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Explicit Maximally Recoverable Codes with
Locality

Parikshit Gopalan Cheng Huang Bob Jenkins Sergey Yekhanin

Abstract—Consider a systematic linear code where some
(local) parity symbols depend on few prescribed symbols,
while other (heavy) parity symbols may depend on all data
symbols. Such codes have been studied recently in the context
of erasure coding for data storage, where the local parities
facilitate fast recovery of any single symbol when it is erased,
while the heavy parities provide tolerance to a large number
of simultaneous erasures.

A code as above is maximally recoverable, if it corrects
all erasure patterns which are information theoretically cor-
rectable given the prescribed dependency relations between
data symbols and parity symbols. In this paper we present
explicit families of maximally recoverable codes with locality.
We also initiate the general study of the trade-off between
maximal recoverability and alphabet size.

I. INTRODUCTION

We say that a certain coordinate of an error-correcting
code has locality r if, when erased, the value at this
coordinate can be recovered by accessing at most r other
coordinates. Recently there have been two lines of work
on codes with locality.

In [10], motivated by applications to distributed data
storage [12], the authors studied systematic linear [n, k]
codes that tolerate up to h + 1 erasures, but also have
locality r for all information coordinates. In the canonical
codes of [10], the locality r divides k and the length is
n = k+k/r+h. Data (information) symbols are partitioned
into k/r groups of size r. For each data group there is a
local parity storing the XOR of respective data symbols. In
addition, there are h heavy parities, each of which could
depend on all k data symbols. In what follows we refer to
codes above as data-local (k, r, h)-codes.

The authors are with Microsoft Corporation, One Microsoft Way, Red-
mond, WA 98052-6399. E-mails: {parik, chengh, bob.jenkins, yekhanin}
@microsoft.com.

This paper was presented in part at the Joint Mathematics Meeting
of the American Mathematical Society, 2013, San-Diego; at the 51sth
Annual Allerton Conference on Communication, Control, and Computing,
(Allerton 2013); at the Algebra, Codes, and Networks Conference (ACN
2014); at the Computability, Complexity and Randomness Conference
(CCR 2014); and at the Second ASE International Conference on Big
Data Science and Computing (2014).

Copyright (c) 2014 IEEE. Personal use of this material is per-
mitted. However, permission to use this material for any other pur-
poses must be obtained from the IEEE by sending a request to pubs-
permissions@ieee.org.

In [4] motivated by applications to data storage on SSDs
the authors studied systematic linear [n, k] codes with two
extra parameters r and h. In codes of [4] there are k data
symbols and h heavy parity symbols. In the case when
r | (k + h) these (k + h) symbols are partitioned into
(k + h)/r groups of size r. For each group there is a
local parity storing the XOR of respective symbols. Thus
n = k + h + (k + h)/r. Unlike the codes of [10], codes
of [4] provide locality for all symbols data or parity. In
what follows we refer to codes above as local (k, r, h)-
codes.

Our descriptions of code families above are not com-
plete. For every parity symbol we specified other symbols
that it depends on, in other words, we have fixed the
topology of the codes. To completely define the codes we
need to specify coefficients in the heavy parity symbols.
Different choices of coefficients could lead to codes with
different erasure correcting capabilities. The best we could
hope for is to have an optimal choice of coefficients which
ensures that our codes can correct all patterns of erasures
that are correctable for some setting of coefficients in heavy
parities. Such codes do exist and are called Maximally
Recoverable (MR) [5]. The existence of those codes is
proved by choosing coefficients randomly. Not only does
this not yield explicit constructions, it only shows the
existence of these codes over fairly large finite fields.
Having small finite fields is an important consideration
in practice, where coefficient sizes of a few bytes are
preferred (see [18, Section 2] for a detailed discussion).

An important problem left open by earlier work has been
to come up with explicit maximally recoverable data-local
and local codes over small finite fields.

There are several other models of codes with locality in
the literature. The ones most closely related to our work
include SD codes [3], [17], locally decodable codes [21],
and regenerating codes [6].

A. Explicit maximally recoverable codes with locality

In this paper we present the first explicit families of
maximally recoverable data-local and local codes for all
values of k, r and h. Prior to our work infinite explicit
families of maximally recoverable local codes were known
only for h = 1 and h = 2 [3], [4]. There have also been



few constructions that involved computer search for coeffi-
cients [4]. It was known that one can construct maximally
recoverable local codes by picking coefficients in heavy
parities at random from a large enough finite field [5].
But for this randomized construction to succeed with any
constant probability, the coefficients must be drawn from
a finite field of size Ω

(
kh−1

)
(see Theorem 29).

Our codes improve upon the earlier results (explicit and
existential) both in concrete settings and asymptotically. To
keep the statements simple, we focus here on the asymp-
totics of our constructions when h = O(1), r = O(1), and
k goes to infinity. We present an explicit construction of
local (k, r, h)-codes over an alphabet of size

q = O
(
kh−1

)
which is at least as good as the randomized construction.
For h > 2r + 1, the alphabet size can be reduced to

q = O
(
kd(h−1)(1−

1
2r )e

)
which beats the randomized construction. We also obtain
further improvements in the special cases of h = 3 and
h = 4.

The only lower bound for the alphabet size known
currently comes from results on the main conjecture for
MDS codes [15] and is Ω(k). Closing the gap between
this lower bound and our upper bounds is an intriguing
open question.

As in the work of [4], [3] we construct our explicit
codes via parity check matrices. As in [4] columns of our
parity check matrices have the shape (αj , α

2
j , . . . , α

2h−1

j ).
The key difference from the work of [4] however is that
we explicitly specify the αjs. A common theme in our
constructions is to reduce the problem of explicitly con-
structing these sets to the classical coding theory problem
of constructing high-rate linear codes with a prescribed
minimum distance d. We present two constructions which
we call the Basic construction and the Product construc-
tion. The Basic construction derives the αjs from high
rate binary linear codes and is simpler to describe. The
Product construction uses linear codes over larger fields.
The alphabet size bounds quoted above are obtained via
the Product construction.

Observe that our upper bound of O(kh−1) meets the
lower bound of Ω(k) when h = 2. Constructions like
that have been previously known [3], and we get similar
parameters. Also, let us remark that when h = 1 one can
have (k, r, h)-local MR codes over a field of size r+1 [4].

B. Maximally recoverability for other topologies

The original definition of maximal recoverability [5]
does not accommodate arbitrary topologies, for instance,
it does not allow for locality within the heavy parities.

In this paper we present a generalized definition. Roughly
speaking, we start from parity check matrices P (repre-
senting topologies) whose entries are F2-affine functions
in variables z1, . . . , zm. An assignment to these variables
from a field Fq of characteristic 2 instantiates P and yields
a parity check matrix and a code over Fq. An instantiation
of a topology is maximally recoverable if the resulting code
corrects every erasure pattern that is correctable by some
other instantiation of the same topology.

Having generalized the definition of maximal recover-
ability, we extend our Basic construction of local (k, r, h)-
codes to obtain explicit MR codes for a broad class of
topologies that in particular includes local codes and data-
local codes.

C. Organization

In Section II we formally define data-local and local
(k, r, h)-codes. We introduce the notion of maximal re-
coverability (restricted to the setting of interest), and show
that maximally recoverable local codes yield maximally
recoverable data-local codes. In Section III we give our two
main code constructions: the Basic construction and the
Product construction. In Section IV we establish a simple
lower bound on the alphabet size of maximally recoverable
local codes. We also present a lower bound due to Kopparty
and Meka [13] on the alphabet size needed for random
codes to be maximally recoverable. In Section V we give a
general definition of maximal recoverability. We extend our
Basic construction of local (k, r, h)-codes to obtain explicit
MR codes for a broad class of topologies. In Section VI
we conclude with open questions.

II. PRELIMINARIES

We use the following notation
• For an integer n, [n] = {1, . . . , n};
• An [n, k] code is a linear code encoding k-

dimensional messages to n-dimensional codewords.
Equivalently, one can think of an [n, k] code as a k-
dimensional subspace of an n-dimensional space over
a finite field;

• An [n, k, d] code is an [n, k] code whose minimal
distance is at least d;

• Let C be an [n, k] code and S ⊆ [n]. Puncturing C in
coordinates in S means restricting C to coordinates in
[n]\S. It yields a [k′, n− |S|] code C ′, where k′ 6 k.

We proceed to formally define the notion of locality.

Definition 1. [10] Let C be a linear [n, k] code. We say
that the i-th coordinate of C has locality r, if there exists a
set S ⊆ [n] \ {i}, |S| 6 r, such that across all codewords
c ∈ C, the value of the coordinate c(i) is determined by
values of coordinates {c(j)}, j ∈ S. Equivalently, the i-th
coordinate has locality r, if the dual code C⊥ contains



a codeword c of Hamming weight at most r + 1, where
coordinate i is in the support of c.

Definition 2. Let C be a linear systematic [n, k] code. We
say that C is a (k, r, h) data-local code if the following
conditions are satisfied:

• r | k and n = k + k/r + h;
• Data symbols are partitioned into k/r groups of

size r. For each such group there is one (local)
parity symbol that stores the XOR of respective data
symbols;

• The remaining h (heavy) parity symbols may depend
on all k data symbols.

In what follows we refer to a group of r data symbols
and their local parity defined above as a local group. Data-
local codes have been studied in [11], [10], [16], [19],
[20], [9]. The importance of this topology was partially
explained in [10, Theorem 9]. There it has been shown
that in case h < r + 1 and r | k, any systematic [n, k]
code that corrects all patterns of (h+1) erasures, provides
locality r for all data symbols, and has the lowest possible
redundancy has to be a data-local (k, r, h)-code. The class
of data local-codes is fairly broad as there is a lot of
flexibility is choosing coefficients in heavy parities. Below
we define data-local codes that maximize reliability.

Definition 3. Let C be a data-local (k, r, h)-code. We say
that C is maximally recoverable if for any set E ⊆ [n],
where E is obtained by picking one coordinate from each
of k/r local groups, puncturing C in coordinates in E
yields a maximum distance separable [k + h, k] code.

A [k + h, k] MDS code obviously corrects all patterns
of h erasures. Therefore a code satisfying Definition 3
corrects all erasure patterns E ⊆ [n] that involve erasing
one coordinate per local group, and h additional coordi-
nates. We now argue that any erasure pattern that is not
dominated by a pattern above has to be uncorrectable.
Thus the codes defined above correct every possible erasure
pattern given their topology, which justifies calling them
Maximally Recoverable codes.

Lemma 4. Let C be an arbitrary data-local (k, r, h)-code.
Let E ⊆ [n] be an erasure pattern. Suppose E affects t
local groups and |E| > t+ h; then E is not correctable.

Proof. Suppose E is correctable. We extend E to a larger
pattern of erasures E′ erasing one arbitrary coordinate in
each of k/r − t local groups that are not affected by E.
Observe that E′ is correctable if E is correctable since
each local group has a local parity. Note that the size of E′

exceeds redundancy of the code C, |E′| > k/r + h. Thus
the dimension of C restricted to coordinates outside of E′

is below k, and there are codewords in C with identical
projections on [n]\E′. Therefore E′ is not correctable.

Observe that the Lemma above would still apply even if
in Definition 3 we allowed local parities to have arbitrary
non-zero coefficients, and not just be simple XORs. We
now proceed to define local codes.

Definition 5. Let C be a linear systematic [n, k] code.
We say that C is a (k, r, h) local code if the following
conditions are satisfied:
• r | (k + h) and n = k + h+ (k + h)/r;
• There are k data symbols and h heavy parity symbols,

where each heavy parity may depend on all data
symbols;

• These k + h symbols are partitioned into (k + h)/r
groups of size r. For each such group there is one
(local) parity symbol that stores the XOR of respective
symbols.

We refer to a group of r symbols and their local parity
as a local group. As above we now introduce local codes
that maximize reliability.

Definition 6. Let C be a local (k, r, h)-code. We say that C
is maximally recoverable if for any set E ⊆ [n], where E is
obtained by picking one coordinate from each of (k+h)/r
local groups, puncturing C in coordinates in E yields a
maximum distance separable [k + h, k] code.

One can use similar arguments as before to show that
these codes correct all erasure patterns that involve erasing
one coordinate per local group, and h additional coordi-
nates and further that any erasure patterns that are not
dominated by such patterns are not correctable by any local
(k, r, h)-code. Maximally Recoverable local (k, r, h)-codes
have been originally introduced in [4] under the name of
partial-MDS codes.

A. Data-local codes from local codes

The next lemma shows how one can derive constructions
of data-local MR codes from constructions of local MR
codes.

Lemma 7. Suppose there exists a local maximally recover-
able (k, r, h)-code C over a finite field F; then there exists
a data-local maximally recoverable (k′, r, h)-code C ′ over
the same field, where k′ 6 k is the largest integer that is
divisible by r.

Proof. Let t = (k + h)/r. Let G1, . . . , Gt ⊆ [n] be the
local groups. ∪iGi = [n]. We refer to data symbols and
heavy parity symbols of C as primary symbols. Altogether
primary symbols form a [k+h, k] MDS code. Note that any
k symbols of an MDS code can be treated as information
symbols. Next we consider two cases:
• r | k. We treat k primary symbols of C that belong

to local groups {Gi}, i 6 k/r as data symbols of C ′.
The code C ′ is obtained form the code C by dropping



local parity symbols from groups Gi for i > k/r.
The code C ′ clearly satisfies definition 2. Observe that
C ′ also satisfies definition 3 as any code that can be
obtained by dropping one coordinate per local group
in C ′ can also be obtained by dropping one coordinate
per local group in C.

• r - k. Let s = bk/rc. We refer to local groups
{Gi}, i 6 s as data groups. We refer to group Gs+1 as
special. We treat k′ primary symbols of C that belong
to data groups {Gi}, i 6 s as data symbols of C ′.
We fix some arbitrary k − k′ primary symbols in the
special group, and refer to them as special symbols.
We denote the collection of special symbols by S.
The code C ′ is obtained from the code C by dropping
all special symbols and t− s local parities in groups
other than data groups. Given an assignment of values
to k′ data symbols of C ′, we determine the values
of heavy parities using the code C assuming that all
special symbols are set to zero.
The code C ′ clearly satisfies definition 2. It also
satisfies definition 3 as any codeword that can be
obtained by dropping one coordinate per local group
in C ′(x′) can also be obtained by dropping one
coordinate per local group in C(x′ ◦ 0k−k

′
) restricted

to [n] \ S. The latter restriction does not affect the
erasure correcting capability of the code as we are
dropping coordinates that are identically zero.

This concludes the proof.

Remark 8. Above we introduced two related classes
of codes, namely, data-local (k, r, h)-codes and local
(k, r, h)-codes. We believe that both of these models are
well-motivated. While local codes are more symmetric,
data-local might be a better option in the settings where
parity locality is not important, like in data center stor-
age [12]. In such settings, one can choose to not cover
heavy parities by a local parity and save on redundancy
(or gain additional reliability while keeping redundancy
intact).

For instance, consider a data-local MR (24, 3, 4)-code
C1 and a local MR (24, 3, 3)-code C2. Both of these
are [36, 24] codes. By Definitions 3, 6 and Lemma 4,
C1 corrects every pattern that is correctable by C2. In
addition to this C1 corrects many more failure patterns. For
instance, every failure pattern that is obtained by erasing
two symbols in four different local groups is correctable
by C1 but not by C2.

B. On the asymptotic analysis of our constructions

Unlike data transmission applications, in data storage
applications one typically does not scale the number of
heavy parities linearly with the number of data fragments
k to ensure the same level of reliability [12], much slower

growth in the number of parities suffices. The underlying
reason for this is that the values of k which are relevant
here are fairly small (of the order of tens, rarely above one
hundred) and the likelihood p of a fragment failure during a
certain window of time is usually substantially smaller than
1/k. Note that since p is an absolute constant dependent
only on the device characteristics, this also implies k is
bounded above by a constant. In appendix A, we attempt
to make rigorous some of such assumptions under which
it suffices for h to be a very slowly growing function of k
to achieve a desired level of reliability.

Thus (with the caveat that explicit bounds are the best
for practice) we feel the asymptotic setting of fixed r and
h and growing k to be a relevant and natural starting point
theoretically. Therefore, for all our constructions we first
bound the field-size as an explicit function of k, r and h,
and then analyze the asymptotic behavior in the regime
where r, h are constants and k goes to infinity.

III. CODE CONSTRUCTIONS

In this section we give our two main constructions
of local codes. We restrict our attention to finite fields
of characteristic two. Let F be such a field. Let S =
{α1, . . . , αn} ⊆ F be a multi-set of n elements. Let
A(S, h) = [agj ] denote the h× n matrix where

agj = α2g−1

j

Let C(S, h) ⊂ Fn be the linear code whose parity check
matrix is A. Equivalently, C(S, h) contains all vectors x =
(x1, . . . , xn) which satisfy the equations

n∑
j=1

α2g−1

j xj = 0 for g = 1, . . . , h. (1)

Let C(α, h) be an [n, k, d] code. It is easy to see that
k > n − h, hence by the Singleton bound, d 6 h + 1.
We are interested in sets {αj} where d = h + 1, so
that the code C(S, h) is maximum distance separable. The
following lemma characterizes such sets.

Definition 9. We say that the multi-set S ⊆ F is t-wise
independent over a field F′ ⊆ F if every T ⊆ S such that
|T | 6 t is linearly independent over F′.

The following lemma is standard.

Lemma 10. The code C(S, h) has distance h + 1 if and
only if the multi-set S is h-wise independent over F2.

Proof. Let x = (x1, . . . , xn) ∈ C(S, h) be a codeword.
The code C(S, h) has distance h+ 1 iff every pattern of h
erasures is correctable. In other words, for any E ⊆ [n], the
values {xj}j∈E can be recovered if we know the values of
all {xj}j∈[n]\E . This requires solving the following system



of equations: ∑
j∈E

α2g−1

j xj = bg, 1 6 g 6 h (2)

which in turn requires inverting the h×h matrix AE which
is the the minor of A obtained by taking the columns in
E. It is easy to see (e.g., [14, Lemma 3.51]) that AE has a
non-zero determinant if and only if the multi-set {αj}j∈E
is linearly independent over F2.

Lemma 10 describes the effect of adding parity check
constraints to n otherwise independent variables. We now
consider the effect of adding such constraints to symbols
that already satisfy some dependencies. We work with
the following setup. The n coordinates of the code are
partitioned into

` =
n

r + 1
=
k + h

r

local groups, with group i containing r + 1 symbols
xi,1, . . . , xi,r+1. Variables in each local group satisfy a
parity check constraint

∑r+1
s=1 xi,s = 0. Thus all code

coordinates have locality r. Let

S = {αi,s}i∈[`],s∈[r+1] ∈ Fn.

We define the code C(S, r, h) by the parity check equations∑̀
i=1

r+1∑
s=1

α2g−1

i,s xi,s = 0 for g ∈ {1, . . . , h}, (3)

r+1∑
s=1

xi,s = 0 for i ∈ {1, . . . , `} (4)

We refer to Equations (3) as global constraints and (4) as
local constraints.

Let e ∈ [r + 1]` be a vector. Let C−e = C−e(S, r, h)
be the code obtained by puncturing C(S, r, h) in posi-
tions {i, e(i)}`i=1. In this notation, Definition 6 says that
C(S, r, h) is a maximally recoverable (k, r, h)-code if C−e
is an MDS code for every e ∈ [r + 1]`. The following
proposition is central to our method:

Proposition 11. The code C(S, r, h) is a maximally recov-
erable (k, r, h)-code iff for every e ∈ [r + 1]`,

T (S, e) = {αi,s + αi,e(i)}i∈[`],s∈[r+1]\{e(i)}

is h-wise independent.

Proof. Note that C−e is a [k+h, k] code. To prove that it is
MDS, we will use the local parity constraints to eliminate
the punctured locations and then use Lemma 10. Firstly,
by renumbering variables (and coefficients {αi,s}) in each
local group, we may assume e(i) = r + 1. By the local
parity check equations,

xi,r+1 =

r∑
s=1

xi,s.

We use these to eliminate xi,r+1 from the global parity
check equations for g ∈ [h] :

0 =
∑̀
i=1

(
r+1∑
s=1

α2g−1

i,s xi,s

)

=
∑̀
i=1

((
r∑

s=1

α2g−1

i,s xi,s

)
+ α2g−1

i,r+1

(
r∑

s=1

xi,s

))

=
∑̀
i=1

(
r∑

s=1

(α2g−1

i,s + α2g−1

i,r+1)xi,s

)

=
∑̀
i=1

(
r∑

s=1

(αi,s + αi,r+1)2
g−1

xi,s

)
.

Let T = {αi,s+αi,r+1}i∈[`],s∈[r]. By Lemma 10, the code
C−e is MDS if and only if T is h-wise independent.

Proposition 11 reduces constructing local MR codes to
obtaining multi-sets S ⊆ F such that all sets T (S, e)
are h-wise independent. In what follows we give two
constructions of such multi-sets.

A. The Basic construction

Lemma 12. Let S ⊆ F, |S| = n be a set that is 2h-
wise independent over a subfield F′. Let r be such that
` = n/(r + 1) is an integer. Then for all e ∈ [r + 1]` the
set T (S, e) is h-wise independent over F′.

Proof. Assume the contrary. To simplify notation, we
relabel variables and assume that e(i) = r + 1 for every
i ∈ [`]. Let D = {ij , sj}dj=1 be a set of d 6 h indices of
T such that

d∑
j=1

(
αij ,sj + αij ,r+1

)
= 0

We can rewrite this as
d∑

j=1

αij ,sj +

d∑
j=1

αij ,r+1 = 0

We claim that this gives a non-trivial relation between the
coefficients {αi,s}. The relation is non-trivial because the
terms in the first summation occur exactly once (whereas
terms in the second summation can occur multiple times
depending on the set D and could cancel).

Observe that the task of constructing n-sized subsets of
F2t that are 2h-wise independent over F2 is equivalent to
the task of constructing [n, n−t, 2h+1] binary linear codes,
as elements of a 2h-wise independent set can be used as
columns of a t×n parity check matrix of such a code, and
vice versa. Therefore any family of binary linear codes can
be used to obtain maximally recoverable local codes via
Lemma 12 and Proposition 11. The next theorem gives



local MR codes that one gets by instantiating the approach
above with columns of the parity check matrix of a binary
BCH code.

Theorem 13. Let positive integers k, r, h be such that r
divides (k + h). Let m be the smallest integer such that

n = k + h+
k + h

r
6 2m − 1.

There exists a maximally recoverable local (k, r, h)-code
over the field F2hm .

Proof. Let S′ = {β1, . . . , βn} be an arbitrary subset of
non-zero elements of F2m . Consider S = {α1, . . . , αn} ⊆
F2mh where for all i ∈ [n], αi = (βi, β

3
i , . . . , β

2h−1
i ) when

we treat F2mh as an h-dimensional linear space over F2m .
It is not hard to see that the set S is 2h-wise independent
over F2. Thus by Lemma 12 and Proposition 11 the code
C(S, r, h) is a maximally recoverable local (k, r, h)-code.

Corollary 14. For constants r and h and for all k such
that r|k + h, there exists a maximally recoverable local
(k, r, h)-code over a field of size O(kh).

B. The Product construction

The Basic construction uses 2h-wise independence of
the set S to ensure h-independence of sets T (S, e). The
Product construction shows that in some cases one can
ensure h-independence of sets T (S, e) more economically.

Definition 15. We say that the set S ⊆ F is t-wise weakly
independent over F2 ⊆ F if no set T ⊆ S where 2 6 |T | 6
t has the sum of its elements equal to zero.

Unlike independent sets, weakly independent sets may
include the zero element.

Recall that our goal is specify the multi-set S = {αi,s}
for i ∈ [`], s ∈ [r + 1] where ` = n/(r + 1). The code
C(S, r, h) is then specified by Equations (3) and (4). We
now define the Product construction.
• Let a | b so that F2 ⊆ F2a ⊆ F2b .
• Let S1 = {ξ1, . . . , ξr+1} ⊆ F2a be h-weakly inde-

pendent over F2 if h is even, and (h + 1)-weakly
independent over F2 if h is odd.

• Let S2 = {λ1, . . . , λ`} ⊆ F2b be h-independent over
the field F2a .

• Let S = S1 × S2 ⊆ F2b , where for i ∈ [`] and s ∈
[r + 1], αi,s = λiξs.

Proposition 16. Let S = S1 × S2 be as described above.
Then for all e ∈ [r + 1]` the set T (S, e) is h-wise
independent over F2.

Proof. Assume there exists e so that T (S, e) is not h-wise
independent. To simplify the notation we relabel variables

and assume that e(i) = r + 1 for every i ∈ [`]. Let D =
{ij , sj}dj=1 be a set of d 6 h indices of T such that

d∑
j=1

(
αij ,sj + αij ,r+1

)
= 0

We can rewrite this as∑
t∈[`]

λt ·
∑

j : ij=t

(
ξt,sj + ξt,r+1

)
= 0.

Observe that after cancelations each non-empty inner sum
above involves at least 2 terms. When h is even it involves
at most h terms; when h is odd it involves at most
h + 1 terms. Therefore each inner sum is non-zero by
the properties of the set S1. Also note that the outer sum
involves at most h terms λt with non-zero coefficients from
F2a and thus is also non-zero by the properties of the set
S2.

We now instantiate the construction with a certain par-
ticular choice of independent sets. Our sets come from
columns of a parity check matrix of an extended BCH
code.

Theorem 17. Let positive integers k, r, h be such that ` =
(k + h)/r is an integer. Let m be the smallest integer
such that r | m and 2m > `. There exists a maximally
recoverable local (k, r, h)-code over the field F2t for

t = r +m

⌈
(h− 1)

(
1− 1

2r

)⌉
. (5)

Proof. Our construction uses a = r and b = t. Let
{ξ1, . . . , ξr} be an arbitrary basis of F2r over F2. We set
ξr+1 = 0 and S1 = {ξ1, . . . , ξr+1}. Clearly, S1 is (h+ 1)-
weakly independent over F2 for all h.

Let {β1, . . . , β`} be an arbitrary subset of F2m . Consider
S2 = {λ1, . . . , λ`} ⊆ F2t where for all i ∈ [`],

λi = (1, βi, β
2
i , . . . , β

h−1
i ) (6)

where we omit every non-zero power βj
i where 2r | j. We

treat F2t as a linear space over F2r . The first coordinate
in (6) is a single value in F2r . There are⌈

(h− 1)

(
1− 1

2r

)⌉
more coordinates, each of which is an (m/r)-dimensional
vector over F2r . As an extension of F2r , F2t has dimension

s = 1 +
m

r

⌈
(h− 1)

(
1− 1

2r

)⌉
.

Hence it has dimension

rs = r +m

⌈
(h− 1)

(
1− 1

2r

)⌉
over F2.



We claim that the set S2 is h-independent over F2r .
Assume the contrary. Then for some non-empty set S ⊆
[`], |S| 6 h for all 0 6 j 6 h−1 whenever 2r - j we have∑

i∈S
γiλ

j
i = 0, (7)

where we assume 00 = 1 and all {γi} ∈ F2r . By stan-
dard properties of Frobenius automorphisms, Equation (7)
implies ∑

i∈S
γiλ

j
i = 0,

for all 0 6 j 6 h − 1 which contradicts the properties of
the Vandermonde determinant.

Hence Propositions 16 and 11 imply that the code
C(S1×S2, r, h) is a maximally recoverable local (k, r, h)-
code with the claimed parameters.

Corollary 18. For constants r and h and for all k such
that r | (k+h), there exists a maximally recoverable local
(k, r, h)-code over a field of size O

(
kd(h−1)(1−

1
2r )e

)
.

Combining Corollary 18 with Lemma 7 we get similar
asymptotic result for data-local codes.

Corollary 19. For constants r and h and for all k such
that r | k, there exists a maximally recoverable data-local
(k, r, h)-code over a field of size O

(
kd(h−1)(1−

1
2r )e

)
.

Example 20. Instantiating Theorem 17 with k = 60,
r = h = 4, we obtain a [80, 60, 7] maximally recoverable
(60, 4, 4) local code over F216 . Prior to our work [4,
Theorem 4.2] a code with such parameters was not known
to exist over any field of size below 280.

C. Further improvements for h = 3 and h = 4

In the proof of Theorem 17 we set S1 to be a basis of F2r

augmented with a zero. After that we could use columns of
a parity check matrix of any linear code of co-dimension
s and distance h+ 1 over F2r to define the set S2 ⊆ F2rs

and obtain a MR local (k, r, h)-code over F2rs . While we
used columns of the parity check matrix of an extended
BCH code, other choices sometimes yield local MR codes
over smaller alphabets. In this section we implement this
to get codes that improve upon the codes of Theorem 17
for h = 3 or 4 and large k. We replace BCH codes in the
construction of Theorem 17 with known constructions of
codes that improve on BCH codes for distance 4 and 5.

Our first construction relies on the following Theorem
due to Dumer [7] that also follows from the Hartmann-
Tzeng bound [15]. See also [22]. Due to the lack of a good
reference pointer we include a new self-contained proof in
Appendix B.

Theorem 21. [7] Let q be prime power and m be an even
integer. There exists a q-ary linear code with parameters
[qm, qm − 3m/2− 1, 4].

Theorem 22. Let positive integers k, r, h = 3 be such that
` = (k + h)/r is an integer. Let m be the smallest even
integer such that ` 6 2rm; then there exists a maximally
recoverable local (k, r, 3)-code over the field F2t for t =
r(3m/2 + 1).

Proof. Let {ξ1, . . . , ξr} be an arbitrary basis of F2r over
F2. We set ξr+1 = 0 and S1 = {ξ1, . . . , ξr+1}. Clearly,
S1 is (h + 1)-weakly independent over F2 for all h. Let
S′2 ⊆ Ft/r

2r be an arbitrary collection of ` columns of the
parity check matrix of the code from Theorem 21 where
q = 2r. S′2 naturally defines a set S2 ⊆ F2t that is 3-
independent over F2r .

We remark that using results in [8] one can get further
small improvements upon the theorem above.

Corollary 23. For any constant r and for all k such that
r | (k + 3), there exists a maximally recoverable local
(k, r, 3)-code over a field of size O

(
k3/2

)
.

This improves on the O(k2) bound implied by Corol-
lary 18. Our second construction relies on the following

Theorem 24. [7, Theorem 6] Let q be an even prime power
and m > 2 be an integer. There exists a q-ary linear code
with parameters [qm−1, qm−1 − 2m− d(m− 1)/3e, 5].

Theorem 25. Let positive integers k, r, h = 4 be such that
` = (k+ h)/r is an integer. Let m be the smallest integer
such that 3 | (m − 1) and ` 6 2r(m−1); then there exists
a maximally recoverable local (k, r, 4)-code over the field
F2t for t = r(2m+ (m− 1)/3).

Proof. As before let {ξ1, . . . , ξr} be an arbitrary basis of
F2r over F2. We set ξr+1 = 0 and S1 = {ξ1, . . . , ξr+1}.
Clearly, S1 is (h+ 1)-weakly independent over F2 for all
h. Let S′2 ⊆ Ft/r

2r be an arbitrary collection of ` columns of
the parity check matrix of the code of Theorem 24, where
we set q = 2r. S′2 naturally defines a set S2 ⊆ F2t that is
4-independent over F2r .

Corollary 26. For any constant r and for all k such that
r | (k + 4), there exists a maximally recoverable local
(k, r, 4)-code over a field of size O

(
k7/3

)
.

This improves on the O(k3) bound of Corollary 18.

Remark 27. Let us stress that code constructions that ex-
hibit asymptotically smaller alphabets are not necessarily
better for all settings of parameters. For instance, if one
instantiates Theorem 25 with k = 60, r = 4, and h = 4
one gets a code over F236 , while Theorem 17 yields a code
over F216 .



IV. LOWER BOUNDS

Identifying the right alphabet size for the maximally
recoverable local codes seems to be a challenging problem.
It is possible that one could improve on the constructions
in this work. Indeed, we do not know if the alphabet size
needs to grow with h. The only lower bound we currently
have comes from results on the main conjecture for MDS
codes and is Ω(k).

Theorem 28. Let h > 2. Let C be a maximally recoverable
data-local (k, r, h)-code (or a maximally recoverable local
(k, r, h)-code) defined over the finite field Fq; then q >
k + 1.

Proof. Consider the code C ′ that is obtained from C by
deleting all local parities. Clearly, C ′ is a [k+ h, k, h+ 1]
MDS code. Consider the h× (k + h) parity check matrix
of the code C ′ with entries in Fq. By [1, Lemma 1.2],
k + h 6 q + h− 1.

Details regarding the recent progress on the main con-
jecture for MDS codes can be found in [1], [2]. In partic-
ular, results there allow one to get small non-asymptotic
improvements upon Theorem 28.

A. Lower bounds for Random codes

One way to construct maximally recoverable local codes
is by picking coefficients in heavy parities at random from
a large enough finite field. In order to compare our con-
structions in Section III with random local codes, we show
that random codes are not maximally recoverable (except
with probability o(1)) unless the size of the finite field from
which the coefficients are drawn exceeds Ω

(
kh−1

)
. This

follows as a corollary of a result saying that a random
[k + h, k]q code is unlikely to be an MDS code unless
q = Ω

(
kh−1

)
. The following theorem is due to Swastik

Kopparty and Raghu Meka.

Theorem 29. [13] Consider a random [k + h, k] linear
code C over a finite field Fq where

q 6

(
bk2 c
h− 1

)
.

Then the probability that C has distance h+ 1 is at most(
1− 1

2heh−1

) k
2

.

Proof. We can assume without loss of generality that C
is systematic and it comprises of k information symbols
and h parity checks which are chosen to be independent
random linear combinations of the information symbols.
Let M be the h × (k + h) parity check matrix of C.
The columns corresponding to parity checks give an h×h
identity matrix while the other k columns m1, . . . ,mk are
drawn from Fh

q uniformly at random.

For S ⊆ [k], let us denote the span of vectors {mi}i∈S
by L(S). The code C is MDS only if every h of the mis
are linearly independent. In particular, this requires that for
all t 6 k,

1) Any h − 1 vectors in {m1, . . . ,mt} are linearly
independent.

2) For all S ⊆ [t], |S| = h − 1 and i ∈ [k] \ [t], mi 6∈
L(S).

In what follows, we assume that condition (1) holds for
a suitable choice of t and argue that condition (2) is very
unlikely to be satisfied. Let t be the largest integer such
that (

t

h− 1

)
6 q.

The bound on q implies that t 6 bk/2c. Note that for all
positive integers x we have(

x+ 1

h− 1

)
/

(
x

h− 1

)
6

(
e(x+ 1)

h− 1

)h−1(
h− 1

x

)h−1

6 (2e)h−1.

Let ε = 1/(2e)h−1. By the inequality above and the
definition of t we have

εq 6

(
t

h− 1

)
6 q. (8)

Let U ⊆ Fh
q denote the union of L(S) over all S ⊆

[t], |S| = h− 1. By inclusion-exclusion we have

|U | >
(

t

h− 1

)
qh−1 −

( t
h−1

)
2

 qh−2

>

(
t

h− 1

)
qh−1

1−

(
t

h−1

)
2q


>

1

2

(
t

h− 1

)
qh−1 (9)

where we used the RHS of (8).
By the discussion above

Pr [C ′ is MDS ] 6
k∏

i=t+1

Pr[mi 6∈ U ]

=

(
qh − |U |
qh

)k−t

6

(
1− 1

2q

(
t

h− 1

))k−t

By (9)

6
(

1− ε

2

)k−t
By (8)

6

(
1− 1

2heh−1

) k
2

Since t 6 k/2.

This concludes the proof.



By the reduction used in the proof of Theorem 28, this
gives a lower bound for maximally recoverable local codes.

Corollary 30. Let positive integers k, r, h be such that
` = (k+h)/r is an integer. Consider a local (k, r, h)-code
C, where the coefficients in the heavy parities are drawn
uniformly at random and independently from a finite field
Fq where

q 6

(
bk2 c
h− 1

)
.

Then the probability that C is maximally recoverable is at
most (

1− 1

2heh−1

) k
2

.

We can interpret Corollary 30 as saying that random
codes cannot offer an asymptotic improvement upon the
construction of Theorem 171. But in the setting of MDS
codes, Reed-Solomon codes give an alphabet size of
O(k + h). Thus this leaves open the intriguing possibility
that there are similar explicit constructions of maximally
recoverable local codes.

V. MAXIMAL RECOVERABILITY FOR GENERAL
TOPOLOGIES

The original definition of maximal recoverability [5]
assumes that the code we are trying to construct has two
kinds of parities: light and heavy. The light parities are
simple XORs and the goal is to pick coefficients for the
heavy parities. This definition has some limitations: for
instance, it does not allow for locality within the heavy
parities. We now present a general definition.

Let z1, . . . , zm be variables over a field of characteristic
two. Consider an (n − k) × n matrix P = {pij} where
each pij ∈ F2[z1, . . . , zm] is an affine function of the zis
over the field F2 :

pij(z1, . . . , zm) = bij0 +

m∑
k=1

bijkzk, bijk ∈ F2.

In what follows we refer to a matrix P as a topology. Fix an
assignment {zi = αi}mi=1 where αi ∈ F ⊇ F2. Viewing the
resulting matrix P (α1, . . . , αm) as a parity check matrix
defines a linear code of length n and dimension (at least)
n − k which we denote by C(α1, . . . , αm). We say that
this code instantiates P. We say that a set S ⊆ [n] of
columns of P is potentially independent if there exists an
assignment {zi = αi}mi=1 where αi ∈ F ⊇ F2 such that
the columns of P (αi, . . . , αm) indexed by S are linearly
independent. Equivalently, one can say that columns in S

1Of course, there is always a possibility that some carefully chosen
random ensemble could yield MR codes over much smaller alphabets.
However we are not aware even of any candidate ensembles like that.

are potentially independent if they are linearly independent
over the field of rational functions F2(z1, . . . , zm).

Definition 31. We say the code C(α1, . . . , αm) instanti-
ating a topology P is maximally recoverable if every set
of columns that is potentially independent in P is linearly
independent in P (α1, . . . , αm).

It is easy to see by standard probabilistic arguments that
for all topologies P maximally recoverable codes exist over
sufficiently large finite fields.

Lemma 32. Let P ∈ (F2[z1, . . . , zm])(n−k)×n be an
arbitrary topology. Let F be a finite field of size more
than (n− k) ·

(
n

6n−k

)
, char F = 2. There exists an MR

instantiation of P over F.

Proof. Observe that any set of more than (n−k) columns
of P is not potentially independent since in that case
the number of vectors exceeds their dimension. Thus the
total number of potentially independent sets is at most(

n
6n−k

)
. For each potentially independent set S there is a

collection RS of |S| rows of P such that the determinant of
the minor indexed by RS and S is a non-zero polynomial
pS ∈ F2[z1, . . . , zm]. Note that

deg pS 6 |S| 6 n− k.

Consider the polynomial p(z1, . . . , zm) =
∏

S pS . Observe
that deg p 6 (n−k) ·

(
n

6n−k

)
. Therefore over any field F

of characteristic 2 such that |F| > (n−k) ·
(

n
6n−k

)
, there

is an assignment {zi = αi}mi=1 such that p(α1, . . . , αm)
is non-zero [14]. Thus for all potentially independent sets
S we have pS(α1, . . . , αm) 6= 0 and thus all potentially
independent sets are in fact linearly independent.

Our goal is to find explicit MR instantiations that min-
imize the field size. Before we proceed we would like to
make two observations.

1) In our Definition 31 above, we have not explicitly
specified which are the data symbols and which are
the parity check symbols. But one can do this from
the topology P alone, independent of the specific
choice of α1, . . . , αm as long as the resulting code is
maximally recoverable. Take a set of indices whose
columns form the largest potentially independent set
and designate these as the parity check symbols.
One can obviously make the choice canonical. The
property of being the largest potentially independent
set ensures that (assuming the MR property) for any
choice of values of data symbols, one can satisfy all
the parity check equations by assigning the parity
checks suitably.

2) The locality of every coordinate is fixed by the
choice of P provided that we consider maximally



recoverable instantiations. Recall that the locality
of i is the smallest weight of a dual codeword in
C(α1, . . . , αm) whose support contains i. Consider
the smallest set S of column indices containing i,
so that the corresponding set of columns of P is not
potentially independent. We claim that the locality
of i is |S| − 1. This holds since any smaller subset
of columns containing i is potentially independent,
and thus linearly independent over F in any MR
instantiation P (α1, . . . , αm). So they cannot support
dual codewords.

We present some examples of maximally recoverable
codes fitting the Definition 31:
• Define the h×n topology Pmds as pmds

ij = {zij}. An
instantiation of Pmds is maximally recoverable iff the
resulting code is an MDS code.

• Assume that (r + 1)|n and divide the n symbols
into groups of size (r + 1). Augment the topology
Pmds above with n/(r + 1) rows by adding the
constraint that the XOR of each group is 0. Call the
resulting topology P loc. MR codes corresponding to
P loc are the same as local MR codes. Such codes are
constructed in Theorems 13 and 17.

We do not know how to explicitly construct MR codes
for an arbitrary topology P. This problem appears to be
very challenging even in narrow special cases. However,
in the following section we show how to generalize our
Basic construction of MR local codes to accommodate a
certain large class of topologies that one gets by starting
with a parity check matrix of an arbitrary binary linear
code over and adding few rows of generic constraints.

A. Maximally recoverable extensions of binary linear
codes

Consider an [n, k, d]2 binary linear code C given by a
parity check matrix P over F2. Note that these equations
define a linear code over any field F of characteristic 2.
Assume that the resulting code is capable of correcting a
few erasures with good locality. Our goal is now to add
a specified number h of parity check equations that will
boost the erasure correction. Formally, define the matrix

P+ =

(
P
Pmds

)
. (10)

Recall that Pmds is the h×n matrix where pmds
ij = {zij}.

We refer to instantiations of the topology P+ as extensions
of the code C, and denote them by C+.

We start by identifying when such an extension C+ is
maximally recoverable. An erasure pattern is specified by
a set of unknown variables V corresponding to erased
coordinates. By substituting values for all other variables
in the equations P , we get a system of equations P |V . The

solution space has dimension dim(V ) = |V |−Rank(P |V ).
As long as dim(V ) 6 h, we can hope to solve for all
the unknowns using h additional equations. The code is
maximally recoverable if it is able to recover from all such
erasure patterns. If dim(V ) > h, this erasure pattern is not
correctable with just h additional equations, regardless of
the coefficients.

In an MR code, the distance d+ of C+ will satisfy d+ >
d + h. The inequality might be strict for specific choices
of C, but starting from C = Fn

2 gives an example where
d = 1 and d+ = h+1. Hence one cannot hope for a better
bound for all codes.

We will present a generic construction where by increas-
ing the field size, one can increase the number of erasure
patterns that are corrected. By choosing a sufficiently large
field, we can in fact get a maximally recoverable code.

Let S = {α1, · · · , αn} where the αis are chosen from
some extension field F over F2. We define the linear code
C+ over the field F by adding the parity check equations

n∑
i=1

α2g−1

i xi = 0 for g ∈ {1, . . . , h} (11)

in addition to the parity checks given by P . We refer
to these as the global parity checks (although the parity
checks in P need not be local).

The following is our main result.

Theorem 33. If the set S is chosen to be `-wise indepen-
dent over F2, then the code C+ can correct any erasure
pattern V where |V | 6 ` and dim(V ) 6 h.

Proof. Assume that dim(V ) = f 6 h. We can fix a basis
of f variables in V which we denote x1, . . . , xf . Relabel
the remaining variables as y1, . . . , yt where t 6 ` − f .
Using the equations in P , the yjs can be expressed as F2

linear combinations of x1, . . . , xf and a constant term from
F. Let Sj ⊆ [t] be the set of variables that are required to
express yj , so that

yj =
∑
i∈Sj

xi + cj cj ∈ F (12)

Note that Sj could be empty if yj is fixed by the equations
in P .

We use these to eliminate the ys from the global
parity checks. Rename the coefficients assigned by S to
x1, . . . , xf as α1, . . . , αf and to y1, . . . , yt by α′1, . . . , α′t.
Substituting the values for known variables in the global
parity checks gives equations of the form

f∑
i=1

α2g−1

i xi +

t∑
j=1

α′
2g−1

j yj = c′g (13)



Using Equations (12) to eliminate the yjs, we get

f∑
i=1

α2g−1

i xi +

t∑
j=1

α′
2g−1

j

cj +
∑
i∈Sj

xi

 = c′g

f∑
i=1

xi

α2g−1

i +
∑

j:i∈Sj

α′
2g−1

j

 = c′′g

f∑
i=1

xi

αi +
∑

j:i∈Sj

α′j

2g−1

= c′′g

Now applying Lemma 10, this system of equations is
invertible iff the set {βi = αi+

∑
j:i∈Sj

α′j}fi=1 is linearly
independent over F2. But note that for any non-empty T ⊆
[f ] we have

∑
i∈T

βi =
∑
i∈T

αi +
∑

j:i∈Sj

α′j

 =
∑
i∈T

αi +
∑
j∈T ′

α′j

where T ′ ⊆ [t]. Note that T ′ could be the empty set, and
its size is at most |t| 6 ` − f . Thus we get a non-empty
sum of at most |T |+ |T ′| 6 f+`−f = ` coefficients from
the set S. Assuming that the coefficients in S are `-wise
independent, the sum is non-zero which implies that the
βis are indeed linearly independent over F2.

Corollary 34. If the set S is chosen to be (d+h−1)-wise
independent over F2, then the code C+ instantiating the
topology (10) has distance d+ > d+ h. Hence there exist
codes C+ with distance d+ > d + h over a field F where
|F| = Od,h

(
n(d+h)/2

)
.

Proof. It suffices to show that every erasure pattern V
where |V | 6 d + h − 1 is corrected by C+. Applying
Theorem 33 with ` = d + h − 1, this holds provided
dim(V ) 6 h for all such erasure patterns.
P |V is the restriction of the parity check matrix of C

to the columns corresponding to V . Since C has mini-
mum distance d, every set of d − 1 columns is linearly
independent. Thus Rank(P |V ) > min(|V |, d − 1). Since
dim(V ) = |V | − Rank(P |V ), it follows that

dim(V ) 6

{
0 for |V | 6 d− 1

|V | − (d− 1) for |V | > d.

Hence dim(V ) 6 h as long as |V | 6 d+ h− 1.
For the second part of the claim, we choose αs as

the columns of a parity check matrix of a BCH code of
distance d+ h and length n. This requires 1 + d(d+ h−
1)/2edlog(n)e parity checks. The resulting field size is

21+d(d+h−1)/2edlog(n)e = Od,h

(
n(d+h)/2

)
.

We introduce the parameter `(C, h) that bounds the
cardinality of any set V of unknowns for which the space
of solutions in C is of dimension at most h. Let

`(C, h) = max
V :dim(V )6h

|V |.

The following claim follows from Theorem 33, and by
choosing αs using a suitable BCH code, exactly the way
we do this in the proof of Corollary 34.

Corollary 35. There exist maximally recoverable codes
C+ instantiating the topology (10) over a field F where
|F| = O

(
(2n)(`(C,h)/2)

)
.

Proof. It suffices to choose αs which are `(C, h)-wise
independent. We choose αs as the columns of a parity
check matrix of a BCH code of distance `(C, h) + 1 and
length n. This requires 1 + d(`(C, h) − 1)/2e · dlog(n)e
parity checks. The resulting field size is at most

21+d(`(C,h)−1)/2e·(log(n)+1) = O
(

(2n)`(C,h)/2
)
.

We present an alternate view of `(C, h) that might be
useful. For a codeword c ∈ C, let Supp(c) ⊆ [n] denote
its support. For a set of indices I ⊆ [n], let C(I) = {c ∈
C | Supp(c) ⊆ I}. It is easy to see that C(I) is a subspace
of C. Let dimC(I) denote its dimension. It follows that

`(C, h) = max
I:dimC(I)6h

|I|.

To see why this is true, take I to be the indices corre-
sponding to the variables V . For any setting of the other
variables, the kernel of the resulting system of equations
is exactly C(I). Hence it follows that dim(V ) = dimC(I).

Thus for instance `(C, 0) is size of the largest set of
indices that does not contain the support of a non-zero
codeword. One can view this as a dual notion to the
minimum distance, which is the size of the smallest set
of indices that supports a codeword. Similarly, `(C, h) for
larger h is a dual of the notion of generalized Hamming
weights. The hth generalized Hamming weight is the size
of the smallest set I such that dimC(I) > h, whereas
`(C, h − 1) is the size of the largest set I such that
dimC(I) < h. While these parameters seems fairly natural,
we are unaware of prior work that studies them. For
specific codes C, it might be possible to get good bounds
on them and via Corollary 35, get good constructions of
maximally recoverable codes C+.

VI. OPEN QUESTIONS

We studied the trade-off between maximal recoverability
and alphabet size in codes with locality. Lots of questions
in this area remain open. The main immediate challenge is



to reduce the field in constructions of Theorems 13 and 17
or to prove that such a reduction is not possible.

1) In the asymptotic setting of constant r and h and
growing k, can one get local MR codes over a field of
size O(k)? Or do local MR codes inherently require
a larger field than MDS codes?

2) In the setting of h = O(1), r = Θ(k), and growing
k, can one get a lower bound of ω(k) for the field
size of local MR codes?

Looking more broadly we are interested in explicit
constrictions of maximally recoverable codes (or lower
bounds for the field size of MR codes) in other basic
topologies that generalize local codes. We expect many
such topologies to become practically relevant.

Given that known constructions of maximally recov-
erable codes require fairly large finite fields it is also
interesting to explore codes that provide weaker guarantees
than maximal recoverability, but require smaller field sizes.
One family of such codes has been considered in [17].
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APPENDIX A
RELIABILITY ANALYSIS FOR MDS CODES

In this section, we formalize a set of assumptions that
justify the observation that in data storage applications
one typically does not scale the number of heavy parities
linearly with the number of data fragments k to ensure
the same level of reliability [12]. We make the following
assumptions:

1) There are k disks worth of data that we wish to store
reliably. In practice k is typically of the order of tens
or (at most) hundreds.

2) Each disk has a failure probability p in a certain time
window. For instance, we may take a time window
of a day, and p = 1

1500 .
3) The failure probability p is smaller than 1/k. We

will assume that kp 6 1/2. Note that p is an absolute
constant which depends on the device characteristics.
So this assumption also bounds k by an absolute con-
stant (1/2p). But this is consistent with the numbers
observed in practice.

4) The goal is to achieve at least the same level of
reliability as 3-way replication (similar calculations
work for any c in place of 3).

We will compute the number of heavy parities required
for a [k + h, k, h + 1]q MDS code to achieve the desired
level of reliability. Note that local MR (k, r, h)-codes are
at least as reliable as such [k + h, k]q MDS codes, since
one gets such a code by ignoring the local parities.

Let us first analyze 3-way replication. The failure prob-
ability within a time window which we denote by f(3) can



be bounded as
p3 6 f(3) 6 kp3.

Now consider the [k + h, k]q MDS code where k >
5. For data loss, some h + 1 machines must fail in that
window. Hence we can bound the failure probability which
we denote f(MDS) by

f(MDS) 6

(
k + h

h+ 1

)
ph+1

6

[(
k + h

h+ 1

)
e

]h+1

· ph+1

6 (2kp)h+1.

The latter inequality above follows since when k > 5 the
expression in square brackets is upper bounded by 2k.
Since our goal is to have f(MDS) 6 f(3), it suffices that

(2kp)h+1 6 p3

which (by taking logarithms) is equivalent to requiring

h+ 1 >
3 log(1/p)

log(1/2pk)
= 3

(
1 +

log(2k)

log(1/2pk)

)
(14)

Since by our assumption, 2pk 6 1, it is sufficient to take

h > 2 + 3 log(2k) = 5 + 3 log(k)

Indeed, if we make stronger assumptions like pk � 1, then
the growth as a function of k is even slower than log(k).

We stress that this is a over-simplification that should
not be taken too literally. But it does suggest that for
current values of k and p, scaling h linearly with k is
overly redundant.

APPENDIX B
PROOF OF THEOREM 21

Our goal here is to prove

Theorem 21. [7] Let q be prime power and m be an even
integer. There exists a q-ary linear code with parameters
[qm, qm − 3m

2 − 1, 4].

Proof. Our code is defined by the means of a
(
3m
2 + 1

)
×

qm parity check matrix M. Columns of M correspond
to elements x ∈ Fqm . For all x we have, M(x) =(

1, x, xq
m/2+1

)T
. Observe that each column is indeed

a
(
3m
2 + 1

)
-dimensional vector over Fq as xq

m/2+1 ∈
Fqm/2 . We need to argue that any three distinct columns 1 1 1

x1 x2 x3

xq
m/2+1

1 xq
m/2+1

2 xq
m/2+1

3

 (15)

of M are linearly independent. Assume the contrary.
Suppose there exist α, β, γ ∈ Fq not all zero, such that
αM(x1) + βM(x2) + γM(x3) = 0. Assume γ 6= 0.

We need two observations to get a contradiction. Our first
observation is that x1, x2, and x3 cannot all lie in Fqm/2

(in this case (15) is a Vandermonde matrix). Our second
observation is that the algebraic variety

α + β + γ = 0,
αx1 + βx2 + γx3 = 0,

αxq
m/2+1

1 + βxq
m/2+1

2 + γxq
m/2+1

3 = 0;

defined in F3
qm over x1, x2, x3 is invariant under the affine

transformations L(xi) = Axi +B, applied simultaneously
to all xi, where A 6= 0 and B are arbitrary elements of
Fqm . To see this let us replace each xi in identities above
with L(xi). We obtain

α+ β + γ = 0,
A(αx1 + βx2 + γx3) +
B(α+ β + γ) = 0,

Aqm/2+1(αxq
m/2+1

1 + βxq
m/2+1

2 + γxq
m/2+1

3 ) +

Aqm/2

B(αxq
m/2

1 + βxq
m/2

2 + γxq
m/2

3 ) +

ABqm/2

(αx1 + βx2 + γx3) +

Bqm/2+1(α+ β + γ) = 0.

One can easily see that the new identities hold. (To demon-
strate that the second summand of the last equation above
is zero one should raise the second equation of the previous
collection of identities to the power of qm/2.) Note also
that L is a one-to-one mapping. Now let us choose A and
B in such a way that L(x1) and L(x2) are distinct elements
of Fqm/2 . The second equation above asserts that L(x3) is
also in Fqm/2 . Thus we get a contradiction with our first
observation.
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