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ABSTRACT
In this paper, we develop a new class of parameter estimation tech-
niques for the Gaussian Continuous-Density Hidden Markov Model
(CDHMM), where the discriminative margin among a set of HMMs
is used as the objective function for optimization. In addition to op-
timizing the mean parameters of the large-margin CDHMM, which
was attempted in the past, our new technique is able to optimize the
variance parameters as well. We show that the joint mean and vari-
ance estimation problem is a difficult optimization problem but can
be approximated by a convex relaxation method. We provide some
simulation results using synthetic data which possess key properties
of speech signals to validate the effectiveness of the new method.
In particular, we show that with joint optimization of the mean and
variance parameters, the CDHMMs under model mismatch are much
more discriminative than with only the mean parameters.

Index Terms— Classification, Gaussian CDHMM, Large mar-
gin parameter estimation, Convex optimization

1. INTRODUCTION

Parameter estimation of the Gaussian Continuous-Density Hidden
Markov Model (CDHMM) [1] is one of the important techniques
in automatic speech recognition (ASR), where the speech signals
are modeled by CDHMMs. Conventionally, the parameters of the
HMM are learnt from the training data using the maximum likeli-
hood estimator (MLE) [1]. The MLE does not minimize recognition
error rates because HMMs themselves are inaccurate speech signal
models, and often the amount of training data is not very sufficient.
In order to overcome the weaknesses of the MLE, ASR researchers
have proposed the use of discriminative training criteria (e.g., [2,3]).
The training methods based on these criteria, however, have been
aimed to find classification boundaries that minimize empirical error
rates on training sets, but they may not generalize well to unseen test
sets due to the mismatch between CDHMMs and real speech signals.

It was shown in the seminal work of [4] that the test-set error
rate is closely related to the margins (i.e., the distances between the
well classified samples and the decision boundary), and the model
parameters which possess larger values of margins can exhibit better
generalization ability. The concept of large margin has been suc-
cessfully used in designing state-of-the-art multi-way classifiers for
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many years [4, 5]. Its application to estimating the CDHMM para-
meters for ASR, however, is more recent [6–9]. One specific incor-
poration of the margin [6–9] into CDHMM parameter estimation,
referred to as the large-margin CDHMM, was shown to be capable
of reducing ASR error rates compared with the MLE and margin-
free parameter estimation methods.

Since the large-margin CDHMM as proposed in [7–9] estimates
only the means in the normalized Gaussian distribution of CDHMM,
in the paper we consider a new technique for joint estimation of
mean and variance parameters. The importance of the variance pa-
rameters in CDHMM for the performance of ASR has been well
known. For the MLE, it is straightforward to estimate the variance
parameters [1], but for the objective function of the large-margin
CDHMM, the estimation problem is much more difficult. Specifi-
cally, the associated problem can be shown to be a nonconvex op-
timization problem with an indefinite quadratic objective function
[10]. The proposed method is based on careful reformulation of the
associated optimization problem followed by an approximation tech-
nique of convex relaxation, which is presented in Section 3. Thus an
approximate solution can be efficiently obtained by solving a convex
optimization problem through modern optimization algorithms [11].
In Section 4, some simulation results are presented to validate the
effectiveness of the presented estimation technique.

2. PROBLEM STATEMENT

Consider an ASR task where there are M words {W1, . . . , WM}.
Given the signal parameter setΘ = {θm}

M
m=1 where θm is the pa-

rameter set of wordWm, the goal of ASR is to classify the observed
utterance into one of the words according to the maximum a poste-
riori criteria [1]. Let Xtr = {X1, X2, . . . XNT

} be a sequence of
training utterances, whereXk = {xk,1, . . . , xk,T }, xk,t ∈ R

D is a
D× 1 vector measurement [2], T is the utterance length, and NT is
the number of training utterances. Let P (Xk|θm) be the conditional
probability density function (pdf) of Xk given θm, and P (Wm) be
the occurrence probability of wordWm. Suppose thatXk is of word
Wik

, ik ∈ Ω � {1, . . . , M}. The observationXk will be correctly
classified intoWik

if and only if

gik
(Xk,Θ) � F(Xk|θik

)− max
m∈Ω,m�=ik

F(Xk|θm) ≥ 0, (1)

where F(Xk|θm) = log(P (Wm)) + log(P (Xk|θm)) is the dis-
criminative function [8]. The function gik

(Xk,Θ) is called themar-
gin ofXk associated with the modelΘ. Recent advances in statisti-
cal learning theory [4,5] have revealed that theΘwhich corresponds
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to larger values of gik
(Xk, Θ) can exhibit better generalization ca-

pability. The model parameters which own this large margin prop-
erty is called the large-margin CDHMM [8]; while the associated
estimator is called the large margin estimator (LME).

The large-margin CDHMM can be obtained by maximizing the
minimum positive value of gik

(Xk, Θ) [7–9]. Typically, we only
need consider those utterances which are relatively “close” to the
decision boundary. Define the index subset

S = {k | 0 ≤ gik
(Xk,Θ) ≤ ε, k ∈ {1, . . . , NT }}, (2)

where ε > 0 is a preset number. The collection of {Xk|k ∈ S}
is called the support token set [8]. Mathematically, the LME can be
formulated as the following optimization problem [7–9]

ΘLME = arg max
Θ

min
k∈S

�
F(Xk|θik

)− max
m∈Ω,m�=ik

F(Xk|θm)

�

= arg min
Θ

max
m∈Ω,m�=ik

k∈S

�
F(Xk|θm)− F(Xk|θik

)

�
. (3)

In ASR, the utterance Xk = {xk,1, . . . , xk,T } is widely mod-
eled by Gaussian CDHMM [1]. Assume that each state in the HMM
is modeled by a (single-mixture) multivariate Gaussian random vari-
able. Denote by N the total number of states in the HMM, and let
{k1(m), . . . , kT (m)}, kt(m) ∈ {1, . . . , N}, be the Viterbi state se-
quence in P (Xk|θm) [1]. The discriminative function F(Xk|θm)
can be approximated as [1, 8]

F(Xk|θm) ≈ γk(m)−

T�
t=1

D�
d=1

log(σkt(m),d)

−
T�

t=1

D�
d=1

1

2

�
xk,t,d − μkt(m),d

σkt(m),d

�2

, (4)

where {μkt(m),d, σ2
kt(m),d}

D
d=1 are1 the means and variances of state

kt(m) associated with word Wm, and γk(m) = log(πk1(m)) +�T

t=2 log(akt−1(m),kt(m))−
TD

2
log(2π)+log(P (Wm)), in which

{πkt(m)} and {akt−1(m),kt(m)} are the initial and transition proba-
bilities of wordWm, respectively.

From (3) and (4), one can see that the LME problem is a difficult
optimization problem. Therefore, most of the existing methods [7–9]
focus only on the mean parameter optimization. Specifically, it has
been shown [7, 9] that, if only the mean parameters are considered,
the LME problem in (3) can be approximated by a semidefinite pro-
gram (SDP). It is intuitive to obtain a better margin distribution by
jointly optimizing the mean and variance parameters. However, the
associated problem becomes much more difficult. In the next sec-
tion a new estimation technique is presented for achieving this goal.
In the paper, we refer to the LME which only optimizes the mean
parameters as the large margin mean estimator (LMME); while the
one which optimizes both mean and variance parameters as the large
margin mean and variance estimator (LMMVE).

3. LARGE MARGIN MEAN AND VARIANCE
ESTIMATION

Let us redefine θm = {{μm,n,d, σ2
m,n,d}

D
d=1, n = 1, . . . , N} as

the set containing the parameters of interest of Wm. According to
1In the paper, we use {μm,n,d}

D
d=1 and {σ

2
m,n,d

}D
d=1 to represent the

mean and variance parameters of state n, wordWm. For the mean and vari-
ance parameters of state kt(m) of word Wm, we for notational simplicity
use {μkt(m),d}

D
d=1 and {σ

2
kt(m),d

}D
d=1 instead.

[7, 8], the LME problem (3) would be unbounded below if there is
no proper constraints on Θ. To fix this, we introduce two spherical
constraints

M�
m=1

N�
i=1

D�
d=1

�
μm,n,d − μ̄m,n,d

σm,n,d

�2

≤ r2, (5a)

|σm,n,d − σ̄m,n,d| ≤ β, (5b)
m = 1, . . . , M, n = 1, . . . , N, d = 1, . . . , D,

where {μ̄m,n,d, σ̄2
m,n,d} serve as the “sphere center” and can be the

estimates of the MLE or any other discriminative training estima-
tors. Equation (5) means that the large-margin CDHMM is obtained
by searching inside the sphere with “radius” r ≥ 0 for the mean pa-
rameters, and with radius β ≥ 0 for the variance parameters. By (5),
we can rewrite the LME problem (3) as the following constrained
optimization problem

min
Θ

max
m∈Ω,m�=ik

k∈S

�
F(Xk|θm)− F(Xk|θik

)

�
(6a)

subject to (s.t.)
M�

m=1

N�
i=1

D�
d=1

�
μm,n,d − μ̄m,n,d

σm,n,d

�2

≤ r2 (6b)

|σm,n,d − σ̄m,n,d| ≤ β, (6c)
m = 1, . . . , M, n = 1, . . . , N, d = 1, . . . , D.

It can be easily shown that the LME problem in (6) is bounded below
(by extending the proof of Theorem 5.1 in [7]). However, we will
show in Section 3.1 that the LME problem (6) is equivalent to a non-
convex indefinite quadratic optimization problem, which in general
is a computationally difficult optimization problem [10]. In order to
obtain a suboptimal solution in the vicinity of the global optimum,
we present in Section 3.2 an approximation method for problem (6)
based on convex relaxation. Thus an approximate solution of the
LME problem (6) can be efficiently obtained by solving its convex
relaxation counterpart.

3.1. Problem Reformulation

In the subsection, we show that the LME problem (6) is equivalent to
a nonconvex quadratic optimization problem. For ease of later use,
let us define the following notations

σ̃m,n = [1/σm,n,1, ..., 1/σm,n,D ]T ,

σ̃m = [(σ̃m,1)
T , ..., (σ̃m,N)T ]T , σ̃ = [(σ̃1)

T , ..., (σ̃M )T ]T ,

μ̃m,n = [μm,n,1/σm,n,1, ..., μm,n,D/σm,n,D]T ,

μ̃m = [(μ̃m,1)
T , ..., (μ̃m,N )T ]T , μ̃ = [(μ̃1)

T , ..., (μ̃M )T ]T ,

Xk,t = diag{xk,t,1, ..., xk,t,D}, (a D ×D diagonal matrix)

q(m,n, d) = (m− 1)ND + (n− 1)D + d,

S
(m)
n =

�
0D×q(m,n,0), ID, 0D×(K−q(m,n+1,0))

�
∈ R

D×K ,

where K = MND, 0D×q(m,n,0) denotes the D × q(m, n, 0) zero
matrix, and ID is theD×D identity matrix. Then the third term on
the right-hand side of (4) can be expressed as

T�
t=1

D�
d=1

�
xk,t,d − μkt(m),d

σkt(m),d

�2

=
T�

t=1

‖Xk,tσ̃m,kt(m) − μ̃m,kt(m)‖
2

=

T�
t=1

‖Xk,tS
(m)
kt(m)σ̃ − S

(m)
kt(m)μ̃‖

2.
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By defining ỹ = [σ̃T , μ̃T ]T ∈ R
2K andA

(m)
k = (Ã

(m)
k )T Ã

(m)
k ,

Ã
(m)
k =

�
���

Xk,1S
(m)

k1(m) − S
(m)

k1(m)

...
Xk,T S

(m)
kT (m) − S

(m)
kT (m)

�
��� ,

one can recast (4) as the following quadratic form

F(Xk|θm) = γk(m) +
T�

t=1

D�
d=1

log(ỹq(m,kt(m),d))−
1

2
ỹ

T
A

(m)
k ỹ.

It follows that the spherical constraints in (5) can also be reformu-
lated in a similar manner

ỹ
T
Qỹ ≤ r2, (7a)

�̃q(m,n,d) ≤ ỹq(m,n,d) ≤ ũq(m,n,d), (7b)

form = 1, . . . , M, n = 1, . . . , N, and d = 1, . . . , D, where

Q =

�
UT U −U
−U IK

	
∈ R

2K×2K ,

U = diag{μ̄1,1,1, μ̄1,1,2, . . . , μ̄M,N,D} ∈ R
K×K ,

ũq(m,n,d) = 1/(σ̄m,n,d−β) ≥ 0 and �̃q(m,n,d) = 1/(σ̄m,n,d +β).
Therefore, we can rewrite the LME problem in (6) as

min
ỹ

max
m∈Ω,m�=ik

k∈S

dm(Xk| ỹ) (8a)

s.t. ỹ
T
Qỹ ≤ r2, (8b)

�̃q(m,n,d) ≤ ỹq(m,n,d) ≤ ũq(m,n,d), (8c)
m = 1, . . . , M, n = 1, . . . , N, d = 1, . . . , D,

where dm(Xk| ỹ) = F(Xk|θm)−F(Xk|θik
) which is given by

dm(Xk| ỹ) = −γ(ik, m) +

T�
t=1

D�
d=1

log(ỹq(m,kt(m),d))

−
T�

t=1

D�
d=1

log(ỹq(ik,kt(ik),d)) +
1

2
ỹ

T
A(ik, m)ỹ, (9)

in which γ(ik, m) = γk(ik) − γk(m) and A(ik, m) = A
(ik)
k −

A
(m)
k . It can be observed that the minmax problem in (8) is not a

convex optimization problem, because in the objective function (9)
the first log term is concave and theA(ik, m) could be indefinite. It
is generally very difficult to solve a nonconvex indefinite quadratic
optimization problem [10], therefore we consider an approximation
method using convex relaxation in the next subsection.

3.2. Approximation by Convex Relaxation

To approximate (8) by a convex problem, we reconsider the standard
deviation variables

σm,n = [σm,n,1, . . . , σm,n,D]T , σm = [(σm,1)
T , . . . , (σm,N )T ]T ,

σ = [(σ1)
T , . . . , (σM )T ]T ,

and define y = [ỹT , σT , 1]T ∈ R
3K+1 and

Y �

�
Y11 Y12

Y21 Y22

	
= yy

T =

�
���

σ̃σ̃T σ̃μ̃T σ̃σT σ̃

μ̃σ̃T μ̃μ̃T μ̃σT μ̃

σσ̃T σμ̃T σσT σ

σ̃T μ̃T σT 1

�
��� ,

(10)

where Y11 ∈ R
2K×2K , Y12 ∈ R

2K×(K+1) , Y21 ∈ R
(K+1)×2K

andY22 ∈ R
(K+1)×(K+1) are submatrices ofY, respectively. Note

that (10) is equivalent to saying that Y � 0 (positive semidefinite),
rank(Y) = 1, and [Y22]K+1,K+1 = 1. By (10), we can express
(9) in terms ofY

dm(Xk|Y) =−γ(ik, m)−
T�

t=1

D�
d=1



log([Y22]q(m,kt(m),d),K+1)

+ log([Y12]q(ik,kt(ik),d),K+1)

�
+

1

2
trace(A(ik, m)Y11), (11)

where 1/[Y22]q(m,kt(m),d),K+1 and [Y12]q(ik,kt(ik),d),K+1 are in
place of the ỹq(m,kt(m),d) and ỹq(ik,kt(ik),d) in (9), respectively.
Hence dm(Xk| Y) is convex onY. The use of σ leads to the non-
convex constraints σiσ̃i = 1, i = 1, . . . , K, which, by (10), are
equivalent to

[Y12]i,i = 1, i = 1, . . . , K. (12)
Therefore, we can conclude from (10), (11), and (12) that the LME
problem in (8) is equivalent to the following problem

min
Y

max
m∈Ω,m�=ik

k∈S

dm(Xk|Y) (13a)

s.t. trace(QY11) ≤ r2, (13b)

�̃2q(m,n,d) ≤ [Y11]q(m,n,d),q(m,n,d) ≤ ũ2
q(m,n,d), (13c)

�2q(m,n,d) ≤ [Y22]q(m,n,d),q(m,n,d) ≤ u2
q(m,n,d), (13d)

�̃q(m,n,d) ≤ [Y12]q(m,n,d),K+1 ≤ ũq(m,n,d), (13e)
�q(m,n,d) ≤ [Y22]q(m,n,d),K+1 ≤ uq(m,n,d), (13f)
m = 1, . . . , M, n = 1, . . . , N, d = 1, . . . , D,

[Y12]i,i = 1, i = 1, . . . , K, (13g)
[Y22]K+1,K+1 = 1, Y � 0, (13h)
rank(Y) = 1,

where (13e) and (13f) are due to (5b) and (8c), uq(m,n,d) = σ̄m,n,d+
β, and �q(m,n,d) = σ̄m,n,d−β ≥ 0. Note that we also have imposed
the constraint (5b) to the diagonal entries of Y11 and Y22, leading
to (13c) and (13d), respectively. Finally, by discarding the rank one
constraint rank(Y) = 1, we obtain a convex relaxation counterpart
of problem (6).

Once the optimum solution Y
� of the relaxation problem (13)

(without the constraint rank(Y) = 1) is obtained, we need to ap-
proximate the large-margin CDHMM solutions of problem (6) from
Y

�. An approximate solution can be obtained as follows

σ̂m,n,d =
1�

[Y�
11]q(m,n,d),q(m,n,d)

, (14a)

μ̂m,n,d = sign([Y�
11]q(m,n,d),K+q(m,n,d))

×



[Y�
11]K+q(m,n,d),K+q(m,n,d) σ̂m,n,d, (14b)

by assuming that the obtainedY
� is of rank one with the same struc-

ture as in (10).

4. SIMULATION RESULTS AND DISCUSSIONS

In the section, we present some simulation results to demonstrate
the efficacy of the presented LMMVE. In the simulation, we rep-
resent each speech “unit” (such as a word) by a 3-state (N = 3),
left-to-right CDHMM with a 4 × 1 multivariate Gaussian vector
(D = 4) for each state. That is, the HMM is specified by the
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parameter set θ = {{ai,n}
3
i,n=1, {πn}

3
n=1, {μn}

3
n=1, {σn}

3
n=1},

where μn, σn ∈ R
D, π1 = 1, πn = 0 for n = 2, 3, and ai,n = 0

for i < n. A set of 10 HMMs (M = 10), each of which represents
a speech unit, was simulated, and each HMM differs from others
by different set of parameters. The parameters of each HMM were
randomly generated. Then with these generated parameters, a to-
tal number of 1000 training signals (100 training signals labeled by
each HMM) were randomly generated. The length T of each (train-
ing and testing) signal was randomly selected from 30 to 50, simu-
lating speech signals with variable lengthes for a fixed speech unit.
To simulate the model mismatch problem, we generate the testing
signals X̃ = {x̃1, . . . , x̃T } as follows. LetX = {x1, . . . , xT } be
a generated CDHMM signal. In order to simulate some well-known
properties of speech signals [12, 13], we introduced correlation into
the signal itself by x̃t,d =

�∞

�=0 α�u[�]xt−�,d for d = 1, . . . , D
and t = 1, . . . , T , where u[t] is the unit step sequence, and para-
meter 0 < α ≤ 1 decides the degree of the model mismatch from
CDHMM. There were over 5000 testing signals (500 signals labeled
by each HMM) generated in the simulation. The LME algorithm
proposed in [8] was considered in the simulation. The Baum-Welch
MLE [1] was first applied, and the obtained ML estimates were used
as the initial model of the LME algorithm as well as the search center
model {μ̄m,n,d, σ̄2

m,n,d} of the LMMVE (see (5)). The 150 training
signals which were relatively closest to the decision boundary of ML
estimates were selected to form the support token set S (in (2)). The
relaxation problem (13) was solved by a specially developed first-
order convex optimization algorithm [14]. We compared the pro-
posed LMMVE with the MLE [1] and the SDP based LMME [7].

In our simulation, all three estimators achieved 100% recogni-
tion rate on the training signal set. Table 1 lists the minimum and av-
erage margin values of training signals (see (1)) associated with the
MLE estimates, the LMME estimates and the LMMVE estimates,
respectively. One can see from the table that both the LMME and
the LMMVE have larger margin values than the MLE, but the LM-
MVE has the highest ones. Figure 1 shows the testing recognition
rates of estimators under model mismatch for α = 0.1, 0.2, 0.3, 0.4,
and 0.5. It can be seen from the figure that, with increased degree of
model mismatch the LMMVE exhibits much better robustness com-
pared to the MLE and the LMME, demonstrating the advantage of
the joint mean-and-variance estimation method.

5. CONCLUSIONS

In the paper, we have presented a convex relaxation based parame-
ter estimation technique for large-margin CDHMM. The proposed
technique is the first attempt to jointly estimate the means and vari-
ances in normalized Gaussian CDHMMs with the large-margin op-
timization criterion. We have shown that the associated estimation
problem is a computationally difficult optimization problem, but can
be efficiently approximated by a convex relaxation problem. Our
simulation results have demonstrated the benefit of the joint estima-
tion technique and the effectiveness of the presented approximation
method.
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