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Abstract

We propose a new probabilistic graphical
model that jointly models the difficulties of
questions, the abilities of participants and the
correct answers to questions in aptitude test-
ing and crowdsourcing settings. We devise
an active learning/adaptive testing scheme
based on a greedy minimization of expected
model entropy, which allows a more efficient
resource allocation by dynamically choosing
the next question to be asked based on the
previous responses. We present experimental
results that confirm the ability of our model
to infer the required parameters and demon-
strate that the adaptive testing scheme re-
quires fewer questions to obtain the same ac-
curacy as a static test scenario.

1. Introduction

Collective decision making is a well-studied topic in
social choice, voting and artificial intelligence. It has
long been known that decisions based on aggregating
the opinions of several agents can be of higher quality
than those based on the opinions of single individuals.
The Condorcet Jury Theorem (de Caritat et al., 1785),
dating back to the 18th century, is concerned with a
group of individuals attempting to reach a binary de-
cision by majority vote; it is assumed that one of the
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two outcomes of the vote is “correct”, and that each in-
dividual independently chooses the “correct” response
with probability p. The theorem states that if p > 1

2 ,
then adding more agents increases the probability of
making the correct decision, and the probability that
the collective decision will be “correct” approaches 1
in the limit of infinitely many participating agents.

Recent technological advances make it easier to share
opinions and knowledge, enabling us to harness the
collective intelligence of crowds for solving tasks.
Companies can use crowdsourcing to carry out busi-
ness tasks, using platforms such as Amazon Mechani-
cal Turk. Such services allow us to collect the opinions
of many individuals, but leave open the question of
how to aggregate the collected data to reach decisions.

A key technique for solving tasks using collective
intelligence is to obtain information from multiple
sources and aggregate it into a single complete solu-
tion. Consider a crowd of experts who are assigned
with many similar classification tasks, such as classi-
fying many news articles according to their topic (“pol-
itics”, “business”, “entertainment” etc.). We refer to
each expert as a participant and to each classification
task as a question. Suppose each participant expresses
her opinion regarding the correct answer for each ques-
tion, in the form of a response, chosen by her from the
list of possible answers for that question. Similarly
to Condorcet’s Jury Theorem, we make the simplify-
ing assumption that for each of the questions only one
answer is correct. We call such a domain a multiple
problem domain. Given the responses provided by the
participants regarding the various questions in a mul-
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tiple problem domain, how should we best determine
the correct answer for each of the items? Which ques-
tions are easy and which are hard? How can we find
the most competent participants in the crowd? Which
questions best test the ability of a participant?

Given the correct answers to each of the items, it is
easy to find the most competent participants, or dif-
ferentiate the easy and hard questions — a participant
who has answered almost all the questions correctly is
likely to be more skilled than a participant who had
very few correct responses. Typically, however, the
correct answers are not known in advance — the whole
point of crowdsourcing a classification task is to deter-
mine the correct classifications for the items.

A possible solution to the above problem is to first
evaluate the skill of each expert by asking her to pro-
vide responses to a set of items for which the correct
answer is known (sometimes called a “gold-set”). A
prominent example of this, where all correct answers
are known, is intelligence testing (Anastasi et al.,
1997). Psychologists have studied human intelligence,
and designed IQ tests for evaluating the aptitude of
individuals. These tests have been shown to be predic-
tive of a person’s performance in many domains, such
as academic attainment and job success (Anastasi
et al., 1997). Such tests typically ask participants to
respond to questionnaires composed of many multiple-
choice questions, and allow ranking participants ac-
cording to their individual skill levels after examining
the responses. The properties of responses to IQ tests
have been widely studied by psychometricians, so such
datasets can serve as a testing ground for exploring in-
ference models for multiple problem domains.

Our Contribution: We propose a new family of
graphical models for analyzing responses in multiple
problem domains and evaluate the models on a data
set of completed questionnaires of a standard IQ test.
The proposed framework enables us to jointly infer
the correct answer for each question (when these are
not known in advance), the difficulty levels of the ques-
tions, and the ability of each participant. We show how
the model can: determine a probability distribution
over answers for a given question by aggregating the
responses of participants based on their abilities and
the questions’ difficulties; test the ability levels of par-
ticipants efficiently by finding the best next question
to ask in an adaptive way, depending on the previous
responses; automatically calibrate aptitude tests from
a set of questions and the responses provided by the
participants, determining the relative difficulty levels
of the questions and their ability to discriminate be-
tween participants of similar but uneven skill levels.

2. Related Work

Measuring intelligence is a key topic in psychology.
Psychologists showed that peoples’ performance on
many cognitive tasks is strongly correlated, so a
single statistical factor called “general intelligence”
emerges (Anastasi et al., 1997). A measure for the per-
formance of groups of people in joint tasks, called “col-
lective intelligence”, was investigated (Woolley et al.,
2010). This approach focuses on explicit collabora-
tion and interaction between members of the crowd.
Although in our setting participants do not interact
directly, one can view our model as a method for infer-
ring correct answers to questions given the responses of
a crowd of individuals. The number of correct answers
inferred can serve as a measure of the intelligence of the
crowd. In this sense, our work is somewhat similar to
other approaches which also use aggregated responses
to IQ tests for measuring collective intelligence (Lyle,
2008; Bachrach et al., 2012; Kosinski et al., 2012).

Psychometricians developed a body of theory called
“test theory” which analyzes outcomes of psychologi-
cal testing, such as the ability levels of participants or
the difficulty of questions in a test, trying to improve
reliability in such tests (Anastasi et al., 1997). One
paradigm for designing tests of mental abilities, is the
“item-response theory” (Hambleton et al., 1991) (IRT
for short). IRT has been used to develop high-stakes
adaptive tests such as the Graduate Management Ad-
mission Test (GMAT). IRT is based on the idea that
the probability of a participant providing the correct
response to a question is a function of both a param-
eter of the question and a parameter of the item (for
example, the question’s difficulty and the person’s ap-
titude). When applying aptitude tests, the parameter
of the person is latent (cannot be directly observed),
and only its manifestation, in the form of the partici-
pant’s responses, can be directly observed. Our frame-
work relies on a probabilistic graphical model (Koller
& Friedman, 2009), using themes similar to IRT.

Many papers deal with merging opinions, ranging from
information aggregation in the semantic web (Kasneci
et al., 2010) to prediction markets (Pennock & Sami,
2007). Frameworks such as Probabilistic Relational
Models (Getoor et al., 2007) combine a logical repre-
sentation with probabilistic semantics, and allow in-
ference to aggregate information and opinions. One
basic method for collective decision making is voting.
Voting was studied in social choice theory (Sen, 1986),
which focuses on how participants can manipulate by
lying about their preferences. We assume that the
experts’ responses are their true opinion and focus on
the inference problem. One application of our model is
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aggregating crowdsourced opinions. A machine learn-
ing approach for doing so which does not model task
difficulty was proposed in (Raykar et al., 2010) and a
technique that models task difficulty but uses an EM
approach was proposed in (Whitehill et al., 2009). An-
other method based on graphical models is (Welinder
et al., 2010). In that model questions are endowed
with features, which could represent concepts or top-
ics and participants have different areas of expertise
matching these topics. Our model focuses on a gen-
eral domain in the spirit of test theory and IRT, and
does not rely on specific features. An active learning
approach for labeling data was proposed in (Yan et al.,
2011) and is similar to our adaptive IQ testing tech-
nique. Another approach akin to ours is the TrueSkill
system (Herbrich et al., 2007), which uses a graphi-
cal model to estimate the relative skill levels of people
based on past contests.

3. Joint Probabilistic Model of
Difficulty, Ability, and Response

We present a probabilistic model for analyzing
multiple problem domains, which we refer to as
the Difficulty-Ability-REsponse estimation model, or
DARE for short. The inputs to the model are re-
sponses that participants give to multiple choice ques-
tions. Additional inputs may be ground truth informa-
tion for some or all of the questions. The model falls
into the framework of probabilistic graphical models.
Such models allow structurally describing the genera-
tive process assumed to underlie the observed data in
terms of latent and observed random variables. In the
domain of interest, information such as the correct re-
sponse to a question, the ability of a participant, and
the difficulty of a question are modeled as unobserved
variables whereas the given response to a question by
a user is viewed as an observed variable. The struc-
ture of the model is determined by the conditional in-
dependence assumptions made about the variables in
the model. Pearl (Pearl, 1988) introduced Bayesian
Networks (directed graphical models), which encode
assumptions of conditional independence as a graph
whose vertices represent variables and whose edges
represent dependencies between variables. We use the
more general notion of a factor graph, see e.g. (Koller
& Friedman, 2009), to describe the factorial structure
of the assumed joint probability distribution among
the variables. After defining the structure of the model
as a factor graph and setting the observed variables to
their observed values, approximate message passing al-
gorithms (Koller & Friedman, 2009) can infer marginal
probability distributions of unknown variables of in-
terest such as the correct response to a question, the

ability of a participant, or the difficulty of a question.

3.1. The DARE Model

We model a situation in which a set P of participants
is available to answer a set Q of multiple choice ques-
tions. We assume that for each question q ∈ Q there
are Rq possible answers, only one of which, yq ∈ Rq, is
correct. We model the process by which participants
p ∈ P produce responses rpq ∈ Rq to questions q ∈ Q.
We assume that: a) Every participant has an under-
lying ability ap ∈ R which determines her ability to
determine the correct answer to questions q ∈ Q. b)
Each question q has an inherent difficulty dq ∈ R which
determines how likely it is that participants p ∈ P will
know the correct answer to question q.

We propose a joint probabilistic model whose factor
graph is given in Figure 1: The model has two parts,
one modeling the probability of participant p knowing
the correct answer to question q (left of cpq in Fig-
ure 1), and one relating the true answer yq to question
q to the response rpq given by participant p depending
on them knowing the correct answer as represented by
cpq of the answer (right of cpq in Figure 1). Knowledge
of the correct answer, cpq ∈ {T, F}, is modeled as an
interaction of the ability ap ∈ R of participant p, and
the difficulty dq ∈ R of question q. Specifically, it is
assumed to depend on the difference tpq := ap−dq via:

P (cpq = T |tpq, τq) :=

∫ ∞
−∞

φ(
√
τq(x− tpq))θ(x) dx

= Φ
(√
τqtpq

)
. (1)

Here φ denotes the standard Gaussian density φ(x) :=√
2π
−1

exp(−x2/2) and Φ denotes the (sigmoidal) cu-

mulative Gaussian distribution Φ(t) :=
∫ t

−∞ φ(x) dx;
θ(·) denotes the step function, and the precision τq
determines how discriminative question q is. The in-
tegral representation emphasizes that the probability
can be viewed as emerging from a binary process re-
sulting from evaluating the step function θ on variable
t with added Gaussian noise of variance τ−1.

The response rpq is modeled as a mixture of two distri-
butions. If participant p knows the correct answer to
question q, cpq = T , we constrain the response rpq to
match the correct answer, rpq = yq, otherwise we as-
sume that rpq is sampled uniformly at random from the
available answers, rpq ∼ DiscreteUniform(Rq). Note
how this mixture is expressed as a gate (dashed pair of
boxes in Figure 1), which switches the factor connect-
ing to rpq depending on the state of the variable cpq.
Gates were introduced in (Minka & Winn, 2008) as
a powerful and flexible notation that simplifies factor-
graph representations of mixture models. They can be
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used to represent context-dependent conditional inde-
pendence relations, and are suited for implementations
of approximate message passing inference.

In order to do inference on the model, we need to
define prior distributions for the variables of inter-
est. We assume factorizing Gaussian priors for the
abilities ap ∼ Normal(µp, σ

2
p) and difficulties dq ∼

Normal(µq, σ
2
q ). We choose a Gaussian prior as it lets

us specify a range of plausible values based on two
parameters (mean and variance) per variable, and ad-
mits a relatively simple approximate inference. The
factorization assumption reflects the belief that a pri-
ori knowing the difficulty of one question would not
be informative about the difficulty of another ques-
tion, and similarly for the abilities of participants. We
also assume factorizing discrete uniform priors for the
true answers yq ∼ DiscreteUniform(Rq) and for the
responses rpq ∼ DiscreteUniform(Rq) for participant-
question pairs. Finally, we define factorizing Gamma
priors for the precision parameters τq ∼ Gamma(k, θ).
The Gamma prior is conveniently parameterized by a
shape parameter k and a scale parameter θ, and is the
conjugate prior for the precision parameter τ := σ−2

of the normal distribution if the mean µ is known.
This choice simplifies inference by approximate mes-
sage passing because the posterior also takes the func-
tional form of the Gamma distribution.

Based on the above specification we defined a joint
probability distribution p(ap, dq, tpq, τq, cpq, rpq, yq) for
specific pairs of question q and participant p. Assum-
ing exchangeability of questions q and participants p
we get a model with two plates as depicted in Fig-
ure 1, where one plate runs over participants p ∈ P
and the other over questions q ∈ Q (plates denote a
replication of the fraction of the graphical model they
contain). From a generative point of view, this models
a table with |P | rows (one for each participant p) and
|Q| columns (one for each question q), where entries
are the responses rpq of participants to questions.

3.2. Probabilistic Inference

We show how the model can infer quantities of interest.
Generally, the data is given in the form of two incom-
plete sets: A set of m participant-question-response
triples R := {rp1q1 , . . . , rpmqm} and a set of n ground-
truth question-answer pairs y := {yq1 , . . . , yqn}. One
special case is when all the ground-truth question-
answer pairs are known. This is the traditional test
scenario as used in aptitude tests including school
tests, GMAT, IQ tests, etc. Another special case is
crowdsourcing domains where we may not have any
ground-truth available, but can obtain participant-

Figure 1. Factor graph for the joint difficulty-ability-
response estimation (DARE) model.

question-response triples depending on budget and
time constraints. As shown in Section 4, provid-
ing some ground-truth question-answer pairs (a “gold-
set”), can improve the accuracy of the inferred answers
yq because it can be used to assess the abilities ap of
the participants p more accurately, leading to more
accurate inference on the answers yq. Generally, for
every observed response r∗pq, we set the discrete prior
distribution p(rpq) to a single point distribution con-
centrated on the observed response r∗pq, and similarly
for every known ground-truth question-answer pair y∗q .

Given the data R and y, we wish to infer sev-
eral approximate marginal (posterior) distributions:
the discrete distribution p(yq|R,y) over correct an-
swers yq, which assign a probability πqr ∈ [0, 1] to
each of the possible responses r ∈ Rq; the Gaussian
density p(ap|R,y) over abilities ap of participants p
with means µ̃p and variances σ̃2

p; the Gaussian den-
sity p(dq|R,y) over difficulties dq of questions q with
means µ̃q and variances σ̃2

q ; the Bernoulli distribution
p(cpq|R,y) over correctness cpq of participant p’s re-
sponse to question q given by probabilities πpq; the
discrete distribution p(rpq|R,y) over responses rpq of
participant p to question q, which assign a proba-
bility πpqr ∈ [0, 1] to each of the possible responses
r ∈ Rq; the Gamma distribution p(τq|R,y) over the
precision/discrimination parameter τq, with scale pa-
rameters θq and shape parameters kq.

Inference in the model is done using approximate
message passing (see (Koller & Friedman, 2009)).
We used Infer.NET (Minka et al., 2010), a pack-
age for probabilistic inference. Specifically, we used
the expectation-propagation (EP) algorithm presented
in (Minka, 2001). EP allows us to calculate marginal
distributions of interest on a given factor graph by it-
eratively calculating messages along edges that propa-
gate information across the factor graph. In our case,
EP provides only an approximation to the exact solu-
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tion because a) the underlying factor graph is loopy ,
and b) the messages at the junction between cpq, tpq,
and τq are approximations, and so are the messages go-
ing in and out of the gate connected to cpq. Thus EP
is run iteratively until convergence, so its running time
is linear in the input size (variables and observations).

3.3. Active Learning and Adaptive Testing

Having a joint probabilistic model of the data has a
number of advantages, including the ability to query
different distributions of interest and to handle missing
data in a principled way. In addition, maintaining in-
formation about the uncertainty present in the model
allows us to reason about the impact of future obser-
vations on the model uncertainty. This idea forms the
basis of active learning, a variant of which is known in
the psychometrics literature as adaptive testing.

Often there is a considerable cost associated with ob-
taining additional data points, so one can use the
model of the data to determine which measurements to
take next so as to improve the inferred knowledge ac-
cording to a pre-determined criterion. In the absence
of problem specific information, a reasonable goal is re-
ducing uncertainty in estimates of model parameters
as measured by the entropy of the posterior distribu-
tions, an idea put forward in (MacKay, 1992).

Suppose we have determined a set of model parameters
of interest, denoted here as a vector w. Our goal is to
find a criterion by which to decide which response rpq
to elicit in order to maximally reduce the posterior
entropy S(w) of those parameters defined as:

S(w) =

∫
· · ·
∫
p(w) log

m(w)

p(w)
dw ,

where m(w) is an arbitrary base measure which
does not influence the outcome (see (MacKay, 1992)).
We consider two posterior distributions, pm(w) :=
p(w|R,y) before inclusion of the new data point,
and pm+1(w) := p(w|R,y, rpq) after inclusion of
data point rpq. We then aim at maximizing the en-
tropy reduction ∆S(rpq) := S(pm(w)) − S(pm+1(w))
over the choice of response rpq to elicit. Since
the actual response rpq is unknown, this choice can
only be guided by the expected entropy reduction
Epm(rpq|R,y)[∆S(rpq)] , where the expectation is taken
over the predictions of the model before inclusion of
the new data point, i.e., based on the predictive dis-
tribution pm(rpq|R,y) obtained by message passing.

In its full generality, this active learning scheme can
guide the full observation/measurement process in-
cluding all possible responses rpq and ground truth
answers yq. However, here we focus on the case of

adaptive testing, where all the ground-truth answers
yq are available, and where the goal is to determine
the ability of a participant p as accurately as possi-
ble, using as few questions as possible. In this spe-
cial case, the parameter vector w only includes the
ability ap of participant p. The posterior distribution
pm(ap) before inclusion of the new observation is Nor-
mal, pm(ap) := Normal(ap;µp.m, σ

2
p,m), and so is the

posterior distribution after inclusion, pm+1(ap|rpq) :=
Normal(ap;µp,m+1(rpq), σ2

p,m+1(rpq)). The entropy of
a univariate Gaussian with parameters µ and σ2 is
1
2 ln(2πeσ2), so the entropy reduction ∆S(rpq) is:

∆S(rpq) =
1

2
ln(σ2

p,m/σ
2
p,m+1(rpq))

Thus the response minimizing posterior variance is
preferred. Given participant p, for each possible ques-
tion q the expectation Epm(rpq|R,y)[∆S(rpq)] is calcu-
lated by examining the following quantities for all pos-
sible responses rpq ∈ Rq: a) their probabilities πpq, and
b) the resulting posterior variances σ2

p,m+1(rpq) in the
updated model. From these we compute the expected
entropy reduction for each question q:

1

2

∑
rpq∈R

πpq ln(σ2
p,m/σ

2
p,m+1(rpq))

We then pick the question q∗ that reduces the expected
entropy the most.

4. Empirical Analysis

We empirically tested the DARE model discussed in
Section 3.1 using a dataset of responses to a standard
intelligence test, called Raven’s Standard Progressive
Matrices (SPM) (Raven), which falls within the cat-
egory of multiple choice domains. It consists of sixty
questions, each of which consists of a matrix of shapes
with one element missing and eight possible answers.
Each answer is a possible shape that completes the ma-
trix, but only one answer is correct. A sample item,
similar1 to those in SPM is shown in Figure 2. SPM
is one of the most popular intelligence tests, and was
used both for research and clinical purposes.

The sample consisted of 120 individuals who filled
SPM for its standardization in the British market in
2006 (Raven). The mean number of correct responses,
called “raw score”, was 99.57 (STD=14.16).

4.1. Unobserved Correct Answers

First, we investigate the DARE model’s ability to han-
dle missing correct answers yq. In this case the model

1The SPM test is copyright protected, so we only pro-
vide an example question similar to those in the real test.
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Figure 2. Item similar to those in the SPM test

allows us to compute the probability p(yq|R,y) that a
given answer yq is correct. To minimize the probabil-
ity of error we select the mode of that distribution as
the model’s answer for that question. When provided
with the responses of all 120 participants the DARE
model correctly infers the correct responses for 46 of
the questions. Note, that the number of errors is not
too surprising because some items in the test were very
difficult and few participants answered them correctly.
The highest raw score was fifty so even the top scoring
participant answered ten items incorrectly.

We can calculate a participant’s raw IQ score with re-
spect to the true correct answers y∗q or with respect to
the predicted “correct” answers ŷq, and we refer to the
latter score as the model raw score. In crowdsourcing
situations when the correct answer for each question is
unknown, one can use the model raw scores as an esti-
mate of participants’ abilities. Figure 3 shows a scatter
plot, in which each point represents a participant; the
position on the x-axis represents the participant’s raw
IQ score, and the position along the y-axis their model
raw score. As Figure 3 indicates, there is a very strong
correlation between the true raw IQ scores and model
raw scores (R2 = 0.7243), and the difference between
the two scores is rather small across all participants.

One can think of DARE as an aggregator that re-
ceives the responses of a crowd of participants, and
outputs the inferred answer for each question. Ex-
isting work (Lyle, 2008; Bachrach et al., 2012) tests
simpler aggregators using IQ test data. The former
uses majority voting, and the latter does consider the
ability levels of participants but assumes all items to
be of equal difficulty. Another possible simplifying as-
sumption, not examined in this earlier work, is that all
the participants have equal ability. In contrast, in the
DARE model, the probability of a participant to know
the correct answer depends both on the difficulty dq
of the question and the ability ap of the participant,

Figure 3. Estimates of skill levels for missing information
regarding the correct answers to the questions.

with the above scenarios as special cases.

We refer to the model with different question difficul-
ties as the question model, and the model with different
participant abilities as the participant model. We ex-
amine how such simplifications affect the model’s abil-
ity to infer correct answers as a function of the amount
of available data. Figure 4 shows how well the ques-
tion, participant and DARE models perform in this
regard. For any given crowd size, shown on the x-axis,
we randomly selected 10, 000 subsets of participants
of that size. For each such crowd we inferred the cor-
rect answer ŷq to each question using the model, and
used the number of questions for which the inferred
answer ŷq was equal to the true correct answer y∗q as a
measure of the model’s performance. The y-axis is the
quality of each model, averaged over the 10, 000 sam-
pled crowds. Figure 4 shows the ability of all models
to infer correct answers increases with the amount of
data. It also shows that DARE outperforms the sim-
pler models. Interestingly, only modeling participants
ability of is better than only modeling question diffi-
culty (which is equivalent to majority vote).

Figure 4. Effect of crowd size on correct responses inferred.
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Crowdsourcing Data: To examine the appli-
cability of our model to crowdsourcing, we tested
our model on the TREC 2011 Crowdsourcing Track
dataset (Lease & Kazai, 2011), generated by crowd-
sourced workers which classified search engine re-
sponses for queries (relevant / irrelevant). Each query-
document pair is a “question as workers must deter-
mine if the document is relevant for the query. This
dataset is sparse, as most workers only examined few
“questions, and all “questions have at most 10 answers
in total, and includes ground-truth judgements. We
isolated the 369 “questions with the most answers (8
per “question), and the 84 workers who answered the
most “questions (at least 30 answers each). Our anal-
ysis shows that DARE slightly outperforms majority
voting on this dataset. Majority voting gets 206 ques-
tions correct, while DARE gets 210 correct. We also
tested how well DARE estimate participants skills,
similarly to Figure 3. Although for this crowdsourcing
dataset the resulting scatter plot is quite noisy (r2 of
0.79), it is similar to the one in Figure 3.

4.2. Partial Information on Correct Answers

We now examine situations where participants are first
tested on a “gold-set” of questions for which the cor-
rect answer is known. Consider choosing i questions
and making the correct answer to these questions ob-
servable to the model. This does not reveal the cor-
rect answer to the remaining |Q| − i questions, but
it does allow the model to better estimate the abil-
ity levels of the participants, which in turn allows the
model to better infer the correct answer to these re-
maining items. Figure 5 shows this effect in DARE.
The x-axis represents the number of “revealed” ques-
tions and the y-axis represents the proportion of the
remaining questions for which the model inferred the
right answer. For each number i of “revealed” items,
we sampled 100, 000 crowds of 20 participants and i
revealed questions (uniformly at random), and the lo-
cation on the y-axis is the average proportion of the
remaining questions for which the model inferred the
right answer over this sample. As the figure shows,
having a larger “gold-set” increases the model’s ability
to infer the correct response for the remaining items.

4.3. Adaptive Skill Testing

We now show how DARE can be used for adaptive
skill testing. Given a budget of b questions to ask,
our goal is to infer the participants’ ability levels. We
use DARE to estimate a participant’s raw IQ score
after only observing this participant’s responses to a
set of “asked” questions (revealed responses). In a
static approach, for each budget b we choose a specific

Figure 5. Effect of partial information on correct answers.

question set used for all the participants, and measure
the RMSE in estimated raw IQ across all participants.
To choose the best set of questions of size b for the
static approach, one must enumerate over all possible(|Q|

b

)
question sets of size b, and use the one minimiz-

ing the error. This is intractable when |Q| is large, so
we heuristically choose the question set. We selected
static question set for a given budget b by choosing
questions that equally partition the participant pop-
ulation in terms of the fraction of participants who
solved the question2 For example, with a budget b = 2
we selected a question that roughly two thirds of the
participants solved correctly and one that roughly one
third of the participants solved incorrectly.

We also implemented the adaptive testing scheme of
Section 3.3 and compared it to the baseline static ap-
proach. Under the adaptive approach, the next ques-
tion to ask depends on the participant’s response to
earlier questions, so we reveal the participant’s re-
sponses one at a time. To measure the RMSE for a
given budget b, we simulated the adaptive process for
each of the participants and averaged the errors across
all participants. Figure 6 shows RMSEs for the static
and adaptive approaches for different budget levels. It
shows the adaptive approach has a smaller error in its
inferred ability levels for any given budget. 3

5. Conclusions and Limitations

We presented the DARE model for inferring the cor-
rect answers, difficulty levels of questions and abil-

2The static approach essentially has access to informa-
tion regarding the difficulty of the questions which is not
normally be available. As our analysis shows, our active
approach beats the static approach even when the static
approach can use such information.

3The standard deviation for the RMSEs is 1.07 for the
adaptive scheme and 0.99 for the static scheme.
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Figure 6. Static and adaptive skill testing.

ity levels of participants in multiple problem domains.
Our evaluation of the model shows that joint infer-
ence of these quantities is possible to a high level of
accuracy and that it is indeed possible to grade a test
without knowing the answers. We showed that in our
setting modeling participants’ ability levels is more im-
portant than questions’ difficulty levels, that including
a “gold-set” helps, and that active learning leads to
more efficient testing.

Our approach is subject to several limitations. Our
evaluation used an IQ dataset, whereas crowdsourc-
ing tasks may exhibit different properties, such as a
greater homogeneity in task difficulty levels. Also, we
assume that participants answer to the best of their
ability, but participants may be selfish agents with
varying motives. For a game theoretic treatment of
such issues see (DiPalantino & Vojnovic, 2009; Gao
et al., 2012).

Many questions are open for future research. Are
there better models for aggregating responses, or mod-
els better tailored to other domains? How can one
tractably compute the optimal non-adaptive test for a
given population? Can we use similar models to infer
the ability levels of individuals when only their perfor-
mance within the context of a group is known?
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