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1.1 WHAT IS DISCRIMINATIVE LEARNING?
Discriminative learning is one of two major paradigms in constructing probabilistic pattern classifi -
ers and recognizers, where classifi ers usually deal with nonsequential data (i.e., with fi xed-dimension 
input features) and the classifi cation target is one of a limited set of categories, whereas recognizers 
handle sequential data (i.e., with variable-dimension input features) and the recognition target is an 
open output that can be of variable length. The other major paradigm is generative modeling and 
learning, which establishes and learns a model of the joint probability of the features and the class 
identity. In contrast, discriminative methods either directly model the class posterior probability, or 
learn the parameters of the joint-probability model discriminatively so as to minimize classifi ca-
tion/recognition errors.

The main purpose of this book is to present an extensive account on the basic ideas behind 
the approaches and techniques on discriminative learning, especially those that discriminatively 
learn the parameters of joint-probability models [e.g., hidden Markov models (HMMs)]. In addi-
tion, we also desire to position our treatment of the related algorithms in a wider context of learning 
and building statistical classifi ers/recognizers from a more general context of machine learning. The 
Bayes decision theory serves as the basic formalism of the classifi cation and recognition processes 
for achieving the optimal decision boundaries. Hence, the goal of pattern recognition can be de-
scribed as fi nding the parameters of the classifi ers or recognizers that minimize the error rate by 
using the available training samples. Within the two main paradigms for designing and learning 
statistical classifi ers/recognizers, the generative ones use the joint-probability model to perform the 
decision-making task based on the posterior probability of the class computed by Bayes rule [11, 43, 
57]. The standard approach to learning (i.e., estimating) a generative model is maximum likelihood 
(ML). ML learning is considered a nondiscriminative approach because it aims at modeling the 
data distribution instead of directly separating class categories. 

On the other hand, the discriminative classifi ers/recognizers typically bypass the stage of 
building the joint-probability model while directly using the class posterior probability. This is 
exemplifi ed by the celebrated argument that “one should solve the (classifi cation/recognition) prob-
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lem directly and never solve a more general problem as an intermediate step” [48]. This recognizer 
design philosophy is the basis of a wide range of popular machine learning methods including sup-
port vector machine [48], conditional random fi eld [28, 37], and maximum entropy Markov models 
[15, 30], etc., where the “intermediate step” of estimating the joint distribution has been avoided. 
For example, in the recently proposed structured classifi cation approach [15, 28, 30, 37] in machine 
learning and speech recognition, some well-known defi ciencies of the HMM are addressed by ap-
plying “direct” discriminative learning, replacing the need for a probabilistic generative model by 
a set of fl exibly selected, overlapping “features.” Because the conditioning is made on the feature 
sequence and the “features” can be designed with long-contextual-span properties, the conditional-
independence assumption made in the HMM is conceptually alleviated — provided that proper 
“features” can be constructed. How to design such features is a challenging research direction and 
it becomes a critical factor for the potential success of the structured discriminative approach, 
which departs from the “generative” component or joint distribution. On the other hand, local 
features can be much more easily designed that are appropriate for the generative approach, and 
many effective local features have been well established (e.g., cepstra, fi lter-bank outputs, etc. 
[10, 43]). Despite the high complexity of estimating joint distributions when the sole purpose 
is discrimination, the generative approach has important advantages of facilitating knowledge 
incorporation and of conceptually straightforward analyses of classifi er/recognizer components 
and their interactions.

Analyses of the capabilities and limitations associated with the two general machine learning 
paradigms discussed above lead to a practical pattern recognition framework that will be pursued in 
this book. That is, we attempt to establish a simplistic joint-distribution or generative model, with 
the complexity lower than what is required to accurately “generate” samples from the true distri-
bution. To make such low-complexity generative models discriminate well, it requires parameter 
learning methods that are discriminative in nature so as to overcome the limitations in the simplistic 
model structures. This is in contrast to the generative approach of fi tting the intraclass data as the 
conventional ML-based methods intend to accomplish. This type of practical framework has been 
applied to and guiding much of the recent work in speech recognition research, where HMMs are 
used as the low-complexity joint distribution for the local acoustic feature sequences of speech and 
the corresponding underlying linguistic label sequences (sentences, words, or phones, etc.).

1.2 WHAT IS SPEECH RECOGNITION?
Speech recognition is the process and the related technology for converting a speech signal into a 
sequence of words (or other linguistic units) by means of an algorithm implemented as a computer 
program. Speech recognition applications that have emerged over the last few years include voice 
dialing, call routing, interactive voice response, voice search, data entry and dictation, command and 



INTRODUCTION AND BACKGROUND 3

3MC_He_CH01_v1.indd                                                            Achorn International                                                            06/25/2008  10:59AM

control (voice user interface with the computer), hands-free computing (automotive applications), 
structured document creation (e.g., medical and legal transcriptions), appliance control by voice, 
computer-aided language learning, content-based spoken audio search, and robotics.

Modern general-purpose speech recognition systems are generally based on HMMs, which 
will be described in some detail in Chapter 2. One reason why HMMs are popular in speech rec-
ognition is that their parameters can be trained or learned automatically and they are simple and 
computationally feasible to use. In speech recognition, to give the very simplest setup possible, 
HMMs generate a sequence of multidimensional real-valued or symbolic/discrete acoustic features, 
each corresponding to about 10 ms. The real-valued vectors (or the discrete symbols) often consist 
of cepstral coeffi cients (or their vector-quantized codes), which are obtained by taking a Fourier 
transform of a short-time window of speech and decorrelating the spectrum by using a cosine trans-
form. The continuous-density (CD) HMMs usually have, in each state, a probability distribution 
of a mixture of diagonal-covariance Gaussians. Discrete HMMs usually have, in each state, a non-
parametric discrete distribution. Each word or phone will have different output distributions that 
are trained or learned automatically. An HMM for a sequence of words or phonemes is constructed 
by concatenating the individual trained HMMs for the separate words and phonemes.

Major developments in the technology of speech recognition over the past 50 years have been 
elegantly summarized in a recent keynote presentation at International Conference on Acoustics, 
Speech, and Signal Processing; the slides of that presentation can be found in http://www.ewh.
ieee.org/soc/sps/stc/News/NL0704/furui-icassp2007.pdf. This long period has witnessed the fi eld 
of speech recognition proceed from its infancy to its current coming of age. Although far from a 
“solved” problem, it now has a growing number of practical applications in many sectors. Further 
research and development will enable increasingly more powerful systems, deployable on a world-
wide basis. 

Let us summarize the major developments of speech recognition in four areas. First, in the 
infrastructure area, Moore’s law, in conjunction with the constantly shrinking cost of memory, has 
been instrumental in enabling speech recognition researchers to develop and run increasingly com-
plex systems. The availability of common speech corpora for speech system training, development, 
and evaluation, has been critical in creating systems of increasing capabilities. Speech is a highly 
variable signal, characterized by many factors, and thus large corpora are critical in modeling it 
well enough for automated systems to achieve profi ciency. Over the years, these corpora have been 
created, annotated, and distributed to the worldwide community. The character of the recorded 
speech has progressed from limited, constrained speech materials to masses of progressively more 
realistic, spontaneous, and “found” speech. The development and adoption of rigorous benchmark 
evaluations and standards have also been critical in developing increasingly powerful and capable 
speech recognition systems.
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Second, in the area of knowledge representation, major advances in speech signal representa-
tions have included perceptually motivated acoustic features of speech. Architecturally, the most 
important development has been the searchable unifi ed graph representations allowing multiple 
sources of knowledge to be incorporated in a common probabilistic framework.

Third, in the area of modeling and algorithms, the most signifi cant paradigm shift has been 
the introduction of statistical methods, especially of the HMM method. More than 30 years after the 
initial use of HMMs in 1970s, this methodology still predominates. The ML-based expectation–
maximization (EM) algorithm and the forward–backward or Baum–Welch algorithm have been 
the principal means by which the HMMs are trained from data. Despite their simplicity, N-gram 
language models have proved remarkably powerful and resilient. Decision trees have been widely 
used to categorize sets of features, such as pronunciations from training data. Statistical discrimina-
tive learning techniques form the recent major innovations in speech recognition algorithms, which 
will be elaborated below and be the focus of the remainder of this book.

Fourth, in the area of recognition hypothesis search, key decoding or search strategies, origi-
nally developed in nonspeech applications, have focused on stack decoding (A* search), Viterbi, 
N-best, and lattice search/decoding. Derived originally from communications and information 
theory, stack decoding was subsequently applied to speech recognition systems. Viterbi or dynamic-
programming based search is at present broadly applied to search alternative recognition hypotheses 
in virtually all modern speech recognition systems.

1.3 ROLES OF DISCRIMINATIVE LEARNING IN 
SPEECH RECOGNITION

As we just highlighted above, statistical discriminative learning has become a major theme in re-
cent speech recognition research (e.g., [8, 9, 12, 18, 25, 31, 36, 37, 40, 42]). In particular, much of 
the striking progress in large-scale automatic speech recognition over the past few years has been 
attributed to the successful development and applications of discriminative learning (e.g., [31, 33, 
40, 41]). Although the ML-based learning algorithm (i.e., the Baum–Welch algorithm) has been 
highly effi cient and practical, it limits the performance of speech recognition. This is because ML 
learning relies on the assumption that the correct functional form of the joint probability between 
the data and the class categories is known and that there are suffi cient and representative training 
data, both of which are often not realistic in practice. In the case of speech recognition, the data are 
speech feature sequences and the class categories are word sequences. As we discussed earlier, the 
currently most popular functional form of the probability model for speech is the HMM. Given 
the knowledge gained from many years of research in speech science, the assumptions made by the 
HMM are in many ways incorrect for the realistic processes in human speech. This inconsistency 
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motivates the development of discriminative learning methods for speech recognition and high-
lights their critical roles in improving speech recognition performance beyond the conventional 
ML-based learning techniques. The essence of discriminative learning as presented in this book 
is to learn the parameters of distribution models (e.g., HMMs) in such a way that the recognition 
errors or some measures of them are minimized directly via effi cient and effective optimization 
techniques.

Two central issues in the development of discriminative learning methods for sequential 
pattern recognition and in particular for speech recognition are: (1) construction of the objective 
functions for optimization and (2) actual optimization techniques. There have been a wide variety 
of methods reported in the literature related to both of these issues (e.g., [8, 14, 18, 25, 31, 33, 34, 
38, 42, 44, 46, 49]); however, their relationships have not been adequately understood. Because of 
the practical and theoretical importance of this problem, there is a pressing need for a unifi ed ac-
count of the numerous discriminative learning techniques in the literature. This book aims to fulfi ll 
this need while providing insights into the discriminative learning framework for sequential pattern 
classifi cation and for speech recognition. In presenting discriminative learning in this chapter, we 
intend to address the issues of how the various discriminative learning techniques are related to and 
distinguished from each other, and what may be a deeper underlying scheme that can unify various 
ostensibly different techniques. Although the unifying review provided in this book is on a general 
class of pattern recognition problems associated with sequential characteristics, we will focus most 
of the discussions on those related to speech recognition and to the HMM [10, 43, 47]. We note 
that the HMM as well as the various forms of discriminative learning have been used in many signal 
processing areas beyond speech; for example, in bioinformatics [5, 13], in text and image classifi ca-
tion/recognition [29, 53, 56], in video object classifi cation [54], in natural language processing [7, 
9], and in telerobotics [55]. It is our hope that the unifying review and the insights provided in this 
book will foster more principled and successful applications of discriminative learning in a wide 
range of signal processing disciplines, speech processing or otherwise.

1.4 BACKGROUND: BASIC PROBABILITY DISTRIBUTIONS
In this section, we provide the mathematical background for several basic probability distributions 
that will be used directly or as building blocks for more complex distributions in the remaining 
chapters of this book. The basic probability distributions discussed fi rst will include multinomial 
distribution (discrete), Gaussian, and mixture-of-Gaussian distributions (continuous). Then we 
will present a more general form of the distributions, exponential-family distributions, which sub-
sume a large number of discrete and continuous distributions. The more complex distributions (e.g., 
HMMs) built from the basic distributions will be presented in subsequent chapters.
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1.4.1 Multinomial Distribution
Frequently, we need to handle discrete random variables that may take one of K possible values. 
Among all possible ways to express such variables, there is a convenient representation that the 
variable is represented by a K-dimensional vector x in which one of the elements x(k) is equal to 1, 
and all other elements are equal to 0. For example, if we have a variable that can take K = 6 possible 
values and a particular observation of the variable happens to correspond to the third value, that is, 
x(3) = 1, then x can be represented by

x = [ 0, 0, 1, 0, 0, 0 ]T

If we denote the probability of x(k) = 1 by the parameter vk, then the distribution of x is given by

 
p(x |v) =

K

Õ
k=1

vx(k)
k

 
(1.1)

where v = [v1, …, vK]T is the parameter vector. Because vk is a probability, that is, it is the prob-
ability of that the random variable takes the kth value, {vk} are constrained to satisfy vk ³ 0 and 
Sk vk = 1  .

Now consider a data set X of N independent observations x1, ¼, xN . If we denote the counts 
of observations at state k by the value mk, we can have the joint distribution of the quantities m1, ¼, 
mK, conditioned on the parameter vector v, and the total number of observations N, which takes the 
following form:

 
p(m1, . . . ,mK|v, N ) =

(
N

m1, . . . ,mK

)
K

Õ
k=1

vmk
k

 
(1.2)

This is known as the multinomial distribution. The normalization coeffi cient is the number of ways 
of partitioning N objects into K groups of size m1, ¼, mK and is computed as(

N
m1, . . . ,mK

)
=

N !
m1!m2! . . .mK!

where the variables mk are subject to the constraint

mk ≥ 0 and å
k

mk = N.

Note that (1.1) is a special case of the multinomial distribution for a single observation; that is, 
N = 1.



INTRODUCTION AND BACKGROUND 7

7MC_He_CH01_v1.indd                                                            Achorn International                                                            06/25/2008  10:59AM

1.4.2 Gaussian and Mixture-of-Gaussian Distributions
The Gaussian or normal distribution is a widely used model for the distribution of continuous vari-
ables. When the random variable x is a scalar, the Gaussian probability density function (PDF) is

 
p(x|l) =

1
(2ps2)1/2 exp

{
−1

2
(x − m)2

s2

}
= N (x ;m ,s2)

 (1.3)

where the parameter set l includes m (mean) and s (standard deviation). For a D-dimensional vec-
tor x, the multivariate Gaussian PDF takes the form of

 p(x|l) =
1

(2p)
D
2 |S| 1

2

exp
{
−1

2
(x − m)TS−1(x − m)

}
= N (x ;m ,S)  (1.4)

where l = { m, S} includes m (mean vector) and S (covariance matrix). The Gaussian distribution 
is commonly used in many engineering and science disciplines including speech processing. The 
popularity arises not only from its highly desirable computational properties, but also from its ability 
to approximate many naturally occurring real-world data due to the central limit theorem.

Mixture-of-Gaussian distributions. Unfortunately, in some speech processing problems in-
cluding speech recognition, the Gaussian distribution is inadequate. The inadequacy comes from its 
unimodal property, whereas most speech features have multimodal distributions. The more appro-
priate distribution is the following mixture-of-Gaussian distribution with the desirable multimodal 
property:

 
p(x|l) =

M

å
m=1

cmN (x ;mm,s2
m)

 (1.5)

where the variable x is a scale and l = {cm, mm, sm; m = 1, 2 …, M } or

p(x|l) =
M

å
m=1

cmN (x; mm,Sm)

where the variable x is a vector and l = {cm, mm, åm; m = 1, 2 …, M }.

1.4.3 Exponential-Family Distribution
Both multinomial and Gaussian distributions (but not the mixture-of-Gaussians) discussed above 
are special cases of a broad class of distributions known as the exponential family, including both 
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continuous and discrete distributions. This general family of distributions is defi ned by the follow-
ing PDF:

 p (x|q ) = h(x) · exp
{
qTT(x) − A(q )

}
 (1.6)

where x can be scalar or vector, and may be discrete or continuous. Here, q is called the natural pa-
rameters of the distribution, T (x) is some function of x, A(q) is the cumulative generating function, 
and h(x) is the base measure, which is a function of x. To obtain a normalized distribution, we need 
to take integration of both sides of (1.6) and set it to one:

 
∫

p(x|q )dx = exp(−A(q ))
∫

h(x) · exp
(
qTT(x)

)
dx = 1  (1.7)

Therefore,

 exp(A(q )) =
∫

h(x) · exp
(
qTT (x)

)
dx  (1.8)

For a discrete random variable x, the integration above should be replaced by summation.
Convexity of the exponential-family distribution. Let us fi rst consider the properties of A(q). 

Examine the fi rst-order derivative of A(q). Taking the gradient of both side of (1.8) with respect to 
q, we have

exp[A(q )] · ∇A(q ) =
∫

h(x) · exp
[
qTT(x)

]
· T(x)dx

Rearranging and making use of (1.6), we obtain

 ∇A(q ) = exp[−A (q )] ·
∫

h(x) · exp
[
qTT (x)

]
· T(x)dx = Ep(x|q )[T(x)]  (1.9)

After using the chain rule and the matrix derivative formula of  Ñ( f  (q) × a) = Ñ( f  (q) × aT, the 
second-order derivative of A(q) can be obtained based on (1.9):

∇2A(q ) = − exp[−A(q )] · ∇A(q ) ·
∫

h(x) · exp
[
qTT (x)

]
· T(x)Tdx

+ exp[−A (q )] ·
∫

h(x) · exp
[
qTT (x)

]
· T(x) · T(x)Tdx

Using (1.9) again, we have

∇2A(q ) = −Ep(x |q )[T(x)]Ep(x |q )[T(x)]T + Ep(x |q )

[
T(x)T(x)T

]
= Covp(x|q )[T (x)] �− 0

Q1Q1
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That is, the second-order derivative of A(q) is positive defi nite. Therefore, A(q) is a convex function 
of q.

Maximum likelihood estimation and suffi cient statistic of the exponential-family distribution. 
Now, let us consider the problem of estimating the parameter vector q q in the general exponential-
family distribution (1.6) using the technique of maximum likelihood (ML). In maximum likelihood 
estimation, consider that there is a set of independent identically distributed data denoted by X = 
{x1, ¼, xn}, for which the likelihood function is given by

p(X |q ) =

(
N

Õ
n−1

h(xn)

)
· exp

[
qT

N

å
n=1

T(xn) − N · A(q )

]

Setting the gradient of ln(  p (X |q)) with respect to q to zero, we obtain the following condi-
tion to be satisfi ed by the maximum likelihood estimate

 ∇A(q ) =
1
N

N

å
n=1

T(x n)
 (1.10)

which can be solved to obtain qML. Because A(q) is convex, there is one global unique ML solution 
for qML.

From (1.10), we observe that the solution to the ML estimate depends on the data only 
through SN

    n=1 T (xn), which is therefore called suffi cient statistic of the distribution (1.6). In com-
puting the ML estimate, we only need to store the value of the suffi cient statistic.

The above suffi ciency property holds for discriminative learning, and we will defer the dis-
cussion to Chapter 4.

Exponential form of the multinomial distribution. It can be verifi ed that the distributions dis-
cussed in the previous sections are members of the exponential family.

Let us consider the multinomial distribution that, for a single observation x, takes the form

 
p(x |v) =

K

Õ
k=1

vx(k )
k

 
(1.11)

There are parameter constraints of vk ³ 0 and SK
   k=1 vk = 1 in this form of distribution, which is to be 

removed. Due to the sum-to-one constraint, there are a total of K - 1 free parameters. For instance, 

vK can be expressed by the remaining K - 1 parameters through nk = 1 - SK
   j=1 vj, thus leaving K - 1 

free parameters. Note that these remaining K - 1 parameters are still subject to the constraints vk ³ 0 

and SK-1
   j=1 vj £ 1, k = 1, …, K - 1. Note also that SK

   k=1 x (k)  = 1. We now rewrite the distribution
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K

Õ
k=1

vx(k )
k = exp

{
K

å
k=1

x (k) ln vk

}

= exp

{
K−1

å
k=1

x(k) ln vk +

(
1 −

K−1

å
k=1

x(k)

)
ln

(
1 −

K−1

å
j=1

vj

)}

= exp

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

K−1

å
k=1

x (k) ln

⎛
⎝ vk

1 −åK−1
j=1 vj

⎞
⎠

︸ ︷︷ ︸
qTT(x)

+ ln

(
1 −

K−1

å
j=1

vj

)
︸ ︷︷ ︸

−A (q )

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

and then construct the K - 1 dimensional natural parameter vector q = [q1,…,qk-1]
T such that

 

qk = ln

⎛
⎜⎜⎜⎜⎝

vk

1 −
K−1

å
j=1

vj

⎞
⎟⎟⎟⎟⎠

 

(1.12)

After identifying the parameters (as well as the suffi cient statistic) above in the standard form, 
we now need to express A(q) in terms of the parameters of (1.12). To do this, we rewrite (1.12) as

 exp(qk) =
vk

1 −
K−1

å
j=1

vj

 
(1.13)

Summing both sides of (1.13) over k, we have

 K−1

å
k=1

exp(qk) =

K−1

å
k=1

vk

1 −
K−1

å
j=1

vj

 

After adding one on both sides, we obtain

 

1 +
K−1

å
k=1

exp(qk) =
1

1 −
K−1

å
j=1

vj

 

(1.14)
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Then, substituting the right-hand side of (1.14) into (1.13), we have

 vk =
exp(qk)

1 +
K−1

å
j=1

exp(qj)

and  
(1.15)

ln

(
1 −

K−1

å
j=1

vj

)
= ln

⎛
⎜⎜⎜⎜⎝1 −

K−1

å
k=1

exp(qk)

1 +
K−1

å
j=1

exp(qj)

⎞
⎟⎟⎟⎟⎠ = −ln

(
1 +

K−1

å
j=1

exp(qj)

)

Therefore, comparing with the standard form (1.6) of the exponential family distribution, we 
identify:

h(x) = 1

T(x) = x̃ = [x1, . . . ,xK−1]
T

A(q ) = ln

(
1 +

K−1

å
j=1

exp(qj)

)

where x ˜ is an observation vector that only contains the fi rst K - 1 elements of x. Furthermore,

 
¶A(q )
¶q

=
1

1 +
K−1

å
j=1

exp(qj)

⎡
⎢⎢⎣

exp(q1)
...

exp(qK−1)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

v1
...

vK−1

⎤
⎥⎥⎦ = ṽ

 

(1.16)

where we denote by v ˜  the partial parameter vector that only contains the fi rst K - 1 parameters.
We now discuss ML parameter estimation. According to (1.10), the maximum likelihood 

estimation of q should satisfy the following condition:

 
ṽ =

1
N

N

å
n=1

x̃n  (1.17)

By summing both sides of (1.17) over k = 1, ¼, K - 1, we have

K−1

å
k=1

vk =
1
N

N

å
n=1

K−1

å
k=1

xn(k)
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Therefore, we have

     

vK = 1 −
K−1

å
k=1

vk = 1 − 1
N

N

å
n=1

K−1

å
k=1

xn(k) =
1
N

N

å
n=1

(
1 −

K−1

å
k=1

xn(k)

)
=

1
N

N

å
n=1

xn(K)
 

(1.18)

Combining (1.17) and (1.18), we have the ML estimation formula for the multinomial distribution

vML =
1
N

N

å
n=1

xn

Exponential form of the univariate Gaussian distribution. Let us consider the single-variable 
Gaussian distribution:

p(x |l ) =
1

(2ps2)1/2 exp

{
−(x − m)2

2s2

}

=
1√
2p︸ ︷︷ ︸

h(x)

exp

⎧⎪⎪⎪⎨
⎪⎪⎪⎩− x2

2s2 +
2xm
2s2︸ ︷︷ ︸

qTT (x)

− m2

2s2 − ln(s)︸ ︷︷ ︸
−A (q )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Therefore, we identify:

h(x) = 1/
√

2p

T(x) =
[

x,x2
]T

 
q = [q1,q2]

T =
[
m
s2 ,

−1
2s2

]T

 
(1.19)

To express A(q) in terms of the parameters in the form of (1.19), we rewrite (1.19) to obtain

m =
q1

(−2q2)

s = (−2q2)
−1

2

And therefore

A (q ) =
m2

2s2 + ln(s) = − q 2
1

4q2
− 1

2
ln (−2q2)
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Exponential form of the multivariate Gaussian distribution. Let us consider the D-dimensional 
multivariate Gaussian distribution:

p(x |l ) =
1

(2p)
D
2 |S| 1

2

exp
{
−1

2
(x − m)TS−1(x − m)

}

=
1

(2p)
D
2︸ ︷︷ ︸

h(x)

exp

⎧⎪⎪⎪⎨
⎪⎪⎪⎩−1

2
xTS−1x +

1
2

xTS−1m +
1
2
mTS−1x︸ ︷︷ ︸

qTT(x)

−1
2
mTS−1m − 1

2
ln|S|︸ ︷︷ ︸

−A (q )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Therefore, we can identify

h(x) = (2p)−
D
2

T(x) =

[
x ′

x ′′

]

              

q =

[
q ′

q ′′

]

where we denote by

 

x ′ = x

x ′′ = Vec
(

xxT
)  

(1.20)

and

 q ′ = S−1m

q ′′ = Vec
(
−1

2
S−1
)  

(1.21)

In the above, we defi ne Vec(•) as a function that converts a matrix into a column vector in 
the following manner: First, it concatenates rows of the matrix one by one to form a row vector, 
and then transport the result to a column vector. Correspondingly, we defi ne the inverse function of 
Vec(•) as IVec(•), which converts a column vector to a matrix. For example,
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Vec

([
a11 a12

a21 a22

])
=

⎡
⎢⎢⎢⎣

a11

a12

a21

a22

⎤
⎥⎥⎥⎦ and IVec

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

a11

a12

a21

a22

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠ =

[
a11 a12

a21 a22

]

We now express A(q) as an explicit function of the parameter q as defi ned in (1.21). For sim-
plicity of notation, we defi ne matrix Q as

Q = IVec
(
q ′′)

Note Q is a symmetric matrix; that is, Q = QT and Q-1 = (Q-1)T.
Then we obtain

m = −1
2
Q−1q ′

S = −1
2
Q−1 = (−2Q)−1

And we can derive

A(q ) =
1
2
mTS−1m +

1
2

ln |S|

=
1
2
−1
2
q ′ TQ−1q ′ − 1

2
ln | − 2Q|

= − 1
4
q ′ TQ−1q ′ − 1

2
ln | − 2Q|

We now discuss ML-based parameter estimation. Using matrix calculus, we obtain

 ¶A(q )
¶q ′ = −1

2
Q−1q ′ = m  (1.22)

¶A (q )
¶q ′′ = Vec

(
¶A (q )
¶Q

)
= Vec

(
1
4
Q−1q ′q ′TQ−1− 1

2
(−2)(−2Q)−1

)
= Vec

(
mmT + S

) (1.23)

According to (1.10), the ML estimate of q should satisfy the following condition:
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⎡
⎢⎢⎣
¶A (q )
¶q ′

¶A (q )
¶q ′′

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1
N

N

å
n=1

x ′
n

1
N

N

å
n=1

x ′′
n

⎤
⎥⎥⎥⎥⎦

 

(1.24)

Therefore, after substituting (1.20), (1.22), and (1.23) into (1.24), we obtain

[
m

Vec
(
mmT + S

)] =

⎡
⎢⎢⎢⎢⎣

1
N

N

å
n=1

xn

1
N

Vec

(
N

å
n=1

xnxT
n

)
⎤
⎥⎥⎥⎥⎦

After rearrangement and canceling out the Vec( ) function on both sides, we have the estimation 
formula:

mML =
1
N

N

å
n=1

xn

SML =
1
N

N

å
n=1

xnxT
n − mMLmT

ML

In addition to the multinomial and Gaussian distributions that are commonly used in speech 
modeling, we here also introduce a few other members of the exponential family. As will be shown 
in the following chapters, discriminative training for the general exponential family distributions is 
applicable to all the distributions discussed here.

Exponential form of the Poisson distribution. Poisson distribution has the following conven-
tional form for one dimensional discrete variable:

p(x |l ) =
1
x!
l xexp(−l) x = 0, 1, 2, . . .

=
1
x!︸︷︷︸

h(x)

exp

⎧⎪⎨
⎪⎩x ln (l)︸ ︷︷ ︸

qT(x)

−l︸︷︷︸
−A (q )

⎫⎪⎬
⎪⎭

Therefore, we identify the quantities in the standard form of the exponential family:
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h(x) = 1 �= x!

T(x) = x

q = ln (l)

A(q ) = l = eq

Exponential form of the exponential distribution. Exponential distribution has the conventional 
form:

p(x |l ) = lexp(−lx) x ∈ R
+

= exp

⎧⎪⎨
⎪⎩−lx︸︷︷︸

qT(x)

+ ln(l)︸ ︷︷ ︸
−A (q )

⎫⎪⎬
⎪⎭

from which we identify:

h(x) = 1

T(x) = x
q = l−

A (q ) = −ln (l) = −ln (−q )

Exponential form of the Dirichlet distribution. Dirichlet distribution takes the following form

p(x |a ) =

G

(
K

å
k=1

ak

)
K

Õ
k=1

G(ak)

K

Õ
k=1

x(k)ak−1

where a = [a1,…, aK]T is the parameter vector, G(·) is the Gamma function defi ned as

 
G(z) =

∞∫
0

tz−1e−zdt
 (1.25)

and x = [x(1), …, x(K)]T is a K-dimensional observation vector with the constraints: 0 £ x(k) £ 1, 
SK

 k = 1 x(k) = 1. Rewriting (1.25), we have
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p(x |a ) = exp

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ln

G

(
K

å
k=1

ak

)
K

Õ
k=1

G(ak)

+
K

å
k=1

(ak − 1) ln (x(k))

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= exp

{
−

K

å
k=1

ln (x(k))

}
︸ ︷︷ ︸

h(x)

exp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K

å
k=1

ak ln (x(k))︸ ︷︷ ︸
qTT(x)

+ ln

G

(
K

å
k=1

ak

)
K

Õ
k=1

G(ak)︸ ︷︷ ︸
−A (q )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

from which we can identify:

h(x) = exp

{
−

K

å
k=1

ln(x(k))

}

T(x) =

⎡
⎢⎢⎣

ln (x(k))
...

ln (x(K ))

⎤
⎥⎥⎦

q = a

A(q ) = − ln

G

(
K

å
k=1

qk

)
K

Õ
k=1

G(qk)

1.5 BACKGROUND: BASIC OPTIMIZATION CONCEPTS 
AND TECHNIQUES

In this section, we provide the mathematical background for basic optimization concepts and per-
tinent techniques that will be used in the remaining chapters of this book. In particular, we will 
introduce the growth-transformation-based optimization technique that applies to specifi c, rational 
forms of object functions. All topics discussed in this section will be used as the basic material for 
the following chapters in this book. 
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1.5.1 Basic Defi nitions
Let a vector L be in a K-dimensional parameter space,  L Î RK, and let O(L) be a real-valued func-
tion of L. When we want to optimize the function O(L), we call it the objective function w.r.t. to 
the parameter set L. 

The function O(L) with its domain L Î RK  is said to have a global minimum L* if 

O(L*) £ O(L)

for all L Î RK . The function O(L) is said to have a global maximum L if

O(L**) £ O(L)

for all L Î RK.
The function O(L) is said to have a local minimum L0 if

O(L0) £ O(L)

for all L in the neighborhood of L0.
Note that since

min O(L) = - [max (-O(L))]

a minimization problem is equivalent to a maximization one. We thus will treat both of these prob-
lems as the same optimization problem.

The vector of partial derivatives of O(L) w.r.t. L is called the gradient vector, which is often 
denoted by ÑO(L). The matrix of second-order partial derivatives of O(L) is called the Hessian 
matrix, denoted by HL.

1.5.2 Necessary and Suffi cient Conditions for an Optimum
A necessary condition for a function O(L) to have a local optimum at L* is that the gradient vector 
has all zero components:

ÑO(L*) = 0

as long as ÑO(L) exists and is continuous at L*. This necessary condition can be directly proved 
using Taylor series expansion.

Note that ÑO(L*) = 0 is only a necessary condition; that is, a point L* satisfying ÑO(L*) = 0 
may be just a stationary or saddle point, not an optimum point.
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However, in many optimization problems including those in speech processing, previous 
knowledge about the nature of the objective function in the problem domain can eliminate the pos-
sibility of having a stationary point.

To theoretically guarantee an optimum point (i.e., elimination of the possibility of a stationary 
point), we have the following suffi cient condition: Let there exist continuous partial derivatives up 
to the second order for objective function O(L). If the gradient vector ÑO(L*) = 0 and the Hessian 
matrix HA is positive defi nite, then L* is a local minimum. Similarly, if the gradient vector ÑO(L*) 
= 0 and the Hessian matrix HA  is negative defi nite, then L* is a local maximum.

Again, the proof of the above condition comes also directly from applying Taylor series 
expansion. 

The necessary and suffi cient conditions discussed above are applied to optimization problems 
with no constraints. For the situation where constraints must be imposed, the related optimization 
problems are discussed next.

1.5.3 Lagrange Multiplier Method for Constrained Optimization
The Lagrange multiplier method is a popular method in speech processing, as well as in many other 
optimization problems, which converts constrained optimization problems into unconstrained ones. 
It uses a linear combination of the objective function and the constraints to form a new objective 
function with no constraints.

The constrained optimization problem, where the constraints are in the form of equalities, 
can be formally described as follows: Find L = L* that optimizes the objective function O(L) subject 
to the M constraints:

g1(L) = b1,
g2(L) = b2,

. . .

gM (L) = bM.

The Lagrange multiplier method solves the above problem by forming a new objective func-
tion for the equivalent unconstrained optimization:

F (L,l) = O(L) +
M

å
m=1

lm
[

gm(L) − bm
]

where l = (l1, l2,…, lM) are called the Lagrange multipliers.
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Optimization of the new objective function F(L,l) proceeds by setting its partial de-
rivatives to zero with respect to each vector component of L and l. This produces a set of K +
M equations that determine the K + M unknowns including the desired solution L = L* for 
optimization.

When the constraints are in the form of inequalities, rather than of equalities as discussed 
above, a common method for optimization is to transform the related variables so as to eliminate 
the constraints. For example, if the constraint is L > 0 (e.g., as required for estimating the vari-
ance, which is always positive, in a PDF), then we can transform L into L¢ = exp(L). Because L 
and L¢ are monotonically related, optimization of one automatically gives the solution to the other. 
However, when using this type of transformation techniques, one should be aware of the sensitivity 
problem in the solution.

1.5.4 Gradient Descent Method
One popular family of numerical methods for optimization is based on gradient descent. As dis-
cussed earlier, the gradient is a vector in a K-dimensional space where the objective function is de-
fi ned. The effectiveness of these gradient-based methods derives from its important property: The 
gradient vector represents the direction of steepest ascent of the objective function, and the negative 
gradient vector represents the direction of steepest descent. That is, if we move along the gradient 
direction from any point in the K-dimensional space over which the objective function is defi ned, 
then the function value increases at the fastest rate.

Note that the direction of steepest ascent is a local and not a global property. Hence, all the 
optimization methods based on gradients give only local optimum, and not global optimum. Due 
to the steepest ascent or descent property associated with the gradient vector, any method that 
makes use of it can be expected to fi nd an optimum point faster than the methods without using 
it. 

In the steepest descent method, one uses the negative gradient vector, ÑO(L), as a direction 
for minimizing an objective function O(L). In this method, an initial point L(0) is supplied, and it 
iteratively moves toward the optimal point using the updating equation:

L(t+1) = L(t ) − a (t)
min∇O(L(t ))

where a(t)  min is called the step size, and in the strict steepest descent method, the step size is optimized 
along the search direction ÑO(L(t)). That is, in each iteration of steepest descent, a(t)  min is found that 
minimizes O[L(t) - a(t)  min ÑO(L(t))]. In practice, for large-scale optimization problems such as speech 
recognizer training, the above procedure is diffi cult and a(t)  min is often determined empirically.
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1.5.5 Growth Transformation Method: Introduction
The gradient descent method discussed above can be applied to any objective function, as long as 
the gradient can be computed effi ciently (analytically or numerically, especially analytically). There 
are many other optimization techniques that take advantage of higher-order gradients, such as 
Newton’s method. However, if the objective function has a special structure, more effi cient opti-
mization techniques than the gradient-based ones can be used. In this section, we provide prelimi-
naries to optimizing rational functions, a common type of structure in the objective function, by a 
nongradient-based technique called “growth transformation” (GT).

Many times, the objective function of discriminative training of HMM can be formulated 
into a rational function, thus enabling the use of GT techniques. This type of techniques is also 
called extended Baum–Welch (EBW) algorithm when the underlying statistical model is an HMM. 
GT is an iterative optimization scheme where if the parameter set L is subject to a transformation 
L = T (L¢), then the objective function “grows” in its value O(L) > (L¢) unless L = L¢. Hence the 
name growth transformation. GT or EBW algorithm was initially developed for the homogeneous 
polynomial by Baum and his colleagues (e.g., [4]). It was later extended to optimizing nonhomoge-
neous rational functions as reported in [14]. EBW algorithm became popular for its successful use 
in discriminative training of HMM using the maximum mutual information (MMI; see Chapter 3) 
criterion after the extension of the MMI training was made from the discrete HMM in [14] to the 
CD HMM in [3, 17, 34, 50, 52].

The importance of the optimization technique based on GT/EBW algorithm lies in its ef-
fectiveness and closed-form parameter updating for large-scale optimization problems with diffi cult 
objective functions (i.e., training criteria). With the traditional ML training where the likelihood 
function as the optimization criterion is relatively simple, a fast method is often available, such as 
the expectation–maximization (EM) algorithm for the HMM. In contrast, for the discriminative 
training criteria that are more complex than the ML, optimization becomes more diffi cult. For 
them, two general types of optimization techniques are available for the HMM: (1) gradient-based 
method and (2) GT/EBW. The latter has the advantage of having closed-form parameter updating 
formulas while not explicitly requiring second-order statistics. In addition, it does not require the 
same type of special and often delicate care for tuning the parameter-dependent learning rate as in 
the gradient-based methods (e.g., [25, 44]).

Let G(L) and H(L) be two real valued functions on the parameter set L, and the denomina-
tor function H(L) is positive valued. And let the objective function be the ratio of them, giving the 
rational function of

 O(L) =
G(L)
H (L)

 (1.26)

a GT-based optimization algorithm exists to maximize O(L).
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An example of this rational function is the objective function for discriminative learning of 
HMM parameters, which will be discussed in greater details in Section 3.2.2, where

 G(L) =å
s

p(X, s|L) C(s) and H(L) =å
s

p(X, s|L)  (1.27)

and we use S = S1, …, SR to denote the label sequences for all R training tokens, and use X = x1, …, 
xR  to denote the observation data sequences for all R training tokens.

As originally proposed in [14], for the objective function of (1.26), the GT-based optimiza-
tion algorithm constructs the auxiliary function of

 F(L;L′) = G(L) − O(L′)H (L) + D  (1.28)

where D is a quantity independent of the parameter set L, and L¢ denotes the parameter set ob-
tained from the immediately previous iteration of the algorithm.

The algorithm starts by initializing the parameter set as, say, L¢. (This is often accomplished 
by the ML training using, for instance, EM or Baum–Welch algorithm for HMMs.) Then, the 
updating of the parameter set from L¢ to L proceeds by maximizing the auxiliary function F(L; L¢), 
and the process iterates until convergence is reached. Maximizing the auxiliary function F(L; L¢) 
is often easier than maximizing the original rational function O(L). And the following is a simple 
proof that as long as D is a quantity not relevant to the parameter set L, an increase of F(L; L¢) 
guarantees an increase of O(L).

Substituting L = L¢ into (1.28), we have

F(L′;L′) = G(L′) − O(L′)H(L′)︸ ︷︷ ︸
=0

+D = D

Hence,

F(L;L′) − F(L′;L′) = F(L;L′) − D = G(L) − O(L′)H(L)

= H(L)
(

G(L)
H(L)

− O(L′)
)

= H(L)
(

O(L) − O(L′)
)

Because H(L) is positive, we have O(L) - O(L¢) > 0 on the right-hand side if  F (L; L¢) - 
F (L; L¢) > 0 on the left-hand side. That is, for optimizing a complicated rational function, we can 
turn the problem to optimizing F (L; L¢), which is often simpler.

In later chapters of this book, we will provide details of optimizing F (L; L¢) for discrimina-
tive training of speech recognizer parameters.
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1.6 ORGANIZATION OF THE BOOK
The main content of this book is an extensive account of the discriminative learning techniques 
that are currently popular in training HMM-based speech recognition systems. In this introductory 
chapter, we fi rst clarify the concepts of discriminative learning and speech recognition, and then 
we proceed to discuss the roles of discriminative learning in speech recognition practice. We then 
introduce several basic probability distributions that will be used in the remainder of this book and 
that also serve as the building blocks for the more complex distributions such as HMMs. Finally, we 
introduce some basic concepts and techniques of optimization including the defi nition of optima, 
a necessary condition for achieving the optima, Lagrange multiplier method, and gradient descent 
method. We also provide preliminaries to the growth-transformation based optimization technique 
that applies to specifi c, rational forms of the objective functions naturally fi tting to those in dis-
criminative learning of popular distributions such as HMMs used in speech recognition.

In Chapter 2, we will provide a tutorial on statistical speech recognition and on the state-of-
the-art modeling techniques, setting up the context in which discriminative learning is motivated 
and applied to. In particular, HMMs are formally introduced. In Chapter 3, we provide a unifi ed 
account for the several common objective functions for discriminative training of HMMs currently 
in use in speech recognition practice. We also compare our unifi ed form of these objective functions 
with another form in literature. How to do discriminative parameter learning using the unifi ed 
form of objective functions via the GT technique is discussed in Chapters 4 and 5; Chapter 4 deals 
with exponential family distribution parameters, and Chapter 5 focuses on more diffi cult HMM 
parameters. Some practical implementation issues of the GT technique for HMM parameter learn-
ing are discussed in Chapter 6. In Chapter 7, selected experimental results in speech recognition are 
presented. Finally, an epilogue and summary is given in Chapter 8.

•  •  •  •
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