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Abstract

We consider a multi-round auction setting motivated by pay-per-click auctions for Internet advertis-
ing. In each round the auctioneer selects an advertiser and shows her ad, which is then either clicked
or not. An advertiser derives value from clicks; the value of a click is her private information. Ini-
tially, neither the auctioneer nor the advertisers have any information about the likelihood of clicks on
the advertisements. The auctioneer’s goal is to design a (dominant strategies) truthful mechanism that
(approximately) maximizes the social welfare.

If the advertisers bid their true private values, our problem is equivalent to the multi-armed bandit
problem, and thus can be viewed as a strategic version of the latter. In particular, for both problems
the quality of an algorithm can be characterized by regret, the difference in social welfare between the
algorithm and the benchmark which always selects the same “best” advertisement. We investigate how
the design of multi-armed bandit algorithms is affected by the restriction that the resulting mechanism
must be truthful. We find that truthful mechanisms have certain strong structural properties — essentially,
they must separate exploration from exploitation — and they incur much higher regret than the optimal
multi-armed bandit algorithms. Moreover, we provide a truthful mechanism which (essentially) matches
our lower bound on regret.

ACM Categories and subject descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems; K.4.4 [Computers and Society]: Electronic Commerce; F.1.2
[Computation by Abstract Devices]: Modes of Computation—Online computation; J.4 [Social and Be-
havioral Sciences]: Economics

General Terms: theory, algorithms, economics.

Keywords: mechanism design, truthful mechanisms, single-parameter auctions, multi-armed bandit
problem, regret, online learning.
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1 Introduction

In recent years there has been much interest in understanding the implication of strategic behavior on the
performance of algorithms whose input is distributed among selfish agents. This study was mainly moti-
vated by the Internet, the main arena of large scale interaction of agents with conflicting goals. The field
of Algorithmic Mechanism Design [33] studies the design of mechanisms in computational settings (for
background see the recent book [34] and survey [36]).

Much attention has been drawn to the market for sponsored search (e.g. [26, 17, 37, 30, 3]), a billions
dollar market with numerous auctions running every second. Research on sponsored search mostly focus on
equilibria of the Generalized Second Price (GSP) auction [17, 37], the auction that is most commonly used
in practice (e.g. by Google and Yahoo), or on the design of truthful auctions [2]. All these auctions rely
on knowing the rates at which users click on the different advertisements (a.k.a. Click-Through-Rates, or
CTRs), and do not consider the process in which these CTRs are learned or refined over time by observing
users’ behavior. We argue that strategic agents would take this process into account, as it influences their
utility. Prior work [20] focused on the implication of click fraud on the methods used to learn CTRs. We on
the other hand are interested in the implications of the strategic bidding by the agents. Thus, we consider
the problem of designing truthful sponsored search auctions when the process of learning the CTRs is a part
of the game.

We are mainly interested in the interplay between the online learning and the strategic aspects of the
problem. To isolate this issue, we consider the following setting, which is a natural strategic version of
the multi-armed bandit (MAB) problem. In this setting, there are k agents. Each agent ¢ has a single
advertisement, and a private value v; > 0 for every click she gets. The mechanism is an online algorithm
that first solicits bids from the agents, and then runs for 7" rounds. In each round the mechanism picks an
agent (using the bids and the clicks observed in the past rounds), displays her advertisement, and receives a
feedback — if there was a click or not. Payments are assigned after round 7'. Each agent tries to maximize
her own utility: the difference between the value that she derives from clicks and the payment she pays.
We assume that initially no information is known about the likelihood of each agent to be clicked, and in
particular there are no Bayesian priors.

We are interested in designing mechanisms which are truthful (in dominant strategies): every agent
maximizes her utility by bidding truthfully, for any bids of the others and for any clicks that would have
been received. The goal is to maximize the social welfare.! Since the payments cancel out, this is equivalent
to maximizing the total value derived from clicks, where an agent’s contribution to that total is her private
value times the number of clicks she receives. We call this setting the MAB mechanism design problem.

In the absence of strategic behavior this problem reduces to a standard MAB formulation in which
an algorithm repeatedly chooses one of the k alternatives (‘“arms”) and observes the associated payoff:
the value-per-click of the corresponding ad if the ad is clicked, and O otherwise. The crucial aspect in
MAB problems is the tradeoff between acquiring more information (exploration) and using the current
information to choose a good agent (exploitation). MAB problems have been studied intensively for the
past three decades (see [11, 12, 18]). In particular, the above formulation is well-understood [6, 7, 14] in
terms of regret relative to the benchmark which always chooses the same “best” alternative. This notion of
regret naturally extends to the strategic setting outlined above, the total payoff being exactly equal to the
social welfare, and the regret being exactly the loss in social welfare. Thus one can directly compare MAB
algorithms and MAB mechanisms in terms of welfare loss (regret).

Broadly, we ask how the design of MAB algorithms is affected by the restriction of truthfulness: what
is the difference between the best algorithms and the best truthful mechanisms? We are interested both in

'Social welfare includes both the auctioneer’s revenue and the agents’ utility. Since in practice different sponsored search plat-
forms compete against one another, taking into account the agents’ utility increases the platform’s attractiveness to the advertisers.



terms of the structural properties and the gap in performance (in terms of regret). We are not aware of any
prior work that characterizes truthful learning algorithms or proves negative results on their performance.

Our contributions. We present two main contributions. First, we present a characterization of (dominant-
strategy) truthful mechanisms. Second, we present a lower bound on the regret that such mechanisms must
suffer. This regret is significantly larger than the regret of the best MAB algorithms.

Formally, a mechanism for the MAB mechanism design problem is a pair (A, P), where A is the al-
location rule (essentially, an MAB algorithm), and P is the payment rule. Note that regret is completely
determined by the allocation rule. As is standard in the literature, we focus on mechanisms in which each
agent’s payment (averaged over clicks) is between 0 and her bid; such mechanisms are called normalized,
and they satisfy voluntary participation.

The setting we study is a single-parameter auction, the most studied and well-understood type of auc-
tions. For such settings truthful mechanisms are fully characterized [31, 4]: a mechanism is truthful if and
only if the allocation rule is monotone (by increasing her bid an agent cannot cause a decrease in the number
of clicks she gets), and the payment rule is defined in a specific and (essentially) unique way. Yet, this char-
acterization is not the right characterization for the MAB setting! The main problem is that in our setting
click information for any agent that is not chosen at a given round is not available to the mechanism, and
thus cannot be used in the computation of payments. Thus, the payment cannot depend on any unobserved
clicks. We show that this has severe implications on the structure of truthful mechanisms.

The first notable property of a truthful mechanism is a much stronger version of monotonicity:

Definition 1.1. A realization consists of click information for all agents at all rounds (including unobserved
ones). An allocation rule is pointwise monotone if for each realization, each bid profile and each round, if
an agent is played at the round, then she is also played after increasing her bid (fixing everything else).

Let us consider (for the ease of exposition) allocation rules that satisfy the following two natural condi-
tions. First, an allocation rule is scale-free if it is invariant under multiplying all bids by the same positive
number (essentially, changing the currency unit). Second, it is Independent of Irrelevant Alternatives (I1A,
for short) if for any given realization, bid profile and round, a change of bid of agent ¢ cannot transfer the
allocation in this round from agent j to agent [, where these are three distinct agents.

We show that any truthful mechanism must have a strict separation between exploration and exploitation.
A crucial feature of exploration is the ability to influence the allocation in forthcoming rounds. To make this
point more concrete, we call a round influential for a given realization if for some bid profile changing the
realization for this round can affect the allocation in some future round. We show that in any such round,
the allocation can not depend on the bids. Thus, influential rounds are essentially useless for exploitation.

Definition 1.2. An allocation rule A is called exploration-separated if for any given realization, the alloca-
tion in any influential round for that realization does not depend on the bids.

We are now ready to present our main structural result, which is in fact a complete characterization.

Theorem 1.3. Consider the MAB mechanism design problem. Let A be a non-degenerate* deterministic
allocation rule which is scale-free and satisfies IIA. Then mechanism (A, P) is normalized and truthful for
some payment rule P if and only if A is pointwise monotone and exploration-separated.

*Non-degeneracy is a mild technical assumption, formally defined in “preliminaries”, which ensures that (essentially) if a given
allocation happens for some bid profile (b;, b—;) then the same allocation happens for all bid profiles (x, b—;), where z ranges over
some non-degenerate interval. Without this assumption, all structural results hold (essentially) almost surely w.r.t the k-dimensional
Lebesgue measure on the bid vectors. Exposition becomes significantly more cumbersome, yet leads to the same lower bounds on
regret. For clarity, we assume non-degeneracy throughout this version of the paper.



We also obtain a similar (but somewhat more complicated) characterization without assuming that allo-
cations are scale-free and satisfy IIA (Theorem 3.8). We use it then to derive Theorem 1.3. We emphasize
that our characterization results hold regardless of whether the auctioneer’s goal is to maximize welfare or
revenue or any other objective.

In view of Theorem 1.3, we present a lower bound on the performance of exploration-separated algo-
rithms. We consider a setting, termed the stochastic MAB mechanism design problem, in which each click
on a given advertisement is an independent random event which happens with a fixed probability, a.k.a. the
CTR. The expected “payoff” from choosing a given agent is her private value times her CTR. For the ease
of exposition, assume that the bids lie in the interval [0, 1]. Then the non-strategic version is the stochastic
MAB problem in which the payoff from choosing a given arm i is an independent sample in [0, 1] with a
fixed mean p;. In both versions, regret is defined with respect to a hypothetical allocation rule (resp. algo-
rithm) that always chooses an arm with the maximal expected payoff. Specifically, regret is the expected
difference between the social welfare (resp. total payoff) of the benchmark and that of the allocation rule
(resp. algorithm). The goal is to minimize R(7"), worst-case regret over all problem instances on 7" rounds.

We show that the worst-case regret of any exploration-separated mechanism is /arger than that of the
optimal MAB algorithm [7]: Q(T2/3) vs O(+/T) for a fixed number of agents. We obtain an even more pro-
nounced difference if we restrict our attention to the J-gap problem instances: instances for which the best
agent is better than the second-best by a (comparatively large) amount 4, that is p11v1 — pove = 6 - (max; v;),
where arms are arranged such that p1v1 > pove > -+ > pgvg. Such instances are known to be easy for the
MAB algorithms. Namely, an algorithm can achieve the optimal worst-case regret O(/kT logT) and re-
gret O(§ log T') on J-gap instances [27, 6]. However, for exploration-separated mechanisms the worst-case
regret Rs(T) over the d-gap instances is polynomial in 7" as long as worst-case regret is even remotely non-
trivial (i.e., sublinear). Thus, for the §-gap instances the gap between algorithms and truthful mechanisms
in the worst-case regret is exponential in T.

Theorem 1.4. Consider the stochastic MAB mechanism design problem with k agents. Let A be a deter-
ministic allocation rule that is exploration-separated. Then A has worst-case regret R(T) = Q(k'/3 T%/3).
Moreover, if R(T) = O(T7) for some vy < 1 then for every fixed § < % and A < 2(1 — ~y) the worst-case
regret over the 5-gap instances is Rs(T) = Q(0 T?).

We note that our lower bounds holds for a more general setting in which the values-per-click can change
over time, and the advertisers are allowed to change their bids at every time step.

To complete the picture, we present a very simple (deterministic) mechanism that is truthful and nor-
malized, and matches the lower bound R(T") = Q(k'/3 T%/3) up to logarithmic factors.

We also provide a number of extensions. First, we prove a similar (but slightly weaker) regret bound
without the scale-free assumption. Second, we extend some of our results to randomized mechanisms; in this
setting, (dominant-strategy) truthfulness means “truthfulness for each realization of the private randomness”.
Third, we consider a weaker notion of truthfulness for randomized mechanisms — for each realization of the
clicks, but in expectation over the random seed, and use this notion to provide algorithmic results for the
version of the MAB mechanism design problem in which clicks are chosen by an adversary. Fourth, we
discuss an even more permissive notion of truthfulness — truthfulness in expectation over the clicks (and the
random seed).

Other related work and discussion. The question of how the performance of a truthful mechanism com-
pares to that of the optimal algorithm for the corresponding non-strategic problem has been considered in the
literature in a number of other auction settings. Performance gaps have been shown for various scheduling
problems [4, 33, 16] and for online auction for expiring goods [29]. Other papers presented approximation
gaps due to computational constraints, e.g. for combinatorial auctions [28, 16] and combinatorial public
projects [35], showing a gap via a structural result for truthful mechanisms.
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The study of MAB mechanisms has been initiated by Gonen and Pavlov [19]. The authors present a
MAB mechanism which is claimed to be truthful in a certain approximate sense. Unfortunately, this mech-
anism does not satisfy the claimed properties; this was also confirmed with the authors through personal
communication (see also a similar note in [15]).

MAB algorithms were used in the design of Cost-Per-Action sponsored search auctions in Nazerzadeh et
al. [32], where the authors construct a mechanism with approximate properties of truthfulness and individual
rationality. Approximately truthful mechanisms are reasonable assuming the agents would not lie unless it
leads to significant gains. However, this solution concept is weaker than the exact notion and it may still be
rational for the agents to deviate (perhaps significantly) from being truthful. Moreover, as truthful bidding is
not a Nash equilibrium, agents might have an increased incentive to deviate if they speculate that others are
deviating. All of that may result in unpredictable, and possibly highly suboptimal outcomes. In this paper we
focus on understanding what can be achieved with the exact truthfulness, mainly proving results of structural
and lower-bounding nature. We note in passing that providing similar results for the approximately truthful
setting such as the one in [32] is a worthy and challenging open question.

Independently and concurrently, Devanur and Kakade [15] have studied truthful MAB mechanisms with
focus on maximizing the revenue. They present a lower bound of Q(TQ/ 3) on the loss in revenue with
respect to the VCG (Vickrey-Clarke-Groves) payment, as well as a truthful mechanism that matches the
lower bound. (This mechanism is almost identical to the one that we present in order to match the lower
bound in Theorem 4.1.)

Our lower bounds use (a novel application of) the relative entropy technique from [27, 7], see [24] for
an account. For other application of this technique, see e.g. [14, 21, 25, 9].

Our work focuses on regret in a prior-free setting in which the algorithm has no prior on CTRs. This is
in contrast to the recent line of work on dynamic auctions [10, 5] which considers fully Bayesian settings in
which there is a known prior on CTRs, and VCG-like social welfare-maximizing mechanisms are feasible.
In our prior-free setting VCG-mechanisms cannot be applied as such mechanisms require the allocation to
exactly maximize the expected social welfare, which is impossible (and not well-defined) without a prior.

We require the mechanisms to satisfy a strong notion of truthfulness: bidding truthful is optimal for
every possible realization (and bids of others). This notion is attractive as it does not require the agents to
be risk neutral. Moreover, it allows for the CTRs to change over time (and still incentivizes agents to be
truthful). Finally, an agent never regrets in retrospect that she has been truthful. It is desirable to understand
this notion before moving to weaker notions.

Map of the paper. Section 2 is preliminaries. Truthfulness characterization is developed and proved in
Section 3. The lower bounds on regret and the simple mechanism that matches them are in Section 4.
Extensions and open questions are in Section 5. To improve the flow of the paper, some of the material is
moved to the appendices.

2 Definitions and preliminaries

In the MAB mechanism design problem, there is a set K of k agents numbered from 1 to k. Each agent
17 has a value v; > 0 for every click she gets; this value is known only to agent <. Initially, each agent 7
submits a bid b; > 0, possibly different from v;. 3 The “game” lasts for 7" rounds, where 7 is the given fime
horizon. A realization represents the click information for all agents and all rounds. Formally, it is a tuple

3One can also consider a more realistic and general model in which the value-per-click of an agent changes over time and the
agents are allowed to change their bid at every round. The case that the value-per-click of each agent does not change over time
is a special case. In that case truthfulness implies that each agent basically submits one bid as in our model (the same bid at every
round), thus our main results (necessary conditions for truthfulness and regret lower bounds) also hold for the more general model.



p=(p1, ... ,pk) such that for every agent 7 and round ¢, the bit p;(t) € {0, 1} indicates whether i gets
a click if played at round ¢. An instance of the MAB mechanism design problem consists of the number
of agents k, time horizon 7', a vector of private values v = (v1,...,vx), a vector of bids (bid profile)
b= (by,...,bx), and realization p.

A mechanism is a pair (A, P), where A is allocation rule and P is the payment rule. An allocation
rule is represented by a function .4 that maps bid profile b, realization p and a round ¢ to the agent ¢ that is
chosen (receives an impression) in this round: A(b; p;t) = i. We also denote A;(b; p;t) = 1{a(p:pst)=i}-
The allocation is online in the sense that at each round it can only depend on clicks observed prior to that
round. Moreover, it does not know the realization in advance; in every round it only observes the realization
for the agent that is shown in that round. A payment rule is atuple P = (Py, ... , Px), where P;(b; p) € R
denotes the payment charged to agent i when the bids are b and the realization is p. * Again, the payment can
only depends on observed clicks. A mechanism is called normalized if for any agent ¢, bids b and realization
p it holds that P;(b; p) is non-negative and at most b; times the number of clicks agent i got.

For given realization p and bid profile b, the number of clicks received by agent i is denoted C;(b; p). Call
C=(C, ...,Cg) the click-allocation for A. The utility that agent 7 with value v; gets from the mechanism
(A, P) when the bids are b and the realization is p is U;(vi; b; p) = v; - Ci(b; p) — Pi(b; p) (quasi-linear
utility). The mechanism is truthful if for any agent ¢, value v;, bid profile b and realization p it is the case
that U; (vi; vi, b_i; p) > Ui (vi; bi, b5 p).

In the stochastic MAB mechanism design problem, an adversary specifies a vector p = (g1, ... , pig)
of CTRs (concealed from .A), then for each agent i and round ¢, realization p;(t) is chosen independently
with mean p;. Thus, an instance of the problem includes p rather than a fixed realization. For a given
problem instance Z, let ¢* € argmax; u; v;, then regret on this instance is defined as

RY(T) = T pyr — E [Zle S vy Ai(b; pi ) | @.1)

For a given parameter vnax, the worst-case regret® R(T'; vnmax) denotes the supremum of RZ(T') over all
problem instances Z in which all private values are at most vy,x. Similarly, we define Rs(7T'; Vmax), the
worst-case 0-regret, by taking the supremum only on instances with d-gap.

Most of our results are stated for non-degenerate allocation rules, defined as follows. An interval is
called non-degenerate if it has positive length. Fix bid profile b, realization p, and rounds ¢ and ¢’ with
t <t Leti = A(b; p;t) and p’ be the allocation obtained from p by flipping the bit p;(¢). An allocation
rule A is non-degenerate w.r.t. (b, p,t,t’) if there exists a non-degenerate interval I containing b; such that

Ai(z,b_i;p;8) = A;i(b;p;5) foreach p € {p,p'}, eachs € {t,t'},andall x € I.

An allocation rule is non-degenerate if it is non-degenerate w.r.t. each tuple (b, p, ¢,t’).

3 Truthfulness characterization

Before presenting our characterization we begin by describing some related background. The click allo-
cation C is non-decreasing if for each agent ¢, increasing her bid (and keeping everything else fixed) does
not decrease C;. Prior work has established a characterization of truthful mechanisms for single-parameter
domains (domains in which the private information of each agent is one-dimensional), relating click alloca-
tion monotonicity and truthfulness (see below). For our problem, this result is a characterization of MAB

*We allow the mechanism to determine the payments at the end of the 7" rounds, and not after every round. This makes that task
of designing a truthful mechanism easier and thus strengthen our necessary condition for truthfulness (the condition used to derive
the lower bounds on regret.)

By abuse of notation, when clear from the context, the “worst-case regret” is sometimes simply called “regret”.



algorithms that are truthful for a given realization p, assuming that the entire realization p can be used to
compute payments (when computing payments one can use click information for every round and every
agent, even if the agent was not shown at that round.) One of our main contributions is a characterization
of MAB allocation rules that can be truthfully implemented when payment computation is restricted to only
use clicks information of the actual impressions assigned by the allocation rule.

An MAB allocation rule A is truthful with unrestricted payment computation if it is truthful with a
payment rule that can use the entire realization p in it computation. We next present the prior result charac-
terizing truthful mechanisms with unrestricted payment computation.

Theorem 3.1 (Myerson [31], Archer and Tardos [4]). Let (A, P) be a normalized mechanism for the MAB
mechanism design problem. It is truthful with unrestricted payment computation if and only if for any given
realization p the corresponding click-allocation C is non-decreasing and the payment rule is given by

Pi(bi,b_i; p) = bi - Ci(bi, b_i; p) fo (x,b_i;p)dz. 3.1

We can now move to characterize truthful MAB mechanisms when the payment computation is re-
stricted. The following notation will be useful: for a given realization p, let p ® 1(i,t), be the realization
that coincides with p everywhere, except that the bit p;(t) is flipped.

The first notable property of truthful mechanisms is a stronger version of monotonicity. Recall (see
Definition 1.1) that an allocation rule A is pointwise monotone if for each realization p, bid profile b, round
t and agent i, if A;(b;, b—_;; p;t) = 1 then .Al-(bj', b_i; p;t) = 1 for any bj > b;. In words, increasing a bid
cannot cause a loss of an impression.

Lemma 3.2. Consider the MAB mechanism design problem. Let (A, P) be a normalized truthful mechanism
such that A is a non-degenerate deterministic allocation rule. Then A is pointwise-monotone.

Proof. For a contradiction, assume not. Then there is a realization p, a bid profile b, a round ¢ and agent
1 such that agent ¢ loses an impression in round ¢ by increasing her bid from b; to some larger value b;r.
In other words, we have Ai(bf, b_i; p;t) < A;(bi,b_;; p;t). Without loss of generality, let us assume that
there are no clicks after round ¢, that is p;(¢') = 0 for any agent j and any round ¢’ > ¢ (since changes in p
after round ¢ does not affect anything before round ).

Let p’ = p & 1(i,t). The allocation in round ¢ cannot depend on this bit, so it must be the same for
both realizations. Now, for each realization ¢ € {p, p'} the mechanism must be able to compute the price
for agent i when bids are (b;",b_;). That involves computing the integral I;(p) = [+ Ci(x,b_s; p) dx
from (3.1). We claim that I;(p) # I;(p’). However, the mechanism cannot distinguish between p and p’
since they only differ in bit (7, t) and agent ¢ does not get an impression in round ¢. This is a contradiction.

It remains to prove the claim. Without loss of generality, assume that p;(t) = 0 (otherwise interchange
the role of p and p’). We first note that C;(x, b_;; p) < C;(x,b_;; p’) for every x. This is because everything
is same in p and p’ until round ¢ (so the impressions are same too), there are no clicks after round ¢, and in
round ¢ the behavior of A on the two realizations can be different only if that agent ¢ gets an impression, in
which case she is clicked under p’ and not clicked under p.

Since A is non-degenerate, there exists a non-degenerate interval / containing b; such that changing bid
of agent 7 to any value in this interval does not change the allocation at round ¢ (both for p and for p’). For
any € I we have C;(z,b_;;p) < Ci(x,b_;; p"), where the difference is due to the click in round ¢. It
follows that I;(p) < I;(p). Claim proved. Hence, the mechanism cannot be implemented truthfully. O

Recall (see Definition 1.2) that round ¢ is influential for a given realization p if for some bid profile b
there exists a round ¢’ > ¢ such that A(b; p; t') # A(b; p® 1(j,t); ) for j = A(b; p; t). In words: changing
the relevant part of the realization at round ¢ affects the allocation in some future round ¢’. An allocation



rule A is called exploration-separated if for any given realization p and round ¢ that is influential for p, it
holds that A(b; p; t) = A(b'; p; t) for any two bid vectors b, b’ (allocation at ¢ does not depend on the bids).

The main structural implication is “truthful implies exploration-separated”. To illustrate the ideas behind
this implication, we first state and prove it for two agents.

Proposition 3.3. Consider the MAB mechanism design problem with two agents. Let A be a non-degenerate
scale-free deterministic allocation rule. If (A, P) is a normalized truthful mechanism for some P, then it is
exploration separated.

Proof. Assume A is not exploration-separated. Then there is a counterexample (p,t): a realization p and a
round ¢ such that round ¢ is influential and allocation in round ¢ depends on bids. We want to prove that this
leads to a contradiction.

Let us pick a counterexample (p, t) with some useful properties. Since round ¢ is influential, there exists
a realization p and bid profile b such that the allocation at some round ¢’ > ¢ (the influenced round) is
different under realization p and another realization p’ = p @ 1(j,t), where j = A(b; p;t) is the agent
chosen at round ¢ under p. Without loss of generality, let us pick a counterexample with minimum value
of t' over all choices of (b, p,t). For ease of exposition, from this point on let us assume that j = 2. For
the counterexample we can also assume that p;(¢') = 1, and that there are no clicks after round ¢/, that is
pi(t") = pj(t") = 0forall t > ¢’ and for all € {1,2}.

We know that the allocation in round ¢ depends on bids. This means that agent 1 gets an impression in
round ¢ for some bid profile b = (by, by) under realization p, that is A(b; p;t) = 1. As the mechanism is
scale-free this means that, denoting b]L = b b2/32 we have A(bi“, ba; p;t) = 1. Since A(by,be; p;t) = 2
and A(b], be; p; ) = 1, pointwise monotonicity (Lemma 3.2) implies that b > b;. We conclude that there
exists a bid b] > by for agent 1 such that A(b], bo; p; ) = 1.

Now, the mechanism needs to compute prices for agent 1 for bids (bf, by) under realizations p and p/,
that is Py (b7, ba; p) and Py (b, be; p'). Therefore, the mechanism needs to compute the integral I (¢) =
fxgbj C1(z, ba; ) dx for both realizations ¢ € {p, p'}.

First of all, for all z < b and for all ¢ < ', A(z,be; p;t") = A(x,ba; p';1"), since otherwise the
minimality of ¢’ will be violated. The only difference in the allocation can occur in round ¢'.

Let us assume A;j (b1, bo; p;t') < Aj(by,ba;p/,t') (otherwise, we can swap p and p’). We make the
claim that for all bids z < bf of agent 1, the influence of round ¢ on round ¢’ is in the same “direction”:

Ai(z,bo; p5 ') < Ay (z,bo; p5 ') forall z <bf. (3.2)

Suppose (3.2) does not hold. Then there is an z < b] such that 1 = A; (z, ba; p; ') > Ay (x, ba; p'5 ') = 0.
(Note that we have used the fact that the mechanism is deterministic.) If < b; then pointwise monotonic-
ity is violated under realization p, since Aj(x,bo; p;t') > Aj(b1,be; p;t'); otherwise it is violated under
realization p’, giving a contradiction in both cases. The claim (3.2) follows.

Since A is non-degenerate, there exists a non-degenerate interval I containing b; such that if agent 1
bids any value = € I then A;(z, ba; p;t') < Ai(z,ba;p'st'). Now by (3.2) it follows that I1(p) < I2(p').
However, the mechanism cannot distinguish between p and p’ when the bid of agent 1 is b;, since the
differing bit py(t) is not observed. Therefore the mechanism cannot compute prices, contradiction. O

3.1 General Truthfulness Characterization

Let us develop the general truthfulness characterization that does not assume that an allocation is scale-free
and ITA. We will later use it to derive Theorem 1.3.

Definition 3.4. Fix realization p and bid vector b. A round ¢ is called (b;p)-secured from agent i if
A(bj, b_i;p;t) = A(b;, b_;; p;t) for any bj > b;. A round t is called bid-independent w.r.t. p if the
allocation A(b; p; t) is a constant function of b.



The following definitions elaborate on the notion of an influential round.

Definition 3.5. A round ¢ is called (b; p)-influential, for bid profile b and realization p, if for some round
t' > t it holds that A(b; p; ') # A(b; p'; t') for realization p' = p @ 1(j,t) such that j = A(b; p;t). ® In this
case, t’ is called the influenced round and j is called the influencing agent of round ¢. The agent i is called
an influenced agent of round t if i € { A(b; p;t'), A(b; p';t')}.

Note that a round is influential w.r.t. realization p if and only if it is (b, p)-influential for some b. The
central property in our characterization is that each (b, p)-influential round is (b, p)-secured.

Definition 3.6. A deterministic allocation is called weakly separated if for every realization p and each bid
vector b, it holds that if round ¢ is (b; p)-influential with influenced agent ¢ then it is (b; p)-secured from 1.

We notice that exploration-separated is a stronger notion.
Observation 3.7. For a deterministic allocation, exploration-separated implies weakly separated.”
We are now ready to state our general characterization.

Theorem 3.8. Consider the MAB mechanism design problem. Let A be a non-degenerate deterministic
allocation rule. Then mechanism (A, P) is normalized and truthful for some payment rule P if and only if
A is pointwise monotone and weakly separated.

Proof. For the “only if” direction, A is pointwise-monotone by Lemma 3.2, and the fact that A is weakly
separated is proved similarly to Proposition 3.3 (albeit with a few extra details). We defer it to Appendix A.

We focus on the “if” direction. Let .4 be a deterministic allocation rule which is pointwise monotone
and weakly separated. We need to provide a payment rule P such that the resulting mechanism (A, P) is
truthful and normalized. Since A is pointwise monotone, it immediately follows that it is monotone (i.e., as
an agent increases her bid, the number of clicks that she gets cannot decrease). Therefore it follows from
Theorem 3.1 that mechanism (.4, P) is truthful and normalized if and only if P is given by (3.1). We need
to show that P can be computed using only the knowledge of the clicks (bits from the realization) that were
revealed during the execution of A.

Assume we want to compute the payment for agent ¢ in bid profile (b;,b_;) and realization p. We will
prove that we can compute C;(x) = C;(x,b_;; p) for all z < b;. To compute C;(x), we show that it is
possible to simulate the execution of the mechanism with bid; = z. In some rounds, the agent ¢ loses
an impression, and in others it retains the impression (pointwise monotonicity ensures that agent ¢ cannot
gain an impression when decreasing her bid). In rounds that it loses an impression, the mechanism does
not observe the bits of p in those rounds, so we prove that those bits are irrelevant while computing C;(x).
In other words, while running with bid; = =z, if mechanism needs to observe the bit that was not revealed
when running with bid; = b;, we arbitrarily put that bit equal to 1 and simulate the execution of A. We
want to prove that this computes C;(x) correctly.

Lett; < t9 < --- < t,, be the rounds in which agent 7 did not get an impression while bidding x, but
did get an impression while bidding b;. Let p° := p, and let us define realization p! inductively for every
I € [n] by setting p! := p'=t @ 1(j;, t;), where j; = A(x,b_; p' ;1)) is the agent that got the impression
at round ¢; with realization pl*1 and bids (z,b_;).

First, we claim that j; # i for any /. Indeed, suppose not, and pick the smallest [ such that j;; = 3.
Then t; is a (z,b_;; p')-influential round, with influenced agent j;,; = i. Thus ¢; is (z,b_;; p')-secured

SNote that realizations p and p’ are interchangeable.

"To see this, simply use the definitions. Fix realization p and bid vector b, let t be a (b; p)-influential round with influenced agent
i. We need to show that ¢ is (b; p)-secured from ¢. Round ¢ is (b; p)-influential, thus influential w.r.t. p, thus (since the allocation is
exploration-separated) it is bid-independent w.r.t. p, thus agent ¢ cannot change allocation in round ¢ by increasing her bid.



from i. Since A(x,b_;; plit)) = A(x,b_s; p~ 1)) = j; # i by minimality of I, agent 7 does not get
an impression in round #; if she raises her bid to b;. That is, A(b; p';t;) # i. However, the changes in
realizations p°, ... , p!~! only concern the rounds in which agent i is chosen, so they are not seen by the
allocation if the bid profile is b (to prove this formally, use induction). Thus, A(b; p!; ;) = A(b; p; 1)) = 1,
contradiction. Claim proved. It follows that A(b; p;t;) = i for each [. (This is because by induction, the
change from p'~! to p is not seen by the allocation if the bid profile is b.)

We claim that A;(x, b_;; p;t') = A;(x,b_;; p"; t') for every round ¢, which will prove the theorem. If
not, then there exists I such that A;(z,b_;; p';t') # A;(2,b_s; p~1;t') for some ¢’ (and of course ¢’ > ;).
Round ¢; is thus (x,b_;; p!)-influential with influenced round #' and influenced agent 4. Moreover, the
influencing agent of that round is j;, and we already proved that j; # 4. Since round ¢, is (z, b_;; p!)-secured
from agent ¢ due to the “weakly separated” condition, it follows that agent ¢ does not get an impression in
round ¢; if she raises her bid to b;. That is, A(b; p'; ;) # 4, contradiction. O

Note that we have proven the main characterization (Theorem 1.3) for the case of two agents, because
for two agents IIA trivially holds and in the scale-free case, an allocation is exploration-separated if and only
if it is weakly separated.

Let us argue that the non-degeneracy assumption in Theorem 3.8 is indeed necessary. To this end, let
us present a simple deterministic mechanism (A, P) for two agents that is truthful and normalized, such
that the allocation rule A is pointwise monotone, scale-free and yet nor weakly separated. (The catch is, of
course, that it is degenerate.) There are only two rounds. Agent 1 allocated at round 1 if and only if b1 > bo.
Agent 1 allocated at round 2 if by > by or if by = by and p;(1) = 1; otherwise agent 2 is shown. This
completes the description of the allocation rule. To obtain a payment rule P which makes the mechanism
normalized and truthful, consider an alternate allocation rule A" which in each round selects agent 1 if and
only if by > by. (Note that A" = A except when b; = bs.) Use Theorem 3.8 for A’ to obtain a normalized
truthful mechanism (A’, P’), and set P = P’. The payment rule P is well-defined since the observed clicks
for P and P’ coincide unless b; = by, in which case both payment rules charge 0 to both players. The
resulting mechanism (A, P) is normalized and truthful because the integral in (3.1) remains the same even
if we change the value at a single point. It is easy to see that the allocation rule 4 has all the claimed
properties; it fails to be non-degenerate because round ¢ is influential only when b; = bs.

3.2 Scalefree and ITA allocation rules

To complete the proof of Theorem 1.3, we show that under the right assumptions, an allocation is exploration-
separated if and only if it is weakly separated. The full proof of this result is in Appendix A.

Lemma 3.9. Consider the MAB mechanism design problem. Let A be a non-degenerate deterministic
allocation rule which is scalefree, pointwise monotone, and satisfies I1A. Then it is exploration-separated if
and only if it is weakly separated.

Proof Sketch. We sketch the proof of Lemma 3.9 at a very high level. The “only if”” direction was observed
in Observation 3.7. For the “if” direction, Let A be a weakly-separated mechanism. We prove by a con-
tradiction that it is exploration-separated. If not, then there is a realization p and a round ¢ such that ¢ is
influencial w.r.t. p as well as not bid-dependent w.r.t. p. Let round ¢ be influencial with bid vector b, in-
fluencing agent [, and influenced agents j and j' # j in influenced round ¢’ (see [1] in Figure 1; all boxed
numbers in this sketch will refer to this figure).

From the assumption, ¢ is not bid-dependent w.r.t. p, which means that there exists a bid profile b’ such
that #/ # [ is played in round ¢ with bids b’. Using scalefreeness, IIA, and pointwise-monotonicity, we can
prove that there exists a sufficiently large bid b; of agent ¢’ such that she gets an impression in round ¢ with
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Figure 1: This figure explains all the steps in the proof of Lemma 3.9. The rows correspond to agents (whose identity
is shown on the right side), and columns correspond to time rounds. The asterisks show the impressions. The arrows
show how the impressions get transferred, and labels on the arrows show what causes the transfer. In labels, “in p,
b; 17 denotes that a particular transfer of impression is caused in realization p when bid b; in increased.

bids (bj,, b_i) (see [2]). Using the properties of the mechanism, it can further be proved that there is an agent
i such that she gets the impression in round ¢ when either 7 increases her bid, or [ decreases her bid (see [3)).
When ¢ increases her bid to bz’-'r, she also gets an impression in round #’, since impressions cannot differ in
round ¢ in the case when [ is not played in round ¢ and they must get transferred from j and ;' to somebody
in round ¢/, and ITA implies that this somebody should be i.

Recall that two different players j and j” get the impression in round ¢’ under p and p’ respectively (see
[4]). We prove that either agent ;" or agent j must be equal to [ (this is done by looking at how the allocation
in round ¢’ changes when [ decreases her bid). Let us break the symmetry and assume ;' = [ (see box 5)).
It is also easy to see that when 7 increases her bid, impression in round ¢’ get transferred to her in p (at
some minimum value bjp , see [6]), and impression in round ¢’ gets transferred to her also in p’ (as some

possibly different minimum value b:rp ,, see [7]). Using the assumptions of weakly-separatedness, we prove

that b = b’ " (see [8]). This can be proved by observing that b > max{b;”,b;" l}, and then using
weakly-separatedness of A. Since these two bids were at a “threshold value” (these were the minimum
values of bids to have transferred the impression in p and p’ from j and [ respectively), we are able to prove
that the ratio of b;/b; must be some fixed number dependent on p, p’, and t'. In particular, it follows that b;
belongs to a finite set S(b_;) which depends only on b_;. However, by non-degeneracy of .A there must be
infinitely many such b;’s, which leads to a contradiction. O

4 Lower bounds on regret

In this section we use structural results from the previous section to derive lower bounds on regret.

Theorem 4.1. Consider the stochastic MAB mechanism design problem with k agents. Let A be an
exploration-separated deterministic allocation rule. Then its regret is R(T; vmax) = Q(Umax k3 T%/3).

Let jip = (% ey %) € [0, 1]* be the vector of CTRs in which for each agent the CTR is % For each

agent 4, let ji; = (ui1,...,pix) € [0, 1] be the vector of CTRs in which agent i has CTR p;; = % + €,
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€= kY3713 and every other agent j # ¢ has CTR p;; = % As a notational convention, denote by PP; |-
and [E;[-] respectively the probability and expectation induced by the algorithm when clicks are given by fi;.
Let Z; be the problem instance in which CTRs are given by fi; and all bids are vy,,x. For each agent i, let J;
be the problem instance in which CTRs are given by iy, the bid of agent ¢ iS vax, and the bids of all other
agents are Upax/2. We will show that for any exploration-separated deterministic allocation rule A, one of
these 2k instances causes high regret.

Let N; be the number of bid-independent rounds in which agent ¢ is played. Note that N; does not
depend on the bids. It is a random variable in the probability space induced by the clicks; its distribution
is completely specified by the CTRs. We show that (in a certain sense) the allocation cannot distinguish
between jip and fi; if N; is too small. Specifically, let A; be the allocation in round ¢. Once the bids
are fixed, this is a random variable in the probability space induced by the clicks. For a given set S of
agents, we consider the event { A; € S} for some fixed round ¢, and upper-bound the difference between the
probability of this event under fiy and fi; in terms of E;[V;], in the following crucial claim, which is proved
in Appendix B via relative entropy techniques.

Claim 4.2. For any fixed vector of bids, each round t, each agent i and each set of agents S, we have
|Po[A; € S] —Pi[A; € S]] < O(€® Eo[NVi]). (4.1)

Proof of Theorem 4.1: Fix a positive constant 3 to be specified later. Consider the case k = 2 first. If
Fo[N;] > BT?/3 for some agent 7, then on the problem instance 7;, regret is Q(72/3). So without loss of
generality let us assume Eo[N;] < 37T2/3 for each agent i. Then, plugging in the values for e and Eq[N;],
the right-hand side of (4.1) is at most O(3). Take (3 so that the right-hand side of (4.1) is at most %. For
each round ¢ there is an agent i such that Pg[A; # i] > 3. Then P;[A; # i] > 1 by Claim 4.2, and therefore
in this round algorithm A incurs regret (€ vax ) under problem instance Z;. By Pigeonhole Principle there
exists an ¢ such that this happens for at least half of the rounds ¢, which gives the desired lower-bound.

Case k > 3 requires a different (and somewhat more complicated) argument. Let R = (3 k'/3T2/3 and
N be the number of bid-independent rounds. Assume Eg[N] > R. Then Eo[N;] < + Eo[N] for some agent
i. For the problem instance J; there are, in expectation, E[N — N;] = (R) bid-independent rounds in
which agent i is not played; each of which contributes Q(vyax ) to regret, so the total regret is Q(vmax R).

From now on assume that Ey[N] < R. Note that by Pigeonhole Principle, there are more than % agents
i such that Eg[N;] < 2R/k. Furthermore, let us say that an agent i is good if Po[A; = i] < % for more than
T'/6 different rounds ¢. We claim that there are more than % good agents. Suppose not. If agent 7 is not good
then Po[A; = i] > 2 for at least 37 different rounds ¢, so if there are at least k/2 such agents then

T =3 SF Po[A =i > 5% (3T) x § > kT/3>T,

contradiction. Claim proved. It follows that there exists a good agent ¢ such that Eqg[N;] < 2R/k. Therefore
the right-hand side of (4.1) is at most O([3). Pick 3 so that the right-hand side of (4.1) is at most %o- Then
by Claim 4.2 for at least 7'/6 different rounds ¢ we have P;[A; = 7] < 1%. In each such round, if agent 7 is
not played then algorithm A incurs regret (€ vy,,x) on problem instance Z;. Therefore, the (total) regret of
A on problem instance Z; is (€ Umax ') = Q(Vmax ki/3 T2/3). O

Theorem 4.3. In the setting of Theorem 4.1, fix k and viax and assume that R(T'; vmax) = O(Umax T7)
for some vy < 1. Then for every fixed 6 < % and ) < 2(1 — 7) we have R5(T; Umax) = (6 Vmax T™).

Proof. Fix A € (0, 2(1 — v)). Redefine i;’s with respect to a different ¢, namely ¢ = 7~*/2. Define the
problem instances Z; in the same way as before: all bids are vy,ax, the CTRs are given by fi;.
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Let us focus on agents 1 and 2. We claim that E;[N1] + Ea[Na] > BT*, where 3 > 0 is a constant to
be defined later. Suppose not. Fix all bids to be vyax. For each round ¢, consider event S; = {A; = 1}.
Then by Claim 4.2 we have

|P1[S] — Pa[Si]| < [Po[Se] — P1[Si]| + [PolSe] — P2[Si]| < O (€%) (E1[N1] + Eo[No]) < 4

for a sufficiently small 5. Now, P;[S;] > % for at least 7'/2 rounds ¢. This is because otherwise on problem
instance Z; regret would be R(T) > Q(e Tvmax) = Q(vmax T 1=2/ 2), which contradicts the assumption
R(T) = O(vmax T"). Therefore P5[S;] > 1 for at least 7/2 rounds ¢, hence on problem instance Z, regret
is at least (e T'vax ), contradiction. Claim proved.

Now without loss of generality let us assume that E;[N;] > gT)‘. Consider the problem instance in
which CTRs given by /i1, bid of agent 2 is vpax, and all other bids are vyax(1 — 26)/(1 + 2¢). It is easy to
see that this problem instance has d-gap. Each time agent 1 is selected, algorithm incurs regret Q(dvmax).
Thus the total regret is at least Q(SN] Vmax) = (6 Vmax T). O

Matching upper bound. Let us describe a very simple mechanism, called the naive MAB mechanism,
which matches the lower bound from Theorem 4.1 up to polylogarithmic factors (and also the lower bound
from Theorem 4.3, fory = A = % and constant §). 8

Fix the number of agents k, the time horizon 7', and the bid vector . The mechanism has two phases.
In the exploration phase, each agent is played for Ty := k=2/312/3 (log T)l/ 3 rounds, in a round robin
fashion. Let c; be the number of clicks on agent 7 in the exploration phase. In the exploitation phase, an
agent +* € argmax; ¢;b; is chosen and played in all remaining rounds. Payments are defined as follows:
agent i* pays max;c)\ {;=} Cibi/ci~ for every click she gets in exploitation phase, and all others pay 0.
(Exploration rounds are free for every agent.) This completes the description of the mechanism.

Observation 4.4. Consider the stochastic MAB mechanism design problem with k agents. The naive mech-
anism is normalized, truthful and has worst-case regret R(T'; vmax) = O(Umax K1/312/3 10g2/ 35T).

Proof. The mechanism is truthful by a simple second-price argument.” Recall that ¢; is the number of
clicks 7 got in the exploration phase. Let p; = max;; c;b;/c; be the price paid (per click) by agent i if she
wins (all) rounds in exploitation phase. If v; > p;, then by bidding anything greater than p; agent ¢ gains
v; — p; utility each click irrespective of her bid, and bidding less than v;, she gains 0, so bidding v; is weakly
dominant. Similarly, if v; < p;, then by bidding anything less than p; she gains 0, while bidding b; > p;,
she loses b; — p; each click. So bidding v; is weakly dominant in this case too.

For the regret bound, let (p41 , ... , ug) be the vector of CTRs, and let i; = ¢;/Tp be the sample CTRs.
By Chernoff bounds, for each agent i we have Pr[|fi; — p;| > 7] < T~%, for r = /8log(T)/Tp. If in
a given run of the mechanism all estimates ji; lie in the intervals specified above, call the run clean. The
expected regret from the runs that are not clean is at most O(vpmax ), and can thus be ignored. From now on
let us assume that the run is clean.

The regret in the exploration phase is at most kT vmax = O(Umax k23 T%/3 log!/3T)). For the ex-
ploitation phase, let 7 = argmax; u;b;. Then (since we assume that the run is clean) we have

which implies ;v — v+ < 17(vj + vi=) < 2r vmax. Therefore, the regret in exploitation phase is at most
2r Vmax T = O(Umax K1/312/3 log2/ 3T ). Therefore the total regret is as claimed. O

$Independently, Devanur and Kakade [15] presented a version of the naive MAB mechanism that achieves the same regret
even in the more general model in which the value-per-click of an agent changes over time and the agents are allowed to submit a
different bid at every round. Instead of assigning all impressions to the same agent in the exploitation phase, their mechanism runs
the same allocation and payment procedure for each exploration round separately (see [15] for details).

° Alternatively, one can use Theorem 3.8 since all exploration rounds are bid-independent, and only exploration rounds are
influential, and the payments are exactly as defined in Theorem 3.1.
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5 Extensions and open questions

We extend our results in several directions. First, we derive a regret lower bound for deterministic truthful
mechanisms without assuming that the allocations are scale-free. In particular, for two agents there are no
assumptions. This lower bound holds for any % (the number of agents) assuming IIA, but unlike the one in
Theorem 4.1 it does not depend on k. See Appendix C for details.

Second, we extend our results to randomized mechanisms. We consider randomized mechanisms that
are universally truthful, i.e. truthful for each realization of the internal random seed. For mechanisms that
randomize over exploration-separated deterministic allocation rules, we obtain the same lower bounds as in
Theorems 4.1 and Theorem 4.3, see Appendix D for the details.

Third, we consider randomized allocation rules under a weaker version of truthfulness: a mechanism is
weakly truthful if for each realization, it is truthful in expectation over its random seed. We show that any
randomized allocation that is “pointwise monotone” and satisfies a certain notion of “separation between
exploration and exploitation” can be turned into a mechanism that is weakly truthful and normalized. Then
we apply this result to two algorithms in the literature [23, 14] in order to obtain regret guarantees for the
version of the MAB mechanism design problem in which the clicks are chosen by an adversary. (This ver-
sion corresponds to the adversarial MAB problem [7, 14, 1, 8].) In particular, for oblivious (resp. adaptive)
adversaries the upper bound matches our lower bound for deterministic allocations up to (log k‘)l/ 3 (resp.
k2/3) factors. See Appendix E for details.

Fourth, we consider the stochastic MAB mechanism design problem under a more relaxed notion of
truthfulness: truthfulness in expectation, where for each vector of CTRs the expectation is taken over clicks
(and the internal randomness in the mechanism, if the latter is not deterministic). Following our line of
investigation, we ask whether restricting a mechanism to be truthful in expectation has any implications
on the structure and regret thereof. Given our results on mechanisms that are truthful and normalized,
it is tempting to seek similar results for mechanisms that are truthful in expectation and normalized in
expectation.'” We rule out this approach: we show that in order to obtain any non-trivial lower bounds on
regret and (essentially) any non-trivial structural results, one needs to assume that a mechanism is ex-post
normalized, at least in some approximate sense. The key idea is to view the allocation and the payment as
multivariate polynomials over the CTRs. See Appendix F for the details.

The two major open questions left open by this work concern structural results and regret lower bounds
for (i) weakly truthful randomized mechanisms allocations, and (ii) mechanisms that are truthful in ex-
pectation. The latter question seems to require very different techniques which would further explore the
connection to polynomials that we used in Appendix F.
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Appendix A: Truthfulness characterization

In this section we provide the proofs which did not fit into Section 3. We start with a complete proof of
the “only if” direction of Theorem 3.8.

Lemma A.1. Consider the MAB mechanism design problem. Let (A, P) be a normalized truthful mecha-
nism such that A is a non-degenerate deterministic allocation rule. Then A is weakly separated.

Proof. Assume A is not weakly separated. Then there is a counterexample (p, b, t,t',1): a realization p, bid
vector b, rounds ¢, ¢’ and agent i such that round ¢ is (b; p)-influential with influenced agent 7 and influenced
round ¢’ and it does not holds that round ¢ is (b; p)-secured from 7. We prove that this leads to a contradiction..

Let us pick a counterexample (p, b, t,t',7) with a minimum value of ¢’ over all choices of (p, b, t,17).
Without loss of generality, let us assume that p;(t') = 1 and p;(t") = 0 for all t”” > ¢’ and for all agents j.

Let j = A(b; p;t). As it does not holds that round ¢ is (b; p)-secured from i, this means that j # i, and
there exists a bid b > b; such that A(b;", b_;; p; t) # j.

Let o = p @ 1(j,t). The mechanism needs to compute prices for agent ¢ when her bid is bf under
realizations p and p/, that is to compute P;(b;", b_;; p) and P;(b;, b_;; p’). Therefore, the mechanism needs
to compute the integral I;(¢) = fx<b1+ Ci(x,b_;; p) dx for both realizations ¢ € {p, p'}.

First of all, for all z < b and for all ¢ < ¢/, A;(z,b_; p;t") = Ai(x,b_s;p';¢"). If not,then the
minimality of ¢’ will be violated. This is because, if there were such an z and t” < ¢’ with A;(z,b_;; p; t") #
Ai(xz,b_s; p';t"), then round ¢ will still be (b, p)-influential with influenced agent 4, and influenced round
t" < t, violating the minimality of ¢”. Therefore, when we decrease the bid of agent i, the only difference
in the allocation can occur at time round ¢'.

As i is the influenced agent at round ¢’ it must hold that A;(b;, b_;; p;t') # A;(bi,b—i; p',t'). Let us
assume 0 = A;(b;, b_s; p;t') < A; (b, b_i; p',t') = 1 (otherwise, we can swap p and p’). Note that we have
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made use of the fact that the mechanism is deterministic. Let us make the the claim that for all bids z < bj
the influence of round ¢ on round ¢’ is in the same “direction.”

Ai(,b_i; pit') < Ai(w,b_i; p'st') forallz < b (A1)

Suppose (A.1) does not hold. Then there is an x < b] such that 1 = A;(z,b_;; p; ') > Ai(z,b_s;p';t') =
0. (Note that we have used the fact that the mechanism is deterministic.) If x > b;, then pointwise mono-
tonicity is violated in p/, since 0 = A;(z, b_;; p'st') < A;(bi,b—i; p';t') = 1. If < b; on the other hand,
then the pointwise-monotonicity is violated in p, since 1 = A;(x, b_;; p;t') > A;(bi, b_i; p;t') = 0, giving
a contradiction in both cases. The claim (A.1) follows.

By the non-degeneracy of A, there exists a non-degenerate interval / containing b; such that

Ai(z,b_i; p;t) < Ai(x,b_i; p'st') forallz € 1. (A.2)

By (A.1) and (A.2) it follows that I;(p) < I;(p’). However, the mechanism cannot distinguish between p
and p’ when agent i’s bid is b]", since the differing bit p;(t) is not seen. Contradiction. O

A.1 Proof of Lemma 3.9
For convenience, let us restate the lemma.

Lemma (Lemma 3.9 restated). Consider the MAB mechanism design problem. Let A be a non-degenerate
deterministic allocation rule which is scalefree, pointwise monotone, and satisfies IIA. Then it is exploration-
separated if and only if it is weakly separated.

The “only if” direction is a consequence of Observation 3.7. Here we prove the “if”” direction. For bid
profile b, realization p, agent [ and round ¢, the tuple (b; p; [; t) is called an influence-tuple if round ¢ is (b, p)-
influential with influencing agent [. Suppose allocation A is weakly separated but not exploration-separated.
Then there is a counterexample: an influence-tuple (b; p;l;t) such that round ¢ is not bid-independent
w.r.t. realization p. We prove that such counterexample can occur only if b; € S;(b_;), for some finite
set S;(b_;) C R that depends only on b_;.

Proposition A.2. Let A be as in Lemma 3.9. Assume A is weakly separated. Then for each agent | and each
bid profile b_; there exists a finite set S;(b_;) C R with the following property: for each counterexample
(b1, b_; p; L t) it is the case that by € Sy(b_;).

Once this proposition is proved, we obtain a contradiction with the non-degeneracy of .A. Indeed, sup-
pose (b; p; ;) is a counterexample. Then (b; p; [;t) is an influence-tuple. Since A is non-degenerate, there
exists a non-degenerate interval I such that for each x € I it holds that (x,b_;; p;[;t) is an influence-tuple,
and therefore a counterexample. Thus the set S;(b_;) in Proposition A.2 cannot be finite, contradiction.

In the rest of this section we prove Proposition A.2. Fix a counterexample (b; p;[;t); let ¢ > ¢ be
the influenced round. In particular, A(b; p;t) = [ (see |1]in Figure 1 on page 11; all boxed numbers will
refer to this figure). Then by the assumption there exist bids b’ such that A(V'; p;t) = ¢/ # [. We claim
that this implies that there exists a bid b:,r > b; such that A(b;f, b_i; p;t) = i’ (see [2)). This is proven in
Lemma A.4 below, and in order to prove it we first present the following lemma, which essentially states
that if the mechanism makes a choice between ¢ and j of who to be show, then it can only depend on the
ratio of their bids bid;/bid;, and not on the bids of other agents.

Lemma A.3. Let A be an MAB (deterministic) allocation rule that is pointwise-monotone, scalefree, and
satisfies IIA. Let there be two bid profiles o and (3 such that A(a; p;t) € {i, 5}, A(B;p;t) € {i,j}, and
a;/a; = Bi/ ;. Then it must be the case that A(a; p;t) = A(S; p; t).
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Proof. As A is scalefree we assume that o;; = ; and o; = [3; by scaling bids in 3 by a factor of «;/3; (or
a factor of av;/3;), without changing the allocation.

Assume for the sake of a contradiction that A(S3; p; t) # A(«; p; t). Let us number the agents as follows.
Agents 4 and j are numbered 1 and 2, respectively. The rest of the agents are arbitrarily numbered 3 to k.
Consider the following sequence of bid vectors. a(1) = «(2) = a and a(m) = (B, a(m — 1)_,,) for
m € {3,...,k}. Asa(l) = aand a(k) = 3, A(a(1); p;t) = A(a; p;t) and A(a(k); p;t) = A(B; p;t).
Since A(a(k); p;t) = A(B;p;t) # Ala;p;t) = A(a(l); p;t) there exists m € {3,...,k} such that
A(a(m = 1); p;t) = A(a; p; t) € {3, 7} while A(a(m); p;t) # A(a(m — 1); p;t). Asm # i andm # j,
ITA implies that A(«(m); p; t) = m and given that, IIA also implies that A(«(k); p;t) € {m,m+1,...k}
(note that 4, j are not in this set). But as A(a(k); p;t) = A(0; p;t) € {3, j} this yields a contradiction. [J

Lemma A.4. Let A be an MAB (deterministic) allocation rule that is pointwise-monotone, scalefree, and
satisfies 1IA. Let there be two bid profiles a and [ such that A(o; p;t) = i and A(B; p;t) = j # i. Then
there exists 3 > B3; such that A(B;", B—i; p;t) = i.

In other words, if it is possible for i to get the impression in round t at all, then it is possible for her to
get the impression starting from any bid profile and raising her bid high enough.

B
aj - g—; In the bid profile (aj, a_;), @ must get the impression (by pointwise monotonicity). This gives a

Proof. We first note that % > & If not, then % < % Consider a raised bid of 7 from «; to a;r =
J J J J

+
contradiction to Lemma A.3, since A(a;5, a_i;p;t) =i € {i,5}, A(B;p;t) = j € {i,j}, and i—l = g—;

J
but A(o;, a_g; p; t) # A(B; p; t).
Now, consider i increasing her bid in profile 3 to 8" = f3; - 2‘—; Now, A(a;p;t) = i € {i,7},

+
A(BF, B—i; p;t) € {i,j} (from IIA), and g—; = % We can apply Lemma A.3 to deduce that A(«; p;t) =
A(B:", B—i; p; t) and both are equal to i since the first allocation is equal to i. O

From the lemma above, it follows that agent i’ can increase her bid (in bid profile b) and get the impres-
sion in realization p, round ¢. To quantify by how much agent i’ needs to raise her bid to get the impression,
we introduce the notion of threshold ©; j(p;t) in the next lemma.

Lemma A.5. Let A be an MAB (deterministic) allocation rule that is pointwise monotone, scalefree and
satisfies 1IA. For realization p, round t, two agents i and j # 1, let bids b_;_; be such that there ex-
ist xo and y satisfying A(xo,y,b_i—;; p;t) = j, and there exists x (possibly dependent on y) satisfying
A(z,y,b_i_j; p;t) = i. Let us fix such a y and define'!
QUi (p,t) = iinf {1: } Az, y,b_i; p;t) = z}

T

2

[ v i
Then for any bids b’_i_j, 0,;" (p, t) is well defined and satisfies ©,;’ (p,t) = @f’;l”

by ©; ;(p,t), as G)?’;Fj (p,t) is independent of b_;_;.

(p,t). We denote it

Proof. We first prove that if the conditions of the definition of @2;"’]' (p;t) are satisfied for b_;_;, then are
also satisfied for any other o’ i—j- Let us say they are satisfied for b_;_;, that is there exists zo, = and y,
such that A(zo,y,b—i—j; p;t) = j and A(x,y,b_s; p;t) = i. We want to prove existence of =’ and y/’ for

v ;o I A(zo,y,0";_;;p;t) = j then existence of y' is proved for b ;_; too, since y’ = y works. If not,

"Note that if there are no values of bids of (¢ and ) and j (equal to y) such that j can get an impression with small enough
bid (zo) of agent ¢ and i can get an impression by raising her bid (to ), then we don’t define @f;i”' (p; t) at all. We will be careful
not to use such undefined ©’s. It is not hard to see that if bids are nonzero, then ©; ;(p;t) is defined if and only if ©; ;(p;t) is.
Moreover 0 < ©; ;(p;t) < oo, and ©; ;(p;t) = (0:,(p; 1))~ .
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then A(zo,y,b";_;;p;t) = j' # j and A(wo,y,b—i—j; p;t) = j, and by Lemma A4, there exists ay’ >y
such that A(zo, y',b";_;; p;t) = j. Once the existence of y' is proved, we now prove the existence of z’.
Letz' = x - % > x. We have A(z,y,b_;—j;p;t) =i € {i,7} and A(x’,y’,b’_i_j;p; t) € {i,j} by IA
(¢ can only transfer impression to her by changing her bid) and 2’/y’ = z/y. From Lemma A.3, we get
i=Az,y,b_i—j;p;t) = A2, ¢/, b’ﬂ;j; p; t). Hence the existence of 2’ is proved too.

For the sake of contradiction, let us assume that  := @?’;i’j (p;t) < @Z}i’j (p;t) =: 0'. Let us scale
the bids in (2',y',b", ;) by a factor such that the factor times y' is equal to y. We can hence assume that
y' = y. Letus pick abid 2" € (0y, 0'y). We have A(z",y,b_;_j; p; t) = i (since =" /y is past the threshold
0), A(z",y = y,b’_i_j;p;t) = j (2"/y' is yet not past the threshold ¢’), and =" /y = =" /y’. This is a
contradiction to the Lemma A.3. Therefore, 6 = 6'. O

We conclude that if b;',’ > by - Oy 1(p,t) then .A(b;?, b_i;p;t) =i’ # [ (see |2] again). Note that we are
using O ;(p; t) since this is well-defined. Define p’ = p @ 1(1, t).

Let us think about decreasing the bid of agent [ from b; (it is positive, since all bids are assumed to be
positive). When the bid of agent [ is b;, she gets the impression in round ¢, but when her bid is small enough
(in particular as low as by /O, ;(p;t)), then she must not get the impression in round ¢ (see Lemma A.3).
When the bid of [ decreases, some other agent gets the impression in round ¢, let us call that agent ¢ (note
that this agent may not be the same as agent i’ above). See [3].

Now, starting from bid profile b, let us increase the bid of agent 7. When the bid of agent ¢ is large
enough (in particular as large as b;0;s ;(p; t)b;/b;r), then [ can no longer get the impression in round ¢ (see
Lemma A.3). From IIA, the impression must get transferred to . Therefore we can define ©; ;(p; t), and
when bj > b;0;,(p;t), agent ¢ gets the impression in round ¢ (see |3| again). Note that A(bj, b_i;p;t) =
.A(b;r, b_i; p';t) = i (click information for [ at round ¢ cannot influence the impression decision at round t).

Recall that ¢/ is the influenced round. Let A(b; p;t') = j and let A(b; p'; ') = 5’ # j (see[4]). As A s
pointwise monotone and IIA, A(b;", b_;; p;t') € {i,j} and A(b],b_;; p';t') € {i,5'}. It must be the case
that A(b;,b_;; p; ') = A(b;,b_s; p';1'), as | does not get an impression at round ¢ (and the algorithm does
not see the difference between p and p’). As j' # j we conclude that

AT b_is pit') = A(bf b o5 t) = i.

Next we note that i # j and ¢ # j'. This is because if i = j (respectively ¢ = j'), then round ¢
would be (b; p)-influential (respectively (b; p')-influential) with influenced agent 7 but it is not (b; p)-secured
(respectively (b; p’)-secured) from i, in contradiction to the assumption.

We also note that [ € {7,5'} (see[5)). Assume for the sake of contradiction that [ # j and [ # j'. For
b, < bi - ©1i(p,t) it holds that A(b; ,b_s; p;t) = A(b, ,b_s;p';t) = i (since ¢ was defined such that i
gets the impression in round ¢ when [ decreases her bid) thus A(b, ", b_;; p;t') = A(b; ,b—; p;t') (as click
information for [ at round ¢ is not observed). (Also, as a side note, observe that b, < 0; by pointwise-
monotonicity since agent [ was getting an impression in round ¢ with bid b; and lost it when her bid is b; .)
Let A(b;,b_s; p;t") = A(b; ,b_;p';t") = I'. Note that I # [, since otherwise, A;(x,b_;; p;t’) is not a
monotone function of x: it is 0 when x = b; (since j gets an impression), and 1 when x = b, < by, a
contradiction to pointwise-monotonicity. Now, note that the impression in p’ at time ¢’ transfers from j' to
I', and impression in p at time ¢’ transfers from j to I’, none of which ({3, j/,1'}) are equal to [ and j # j'.
Let us write this in equations:

Abr,boi; pit') = j Alby b_pipit) =1
Ab, by p'5t) = 5 A(by b plst) =1

It must be the case that either j # I’ or 5/ # I’ (since j # j'). If j # ', then in p at time ¢/, reducing the
bid of [ transfers impression from j to I’ (both of them are different from [), thus violating ITA. Similarly, if
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4" # U, thenin p’ at time ¢/, reducing the bid of [ transfers impression from j’ to I’ (both of them are different
from 1), thus violating ITA. We thus have [ € {j, j'}. Letl = j’ (since otherwise, we can swap the roles of p
and p').

To summarize what we have proved so far: there are 3 distinct agents ¢, j, [ such that

A(b; p;t) = A(b; p'st) = A(b; p'st') =1 (since A(b; p'st') = 5 = 1),
A(b;p;t') =j and
A bis pit) = A(b] b5 pst') = A, bi; p'st) = A(bS, b_is; ps 1) = i.

Observe also that ©; ;(p,t) = ©;(p,t) as p and p only differ at a click at round ¢, and such a click cannot
determine the allocation decision at round ¢. Also, max{©; ;(p,t') - b;,0;:(p',t') - b} < ©;,(p,t) - by as
the allocation at round ¢’, which is different for p and p’ (at b), depends on [ getting the impression at round
t.12 Finally we prove that ©; j(p,t') - bj= ©; (p/,t') - b; (see[8)).

Claim A.6. ©; (p,t') - b; = ©,,(0', ') - by

Proof. Firstof all, note that ©; ;(p; t') and ©,;(p', ') are well-defined. Let b; = (©; ;(p, t')-b;+0;,(p, t')-
by)/2. Consider the following two cases.

If ©;;(p,t") - bj < ©;4(p/,t') - b then round ¢ is (b;,b_;; p)-influential (as A(b;,b_;; p;t') = i
and A(b;,b_s; p';t") = [) with influencing agent | (A(b;,b_;;p;t) = A(b;,b_i;p';t) = [ since b; <
©;,1(p, t)-by) and influenced agent i. Additionally, ¢ it is not (b;,b_;; p)-secured from i (as A(b:r, b_i;p;t) =
A(bf,b_; p';t) = 9). A contradiction to first condition in the theorem.

Similarly, if ©; ;(p,')-b; > ©;,(p',t')-b, thenround t is (b;, b_;; p)-influential (as now A(b;, b_;; p; t') =
j and A(b;,b_;; p';t') = i) with influencing agent [ and influenced agent 7. Additionally, ¢ it is not
(b;, b_;; p)-secured from i. Again, a contradiction to the first condition in the theorem. U

The lemma implies that b; € S;(b_;), where a finite set S;(b_;) is defined by

0. . (p.t 0;.i(p,t
Si(b_y) = {bj @le((pp”t’)) . all agents i, j # [, all realizations p, p’ and all ¢’ s.t. @le((pp”t’)) is well-deﬁned} :

This completes the proof of Proposition A.2.

Appendix B: Relative entropy technique: proof of Claim 4.2

We extend the relative entropy technique from [7]. All relevant facts about relative entropy are summa-
rized in the theorem below. We will need the following definition: given a random variable X on a proba-
bility space (2, F,P), let Px be the distribution of X, i.e. a measure on R defined by Px (z) = P[X = z].

Theorem B.1. Let p and q be two probability measures on a finite set U, and let Y and Z be functions on
U. There exists a function F(p; q|Y) : U — R with the following properties:
(i) Ep F(p;qlY) = Ep F(p;q|(Y, Z)) + Ep F(pz;qzY)  (chain rule),
(ii) [p(U") = a(U")| < /3D(pllq) for any event U" C U, where D(pllq) = E, F(p; q|1)
(iii) for each x € U, if conditional on the event {Z = Z(x)} p coincides with q, then F (p; q|Z)(z) = 0.
(iv) for each x € U, if conditional on the event {Z = Z(z)} p and q are fair and (% + €)-biased coins,
respectively, then it is the case that F(p;q|Z)(z) < 4¢€2.

"In Figure 1 we defined b;” := O, ;(p;t')b; and bj"]/ = 0;,(p';t')b;. These are the bids of agent 7 at which impression
transfers to her in round ¢’ in p and p’ respectively. See [6]and [7]in the figure.
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Remark. This theorem summarizes several well-known facts about relative entropy (albeit in a somewhat
non-standard notation). For the proofs, see [13, 22, 24]. In the proofs, one defines F' = F(p;q|Y) as a

function ' : U — R which is specified by F(z) = > .y p(2'|Us)lg Zg;lgﬁg’ where U, is the event

{Y =Y (z)}.! Note that the quantity E,, F(p; q|1) is precisely the relative entropy (a.k.a. KL-divergence),
commonly denoted D(p||¢), and E,, F'(p; q|Y) is the corresponding conditional relative entropy.

In what follows we use Theorem B.1 to prove Claim 4.2. For simplicity we will prove (4.1) for¢ = 1.

The history up to round t is H; = (hy, h2, ... ,hy) where hg € {0, 1} is the click or no click event re-
ceived by the algorithm at round s. Let Cy be the indicator function of the event “round ¢ is bid-independent”.
Define the bid-independent history as fIt = (h1,h2, ... ,hy), where hy = h;C}. For any exploration-
separated deterministic allocation rule and each round ¢, the bid-independent history f:It—l and the bids
completely determine which arm is chosen in this round. Moreover, fAIt,l alone (without the bids) com-
pletely determines whether round ¢ is bid-independent, and if so, which arm is chosen in this round.

Recall the CTR vectors ji; as defined in Section 4. Let p and ¢ be the distributions induced on fAIT by
Ho and fi1, respectively. Let p; and ¢ be the distributions induced on hy by /i and ji1, respectively. Let
‘H; the support of Hy, i.e. the set of all ¢-bit vectors. In the forthcoming applications of Theorem B.1, the
universe will be U = Hp. By abuse of notation, we will treat f[t as a projection Hp — Hy, so that it can
be considered a random variable under p or q.

Claim B.2. D(p|lq) = E, F(p;q| Hi) + Yoy By F(ps; gs| He) forany t > 1.

Proof. Use inductionon ¢ > 0 (set f'\I() = 1). In order to obtain the claim for a given ¢ assuming that it holds
for t — 1, apply Theorem B.1(i) with Y = H;_; and Z = h;. L]

Claim B.3. F(p; ¢4 ﬁt_l) < 4€% C4 Lya,=1y for each round t.

Proof. We are interested in the function F' = F'(py; ¢4 ﬁt_l) : Hr — R. Given ﬁt_l, one of the following
three cases occurs: R
e round ¢ is not bid-independent. Then h; = 0, hence F'(-) = 0 by Theorem B.1(iii),
e round ¢ is bid-independent and arm 1 is not played. Then h; is distributed as a fair coin under both p
and ¢, so again F'(-) = 0.
e round ¢ is bid-independent and arm 1 is played. Then F(-) < 42 by Theorem B.1(iv). O

Given the full bid-independent history ﬁT, p and g become (the same) point measure, so by Theo-
rem B.1(iii) E}, F(p; q| Hr) = 0. Therefore taking Claim B.2 with ¢ = 7" we obtain

T

T
Dplla) = By F(ps;ae| Hi-1) = 462 > B, [Cr 1pamy) = 4€® Ep[N1]. (B.1)
t=1 t=1

For a given round ¢ and fixed bids, the allocation at round ¢ is completely determined by the bid-independent
history H;_1. Thus, we can treat {A; € S} as an event in Hy. Now (4.1) follows from (B.1) via an
application of Theorem B.1(ii) with U’ = {A; € S}.

Appendix C: Lower bound for non-scalefree allocations

In this section we derive a regret lower bound for deterministic truthful mechanisms without assuming
that the allocations are scale-free. In particular, for two agents there are no assumptions. This lower bound
holds for any k (the number of agents) assuming that the allocation satisfies IIA, but unlike the one in
Theorem 4.1 it does not depend on k.

13We use the convention that p(x) log(p(z) /q(z)) is 0 when p(x) = 0, and +oco when p(x) > 0 and g(x) = 0.
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Theorem C.1. Consider the stochastic MAB mechanism design problem with k agents. Let (A, P) be a
normalized truthful mechanism such that A is a non-degenerate deterministic allocation rule. Suppose A
satisfies IIA. Then its regret is R(T; vmax) = QU Umax T2/3) for any sufficiently large vpax.

Let us sketch the proof for the non-degenerate allocations. Fix an allocation .A. In Definition 3.4, if
round ¢ is (b, p) influential, for some realization p and bid vector b, an agent i is called strongly influenced
by round ¢ if it is one of the two agents that are “influenced” by round ¢ but is not the “influencing agent” of
round ¢. In particular, it holds that A(b, p,t) # i. For each realization p, round ¢ and agent i, if there exists
a bid vector b such that round ¢ is (b, p)-influential with strongly influenced agent i, then fix any one such b,
and define by = b} (p,t) := max;,; b;. Let us define B = max,; b} (p,t), where the maximum is taken
over all realizations p, all rounds ¢, and all agents 7. Let us say that round ¢ is B*-free from agent ¢ w.r.t
realization p, if for this realization the following property holds: agent ¢ is not selected in round ¢ as long as
each bid is at least B*.

Lemma C.2. In Theorem C.1, if A is non-degenerate then for any realization p, any influential round t is
B’)-free from some agent w.r.t. p.

Proof. Fix realization p. Since round ¢ is influential, for some bid profile b and agent i it is (b, p)-influential
with a strongly influenced agent i. By definition of b} (p, t), without loss of generality each bid in b (other
than 4’s bid) is at most b} (p,t) < B%. Then A(b, p,t) # i, and round ¢ is (b, p)-secured from agent i.
Suppose round ¢ is not B*%-free from agent i w.r.t p. Then there exists a bid profile 4" in which each bid
(other than 4’s bid) is at least B such that A(Y, p,t) = i. To derive a contradiction, let us transform b to
b’ by adjusting first the bid of agent 7 and then bids of agents j # 7 one agent at a time. Initially agent i is
not chosen in round ¢, and after the last step of this transformation agent 7 is chosen. Thus it is chosen at
some step, say when we adjust the bid of agent ¢ or some agent j # i. This transfer of impression to agent
i cannot happen when bid of agent 7 is adjusted from b; to b} (since round ¢ is (b; p)-secured from 7), and
it cannot happen when bid of player j # ¢ is adjusted from b; to b;» > b; (this is because, the transfer to
1 cannot happen from j because of pointwise-monotonicity and the transfer to ¢ cannot happen from [ # j
because of ITA). This is a contradiction. ]

Let T" be the time horizon. Assume vmax > 2B%. Let N (p) be the number of influential rounds w.r.t
realization p. Let N;(p) be the number of influential rounds w.r.t. realization p that are B’ -free from agent
i w.r.t. p. Then N and the N;’s are random variables in the probability space induced by the clicks. By
Lemma C.2 we have that ) . N;(p) is at least the number of influential rounds. As in Section 4, let iy be
the vector of CTRs in which all CTRs are %, and let Eg[-] denote expectation w.r.t. fi.

Fix a constant 3 > 0 to be specified later. If Eg[N] > Sk T?/3 then Eo[N;] > 5 T?/3 for some agent
i, so the allocation incurs expected regret R(7T'; Umax) = Q(Vmax T2/ 3) on any problem instance J;, j # 1.
(In this problem instance, CTRs given by fiy, the bid of agent j is vax, and all other bids are vy /2.) Now
suppose Eo[N] < Bk T2/3. Then the desired regret bound follows by an argument very similar to the one in
the last paragraph of the proof of Theorem 4.1.

Appendix D: Universally truthful randomized mechanisms

Consider randomized mechanisms that are universally truthful, i.e. truthful for each realization of the in-
ternal random seed. For mechanisms that randomize over exploration-separated deterministic mechanisms,
we obtain the same lower bounds as in Theorems 4.1 and Theorem 4.3.

Theorem D.1. Consider the MAB mechanism design problem. Let D distribution over exploration-separated
deterministic allocation rules. Then
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Proof Sketch. Recall that in the proof of Theorem 4.1 we define a family F of 2k problem instances, and
show that if A is an exploration-separated deterministic allocation rule, then on one of these instances its
regret is “high”. In fact, we can extend this analysis to show that the regret is “high”, that is at least
R* = Q(vmax K312/ 3), on an instance Z € F chosen uniformly at random from F; here regret is in
expectation over the choice of Z. '* Once this is proved, it follows that regret is R* /2 for any distribution
over such A, in expectation over both the choice of A and the choice of Z. Thus there exists a single
(deterministic) instance Z such that E gcp [Raz(T)] > R*/2. O

Theorem 4.3 extends similarly.
Appendix E: Randomized allocations and adversarial clicks

In this section we discuss randomized allocations and the version of the MAB mechanism design prob-
lem when clicks are generated adversarially, termed the adversarial MAB problem. In this version, the

objective is to optimize the worst-case regret over all values v = (vy, ... ,vg) such that v; € [0, vpax] for
each i, and all realizations p:
R(T;0:p) = [max; v S0 pi(8)| = S0y 25y v pi(t) B [Ai(v: p; )] (E.1)

R(T; vmax) = max{R(T;v;p) : all realizations p, all v such that v; € [0, vyax] for each i}.

The first term in (E.1) is the social welfare from the best time-invariant allocation, the second term is the
social welfare generated by .A.

Let us make a few definitions related to truthfulness. Recall that a mechanism is called weakly truthful if
for each realization, it is truthful in expectation over its random seed. A randomized allocation is pointwise
monotone if for each realization and each bid profile, increasing the bid of any one agent does not decrease
the probability of this agent being allocated in any given round. For a set S of rounds, an allocation is
S-separated if (i) for each realization, the allocation in each round ¢ € S (as a distribution over agents) does
not depend on bids, (ii) the clicks from the rounds not in S are discarded (not reported to the algorithm).
An allocation is strongly separated if before round 1 it randomly chooses a set .S of rounds, without look-
ing at the bids, and then runs a pointwise monotone S-separated allocation. Note that the choice of S is
independent of the clicks, by definition.

We show that for any (randomized) strongly separated allocation rule A there exists a payment rule
which results in a mechanism that is weakly truthful and normalized. Then we consider two randomized
MAB algorithms from the literature, PSIM [?] and DANIHAYES [14], and show that they are pointwise
monotone and strongly separated. When interpreted as allocation rules, there algorithms have strong regret
guarantees for the adversarial MAB mechanism design problem, where the clicks are chosen adversari-
ally. Specifically, PSIM obtains regret R(T, vmax) = O(vmax k3 (log k)'/3 T?/3) against any oblivious
adversary, and DANIHAYES obtains regret R(T, vmax) = O (vmax k T?/3) against any adaptive adversary,'
where k is the number of agents.

We start with the structural result.

Lemma E.1. Consider the MAB mechanism design problem. Let A be a (randomized) strongly separated
allocation rule. Then there exists a payment rule P such that the resulting mechanism (A, P) is normalized
and weakly truthful.

14This extension requires but minor modifications to the proof of Theorem 4.1. For instance, for the case k > 3 we argue that
first, if Eo[N] > R then Eo[N;] < 2 E[N] for at least £ agents i (and so on), and if Eo[N] < R then (omitting some details)
there are Q(k) good agents 4 such that Eo[V;] < 2R/k (and so on).

'>The distinction between oblivious and adaptive adversaries is that the former specify all clicks in advance, whereas the latter
can look at the allocations in the past rounds (but not at the allocation’s random seed). Formally, (E.1) defines regret against an
oblivious adversary. To define regret against an adaptive adversary, one needs to allow the p in (E.1) so that for each agent ¢ and
each round ¢, the allocation p; (t) is a function of the allocation’s choices in the past rounds.
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Proof. Throughout the proof, let us fix a realization p, time horizon 7', bid vector b, and agent . We will
consider the payment of agent i. We will vary the bid of agent ¢ on the interval [0, b;]; the bids b_; of all
other agents always stay the same.

Let ¢;(z) be the number of clicks received by agent ¢ given that her bid is x. Then by (the appropriate
version of) Theorem 3.1 the payment of agent ¢ must be P;(b) such that

E[P;(b)] = E4 [bi cilbi) — [Py ei) dx] : (E2)

where the expectation is taken over the internal randomness in the algorithm.

Recall that initially A randomly selects a set S of exploration rounds, without looking at the bids, and
then runs some S-separated allocation Ag. In what follows, let us fix S. All rounds not in S are called
exploitation rounds. Let ~;(x,t,S) be the probability that algorithm Ag allocates agent ¢ in round ¢ given
that agent ¢ bids x. Note that for fixed value of internal random seed of Ag this probability can only depend
on the clicks observed in exploration rounds, which are known to the mechanism. Therefore, abstracting
away the computational issues, we can assume that it is known to the mechanism. Define the payment rule
as follows: in each exploitation round in which agent i is chosen and clicked, charge

1 b
Pr(b,t,S) =b — ———— / vi(z,t,S) dx. (E.3)
Then the total payment assigned to agent i is
PP(b) = Yigs pilt) A7 (b pit) P (b, ). (E4)

Since allocation Ag is pointwise monotone, the probability ~;(z, ¢, S) is non-decreasing in . Therefore
Pr(b,t,S) € [0,b;] for each round ¢. It follows that the mechanism is normalized (for any realization of the
random seed of allocation \A).

It remains to check that the payment rule (E.3) results in (E.2). Let ¢;(x,.S) be the number of clicks
allocated to agent ¢ by allocation Ag given that her bid is x. Let ¢/(z, S) be the corresponding number of
clicks in exploitation rounds only. Since A® is S-separated, we have

Elei(z,8) — ¢ (2, 8)] = Y eq pi(t) A (z,b_; p;t) = const, (E.5)

where const is a constant independent of x. Taking expectations in (E.4) over the random seed of Ag and
using (E.5), we obtain

E[P](0)] = Y igs pilt) 7i(bis t,S) P;(b,t,5)
=D g5 Pi(t) {bi vi(bi, t,S) — f(f vi(z,t,9) dx}
= b [ L 0i0) %0t 8)| = J3' [ Ligs pi(0) (a1, )| de
= biE[c}(bi, S)] — [y Ele} (x, S)] dx
~E [bi ci(bi, S) = ¥ ei(x, S) dx} .

Finally, taking expectations over the choice of S, we obtain (E.2). O

E.1 Algorithms PS1M and DANTHAYES are strongly separated

In this section, we consider two algorithms for the adversarial MAB problem, PSIM[?] and DANTHAYES [14].
We state these algorithms (interpreted as allocation rules), and observe that they are strongly separated.
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Algorithm PSIM is strongly separated. We first describe a slight variant of the PS1M algorithm, which
is appropriate for our settings (where bids are present).

Input: Time horizon T, bid vector b. Let vy, = max; b;.
Output: For each round ¢ < T, a distribution on K.

1. Divide the time horizon into P phases of 7'/ P consecutive rounds each.

2. From rounds of each phase p, pick without replacement K rounds at random (called the exploration
rounds) and assign them randomly to K arms. Let S denote the set of all exploration rounds (of all
phases). Let f : S — K be the function which tells which arm is assigned to an exploration round in
S. The rounds in [T'] \ S are called the exploitation rounds.

Let w;(0) = 1forall: € K.
4. Foreach phasep =1,2,..., P
(a) For each round ¢ in phase p
i. Ift € S and f(t) = 1, then define the distribution y(b; ¢; S, f) such that v;(b; ¢; .S, f) = 1.
Pick an agent according to this distribution (equivalently, pick agent 7), observe the click
pi(t), and update w;(p) multiplicatively,

(98]

wi(p) = wi(p — 1) - (1 4 €)PrBbi/vmax

ii. Ift ¢ S, then define the distribution ~(b; ; S, f) such that v; (b; ; S, f) = % Pick
an agent according to y(b; t; S, f), observe the feedback, and discard the feeziback.
If we pick the values € = (klog k/T)'/3 and P = (log k)'/3(T'/k)?/?, then the regret of PSIM is bounded by
O((klog k:)l/ 372/ 3Umax) against an oblivious adversary (see [2, 23]). We next prove that PSIM is strongly-
separated.

It is clear from the structure of PSIM above that it chooses a set .S of exploration rounds in the beginning
without looking at the bids and then runs an S-separated allocation. We need to prove that the S-separated
allocation is pointwise monotone. For this we need prove that the probability ~;(b; ¢, S) is monotone in the
bid of agent i, where 7, (b; t, .S) denotes the probability of picking agent i in round ¢ when bids are b and the
set of exploration rounds is S. We will prove that this is true for ~;(b; ¢; S, f), where this notation denotes
the probability that agent ¢ is picked in round ¢ by the algorithm when bids are b, the exploration rounds are
from S and they are assigned to agents according to function f. Taking the expectation over f will give the
pointwise-monotonicity. If ¢ € S, the v;(b; ¢; S, f) is independent of bids, and hence is monotone. Lett ¢ S
and t is a round in phase p. Let us denote by f~1(i,p) the (unique) exploration round in phase p assigned
to agent 7. We then have

vi(bit: S, f) = (1 + 6)& SPZlpi(f 1) / Z(l + E)Mbﬂﬁ Y1 (1 G)
J

We split the denominator into the term for agent ¢ and all other terms. It is then not hard to see that this is a
non-decreasing function of b;.
We state the above results in the form of the following corollary.

Corollary E.2. There exists a weakly-truthful normalized mechanism for the adversarial MAB problem
(against oblivious adversary) whose regret grows as O((klog k)Y/? - T?/3 . vya).

Algorithm DANIHAYES is strongly separated. The algorithm DANIHAYES is stated for online linear
optimization in [14]. The multi-armed bandit problem is a special case of online linear optimization: we
can think of arms as e; for7 = 1,2, ..., k and reward vector 1,73, ...,r, asr = Zz r;€;, Where e; is the
standard basis vector. The set of feasible strategies (for the online linear optimization then) is the convex hull
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of e, eg, ..., e, which we denote by A(k). Any strategy in A(k) naturally corresponds to a probability
distribution over k arms.

We next present a slight modification of DANIHAYES which is appropriate for our setting, where bids
are present.

Input: Time horizon 7" and bid vector b. Let vy, = max; b;.

Output: For every round ¢ < T, a distribution over K.
1. Let S = (). Foreachround ¢t = 1,2,...,T, add ¢ to S independently with probability .
2. Fort=1,2,...,T

(a) If t € S, pick an agent according to the uniform distribution over K. Let p;(¢) be the reward
observed in the event when arm ¢ was played (this is 0 if there was not click, and 1 otherwise).
Let 7(t) = ;2% pi(t)e;.

(b) Ift ¢ S, 1et T(0) be a random vector from [—1/e, 1/¢]* for a parameter ¢ (note that ¥(0) vector
is chosen independently in every round), and let ¥(0 : t — 1) := T(0) 4+ Y2/} ¥(s). Let A; be
the set of indices ¢ such that (¥(0 : ¢t — 1)); = ||T(0 : ¢ — 1)||co. Pick an agent according to
the uniform distribution over the set A;. Observe the reward and discard it, that is let feedback
r(t) = 0.

The regret guarantee of this algorithm is proved in [14] when all bids are equal. We have modified the
algorithm from [14] to take care of bids, and the modified analysis yields a regret bound of O (kT 2/ 3vmaX),
if we pick § = kT3 and e = \/5/T.

From the structure of the algorithm, it is clear that the DANIHAYES algorithm above picks a set S
and then runs an S-separated allocation. It remains to prove that the resulting S-separated allocation is
pointwise-monotone. To prove the monotonicity, we prove that ~; (b; ¢; S, og,1(0)) is a monotone function
of b;, where og is the random choice of agents for rounds in S, and r(0) is the random vector chosen from
[~1/¢€,1/€]* in round t. Taking expectation over T(0), and og will then prove the monotonicity (for each
choice of S). Letr :=7T(0 : t — 1) and x(r) be the distribution which assigns equal probability to maximum
value components of r (the rule used by the algorithm). We note that z(r + ¢;e;); > z(r); for ¢; > 0, where
z(r); denote the i-th components of the vector z(r). Similarly, z(r — >_.,; €;e;); > x(r); for ¢; > 0,
j # 1. This proves the monotonicity.

We state the above results in the form of the following corollary.

Corollary E.3. There exists a weakly-truthful normalized mechanism for the adversarial MAB problem
(against adaptive adversary) whose regret grows as O(k - T 2/3 . Umax )-

Appendix F: Truthfulness in expectation over CTRs

We consider the stochastic MAB mechanism design problem under a more relaxed notion of truthful-
ness: truthfulness in expectation, where for each vector of CTRs the expectation is taken over clicks (and
the internal randomness in the mechanism, if the latter is not deterministic). We show that any allocation
A* that is monotone in expectation,'® can be converted to a mechanism that is truthful in expectation and
monotone in expectation, with minor changes and a very minor increase in regret. Furthermore, we show
that there exist MAB allocations that are monotone in expectation whose regret matches the optimal upper
bounds for MAB algorithms. The conclusion is that in order to obtain any non-trivial lower bounds on
regret and (essentially) any non-trivial structural results, one needs to assume that a mechanism is ex-post
normalized, at least in some approximate sense.

'*Monotonicity in expectation is defined in an obvious way: an allocation is monotone in expectation if for each agent 4 and fixed
bid profile b_;, the corresponding expected click-allocation is a non-decreasing function of b;; here the expectation is taken over
the clicks and possibly the allocation’s random seed.
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The main result of this section is that for any allocation 4* that is monotone in expectation, any time
horizon 7', and any parameter v € (0,1) there exists a mechanism (A, P) such that the mechanism is
truthful in expectation and normalized in expectation, and allocation .A initially makes a random choice
between 4* and some other allocation, choosing .4* with probability at least v. We call such allocation .4
a y-approximation of A*. Clearly, on any problem instance we have R4(T) < v Ra+(T)+ (1 —~)T. The
extra additive factor of (1 — «)7 is not significant if e.g. v = 1 — % The problem with this mechanism
is that it is not ex-post normalized; moreover, in some realizations payments may be very large in absolute
value. We provide a (rather weak) upper bound on the PPC-to-bid ratio, the ratio between the absolute value
of the payment-per-click and the bid.

Theorem F.1. Consider the stochastic MAB mechanism design problem with k agents and a fixed time
horizon T. For each v € (0, 1) and each allocation rule A* that is monotone in expectation, there exists a
mechanism (A, P) such that A is a ~y-approximation of A*, and the mechanism is truthful in expectation and
normalized in expectation. For each realization, the PPC-to-bid ratio of the mechanism is upper-bounded
by a function of k, T and .

Remark. Payment rule P is well-defined as a mapping from histories to numbers. We do not make any
claims on the efficient computability thereof.

Proposition F.2. Consider the stochastic MAB mechanism design problem with k agents and a fixed time
horizon T. There exists an allocation rule A that is monotone in expectation, whose regret is R(T; vmax) =
O(Vmax VET log T') in the worst case, and Rs(T'; vmax) = O(Umax % log T') on the 0-gap instances.

Proof Sketch. For simplicity, assume vpax = 1. Let 79 = /8log(T")/T. Consider the following simple
allocation. Initially, each agent is active. In each phase, play each active agent once, in a round-robin fashion.
After the phase, (permanently) de-activate each agent whose sample product (sample average times the bid)
is more than r below that of some other active agent. This completes the description of the allocation.

This allocation is based on a well-known (perhaps folklore) MAB algorithm. The regret bounds are
proved along the lines of those in [6]. The crucial observations are that with a very high probability the
optimal agent is never de-activated, and that that each sub-optimal agent i is played at most O(A; 2 Jog T)
times, where 4\; is the difference between her product (CTR times the bid) and the maximal one.

The allocation is monotone in expectation because increasing the bid of a given agent cannot cause this
agent to be de-activated later. O

F.1 Proof of Theorem F.1

Let Aexpl be the allocation rule where in each round an agent is chosen independently and uniformly at
random. Allocation A is defined as follows: use A" with probability v; otherwise use Acxpl. Fix an instance
(b, ) of the stochastic MAB mechanism design problem, where b = (b1, ... ,bx) and = (1, ... , k)
are vectors of bids and CTRs, respectively. Let C; = C;(b;; b—;) be the expected number of clicks for agent
1 under the original allocation .4*. Then by Myerson [31] the expected payment of agent 4 must be

PM =~ |b; Cs(bis b fo J)dzx| . (F.1)

The key idea is to treat the expected payment as a multivariate polynomial over 1, ... , . It is essential
(given the way we define P) to show that this polynomial has degree < T'. Also, for upper-bounding the
PPC-to-bid ratio it is useful to upper-bound the absolute value of the coefficients.

Claim F.3. PZM is a polynomial of degree < T in variables 1, ... ,ug. The absolute value of the coeffi-
cients of this polynomial (after the similar terms are added) is at most b; T (4k)T.
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Fix time horizon 7T'. For a given run of an allocation rule, the history is defined as h = (x1,y1; ... ;27,y7),
where x; is the allocation in round ¢, and y; € {0, 1} is the corresponding click. Let H be the set of all
possible histories.

Our payment rule P is a deterministic function of history. For each agent 7, we define the payment P; =
P;(h) for each history h such that Ej,[P;(h)] = PM for any choice of CTRs, and hence E,[P;(h)] = PM,
where = denotes an equality between polynomials over pt1 , ... , pig.

Proof of Claim F.3: Fix the bid profile. Let X, be allocation of algorithm A*. Let poly(T") be the set of
all polynomials over y1 , ... , uy of degree at most 7. Consider a fixed history h = (z1,y1; ... ;27,y7),
and let h' be the corresponding history up to (and including) round t. Then

P[h] = [T{_y Pr(Xe = 2 | 7Yl (1 pa,)' 7% € poly(T) (F.2)
Ci(bi;b—;) = > pep Plh] #clicks;(h) € poly(T). (F.3)

Therefore PZM € poly(T), since one can take an integral in (F.1) separately over the coefficient of each
monomial of C;(z;b_;). For a polynomial @, let ||Q||~ be the maximal absolute value of its coefficients.
To upper-bound ||PM||~, note that by (F.2), a (crude) upper bound on ||P[A] || is 27, so

1PMlloc < bi ICi(bis b—i)lloo < bi - T - H| ~max [[P[h][|eo < T (4k)". O

Fix the bid vector and fix agent ;. We define the payment P; as follows. Charge nothing if allocation
A* is used. If allocation Acyp is used, charge per monomial. Specifically, let mono(7") be the set of all
monomials over fi1 , ... , ug of degree at most 7. For each monomial ) € mono(7") we define a subset of
relevant histories H;(Q) C H. (We defer the definition till later in the proof.) For a given history h € H
we charge a (possibly negative) amount

Pi(h) = ﬁ 2 Qemono(T): heHs (Q) k1e2(@ PM(Q), (E4)

where deg(Q) is the degree of @, and PM(Q) is the coefficient of @ in PM. Let Peyy be the distribution on
histories induced by Acxpi. Then the expected payment is

En[Pi(h)] = Y genono(ry k¥ Pexpi[Hi(Q)] PM(Q).
Therefore in order to guarantee that Ej,[P;(h)] = PM it suffices to choose H;(Q) for each @ so that
Ldes(@Q) Pexpi[Hi (Q)] = Q. (F.5)

Consider a monomial @ = p{" ... up*. Let H;(Q) consist of all histories such that first agent 1 is played
a1 times in a row, and clicked every time, then agent 2 is played as times in a row, and clicked every time,
and so on till agent k. In the remaining 7' — deg(()) rounds, any agent can be chosen, and any outcome
(click or no click) can be received. It is clear that (F.5) holds. Note that a given history can be relevant to at
most one monomial of a given degree, so it can be relevant to at most 7" monomials. Since we know from

Claim F3 that [PM(Q)| < b; T (4k)", it follows from by (F.4) that [P;(h)| < 125 b; T° (2k)*".
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