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In this chapter, we provide a tutorial on statistical speech recognition. In particular, we establish 
hidden Markov models (HMMs) as a principal modeling tool for characterizing acoustic features 
in speech. The purpose of this chapter is to set up the context in which HMM parameter learning 
and discriminative learning in particular, will be introduced.

2.1 INTRODUCTION
A key to understanding the human speech process is the dynamic characterization of its sequential 
or variable-length pattern. Current state-of-the-art speech recognition systems are mainly based on 
HMMs for acoustic modeling. In general, it is assumed that the speech signal and its features are 
a realization of some semantic or linguist message encoded as a sequence of linguistic symbols. To 
recognize the underlying symbol sequence given a spoken utterance, the speech waveform is fi rst 
converted into a sequence of feature vectors equally spaced in time. Each feature vector is assumed 
to represent the speech waveform over a short duration of 10–30 ms, wherein the speech waveform 
is regarded as a stationary signal. Typical parametric representations include linear prediction coef-
fi cients, perceptual linear prediction, and Mel frequency cepstral coeffi cients, plus their time deriva-
tives. Furthermore, these vectors are usually considered independent observations given a state of 
HMM.

As illustrated in Figure 2.1, the role of speech recognizer is to map a sequence of observation 
vectors into its underlying words. Let the speech signal be represented by a sequence of observation 
vectors X,

X = x1, x2 …, xT

where xt is the speech vector observed at time t. The speech recognition problem can therefore be 
regarded as looking for the most possible word sequence S * given the observation vector sequence 
X, that is,
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 S * = arg max
s

P(s|X)  (2.1)

According to Bayes rule, it is equivalent to solving S * by:

 S * = arg max
s

P(s,X)P(X) = arg max
s

P(X |s)P(s)  (2.2)

where P(s) is prior probability of the word sequence s, which is determined by a language model 
(LM), and P(X|s) is the conditional probability or likelihood of X given s, which is computed from 
the acoustic model (AM) of the speech recognition system.

2.2 LANGUAGE MODELING
As described in the previous section, the a priori probability of the word sequence S is determined 
by the language model. For isolated-word speech recognition where recognition targets are isolated 
words. Given a K-word vocabulary, P(wi) is assigned to 1/K if a uniform distribution of word oc-
currence is assumed, or P(wi) can be determined by counting the occurrence frequency of word wi 
in the language model training text corpus.

In continuous speech recognition, the computation of P(S) is more complicated. Assume that 
the word sequence S has M words, that is,

S = w1, w2 …, wM 

The probability of the word sequence S can be calculated as,

FIGURE 2.1: Illustration of the speech recognition process. The raw waveform of speech is fi rst pa-
rameterized to discrete observation vectors. Then the word string that corresponds to that observation 
sequence is decoded by the recognizer.
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P (S) = P(w1,w2, . . . , wM) = P (w1) ·

M

Õ
m=2

P(wm|w1, . . . ,wm−1)
 

(2.3)

Assuming that the word sequence is produced by a (N - 1)th order Markov model, the computation 
of P(S) can be simplifi ed as

 P(S ) = P (w1)P (w2|w1) . . .P (wN−1|w1, . . . ,wN−2) ·
M

Õ
m=N

P (wm|wm−N+1, . . . ,wm−1) (2.4)

This model is referred to as an N-gram language model.
Many papers have been published on how to reliably estimate an N-gram language model. 

The basic idea is to count the frequency of occurrences of each word in the LM training text corpus, 
given a particular word sequence that precedes the word. To handle possible word sequences that are 
not seen in the training text, a back-off mechanism is normally used to assign lower-bound scores 
to those rarely seen word sequences. In most speech recognition systems, bigram and trigram LMs 
are used.

2.3 ACOUSTIC MODELING AND HMMS

In speech recognition, statistical properties of sound events are described by the acoustic model. 
Correspondingly, the likelihood score p(X|s) in Eq. (2.2) is computed based on the acoustic model. 
In HMM-based speech recognition, it is assumed that the sequence of observed vectors corre-
sponding to each word is generated by a Markov chain. For large-vocabulary automatic speech 
recognition (LVASR), usually an HMM is constructed for each phone, then the HMM of a word 
is constructed by concatenating corresponding phone-specifi c HMMs. We can further concatenate 
HMMs of words to construct the HMM of the whole string that contains multiple words. Then 
p(X|s) is computed through p(X|ls), where ls is the HMM of the strings.

As shown in Figure 2.2, an HMM is a fi nite-state machine that changes state once every 
time frame, and at each time frame t when a state j is entered, an observation vector xt is generated 
from the emitting probability distribution bj (xt). The transition property from state i to state j is 
specifi ed by the transition probability aij . Moreover, two special nonemitting states are usually used 
in an HMM. They include an entry state, which is reached before the speech vector generation pro-
cess begins, and an exit state, which is reached when the generative process terminates. Both states 
are reached only once. Because they do not generate any observation, none of them has an emitting 
probability density.

In the HMM, the transition probability aij is the probability of entering state j given the 
previous state i, that is, aij = Pr(qt = j | qt - 1 = i), where qt is the state index at time t. For an N-state 
HMM, we have,
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 N

å
j=1

aij = 1
 (2.5)

The emitting probability density bj(x) describes the distribution of the observation vectors 
at state j. In discrete HMM (DHMM), emitting probability is represented by a multinomial dis-
tribution, whereas in continuous-density HMM (CDHMM), emitting probability density is often 
represented by a Gaussian mixture density:

 
bj(x) =

M

å
m=1

cj,m N
(
x;mjm,Sjm

)  
(2.6)

where N(x ;mjm,Sjm) =
1

(2p)
D
2 |Sjm|

1
2

e−
1
2 (x−mjm)Tå−1

jm (x−mjm) is a multivariate Gaussian density, D is 

the dimension of the feature vector x, and cjm, mjm, and Sjm are the weight, mean, and covariance 
of the mth Gaussian component of the mixture distribution at state j. Generally speaking, each 
emitting distribution characterizes a sound event, and the distribution must be specifi c enough to 
allow discrimination between different sounds as well as robust enough to account for the variability 
in natural speech.

Given {aij} and bj(x), for i = 1, 2, …, N, j = 1, 2, …, N, the likelihood of an observation se-
quence X is calculated as:

 p(X |l) =å
q

p
(

X,q|l)  (2.7)

where q = q1, q2, …, qT is the HMM state sequence that generates the observation vector sequence 
X = x1, x2, …, xT, and the joint probability of X and the state sequence q given l is a product of the 
transition probabilities and the emitting probabilities

FIGURE 2.2: Illustration of a fi ve-state left-to-right HMM. It has two nonemitting states and three 
emitting states. For each emitting state, the HMM is only allowed to remain at the same state or move 
to the next state.
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p(X, q|l) =

T

Õ
t=1

bsT(xT)asT st+1

 
(2.8)

where qT + 1 is the nonemitting exit state.
In practice, (2.7) can be approximately calculated as joint probability of the observation vec-

tor sequence X with the most possible state sequence, that is,

 p(X |l) ≈ max
q

p(X,q|l) (2.9)

Although it is impractical to evaluate the quantities of (2.7) and (2.9) directly due to the 
huge number of possible state sequences when T is large, effi cient recursive algorithms such as 
forward–backward method and Viterbi decoding method exist for computing them [10, 43].

•  •  •  •
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