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Abstract— We examine the fundamental properties
that determine the basic performance metrics for op-
portunistic communications. We first consider the dis-
tribution of inter-contact times between mobile devices.
Using a diverse set of measured mobility traces, we find
as an invariant property that there is a characteristic
time, order of half a day, beyond which the distribution
decays exponentially. Up to this value, the distribution
in many cases follows a power law, as shown in recent
work. This power law finding was previously used to
support the hypothesis that inter-contact time has a
power law tail, and that common mobility models are
not adequate. However, we observe that the time scale
of interest for opportunistic forwarding may be of the
same order as the characteristic time, and thus the ex-
ponential tail is important. We further show that al-
ready simple models such as random walk and random
waypoint can exhibit the same dichotomy in the distri-
bution of inter-contact times as in empirical traces. Fi-
nally, we perform an extensive analysis of several prop-
erties of human mobility patterns across several dimen-
sions, and we present empirical evidence that the re-
turn time of a mobile device to its favorite location site
may already explain the observed dichotomy. Our find-
ings suggest that existing results on the performance of
forwarding schemes based on power-law tails might be
overly pessimistic.

Keywords—opportunistic communications, mobile
ad-hoc networking, wireless networking, serendipitous
communications, information dissemination, inter-contact
time distribution, power law

1. INTRODUCTION
Over the past year, empirical studies have provided

evidence suggesting that power laws characterize di-
verse aspects of human mobility patterns, such as inter-
contact times, contact, and pause durations. These
studies are of high practical importance for (a) informed
decisions in protocol design, and (b) realistic mobility
models for protocol performance evaluation.

Specifically, Chaintreau et al [2] were perhaps the first
to report credible empirical evidence suggesting that the
CCDF (complementary cumulative distribution func-
tion) of inter-contact time between human-carried mo-
bile devices follows a power law over a wide range of
values that span the timescales of a few minutes to half
a day. This empirical finding has motivated Chaintreau
et al to pose the hypothesis that inter-contact time has
a CCDF with power law tail. Under this assumption,
they derived some interesting results on feasibility and
performance of opportunistic forwarding algorithms. In
particular, their hypothesis implies that for any for-
warding scheme the mean packet delay is infinite, if the
power-law exponent of the inter-contact time is smaller
than or equal to 1 (the case suggested to hold in prac-

tice by the empirical results so far). These results are in
sharp contrast with previously known findings on simi-
lar packet forwarding algorithms (e.g. Grossglauser and
Tse [7]) which were obtained under a hypothesis of ex-
ponentially decaying CCDF of inter-contact time. Fur-
thermore, the authors argued that the power-law tail is
not supported by common mobility models (e.g. ran-
dom waypoint [9]), thus suggesting a need for new mod-
els.

In this paper, we find that the CCDF of inter-contact
time between mobile devices features a dichotomy de-
scribed as follows. On the one hand, in many cases the
CCDF of inter-contact time follows closely a power-law
decay up to a characteristic time, which confirms earlier
studies. On the other hand, beyond this characteristic
time, we find that the decay is exponential. This ex-
ponential decay appears to be a new finding, which we
validate across a diverse set of mobility traces. The di-
chotomy has important implications on the performance
of opportunistic forwarding algorithms and implies that
recent statements on performance of such algorithms
may be over-pessimistic.

We further provide analytical results showing that
simple mobility models such as simple random walk
on a circuit (one-dimensional version of the Manhat-
tan Street Network model dating from the 80’s [12] and
used recently [6, 1]) and random waypoint [9] on a chain
can exhibit the same qualitative properties observed in
empirical traces. Whilst our results do not suggest that
the considered mobility models are sufficient for realis-
tic simulations, they stress that existing models should
not be discarded on the basis of not supporting the em-
pirically observed dichotomy of inter-contact time.

To understand the origins of the observed dichotomy,
we then examine several properties of device contacts
across various dimensions. We provide empirical evi-
dence suggesting that the return time of a mobile de-
vice to its favorite location site features the same di-
chotomy as the one observed for the inter-contact time
between device pairs. This is an interesting hypothe-
sis as it refers to the return time of a device to a site,
which is a more elementary characterization of human
mobility than that of the inter-contact times. Also, it
is a particularly important metric for cases where some
devices have fixed locations (e.g. throwboxes [19]). It
is also noteworthy that we established the same qual-
itative equivalence between return time to a site and
inter-contact time for our simple random walk model.
Further, our empirical analysis suggests that mobile de-
vices are typically in contact in a few sites which are
specific to the given pair of devices. Combining the
latter with the observed dichotomy of the return time
to a site may already explain the inter-contact time di-
chotomy in real settings.

We also investigate different viewpoints on device in-
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Table 1: Traces studied.
Name Technology Duration Devices Contacts Mean Inter-contact Time Year
UCSD WiFi 77 days 275 116,383 24 hours 2002

Vehicular GPS 6 months 196 9,588 20.8 hours 2004
MITcell GSM 16 months 89 1,891,024 3.5 hours 2004
MITbt Bluetooth 16 months 89 114,046 87 hours 2004

Cambridge Bluetooth 11.5 days 36 21,203 14 hours 2005
Infocom Bluetooth 3 days 41 28,216 3.3 hours 2005

ter contacts such as that of a specific device pair and
the random observer viewpoint. The examination of
these viewpoints are of interest in order to evaluate
how representative the CCDF of inter-contact time is,
which following earlier studies, is defined as the CCDF
of inter-contact time samples aggregated over all de-
vice pairs over a measurement period. We argue that
the aggregate CCDF of inter-contact time when used
to derive residual time until a contact, refers to a view-
point that corresponds to a random observer and for
a device pair picked uniformly at random. Finally, we
also report on various breakdowns of the aggregate be-
havior across pairs to investigate time nonstationarity
due to the synchronization of time-of-day human ac-
tivities. Overall our results provide valuable insights
towards the design of opportunistic packet forwarding
schemes. Our contributions can be summarized in the
following points:
• Using 6 distinct traces, we verify the power-law

decay of inter-contact time CCDF between mobile de-
vices. The analyzed datasets range from campus-wide
logs of device associations to existing infrastructure, to
direct contact bluetooth traces and GPS logs of vehicle
movements over several months.
• We demonstrate that beyond a characteristic time

of the order of half a day which is present across all
datasets the CCDF exhibits exponential decay. (Sec-
tion 3.) The observed dichotomy and exponential decay
appear to be new results.
•We provide analytical results that show that already

simple mobility models can exhibit precisely the same
qualitative dichotomy. (Section 4.) These results con-
tradict statements that current mobility models cannot
support power law CCDF of inter-contact time.
• We examine several dimensions of device contacts

in order to better understand the observed dichotomy,
and we study the time nonstationarity due to human
synchrony with the time of day. In particular, we pro-
vide evidence that there exist real-world cases in which
return time of a mobile device to its frequently visited
site follows the same dichotomy as that of the inter-
contact time between devices. (Section 5.)

Implications to a practitioner. Our findings sug-
gest that: (a) The issue of infinite expected packet for-

warding delay of opportunistic forwarding schemes un-
der the power tail assumption [2] does not appear rel-
evant with an exponentially decaying tail of the inter-
contact CCDF. The exponential decay beyond the char-
acteristic time is of relevance as available data traces
suggest that the mean inter-contact time is in many
cases of the same order as the characteristic time. (b)
Widely-used mobility models should not be abandoned
on the claim that they cannot support power-law decay
of the inter-contact CCDF. Finally, (c) our analysis
implies that time nonstationarity and potential envi-
ronmental or other idiosyncracies that may influence
human behavior (e.g., conference sites vs. working en-
vironments) should be taken into account during the
design of future systems as they can significantly affect
its primary performance metrics.

2. DATASETS & DEFINITIONS

2.1 Datasets
To study the properties of contacts between human-

carried mobile devices, we analyze several traces with
diverse characteristics in terms of their duration, wire-
less technology used and environment of collection. Ta-
ble 1 presents a summary of the different datasets that
we used, with aggregate statistics regarding the total
duration of the trace, the number of mobile devices, the
number of contacts and the mean inter-contact time.
We can group the datasets in three distinct types:
• Infrastructure-based traces that reflect connectiv-

ity between existing infrastructure, e.g., Access Points
(APs) or cells, and wireless mobile devices (UCSD [13]
& MITcell [5, 4] datasets in Table 1). These datasets
describe association times of a specific mobile device
with an AP or cell.
• Direct contact traces that record contacts directly

between mobile devices (e.g., imotes) and were collected
by distributing devices to a number of people, usually
students or conference attendees (Cambridge [2, 14], In-
focom [2, 15] & MITbt [5, 4] datasets in Table 1). These
datasets describe start and end contact times for each
pair of mobile devices.
• GPS-based contacts through a private trace col-

lected by tracking the movements of individual people
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Figure 1: Inter-contact time CCDF for the six datasets.

of a large corporation through GPS units. The GPS
units were placed in volunteer’s cars for approximately
four months and overall the trace covers the metropoli-
tan area of a large US city (Vehicular dataset [10] in
Table 1). The dataset logs the latitude and longitude
coordinates of each mobile device every approximately
10 seconds.

Note that the first two types of traces have been used
in previous studies (e.g., [2]), while the latter which fea-
tures exact mobility patterns based on the GPS trackers
is unique to our study. Due to space limitations, we re-
fer the interested reader to the references provided for
a complete description of the experimental setting, the
devices used and the limitations of each trace.

Apart from the datasets specifying direct connectiv-
ity, contacts need to be inferred in the rest of the traces.
For the infrastructure-based traces, we assume that two
devices are in contact if they reside within the range of
the same AP or cell in accordance with previous stud-
ies. For the vehicular trace, we assume that two mobile
devices are in contact if their distance is less than or
equal to a parameter r. For our experiments we chose
r = 500 meters [8], while we experimented with val-
ues from 100m to 1km and found qualitatively similar
results.

Throughout the paper we will use all datasets in-
terchangeably. Unless otherwise specified, our obser-
vations apply to all traces listed in Table 1.

2.2 Definitions
We use the following definitions. An inter-contact

time between two devices is defined as the length of
the time interval over which the two devices are not
in contact and are in contact at the end points of this

interval. For a device pair, we call residual inter-contact
time, the time until the next contact of this device pair
from a given observation time. A return time of a device
to a set of a space is defined as the minimum time until
the device enters the set, from a time instance at which
the device exited the set.

We call CCDF of inter-contact time between two de-
vices, the CCDF obtained for the inter-contact time
sampled per contact of these two devices. We further
call the aggregate CCDF of inter-contact time between
all devices, the CCDF of per contact samples of inter-
contact time over all distinct pairs of devices. For sim-
plicity, we often abuse this notation by omitting explic-
itly to mention the “aggregate” but the meaning should
be clear. Finally, we consider the CCDF of the residual
inter-contact time at a specific observation time, defined
for a value t ≥ 0 as the fraction of device pairs for which
the residual inter-contact time at the observation time
is larger than t.

3. INTER-CONTACT TIME DICHOTOMY
In this section, we examine the empirical distribu-

tions of inter-contact times between mobile devices in-
ferred from the mobility traces introduced in the pre-
vious section. We have carefully examined all datasets
in Table 1 and confirmed the hypothesis that in many
cases the aggregate CCDF of the inter-contact times fol-
lows a power-law up to a characteristic time. We find
this time to be in the order of half a day. Note that this
hypothesis was already tested in previous work [2].

However, we demonstrate here that beyond this char-
acteristic time, the CCDF exhibits an exponential de-
cay. To the best of our knowledge, the hypothesis that
the CCDF of the inter-contact times beyond the char-
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acteristic time exhibits an exponential decay has been
neither posed nor tested before. We then argue that
the exponential decay is an important property since it
bears significant impact on the mean inter-contact time
or more generally on the CCDF of the inter-contact
time observed from an arbitrary point in time. Finally,
we discuss the practical implications of the observed
dichotomy to opportunistic forwarding.

3.1 Power law and exponential decay
In this section, we provide empirical evidence of a di-

chotomy in the CCDF of inter-contact time. Up to a
characteristic time in the order of half a day, the decay
of the CCDF is well approximated as a power law, while
beyond this characteristic time, the decay is exponen-
tial.

Power law. We first revisit the power law hypothesis
in the examined datasets. To this end, we have inferred
the inter-contact time for each of the traces and esti-
mated the aggregate CCDF of inter-contact time be-
tween all devices. Fig. 1 shows the respective aggre-
gate CCDFs of inter-contact times in log-log scale. The
CCDF values follow a straight line over a range of val-
ues spanning the order of a few minutes to half a day,
thus suggesting a power law. These results are in line
with observations of previous studies for datasets MIT,
UCSD, Cambridge and Infocom. A new piece of infor-
mation is however that the same property holds for the
vehicular trace which is significantly different in nature
from the rest of the datasets.

Exponential decay. Carefully examining Fig. 1, we
observe that at roughly around half a day, the CCDF
has a knee beyond which the decay is abruptly faster.
We call this knee the characteristic time. In order to
examine the CCDF of inter-contact time beyond the
characteristic time, we replot the same curves of Fig. 1
in Fig. 2 but this time in lin-log scale. We now turn our
attention to the distributions beyond the characteristic
time. In the lin-log scale (Fig. 2), the CCDF can be
closely upper bounded with a straight line, thus indi-
cating an exponential decay. In some traces, e.g., for
Infocom and Cambridge, we also observe some variabil-
ity in the tail that after close examination we found to
be in line with daily periodicities (24 hours).

3.2 Implications of dichotomy to opportu-
nistic forwarding

How does the observed dichotomy in the distribution
of inter-contact time affect the design of forwarding sche-
mes?
Motivated by the observed power law in the empiri-
cal aggregate CCDF of inter-contact time up to half a
day, Chainterau et al [2] made the hypothesis that the
CCDF of inter-contact time, denoted as F 0(t), between
any two mobile devices is a Pareto distribution, thus

power law over [t0,+∞), for some t0 > 0. Concretely,
for α > 0,

F 0(t) =
(

t0
t

)α

, t ≥ t0. (1)

The authors then argued that the assumption that the
CCDF of inter-contact time has a power tail is in sharp
contrast with prior work on packet forwarding; previous
work would assume exponential tail for the CCDF dis-
tribution, such as for example, that of Grossglauser and
Tse [7] that considers two-hop packet relying schemes.
Under the assumption that inter-contact time between
mobile devices are independent and identically distri-
buted, Chaintreau et al [2] derived interesting results
on the feasibility of two-hop packet relying schemes.
In summary, they show that under the assumptions
therein, there exists a two-hop relying scheme that en-
sures finite mean packet forwarding delay if α > 1 +
1/m, where m is the number of packet replicas made
from a source to distinct relay nodes, and that if α ≤ 1,
for any packet forwarding scheme the mean packet for-
warding delay is infinite. It is precisely the latter case
(α ≤ 1) that was suggested to hold in real-life by the
mobility traces analyzed so far.

However, Fig. 2 highlights that the observed dichotomy
in the CCDF of inter-contact times between mobile de-
vices, rather suggests to take as a hypothesis that the
CCDF of the inter-contact times has exponentially de-
caying tail. This exponential tail entirely eliminates the
issue of infinite packet forwarding delay under the power
tail assumption. Furthermore, in the datasets the mean
inter-contact time is of the same order as the charac-
teristic time, and thus the exponential tail cannot be
ignored by the time separation argument. This is of
particular importance for practical schemes that were
later proposed, such as throwboxes [19]. There, it is
assumed that the mean inter-contact time is finite and
can be estimated. This is a valid hypothesis under the
dichotomy that we observed in the traces is a general
feature, but would not be valid under the hypotheses of
the model in [2].

We further contrast the dichotomy in the distribution
of inter-contact time with the assumed power-law tail by
Chainterau et al [2]. For analyses similar to those in [2],
it is of interest to consider the residual inter-contact
time distribution, i.e. the time until the next contact for
a node pair from an arbitrary point in time. Intuitively,
the residual time reflects how much time a device has to
wait before being able to forward a message to another
specific device. Suppose for a moment that contacts
between a node pair occur at instances of a stationary
point process in time with a finite mean inter-contact
time. It is well known that the CCDF of residual inter-
contact time, F (t), relates to the CCDF of the inter-
contact time sampled at contact instances, F 0(t), as
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Figure 2: Same as in Fig. 1 but plotted in lin-log scale. The results confirm the exponential decay of
the CCDF beyond half a day.

Figure 3: Residual inter-contact time CCDF.

follows:

F (t) = λ

∫ +∞

t

F 0(s)ds (2)

where 1/λ is the mean inter-contact time sampled at
contacts, and is assumed to be finite. Under the as-
sumptions of Chainterau et al, we have that Eq. (1)
holds, and provided that α > 1, it follows

F (t) =
(

t0
t

)α−1

, t ≥ t0,

thus, again a Pareto distribution but with scale param-
eter α − 1. As a result, if we consider the empirical
CCDF of the residual time, we should observe a power
law that would manifest itself as a straight line in a
log-log plot.

In contrast, if the empirical CCDF of inter-contact
time exhibits the aforementioned dichotomy, we should
rather observe that the rate of decrease in a log-log plot
of the residual inter-contact time increases. This would

be the case provided that the exponent is not too large
and would follow from the tail integration in Eq. (2). In
accordance with the previous discussion, Fig. (3) shows
the empirical CCDF of the residual inter-contact time
for three datasets and confirms the increasing rate of
the decay.

4. SIMPLE MOBILITY MODELS CAN SUP-
PORT THE DICHOTOMY

In this section, we show that already simple mobility
models such as simple random walk on one-dimensional
torus feature the dichotomy in the CCDF of inter-contact
time in that it is close to a power law up to a charac-
teristic time and beyond it has exponential decay. This
model can be seen as an one-dimensional version of sim-
ple random walk on a two-dimensional torus, which was
used as early as in [12] (Manhattan Street Network),
and later used in recent studies (e.g. [6]), and can also
be seen as a special case of random walk on torus model
in [1]. We also show that random waypoint on a chain
of discrete sites features the inter-contact CCDF that is
close to a power law over an interval and has exponen-
tially decaying tail.1 These results contradict existing
statements that current mobility models do not feature
power law CCDF of inter-contact time. The results also
show that for some mobility models the dichotomy in
the inter-contact time CCDF is qualitatively precisely
the same as observed in some empirical traces.

4.1 Simple random walk
We consider as mobility domain a circuit of m sites

0, 1, . . . ,m− 1. (See Fig. 4.) A device moves according
to a simple random walk: from a site i, it moves to
either site i − 1 mod m or i + 1 mod m with equal
probability. We denote with Xk(n) the site on which a
1The distribution of the inter-contact time under a ran-
dom waypoint model was analyzed by Sharma and Mazum-
dar [17]. They showed that this distribution is exponentially
bounded on both sides under assumptions that (a) mobility
domain is a sphere and (b) any trip between two successive
waypoints is of a fixed duration.
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Figure 5: CCDF of inter-contact time for simple random walks on a circuit of m sites in log-log and
lin-log scale.
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Figure 4: Circuit of m sites.

device k is at time n ≥ 0.

4.1.1 Return time

We first consider the return time R of a single device
to an arbitrarily fixed site. Without loss of generality,
we may consider only the return time of device 1 to site
0, i.e. given that X1(0) = 0, X1(1) 6= 0,

R = min{n > 0 : X1(n) = 0}.

The result shows that already the return time to a site
features the aforementioned dichotomy. We show later
that inter-contact time CCDF features the same quali-
tative properties.

Theorem 1 (Return Time). For the return time
R of a simple random walk to a fixed site on a circuit
of m sites:

1. Expected return time:

E(R) = m

2. Power-law for infinite circuit:

P(R > n) ∼
√

2
π

1
n1/2

, large n

where for two functions f and g, f(n) ∼ g(n) means
that f(n)/g(n) tends to 1 as n goes to infinity.

3. Exponentially decaying tail:

P(R > n) ∼ ϕ(n)e−βn, large n

where ϕ(n) is a trigonometric polynomial in n and β >
0. We call trigonometric polynomial in n a function
of the form ϕ(n) =

∑K
k=1 [ak cos(nωk) + bk sin(nωk)]

where ak, bk and ωk are constants.

Item 1 shows that average return time to a site is
equal to the time needed to circumvent the circuit. Item 2
shows that for a circle of infinitely many sites, the asymp-
totic of return time CCDF is precisely the power-law
with exponent 1/2. The result suggests that the as-
serted asymptotic may be a good approximation of the
CCDF for large but finite circuit (Fig. 5 shows that
this holds already for as few as 20 sites). It is note-
worthy that the power-law under item 2 holds more
generally for any one-dimensional aperiodic recurrent
random walk with finite variance σ2 < ∞ such that we
have [18, P3, p381]

P(R > n) ∼
√

2
π

σ
1√
n

, large n.

Item 3 shows that for a circle of a finite number of sites,
the CCDF of the return time has exponential decay.

Proof. Item 1. Let ri be the mean hitting time of
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site 0 starting from site i. We have that r0 = 0 and

ri = 1 +
1
2
(ri−1 + ri+1), i = 1, . . . ,m− 1

where addition in indices is modulo m. It can be shown
by induction on i that the solution is

ri = i(m− i), i = 0, 1, . . . ,m− 1.

The assertion of item 1 follows, noting that E(R) =
1 + r1.

Item 2. We consider the z-transform of the return
time R to site 0 started from a site i, i.e.

fi(z) := E(zR|X0 = i), i = 0, 1, . . . ,m− 1.

We have the following system of linear equations

f0(z) = fm(z) = 1

fi(z) = z
1
2

(fi−1(z) + fi+1(z)) , i = 1, . . . ,m− 1.

It suffices to solve the following classical system of linear
equations

f0 = fm(z) = 1 (3)
fi = x (fi−1 + fi+1) , i = 1, . . . ,m− 1. (4)

for a fixed 0 < x ≤ 1/2, which we will encounter again
while considering inter-contact time. The system can
be solved by noting that fi = ui is a particular solution
for some u. Plugging the particular solution in the sys-
tem (4) that u is given as the solution of the quadratic
characteristic equation for the recurrence (4) given by:

u2 − 1
x

u + 1 = 0.

Thus, we have

u1,2 =
1
2x

±

√(
1
2x

)2

− 1.

The solution is

fi = aui
1 + bui

2, i = 1, . . . ,m− 1. (5)

From the boundary conditions (3), we have

1 = a + b

1 = aum
1 + bum

2 .

It follows b = 1− a and

a = 1−um
2

um
1 −um

2

= (x/2)m−(1−
√

1−(x/2)2)m

(1−
√

1+(x/2)2)m−(1−
√

1−(x/2)2)m
.

Finally, from (5), x = z/2 and the last display, we have

f0(z) = 0
fi(z) = a(m,z)(1+

√
1−z2)i+(1−a(m,z))(1−

√
1−z2)i

zi ,
for i = 1, . . . , n− 1

a(m, z) = zm−(1−
√

1−z2)m

(1+
√

1−z2)m−(1−
√

1−z2)m
.

Of our particular interest is f1(z) that can be expressed
as:

f1(z) =
1 + (2a(m, z)− 1)

√
1− z2

z
. (6)

The assertion under item 2 follows by noting that

lim
m→∞

a(m, z) = 0, for 0 < z < 1

and, hence, for an infinite circuit,

f1(z) =
1−

√
1− z2

z
.

Using the Binomial theorem for (1 − z2)1/2 and some
elementary calculus, we have

f1(z) =
∞∑

n=1: n odd

( 1
2

n+1
2

)
(−1)

n−1
2 zn

where ( 1
2

k

)
=
∏k−1

n=0

(
1
2 − n

)
k!

. (7)

It thus follows that

P(R > n) =
∑

m odd,m>n

|
( 1

2
m+1

2

)
| =

∑
k≥dn

2 e+1

|
( 1

2

k

)
|

(8)
Further,

|
( 1

2

k

)
| ∼ 1

2
√

πk3/2
, large k. (9)

To show this, note that Eq. (7) can be rewritten as( 1
2

k

)
=

(−1)k+1

k!2k

k−1∏
n=1

(2n− 1)

and then note
k−1∏
n=1

(2n− 1) =
(2(k − 2) + 1)!
2k−2(k − 2)!

.

Hence, ( 1
2

k

)
=

(−1)k+1

k!2k

(2(k − 2) + 1)!
(k − 2)!

.

The asymptotic (9) then follows by using Stirling’s ap-
proximation.

We now use the fact that if un ∼ 1
nα then

∑∞
m=n um ∼

1
α−1

1
nα−1 n large, for α > 1. The asserted result follows

from (9) and (8).
Item 3: It follows from Lemma 1 (see below) with

the subset ∆ reduced to the element 0.

The following lemma is used in the proof of Theo-
rem 1 and in other places in this paper, so we give it in
a fairly general form.
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Lemma 1 (Return time for finite Markov chain).
Let Xn be an irreducible Markov chain on some finite
state space S and let ∆ be a subset of S (∆ 6= Ø and
∆ 6= S). Let R be the return time to ∆. The stationary
distribution of R is such that

P(R > n) ∼ ϕ(n)e−βn, large n

where ϕ(n) is a trigonometric polynomial and β > 0.

Proof is given in appendix. Note that R is the time
between leaving ∆ and returning to ∆. The hypotheses
imply that the chain is positive recurrent and thus R
is finite. The proof relies on spectral decomposition of
non-negative matrices, using results in [16, 3].

4.1.2 Inter-contact time

We consider mobility of two devices according to two
independent simple random walks on a circuit of m
sites. We assume that m is even. The inter-contact time
between two devices is defined as, given X1(0) = X2(0)
and X1(1) 6= X2(1),

T = min{n > 0 : X1(n) = X2(n)}.

We next examine the CCDF of inter-contact time T .

Theorem 2 (Inter-Contact Time).
Consider two independent simple random walks on a
circuit of m sites, where m is assumed to be even. The
inter-contact time T between the two random walks has
the following properties.

1. Expected inter-contact time:

E(T ) = m− 1

2. Power-law for an infinite circuit:

P(T > n) ∼ 2√
π

1
n1/2

, large n

3. Exponentially decaying tail:

P(T > n) ∼ ϕ(n)e−βn, large n

where ϕ(n) is a trigonometric polynomial in n and β >
0.

With regard to the asserted properties, the inter-contact
time is qualitatively the same as the return time to a
site for a single simple random walk on a circuit con-
sidered in Theorem 1. In particular, item 2 asserts the
same asymptotic CCDF as for the return time in Theo-
rem 1 except only for different multiplicative constant.
Similarly, item 3 is the same property as holding for the
return time in Theorem 1.

Proof. We prove by reduction to considering re-
turn time to a site for a single simple random walk as
described next. The two independent random walks

m

- m

0

(-m/2,m/2) m/20

Figure 6: Reduction to return time of an one-
dimensional simple random walk.

amount to a random walk on a two-dimensional lattice,
with transition probabilities

P(i,j)((X1(1), X2(1)) = (i± 1, j ± 1)) =
1
4
.

Without loss of generality, we assume (X1(0), X2(0)) =
(0, 0) and (X1(1), X2(1)) = (1,−1). The inter-contact
time is the hitting time plus 1 of the two-dimensional
random walk (X1, X2) with the hitting set {i · m +
j, i, j = . . . ,−1, 0, 1, . . .}, starting from the point (1,−1).
This is equivalent to considering hitting time of the
boundaries (0, i) and (m/2, i), i = . . . ,−1, 0, 1, . . ., for
a simple two-dimensional random walk started at the
point (0,1). See Fig. 6 for an illustration. This hitting
time can be represented as

T = 1 +
H∑

i=1

Vi (10)

where H is the number of transitions along the x axis
until hitting of the boundaries and Vi is the number of
transitions along the vertical axis between the (i− 1)st
and ith horizontal transition. Note that H is return
time to site 0 of a simple random walk on a circuit
of m/2 sites started at site 1. We have that H and
(V1, V2, . . . , VH) are independent and that for any given
H, (V1, V2, . . . , VH) is a sequence of independent and
identically distributed random variables with distribu-
tion

P(Vi = k) =
1
2k

, k = 1, 2, . . . .

Item 1: From (10) and noted independency proper-
ties, we can use Wald’s lemma to assert

E(T ) = 1 + E(H)E(V1).

The random variable H is the return time for simple
random walk on a circuit of m/2 sites, so E(H) = m/2−
1. Note also that E(V1) = 2. It follows

E(T ) = m− 1.
Item 2. We consider the z-transform of the inter-

contact time T . We have

E(zT ) = zgH

(
z

2− z

)
(11)
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Figure 7: Inter-contact time CCDF for random waypoint on a chain of m = 1000 sites on log-log and
lin-log scale.

where gH(·) is the z-transform of the random variable
H. To see this, first note

E(zVi) =
z

2− z
.

The asserted identity Eq. (11) is direct by following
simple calculus

E(zT ) = zE

(
H∏

i=1

zVi

)

= zE
(
E(zV1)H

)
= zgH

(
z

2− z

)
where gH(z) := E(zH).

Now, in Eq. (6), we already derived the z-transform
of the return time to site 0 for simple random walk on a
circuit of m sites. From Eq. (11) and Eq. (6), we obtain

E(zT ) = 2− z + 2 (2b(m/2, z)− 1)
√

1− z (12)

with

b(n, z) =
zn − (2− z − 2

√
1− z)n

(2− z + 2
√

1− z)n − (2− z − 2
√

1− z)n
.

The assertion under item 2 now follows from (12) by
mimicking the proof of Theorem 1.

Item 3. This follows from Lemma 1 with Markov
chain X(n) = (X1(n), X2(n)), S the set of reachable
states, and subset ∆ = {(i, i), i = 0, ...,m− 1}.

4.2 Random walk on a 2-dim torus
Similarly one may consider mobility of a device de-

fined as a random walk on a two-dimensional torus of
m and k sites in the respective two dimensions. One
may extend the one-dimensional mobility of a device
to two dimensions by assuming that device mobility in
each of the dimensions is a simple random walk and the
two random walks are independent. This model resem-
bles the well known Manhattan-grid model [12]. From
Lemma 1, we know that also for this model, the CCDF
of inter-contact times between two devices has expo-
nential tail. A detailed analysis of the CCDF of inter-
contact time is beyond the scope of this paper. Such

an analysis may follow the same steps as in this sec-
tion, but for the difference random walk describing the
difference between coordinates of the two independent
random walkers. It is not clear that the same dichotomy
would hold. For example, we know from [18, E1, p167]
that the CCDF of the return time to a site for a simple
random walk in two dimensions is π/ log(n), for large n.
The interested reader may refer to [11] for simulation
estimates of the inter-contact time in two dimensions.

4.3 Random waypoint on a chain
We consider random waypoint on a chain of m sites.

This is a discrete time, discrete space version of well
known random waypoint [9]. Each device is assumed
to move stochastically independently. A movement of a
device is specified by its current site and next waypoint
site. The device moves to its next waypoint site by one
site per time instant. When it reaches the next way-
point, it updates the next waypoint to a sample drawn
uniformly at random on the set of sites constituting the
chain and the movement continues as described. Two
devices are assumed to be in contact at a time t, if at
this time they reside in the same site. We analyze this
model by simulations. In Fig. 7, we show the empiri-
cal estimate of the CCDF of inter-contact time, both in
log-log and lin-log scale. The results demonstrate that
random waypoint can feature a power law like decay of
the CCDF over an interval that covers the mean inter-
contact time. We also observe the presence of short
and long inter-contact times. Fig. 8 suggests that long
inter-contact times occur due to the assumptions that
two devices are in contact only if in the same site.

5. SPATIO-TEMPORAL BREAKDOWN
Here, we breakdown device contacts along several di-

mensions. Our goal is to better understand individual
elements that contribute to the aggregate measures re-
ported in preceding sections. Note that our findings
thus far have been obtained by aggregating over indi-
vidual device pairs and also time.

First, we breakdown device inter contacts by analyz-
ing return times of individual mobile devices to their re-

9



Figure 8: Mobile positions moving according to
random waypoint on a chain of m = 1000 sites.
The thick trajectory corresponds to a long inter-
contact time.

spective most frequently visited sites. A site here refers
to a location region such as a circular area for the ve-
hicular data or an AP/cell for UCSD/MIT data. Our
analysis suggests that return times exhibit the same di-
chotomy in the distribution as the one found for the
inter-contact times between device pairs. We then pose
and confirm the hypothesis that devices are in contact
at a small set of distinct sites. These two findings sug-
gest that the dichotomy in the distribution of the return
time may already explain the observed dichotomy in the
distribution of inter-contact time between devices.

Second, we discuss how the aggregate CCDF of inter-
contact time between devices as obtained from aggre-
gate samples of inter-contact time over all device pairs
over a measurement period relates to the CCDF of inter-
contact time for individual device pairs. Further, we ask
the question what this aggregate CCDF yields when
used to characterize the inter-contact time between de-
vices observed from an arbitrary point in time.

Third, we examine the extent of time nonstationarity
in device inter contacts and non surprisingly confirm
the presence of strong time of day dependencies.

5.1 Return versus inter-contact time
Our evaluation in the previous sections reveals a char-

acteristic time in the order of half a day, which could be
attributed to the daily periodicity of human behavior.
Our goal here is to capture features of human mobility
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Figure 9: Return time exhibits the same di-
chotomy as the inter-contact time (in log-log and
lin-log scale).

that could play a role in the observed dichotomy and in
the particular decay of the inter-contact time distribu-
tion within the two timescales.

To this end, we examine the return time of a device
to a particular location or site. Note that the return
time characterizes mobility of a single human and thus
may be regarded as a more elementary characterization
of human mobility than inter-contact time. Having es-
tablished in the previous section that for simple mobil-
ity models (e.g., independent random walks on a finite
circuit) the CCDF of inter-contact time between two
random walkers and the CCDF of the return time to a
specific site for a single random walker feature precisely
the same dichotomy, we now examine whether this ob-
servation holds in real mobility cases.

In a hypothetical scenario where two mobile devices
would almost always meet at a particular site, the inter-
contact time between the two devices would be stochas-
tically larger than the return time of any of the two de-
vices to that given site. Supposing further that two de-
vices are synchronized in time, then the return time to
a site would closely characterize the inter-contact time.
In this section, we demonstrate that return times of a
device to a specific site feature the observed dichotomy.

The dichotomy characterizes the return times of in-
dividual devices to their “home” sites. In order to test
the hypothesis of the dichotomy in the CCDF of device
return time to a specific site, we conducted the follow-
ing analysis. For each device, we infer a “home” site
defined as the location region where the device spends
most of its time. A location region is either circular area
of some radius r for the vehicular trace, or an AP/cell
for the UCSD/MIT trace. In Fig. 9, we show the CCDF
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Figure 10: CDF of the number of sites that
cover 90% of contacts (top) and contact dura-
tions (bottom) per device pair.

of the inferred return time of a device to its home site
over all devices. The figure shows remarkable quali-
tative similarity to the corresponding CCDF of device
inter-contact time (Fig. 1). As we argued over the pre-
vious paragraphs, this is an interesting property as the
return time is a more basic characterization of human
mobility than inter-contact time.

We further test the hypothesis that typically two de-
vices meet at a few sites. To that end, we counted
the number of sites per each device pair ranked with
respect to their frequency of contacts. Then for each
device pair, we examined how many sites cover either
90% of their contacts or 90% of their total contact dura-
tion. The two corresponding CDFs are shown in Fig. 10,
where the median number of sites is less than 2 and the
90% quantile is less than 4 sites in all the considered
cases.

The main theme of this paper is around the time
dimension of device mobility. In this paragraph, we
detour slightly to briefly consider the spatial aspect of
the return time to the home site. In Fig. 11, we show
the CCDF of the trip distance incurred on the return
trips to the home site of a device. We present results
only for the vehicular dataset since this is the only trace
with precise location information for each device. The
CCDF is well approximated by a straight line in the
log-log scale over a wide range of distances spanning 40
to 200 kilometers. For smaller distances, the distribu-
tion appears to decay exponentially. While the spatial
aspect of human mobility is itself an interesting topic, it
is beyond the scope of this paper to pursue this further
in more detail.
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Figure 11: Travel distance on a return trip to
device home site in log-log and lin-log scale.

5.2 Contacts across different viewpoints
In this section we consider different viewpoints on

device inter contacts and their interpretations from the
packet forwarding perspective. We address the follow-
ing questions:

(a) Is the aggregate CCDF of inter-contact time, de-
rived from samples aggregated over all device pairs over
a measurement interval, representative of the CCDF of
inter-contact time for a specific pair of devices?

(b) What metric does the aggregate CCDF correspond
to when used to evaluate the delay of an opportunistic
forwarding scheme?

(c) How does the inter-contact time statistic depend on
the time of day?

5.2.1 Aggregate vs per device-pair viewpoint

Previous studies and the analysis in Section 3 con-
sidered the CCDF of inter-contact time obtained from
samples aggregated over all device pairs over a mea-
surement period. We call this the aggregate CCDF. We
examine here how the aggregate CCDF of inter-contact
time relates to the CCDF of inter-contact time for a de-
vice pair. In general, the two are different and the bias
is such that the aggregate CCDF gives more weight to
devices that meet more frequently.

Consider a mobility trace over a measurement inter-
val of duration T and let the time origin 0 be defined as
the beginning of the measurement interval. We denote
with P the set of all distinct device pairs that were in
contact at least twice over the measurement interval.
Let T p

n the time of the nth contact for a device pair
p, with n = 1, 2, . . . and let for this pair, Np(t) be the
number of contacts on [0, t]. The empirical aggregate
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CCDF for a value t ≥ 0 is defined as the fraction of
inter-contact times over all device pairs in P that are
larger than t, i.e.

F̂ 0(t, T ) =
1

N(T )

∑
p∈P

Np(T )−1∑
n=1

1(T p
n+1 − T p

n > t) (13)

where 1(A) is the indicator whether the condition A
holds2 and N(t) =

∑
p∈P Np(t) is the number of con-

tacts over all pairs in P on [0, t]. We rewrite the above
identity as:

F̂ 0(t, T ) =
∑
p∈P

Np(T )− 1
N(T )

F̂ 0
p (t, T ) (14)

where F̂ 0
p (t, T ) is the empirical CCDF of inter-contact

time for a device pair p given by

F̂ 0
p (t, T ) =

1
Np(T )− 1

Np(T )−1∑
n=1

1(T p
n+1 − T p

n > t).

Eq. (14) tells us that the aggregate CCDF is a weighted
sum of the CCDFs over device pairs, with the weight
for a device pair proportional to the number of contacts
observed for this device pair. This is indeed intuitive as
we expect to observe a larger number of inter-contact
samples for pairs of devices that meet more frequently.

For the sake of discussion, suppose for a moment that
contacts between mobile devices occur at instances of
a point process that is assumed to be time stationary
and ergodic, but not necessarily stochastically identical
over pairs of devices. From Eq. (13), it follows that as
21(A) = 1 if A true, else 1(A) = 0.

T tends to be large, F̂ 0(t, T ) converges to

F 0(t) =
∑
p∈P

λp

λ
F 0

p (t) (15)

where 1/λp is the mean of inter-contact times sampled
at contact instances of the device pair p and F 0

p (·) is the
corresponding CCDF, and λ =

∑
p∈P λp is the total

rate of contacts over all device pairs. We note that
the aggregate CCDF, F 0(t), exactly matches each of
the CCDFs F 0

p (t), p ∈ P, only if contacts for distinct
pairs are stochastically identical. The aggregate CCDF
of inter-contact time is equal to the weighted sum of
individual CCDFs given in Eq. (15) with weight for a
device pair p proportional to the rate of contacts λp.

Thec preceding discussion raises the question of how
representative the aggregate CCDF of inter-contact time
is for an arbitrarily chosen device pair. To address this
question, we explore how the aggregate CCDF differs
from the CCDF of a pair of devices in the different
datasets. Fig. 12-top shows the aggregate CCDF of
inter-contact time along with percentiles of the CCDF
over all device-pairs for the UCSD dataset. We observe
that for each given time, more than half of node pairs
have a CCDF of the inter-contact time in a reasonably
narrow neighborhood around the aggregate CCDF. In
Fig. 12-bottom, we show 7 distinct CCDFs of individ-
ual device-pairs, which on the other hand present some
variability that could be hidden at the aggregate view-
point. We have examined the discrepancy of the ag-
gregate CCDF and the arithmetic mean of individual
CCDFs and observed that the former lower bounds the
latter but their difference was not substantially large.

5.2.2 Time-average viewpoint

In performance analyses of forwarding schemes, the
CCDF of residual time until contact between two de-
vices from an observation time is often derived from
the CCDF of inter-contact time sampled at contact
instants of this device pair. The latter is often esti-
mated by the aggregate CCDF of inter-contact time.
We would like to understand what does this residual
time CCDF correspond to when we use the aggregate
CCDF of inter-contact time. We will see that this resid-
ual inter-contact time distribution, in fact, corresponds
to an observation time sampled uniformly at random on
the measurement interval and for a device pair sampled
uniformly at random. Hence, the resulting viewpoint is
that of time averaging and averaging over device pairs.

We revisit the earlier setting and now consider the
fraction of device pairs for which the residual time until
next contact is larger than t ≥ 0 as observed from a
time instant s, i.e.

F̂ (t, s) =
1
|P|

∑
p∈P

1(T p
Np(s)+1 − s > t). (16)
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Figure 13: LEFT: Mean residual time at various times of the day shows nonstationarity effects.
MIDDLE: Residual time CCDF at different times of day. RIGHT: CCDFs of inter-contact times
crossing midnight vs. inter-contact times during the day.

By averaging over the measurement interval, we have

F̂ (t, T ) =
1
T

∫ T

0

F̂ (t, s)ds. (17)

After some straightforward but tedious calculus, it fol-
lows that we can rewrite Eq. (17) as

F̂ (t, T ) =
N(T )
|P|T

∫ +∞

t

F̂ 0(s, T )ds + e(T ) (18)

where e(T ) is a term that captures the boundary effects
and in all regular cases (e.g. stationary ergodic) dimin-
ishes with the length of the measurement interval T , so
we ignore it for the sake of our discussion.

From Eq. (16) and Eq. (18), we note that by using
the aggregate CCDF of inter-contact time to estimate
the CCDF of the residual inter-contact time, this in
fact corresponds to time averaging and averaging over
device pairs. This viewpoint may differ substantially
from the viewpoint at a specific time of day due to time
nonstationarity of device contacts. We explore this non
stationarity in the following section.

5.2.3 Time of day viewpoint

We now confirm from our datasets that device inter
contacts exhibit strong time-of-day nonstationarity. It
is important to note presence of this nonstationarity
as a claim based on the time-average viewpoint may
not hold for the viewpoint of a particular time of day.
Fig. 13 presents three sets of results highlighting the
effects of time nonstationarity.

In Fig. 13-left, we show the mean residual inter-contact
time over all device pairs versus the time for the Info-
com trace. The figure shows strong dependency on the
time of day, with day and night periods resulting in the
mean residual time ranging from about 6 to 17 hours.
This effect is also evident in the aggregate CCDF of the
residual inter-contact time in Fig. (13)-middle, where

we plot the CCDF for three distinct times within the
same day (midday, early evening, after midnight). We
observe a significant variation across the three curves in
accordance with the mean variation (Fig. 13-left). We
further looked at the aggregate CCDF of inter-contact
time conditional on whether inter-contact time cross
over midnight or not for the UCSD trace. Fig. (13)-
right shows the discrepancy of the respective condi-
tional distributions. In summary, the results confirm
the intuition that device contacts would typically ex-
hibit strong time nonstationarity and particular time of
day viewpoints may differ much from the time-average
viewpoint.

We subsequently demonstrate the time of day depen-
dence by examining the contact durations for the ve-
hicular trace. Fig. 14-top shows samples of contact du-
rations per device pair. These samples suggest a di-
chotomy of contact durations consisting of (a) short
contacts in the order of half a minute, and (b) long
contacts in the order of 10 hours. Examining the trace,
we found that the short contacts occur while two vehi-
cles drive by each other, while long contacts take place
for spatially collocated vehicles during working hours.
Fig. 14-bottom further confirms the previous discus-
sion by showing two CDFs of samples of contact du-
rations for device-pairs that initiated contacts within
the hours of 9AM and 4PM. As previously mentioned,
these distributions suggest that long contact durations
occur during working hours while at other times short
contacts may be more frequent.

6. CONCLUDING REMARKS
The dichotomy hypothesis—power law decay of inter-

contact time distribution up to a point and exponential
decay beyond—which we observed to hold across di-
verse mobility traces, implies that existing predictions

13



0 2 4 6 8 10 120

0.2

0.4

0.6

0.8

1

Time (hours)

Co
nta

ct d
ura

tion
 CD

F

Vehicular

Contacts at 9am

Contacts at 4pm
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on the performance of forwarding schemes based on
the power-law tail might be overly pessimistic. The
dichotomy is not at odds with current mobility mod-
els since we show that already simple models support
it. The empirical results suggest the dichotomy to hold
also for inter-contact time between a mobile device and
its frequently visited site, which may inform design of
opportunistic communication systems provisioned with
stationary infrastructure nodes. The diversity of view-
points such as per device pair and at a time of day
may deviate from the average viewpoint derived from
the inter-contact time characterization widely used in
previous studies and also considered in this paper. Fu-
ture work may study further the underlying mobility
patterns to understand better the first principles that
induce the observed aggregate behavior of contact op-
portunities.
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[11] M. Vojnović. On the origins of power laws in
mobility systems. Workshop on Clean-Slate
Network Design, Cambridge, UK, Sept 2006,
http://research.microsoft.com/∼milanv/ ...
powerlaw.pps.

[12] N. F. Maxemchuk. Routing in the Manhattan
Street Network. In IEEE Trans. on Comm.,
volume 35, pages 503–512, 1987.

[13] M. McNett and G. M. Voelker. Access and
mobility of wireless pda users. In Mobile
Computing Communications Review, 2005.

[14] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot,
and A. Chaintreau. CRAWDAD data set
cambridge/haggle (v. 2006-01-31), Jan. 2006.

[15] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot,
and A. Chaintreau. CRAWDAD trace
cambridge/haggle/ imote/infocom (v.
2006-01-31), Jan. 2006.

[16] E. Seneta. Non-Negative Matrices. Wiley and
Sons, 1 ed., 1973.

[17] G. Sharma and R. R. Mazumdar. Delay and
Capacity Trade-off in Wireless Ad Hoc Networks
with Random Waypoint Mobility, 2005. Preprint,

14



School of ECE, Purdue University, 2005.
[18] F. Spitzer. Principles of Random Walk, Graduate

Texts in Mathematics. Springer, 2nd edition, 1964.
[19] W. Zhao, Y. Chen, M. Ammar, M. D. Corner,

B. N. Levine, and E. Zegura. Capacity
Enhancement using Throwboxes in DTNs. In
Proc. IEEE Intl Conf on Mobile Ad hoc and
Sensor Systems (MASS), Oct 2006.

APPENDIX
Proof of Lemma 1
Let ~f(z) be the vector whose sth entry is

fs(z) = E(zR|X0 = s)

and let ps,j be the transition probability from state s to
statej. Mimicking the proof of item 2 of Theorem 1, we
have, using the backward equation of Markov chains:

fs(z) = 1 if s ∈ ∆

fs(z) = z

∑
j∈/∆

ps,jfj(z) +
∑
j∈∆

ps,j


In matrix form, this gives

~f(z) = z
(
Q~f(z) +~b

)
(19)

where ~f(z) is the column vector whose sth entry, s ∈
/∆,is fs(z), Q is the square matrix with entries ps,j ,
s ∈/∆, j ∈/∆, and ~b is the column vector whose sth
entry, s ∈/∆, is bs =

∑
j∈∆ ps,j .

We derive from (19) that for z ∈ (0, ρ), where ρ is the
spectral radius of Q:

~f(z) =
∑
n≥0

zn+1Qn~b

and thus P(R = n|X0 = s) is the sth entry of Qn−1~b.
Let π0 be the row vector whose sth entry, s ∈/∆, is

the stationary probability that the Markov chain is in
state s just after leaving ∆. It follows that

P(R = n) = π0Qn~b

We show later that the spectral radius ρ of Q is > 1,
thus the following manipulations are legitimate:

P(R > n) =
∑
m>n

π0Qm~b = π0Qn(Id−Q)−1~b

Now we study the spectral decomposition of Q. As-
sume temporarily that Q is irreducible (this is not nec-
essarily true, even if the Markov chain Xn is irreducible,
as Q does not include transitions to states in ∆, but we
will relax this assumption later). In this case, the spec-
tral structure of Q follows from the Perron-Frobenius
theorem [3]. There is an integer d (the periodicity of
the underlying graph) such that all eigenvalues have a
modulus < ρ (the spectral radius, here < 1), except for

exactly d eigenvalues, equal to ρum, m = 0, ..., d − 1,
where u is the complex number of modulus equal to 1
u = e

2iπ
d . Further, these latter eigenvalues are simple.

It follows from this and (6) that

P(R > n) ∼
d∑

m=0

cm (ρum)n
, n large (20)

A few manipulations show that this is equivalent to
P(R > n) ∼ ϕ(n)e−βn, where ϕ is the trigonometric
polynomial ϕ(n) =

∑d
m=0 cmumn and β = − log(ρ) >

0.
Now we relax the assumption that Q is irreducible.

From the general structure of non-negative matrices in
[3], Eq. Appendix (4.2), we can relabel the states such
that Q has the form

Q =



P1 0 · · · 0 0 · · · 0
0 P2 · · · 0 0 · · · 0
.
.
.

.

.

.
. . .

.

..
.
..

.

..
0 0 · · · Pk 0 · · · 0

Tk+1,1 Tk+1,2 · · · Tk+1,k Pk+1 · · · 0
...

...
...

...
. . .

...
Tm,1 Tm,2 · · · Tm,k Tm,k+1 · · · Pm


where the letters represent blocks, and the diagonal

blocks Pk are square and irreducible non-negative ma-
trices. Let ρk be the spectral radius of Pk; the hypothe-
sis that the chain Xn is irreducible implies that the min
row sum of Pk, for any k, is less than 1, and the max
is ≤ 1. It follows [16] (2.13 p. 49) that ρk < 1. The
spectral radius of Q is ρ = maxk ρk thus this shows in
passing that ρ < 1. Let also dk be the periodicity of
the graph underlying Pk and uk = e

2iπ
dk . The spectral

decomposition of Q is entirely defined by that of the
blocks Pk, thus:

P(R > n) ∼
∑

k

dk∑
m=0

cm,k (ρkum
k )n

, n large (21)

Further, let K0 = {k : ρk = ρ}. We can simplify (21) by
removing all indices k not in K0. so that all ρk’s other
than ρ disappear. This shows the asserted lemma.
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