

XMLSequence XMLChoice XMLAll

Figure 2 Representing XSD Groups

5

interface Add: XMLanyComplexType {

 new AddSequenceGroup particle()

}

interface Exp: XMLanyComplexType {

 new ExpChoiceGroup particle()

}

ExpChoiceGroup is thus derived from XMLChoiceGroup

and AddSequenceGroup from XMLSequenceGroup:

interface ExpChoiceGroup: XMLChoiceGroup {

 IntElement const();

 AddElement add();

}

interface AddSequenceGroup: XMLSequenceGroup {

 ExpElement left();

 ExpElement right();

}

In the shorthand representation we would have to override the

method particles in both groups to obtain the following:

interface ExpChoiceGroup: XMLChoiceGroup {

 new XMLSequence<XMLElement> particles();

 XMLInt const();

 Add add();

}

interface AddSequenceGroup: XMLSequenceGroup {

new XMLSequence<XMLElement> particles();

 Exp left();

 Exp right();

}

If groups are present in the object-oriented representation, the

model becomes more expressive but at the same time more

complex. This is illustrated in Section 4 by queries with respect to

an object-oriented model which contains groups.

AllJobOffers is an element whose type is a complex type

JobOffers:

<xsd: element name="AllJobOffers " type= "JobOffers" />

The particle structure of the type JobOffers is a sequence group.

The first particle of this sequence-group is an element JobId. The

second particle is a sequence-group which consists of two

elements: Name and SSN. This latter sequence-group is repeated

an unbounded but finite number of times, including zero times.

<xsd: complexType name = "JobOffers" >

 <xsd: sequence >

 <xsd: element name = "JobId" type = "xsd:string" />

 <xsd:sequence minOccurs="0" maxOccurs="unbounded"/ >

 <xsd:element name = "Name" type = "xsd:string"/>

 <xsd:element name = "SSN" type = "xsd:int"/>

 </xsd:sequence>

 </xsd:sequence>

</xsd:complexType>

In the object-oriented representation AllJobOffers is an element

whose value has the type JobOffers.

interface AllJobOffers: XMLEement {

 new JobOffers value();

}

JobOffers is a complex type whose particle is of type

JobSequence:

interface JobOffers: XMLanyComplexType {

 new JobSequence particle();

}

JobSequence is a sequence-group.

interface JobSequence: XMLSequenceGroup {

 XMLString JobId();

 XMLSequence<JobGroup> jobOffers();

 // set minOcurs and maxOccurs

}

JobGroup is a sequence-group whose particles are two

elements: Name and SSN. A shorthand representation is used

below:

interface JobGroup: XMLSequenceGroup {

 new XMLsequence<XMLElement> particles();

 XMLString Name();

 XMLInt SSN(); }

4. Object-oriented queries
In this section we illustrate the usage and suitability of the

presented object-oriented interfaces to XSD by presenting a

collection of object-oriented queries in the Language-Integrated

Query (LINQ) feature of .NET [16].

The shorthand representation makes writing queries simpler. An

example query over the address list is given below:

AddressList addressBook = ... ;

IEnumerable<Address> JohnDoeAddresses =

 (from x in addressBook.particles()

 where x.name() = “JohnDoe”

 select x)

Without the shorthand notation, the where-clause would have to

be: where x.name().value() = “JohnDoe”.

The queries given below reflect complex group structure:

AllJobOffers J = ...

IEnumerable<JobGroup> ProgrammingJobs =

 from y in J.value().particle().jobOffers()

 where y.JobId = “Programmer”

 select y);

To construct intances of a new type, the corresponding class must

be defined first. Given a class

class AnOffer: XMLElement {

 AnOffer(XMLString name, int salary);

}

the query given below now makes use of the constructor in the

above class for producing the output sequence of objects:

AllJobOffers J = ...;

JobSequence G = J.value().particle();

AnOffer ProgrammerOffer =

 (from j in G.jobOffers()

where j.JobId()= “Programmer”

select new AnOffer(j.JobId(), 100000);

6

To illustrate construction of objects of more complex structure,

the implementing classes are defined first:

class AllJobOffersClass: AllJobOffers {

AllJobOffersClass(XMLString name,

 JobOffers offers)

}

class JobOffersClass: JobOffers {

 JobOffersClass(JobSequence jobs);

}

class JobGroupClass: JobGroup {

 JobGroupClass(XMLString Name,XMLInt SSN);

}

class JobSequenceClass: JobSequence {

 JobSequenceClass(XMLString jobId,

 XMLSequence <JobGroup> offers)

}

class XMLSequenceClass<T>: XMLSequence <T>{

}

A query constructing a complex object representing all

programming jobs would now have the following form:

XMLSequence<JobGroup> Source = ...;

AllJobOffers programmingJobs =

new AllJobOffersClass(“JobOffers”,

 new JobOffersClass(

 new JobSequenceClass (“Programmer”,

 (XMLSequence<JobGroup>)

 (from g in Source

 where g.JobId()=”Programmer”

 select g))))

5. Meta level for XSD core
The above queries show that for many applications the presented

object-oriented interfaces are adequate. But more sophisticated

applications require a full representation of the application’s XSD

schema. For example, transactions should be written in such a

way that they respect the identity constraints (keys and referential

integrity) specified in the XSD schema [4]. Accurate

representation of the subtleties of the XSD content models and

different rules for type derivations in XSD are required when

mapping, extending or integrating schemas [1]. The meta

(schema) level (see Figure 3) that we present serves these

purposes. We tried to make the meta level as complete and

accurate a representation of an XSD source schema as is possible

within the framework of object-oriented type systems.

Like in SOM [14] there exists an abstraction XMLSchemaObject

so that all other schema object types are derived from it.

A content model consists of a specification of a type and its type

derivation:

interface XMLSchemaContentModel:

 XMLSchemaObject

{XMLSchemaType content();

 XMLSchemaTypeDerivation typeOfDerivation();

}

A content model may be simple or complex (see Figure 4). If it is

simple, the underlying type is simple and so is its type derivation:

interface XMLSchemaSimpleContent:

 XMLSchemaContentModel {

 new XMLSchemaSimpleType content();

 new XMLSchemaSimpleTypeDerivation

 typeOfDerivation();

}

In the above interface the result types of both methods are

overridden covariantly.

If a content model is complex, its underlying type may be either

simple or complex. This is why the result type of the method

content remains XMLSchemaType. If the underlying type is

simple, the content model still may contain attributes. But if the

content model is complex, the type derivation will be one of

complex type derivations, as reflected in the result type of the

method typeOfDerivation:

interface XMLSchemaComplexContent:

 XMLSchemaContentModel {

 XMLSchemaComplexTypeDerivation

 typeOfDerivation();

}

The interfaces that follow represent XSD type derivation rules

(see Figure 5). Every type derivation has a base type:

interface XMLSchemaTypeDerivation:

 XMLSchemaObject {

 XMLSchemaType base();

 }

If the type derivation is simple, the base type must be simple:

interface XMLSchemaSimpleTypeDerivation:

 XMLSchemaTypeDerivation {

 new XMLSchemaSimpleType base();

}

XMLSchemaContentMode

l

XMLSchemaSimpleContent

Figure 4 XSD Content Models

XMLSchemaComplexContent

XMLSchemaObject

XMLSchemaElement XMLSchemaAttribute

XMLSchemaType

XMLSchemaGroup XMLSchemaContentModel

XMLSchemaTypeDerivation

XMLSchemaIdentityConstraint

Figure 3 XSD Schema Objects

7

There are two types of simple type derivation. Simple type

derivation by restriction requires specification of a set of

constraining facets:

interface XMLSimpleTypeRestriction:

 XMLSchema SimpleTypeDerivation {

 XMLSchemaSet<XMLFacet> facets();

}

Simple type extension allows only additional attributes:

interface XMLSchemaSimpleTypeExtension:

 XMLSchemaSimpleTypeDerivation {

 XMLSchemaSet<XMLSchemaAttribute>

 attributes();

}

In a complex type derivation the base type is complex, hence the

result type of the method base is overridden covariantly. In a

complex type derivation additional attributes may be added and

the new particle structure is specified:

interface XMLSchemaComplexTypeDerivation:

 XMLSchemaTypeDerivation {

 new XMLSchemaComplexType base();

 XMLSchemaSet<XMLSchemaAttribute>

 attributes();

 XMLSchemaParticle particle();

}

A complex type extension amounts to extending the particle

structure of the base type. The new particle structure is a sequence

group, the first component of which is the base particle, and the

rest are particles that are appended.

interface XMLSchemaComplexTypeExtension:

 XMLSchemaComplexTypeDerivation {

 new XMLSchemaSequenceGroup particle();

}

In a complex type restriction changes may be made to the attri-

butes and the particle structure of the base is restricted by restrict-

ing the ranges of occurrences or omitting optional elements:

interface XMLSchemaComplexTypeRestriction:

 XMLSchemaComplexTypeDerivation {

//restricted attributes and particle structure

}

XSD allows specification of typical database integrity constraints

such as uniqueness, keys and referential integrity. In XSD these

constraints are called identity constraints, modeled by an XSD

schema interface XMLSchemaIdentityConstraint given

below.

An identity constraint has a name, a selector that specifies the

XML structure for which the constraint holds, and a sequence of

fields whose values will have the desired property. The selector is

specified by a simple XPath expression. These expressions will be

instances of the type XMLPath:

interface XMLSchemaIdentityConstraint:

 XMLSchemaObject {

 XMLString name();

 XMLSchemaSequence<XMLString> fields();

 XMLPath selector();

}

The uniqueness and key constraints require nothing else in their

specification. A referential integrity constraint requires an

additional reference to a key which is given by the key name:

interface XMLSchemaKeyRef:

 XMLSchemaIdentityConstraint {

 XMLString referTo();

}

6. Related work
One of the first object-oriented models of XML was DOM.

Although it is a part of W3C activities, DOM preceded XSD and

hence it is very limited in its support of XSD. A tool that works

with DOM and its Java version JDOM is JAXP [7] which is a

Java API for XML processing.

LINQ to XML is an object-oriented interface to XML data that is

based on the assumption that an XML schema is not available

[11]. This approach requires extensive type casting and hence

dynamic type checking of both imperative code and LINQ queries

(which LINQ to XML also supports).

LINQ to XSD [12] has a variety of techniques for representing

some structural features of XSD such as sequence groups, type

derivation by inheritance, etc. However, it does not represent the

notion of a particle with range constraints, and it does not

distinguish between the type and the particle hierarchies in XSD.

Type derivation by restriction and the identity constraints are not

represented either because they are based on constraints.

Paper [15] attempts to present the essence of XSD but is not

object-oriented. This approach does not represent particle

structures with general range constraints, type derivation by

restriction in general, or identity constraints.

The .NET Schema Object Model (SOM) is the most accurate and

object-oriented representation of XSD that we know of [14].

Given an XSD schema SOM produces its object-oriented

representation which we use in our approach. However, the

complexity of SOM is prohibitive for typical application

XMLSchemaTypeDerivation

XMLSchemaSimpleTypeDerivation XMLSchemaComplexTypeDerivation

XMLSchemaSimpleTypeRestriction XMLSchemaComplexTypeRestriction

XMLSchemaSimpleTypeExtension XMLSchemaComplexTypeExtension

Figure 5 XSD Type Derivation

8

programmers. Lack of parametric polymorphism in SOM creates

undesirable representation problems which we do not have.

Data Contracts [10] is a system based on SOM, but it has

nontrivial limitations as to what kind of XSD schema features it

can handle. For example, it cannot handle attributes and it can

handle only certain object types whose structure is such that this

system can map them to XSD types.

XML Data Binder [19] also maps XSD schemas into a collection

of classes that could be in Java, C#, C++, and VB, and generates

code for those classes for access and update methods. However, it

will not handle representation of general particle structures and

the XML Schema type hierarchy with type derivations by

restriction and extension. As in most other approaches, XML Data

Binder has no way of representing range of occurrences

constraints of a general form or the identity constraints.

XML Beans [18] seems to have a more elaborate and more

accurate representation of XML Schema in comparison with XML

Data Binder. For example, this applies to representation of XML

Schema groups and XML Schema types. XML Beans also has a

structural representation of the identity constraints, similar to ours.

However, XML Beans will have the same problems as XML Data

Binder in representing the range constraints or type derivation by

restriction in general.

An analysis of the mismatch between XML and object-oriented

languages is presented in [9]. LINQ to XSD in fact follows some

of the representation options from [9]. The main difference

between our work and [9] is that we represent explicitly and

accurately the structural core of XSD, its particle (elements and

groups) and type hierarchies. In addition, at the meta level we

represent content models, type derivations, and the identity

constraints which are missing in most other approaches (SOM is

an exception).

In a separate paper [1] we present the formal rules for mapping

XSD to OO Schemas and the algorithm for mapping instances

accordingly. Neither is available in any of the published work that

we are familiar with.

The only work we know of that goes beyond the limitations of

type systems is [2][3][4]. This research is based on object-oriented

constraint languages such as the Java Modeling Language [8] or

Spec# [13]. It is thus able to represent XSD constraint-related

features such as general range constraints for particles, type

derivation by restriction, semantics of different types of groups

(sequence versus choice), and identity constraints (keys and

referential integrity).

7. Conclusions
As a rule, object-oriented application programmers have very

limited understanding of what XML Schema is all about. The

reason is the complexity of XSD and its mismatch with object-

oriented languages. Our contribution is the design of an object-

oriented interface to the structural core of XSD which has not

been available so far. The presented collection of interfaces

constitutes a library which database designers, object-oriented

application programmers, and users writing queries can

understand and use in developing their applications that manage

data that conforms to XSD.

The XSD core comes with a collection of formal rules based on

type systems for mapping source XSD schemas into object-

oriented schemas along with an algorithm for mapping XML

instances to their object-oriented representation, described in [1].

The XSD core is also a basis for a more general model based on

object-oriented assertion languages that allow representation of

XSD constraints and more general schema integrity constraints

that transactions are required to obey, described in [4].

8. References
[1] S. Alagic and P.A. Bernstein, Mapping XSD to OO schemas,

Proc. of ICOODB, LNCS, 2009.

[2] S. Alagic, M. Royer, and D. Briggs, Verification theories for

XML Schema, Proceedings of BNCOD, LNCS 4042, pp.

262-265, 2006.

[3] S. Alagic, M. Royer, and D. Briggs, Program verification

techniques for XML Schema-based technologies, Proc. of the

ICSOFT Conference, Vol. 2, pp. 86 - 93, 2006.

[4] S. Alagic, M. Royer, and D. Briggs, Verification technology

for Object-oriented/XML Transactions, Proc. of ICOODB,

LNCS, 2009.

[5] G. Bierman, E. Meijer, and W. Schulte, The essence of data

access in C/omega, Microsoft Research, 2004.

[6] Document Object Model (DOM),

http://www.w3.org/TR/REC-DOM-Level-1/.

[7] All about JXAP,

http://www.ibm.com/developerworks/java/library/x-jaxp/.

[8] Java Modeling Language,

http://www.eecs.ucf.edu/~leavens/JML/.

[9] R. Lammel and E. Meijer, Revealing the X/O impedance

mismatch, Microsoft Corp., 2007, http://homepages.cwi.nl/

~ralf/xo-impedance-mismatch/paper.pdf.

[10] Microsoft Corp., Using Data Contracts,

http://msdn.microsoft.com/en-us/library/ms733127.aspx.

[11] Microsoft Corp., LINQ to XML,

http://msdn.microsoft.com/en-us/library/bb387098.aspx.

[12] Microsoft Corp., LINQ to XSD Preview Alpha 0.2 Refresh,

http://www.microsoft.com/downloads/details.aspx?FamilyID

=A45F58CD-FCFC-439E-B735-

8182775560AF&displaylang=en.

[13] Microsoft Corp., Spec#,

http://research.microsoft.com/specsharp/.

[14] Microsoft Corp., “XML Schema Object Model (SOM),”

http://msdn2.microsoft.com/en-

us/library/bs8hh90b(vs.71).aspx

[15] J. Simeon and P. Wadler, The Essence of XML, Proc. of

POPL 2003, ACM, pp. 1-13, 2003.

[16] C# , Version 3.0 specification, Microsoft.

[17] LINQ to XSD, Microsoft, 2007,

http://blogs.msdn.com/xmlteam/archive/2006/11/27/typed-

xml-programmer-welcome-to-LINQ.aspx.

[18] XMLBeans, http://xmlbeans.apache.org.

[19] XML Data Binder, http://www.liquid-

technologies.com/XmlStudio/Xml-Data-Binder.aspx.

[20] W3C: XML Schema 1.1, http://www.w3.org/XML/Schema.

