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ABSTRACT

The popularity of location-based social networks providenith a
new platform to understand users’ behavior and preferebassd
on their location histories. In this paper, we present atlona
based and preference-aware recommender system thataffars
ticular user a set of venues (such as restaurants and skappits)
within a geospatial range with the consideration of bothUg&gr
personal preferences, which are automatically learned frer lo-
cation history and 2) Social opinions, which are mined frdma t
location histories of théocal experts This recommender system
can facilitate people’s travel not only near their livingeas but
also to a city that is new to them. As a user can only visit a lim-
ited number of locations, the user-locations matrix is \&grse,
leading to a big challenge to traditional collaborativesfilhg-based

1. INTRODUCTION

The advances in location-acquisition and wireless comoauni
tion technologies enable people to add a location dimerisitra-
ditional social networks, fostering a bunch of locatiorsdéx social
networking services (or LBSNSs) [25], e.g., Foursquare,gtpand
Geol.ife [27], where users can easily share life experieitése
physical world via mobile devices. For example, a user cande
comments with respect to a restaurant in a LBSN site, so tigat t
people from her social structure can refer to the commenenwh
they visit the restaurant in a later time. Location as ondefrhost
important components of user context implies extensivevikedge
about an individual’s interests and behavior, thereby iging us
with opportunities to better understand users in a sociatsire

location recommender systems. The problem becomes even mor according to not only online user behavior but also the usaiin

challenging when people travel to a new city where they chaice
not visited. To this end, we propose a novel location recontae
system, which consists of two main partsffline modelingand
online recommendatiorThe offline modelingpart models each in-
dividual's personal preferences with a weighted categaseinchy
(WCH) and infers the expertise of each user in a city witheeso
different category of locations according to their locattaostories
using an iterative learning model. Thaline recommendatiopart
selects candidatiecal expertdn a user specified geospatial range
that matches the user’s preferences using a preference-ammdi-
date selection algorithm and then infers a score of the datelio-
cations based on the opinions of the seletbedl experts Finally,

ity and activities in the physical world. For instance, peopften
visiting gyms might like physical exercises and users whaalig
have dinner in the same restaurant may share a similar Bstee-
times, individuals who do not have overlaps of physical fmres
can still be linked, as long as the categories of their vidibeations
are indicative of a similar interest, such as beaches or umse
Under such a circumstance, a location recommender systam is
valuable but unique application in location-based soc&vork-
ing services, in terms of what a recommendation is and where a
recommendation is to be made [16, 25]. Specifically, locatex-
ommendations provide a user with some venues (e.g., aaritali
restaurant or a fancy movie theater) that match her personal

the top# ranked locations are returned as the recommendations forterests within a geospatial [25]. This application becommese

the user. We evaluated our system with a large-scale reasetat
collected from Foursquare. The results confirm that our ouketi-
fers more effective recommendations than baselines, Waéng
a good efficiency of providing location recommendations.
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worthy when people travel to an unfamiliar area, where thayeh
little knowledge about the neighborhoods. Nevertheledsigh-
quality location recommendation has to simultaneouslysiciar
the following three factors. 1)ser preferences~or example, food
hunters maybe more interested in the high quality restasireshile
the shoppingaholics would pay more attentions to nearbghg
malls [17]. 2)The current location of a usefAs the users prefer
the nearby locations, this location indicates the spagiagje of the
recommended venues and may affect the ratings of these recom
mendations [14]. 3The opinions of a location given by the other
users Social opinions from the nearby users is a valuable regourc
for making a recommendation [9]. But, the most popular venue
may not always fit a particular user given her distinct prefiees.
Inferring the rating for a location is very challenging usia
user’s location history in a LBSN. First, a user can only tvési
limited number of physical locations. This results in a sparser-
location matrix for most existing location recommendat®ys-
tems, e.g., [14, 9], which directly play a collaborativedfilhg-
based model [8, 12] over physical locations. Second, tHelias
comes even more difficult when an individual travels to a nkwe
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Figure 1: User Location History Distributions.

where she has visited few locations (though we believe paugdd
the location recommendation service most at this moment)ef
ample, Figure 1 a) and b) plot the locations (according tdithee

in Foursquare) visited by people from New York City, in Los-An
gles (LA) and New York City (NYC) respectively. Clearly, the
tip records generated by NYC people are very few in LA, which
are only 0.47% of the records they left in NYC and 0.75% of the
records generated by local users in LA. This phenomenoniie qu
common in the real world [20], aggravating the data spareb-pr
lem to location rating inference (if we want to provide pepfsbm
NYC with location recommendations in LA). In this case, $ple
using a CF model is not feasible any more. First, we cannot sim
ply put together the location histories of users from défarcities

in to a user-location matrix, which is neither efficient noalsble.
Second, performing collaborative inference in each cipasately
cannot cope with theew cityproblem demonstrated in Figure 1 a)
very well, as a user usually has not enough location histoaydity
that is new to her.

To this end, we report on a location-based and prefereneseaw
recommender system that offers a particular user a set afegen
(such as restaurants and shopping malls) within a userfigabci
geospatial range with the consideration of the three faatoen-
tioned in the third paragraph. By modeling a user's prefezsn
based on the category information of her location histangtéad
of physical locations) in a LBSN, our recommender systemfaan
cilitate people’s travel not only near their living areas blso to a
city that is new to them. Generating such a location reconaaen
tion is challenging because of two reasons:

1) Learning a user’s preferencedrirst of all, a user’s prefer-
ences are usually comprised of multiple kinds of interesish as
shopping, watching movies, cycling, and arts. By the meaati
a user’s preferences are not generally binary decisiogs, lke
or dislike something, and have a variety of granularitieshsas
“Food — ltalian food — ltalian noodle8. In addition, a user’'s
preferences are evolving from time to time. Manually spee{
an individual’s preferences with some words is impracticas a
result, unobtrusively modeling a user’s preferences wihlbca-
tion history is non-trivial.

2) Inferring the rating to an unvisited location for an individl.
The rating inference needs to consider both an individymder-
ences, the opinions given by the other users, especialljotiz
experts[2, 13], and the similarity between them. This inference
demands three aspects of computing: a) estimating thetesgef
a user, b) computing the similarity between users, and tloota-
tive social opinion inference for a location incorporatthg results
of the former two computation, e.g., using collaborativeefihg
(CF) model [8, 12]. None of them are trivial.

Specifically, our contributions can be summarized as:

e We learn a user’s preferences from her location history and

model the preferences with a weighted category hierarchgkyV
We further estimate the similarity between two users’ peaiees
by computing the similarity between the two users’ WCHSs. sThi
method contributes to user preference modeling and hanttie
data sparseness problem for location recommendations.

e We pre-compute and extract theeal expertfor each location
category in a city using an iterative inference model oventbers’
location histories there, which improves the efficiencyafonline
recommendation process.

e We online infer the rating to a venue with thacal experts
selected by a preference-aware candidate selection thligoand a
CF-based model. This approach enables a real-time locegimn
ommendation simultaneously considering an individuaitation,
preferences granularities, and opinions frimzal experts

e We evaluated our system with a real-world dataset collected
from Foursquare including 221,128 tips generated by 49,6&2s
in NYC and 104,478 tips generated by 31,544 users in LA. The
extensive experimental results show that our method peowstrs
with location recommendations more effectively and effidiebe-
yond the existing baselines.

The rest of the paper is organized as follows: Section 2 gives
overview of our system. Section 3 and Section 4 present tworma
parts of our system: 19ffline modelingand 2)online recommen-
dation Extensive experimental results based on the real dataset a
provided in Section 5 with some discussions. Section 6 sueg
the related works. Finally, Section 7 concludes the paper.

2. SYSTEM OVERVIEW

This section first introduces the key data structures we wsil
in the paper, and then presents the application scenariowardll
architecture of the proposed location recommender system.

2.1 Preliminary

Figure 2 illustrates the relations of five key data structufiguser,
2) venue 3) check-in 4) user location historyand 5)category hi-
erarchy In a location-based social network, a usemaintains
her profile information, such as ID, name, age, gender, anteho
town. Moreover, the user can also mark a venue (e.g., a rastiu
and leave some comments, when she arrives there, whichais als
known ascheck-inin a LBSN. A user can visit multiple locations
and may generatecheck-infor each of the visit, shown as the solid
arrows in Figure 2 a). All of the userheck-insreflect heroca-
tion historyin the real world. Depicted as squares on the map, a
venue is a location associated with a pair of coordinateisatidg

Category Name Number of
Users sory sub-categories
Check-ins Map Arts & Entertainment 17
College & University 23
Venues 7 Food 78
; \ Great Outdoors 28
) x»} & i Home, Work, Other 15
' " i Nightlife Spot 20
Categories |
Category | Shop 45
|
Hierarchy i Travel Spot 14

(a) Overview of a location-based
social network

(b) Detailed location category hierarchy
in FourSquare

Figure 2: Data Structures in Location-Based Social Network.
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Figure 3: Example of An Application Scenario in NYC.

its geographical position and a set of categories denotinfyinc-
tionalities. The categories of venues have different dgeaities,
which are usually represented bycategory hierarchyshown in
the bottom part of Figure 2 a). For example, “Food" categary i
cludes “Chinese restaurant” and “Italian restaurant” aadle our
system, we focus on a two-level category hierarchy obtafred
Foursquare, as shown in Figure 2 b).

2.2 Application Scenario
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Figure 4: System Architecture.

city. By ranking the users in terms of the score correspantbra
category, we can discover thacal expertsof different categories
in the city. The inferred expertise of a user will be used ierda
preference-aware candidate selection algorithm and helpriline
part generate quality recommendations with fewer comjmurtak

Figure 3 demonstrates an application scenario of our system loads. The second component models each user’s persofet-pre
where the topV (V=10 here) venues matching a user’s preferences ences using a WCH by taking advantage of the location categor
are recommended based on the geo-region of the present viewinformation lying her location history, which help us to oveme

Here, the number of recommendations and scale of the gémnreg
are determined by a user (e.g., by zooming in/out and parming
map in Figure 3, while the ranking of the locations are caltad

in our backend system, based on the location history of tkee us
and the opinions from the other people. Generally, the nurobe
locations belonging to a category in the recommendatiotawe
the distribution of the categories in the user’s prefersné®r ex-
ample, the user (whose location is represented by the pasim-p
Figure 3) has “Chinese restaurants" as her most prefercadidm

the data sparsity problem. Specifically, a WCH is a sub-tfabeo
predefined category hierarchy, where each node carriesia dat
noting the user’s number of visits to a category. These gatue
further normalized on each layer of a WCH using TF-IDF (term
frequency- inverse document frequency) [19].

Online recommendation. The online recommendation part pro-
vides a user with a list of venues, considering the user'tepre
ences, current location, and social opinions from the setdocal
experts detailed in the following two components: Bjeference-

category and “Shopping malls" as the second. Then, as demon-aware candidate selectioriThis component selects a setlotal

strated in Figure 3 a), “Chinese restaurants” have the bigyes-

expertswho visited the venues within a user's recommendation

ence and shopping malls are the second in the recommenslation range R and have a high expertise in the categories preferred by
when she is near the Chinatown. However, when we change thethe user. A preference-aware candidate selection algorigide-
map view to the 7th Ave, as shown in Figure 3 b), the presence of signed to properly choose thekeal expertsfrom different cat-

malls could become the majority of the recommendationsghou
Chinese restaurants is her first interest. The reason igthatalls
have much higher quality than the Chinese restaurantsi@ingdo
people’s location histories in that particular area. Thia trade-off
between the user preferences and social opinions.

2.3 System Architecture

Offiine Modeling. The offine modeling part is comprised of two
major components: 19ocial knowledge learningnd 2)personal
preference discovenas illustrated in the lower half of Figure 4.
The first component infers each user’s expertise in eaclyagte
city-by-city according to their location histories. Givapre-defined
category hierarchy (e.g., Figure 2 b), we break a user'stimta
history in a city into groups of different location categesi Then,
we model each category group of location histories usinges-us
location matrix, in which each entry denotes a user’s nurabeis-
its to a physical location. By applying an iterative infecermodel
to each user-location matrices, we calculate a score weategory
for each user, indicating a user’s expertise in that categothat

egories according to a user’s different preference weightser
WCH. Meanwhile, this algorithm improves the efficiency ofrou
approach significantly while maintaining the effectivesiesmak-

ing our system really location-aware. Rycation rating calcula-
tion. This component first computes the similarity between each
selectedocal expertand the user using a similarity function based
on their WCHSs. The calculated similarity score is furthed feto

a CF-based model to infer the rating that the user would give t
an unvisited candidate venue. Later, the venues with veligh
predict ratings are returned as the location recommentatio

3. OFFLINE MODELING

In this section, we present ttaffline modelingpart of our sys-
tem, which is comprised of: 1$ocial knowledge learningvhich
evaluates a user’s experiences and discoverdottad expertsin
each city, and 2Personal preference discoveryhich extracts a
user’s preferences from her location history.

3.1 Social Knowledge Learning
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Figure 5: The Iterative Model for Social Knowledge Learning. using the power iteration method and identify theal experts

3.2 Personal Preference Discovery

] ) ) . We extract a user’s preferences from the category of hetedisi
To identify thelocal expertf a location category like “Chinese |ocations. As illustrated in Figure 6, we first project a tstca-

food” and “shopping mall”, this component computes a usex's tion history across all the cities onto a predefined catebesar-

pertise in each category in different cities based on cayeigéor- chy, where nodes occurring on a deeper layer denote theocieg
mation encapsulated in the user’s location history. liveliy, local of a finer granularity. As a result, each node is associated wi
expertsof a category can find high quality venues of the category 3 value representing the number of visits (of the user) tote-ca
as compared with the regular users, resulting in more viduab gory. This is motivated by the fact that an individual's gmences

cation histories for a reference. In addition, usingltl experts are usually made up of multiple interests (such as shopping a
we are able to ignore some random users who have little dath (2 hiking), which further have different granularities, ¢ Food” —

knowledge) in a category of locations, thereby reducingeaes-  «Chinese food”. Second, we calculate the TF-IDF value ofheac
sary computation during the online recommendation. node in the hierarchy, where a user’s location history isurégd

In our method, we first partition all users’ location hiseriby as a document and categories are considered as terms incire do
cities as a user's knowledge usually varies in terms of ggHUC  ment. Intuitively, a user would visit more locations belamgto a
spaces, e.g., a travel expert of New York City may have no idea category if the user likes it. Further, if a user visits léoas of a
about the interesting venues in Beijing. Moreover, userg haae category that is rarely visited by other people, the usetdctike

different expertise in different location categories, gaguser likes this category more prominently. For example, the numbeisifsy
“Chinese food” in the city does not necessary have much knowl g restaurants is generally more than other categoriestileeums
edge about “Italian food” there. Thus, we further dividerssto- in people location histories. It does not mean food is the ifirs
cation histories in a city into groups according to the caf&s of  terest of all the people. However, if we find a user visits ruse
their visited venues. As aresult, a city hasser-location matrices  yery frequently, the user may be truly interested in artsigtohy.

(n is the number of predefined categories) where an entry denote  Qyerall, a user’s preference weight{.) is calculated by Equa-
the number of visits of a user to a venue. Later, we apply aH6TS  tion 5, where the first part of the equation is the TF value ¢é<a

Hypertext Induced Topic Search)-based inference modéiqito gory c in useru’s location history and the second part denotes the
each category-based user-location matrix, inferring ¥pegise of IDF value of the category.

each user in that category. As shown in Figure 5, this modelroks
an individual’s visit to a venue as a directed link from theu®

. . /
that venue. Each user has a hub score denoting its knowledbe a Uy = {uvizvic=c} lg —— ,lul . (5)
each location is associated with an authority score initigaits |u.V| {ujic’ € u; .CH
interest level. The insight supporting this model is theumaltein- where|{u.v; : vi.c = ¢'}| is useru’s number of visits in category

forcement relationship between a user’s knowledge andtkesist ¢, u.Vis the total number of the user’s visits, aa;:c’ € u;.C}|

level of a venue [29]. That is, people who have visited mamihi counts the number of users who have visited categoaynong all
quality venues in a region are more likely to have rich knalgle  the yserg/ in the system. Clearly, after applying IDF to the user’s
about that region. In turn, a venue visited by many peopl& wit \yCH, Chinese restaurant is no longer the first preferenee (ith
rich knowledge is more likely to be a quality venue. Asarg®8  |ighter color). The WCH well captures a user's interestsijfigthe
shown in Equation 1 and 2, a user’s knowledge can be repebent  5||owing advantages: 1) reduce the concern raised by ffereiit
by the sum of the authority scores (i.e., interest level@fenues data scales of different users, 2) handle the data spassenais-
visited by the user, and the interest level of a venue canfi@e  |em and reduce the computational loads for further usenasiityi
sented by the sum of the hub scores (or knowledge) of the userscomputing (from physical locations to categories), and r@obe

who have visited this venue. Using a powerful iteration iefee the computing of similarity between users who do not shage an
method, we generate the final scores for each user and eaok.ven pnysical location histories, e.g., living in differenties.

The users with a relatively high authority score are reghadethe
local expertsn that category.

Preference P rojection§ iCategory Hierarchy User’s WCH
Ve.a = Z Uc.h @)
uel x Art i
3 3 allery
Ueh = Z Ve.Q 2) Food ™
u.vEC i i :
[5) Term Frequency o Inverse Document User’s weighted
whereu..h is useru’'s hub score in category andv..a denotes (#f) of ¢ Frequency (idf) of ¢ preference of ¢
venuev's authority score.
If we useA,, and#,, to denote authority and hub scores at the Figure 6: User WCH Construction.

nth iteration andV as the user-category matrix, the iterative pro-
cesses for generating the final results are:



Algorithm 1: Preference Aware Candidate Selection

Input: (1) Spatial Region R, (2) A user’s u.wch, and (3) Total number of
location recommendations N.
Output: (1) A set of selected local experts £ and (2) A set of candidate
locations V'

1. Retrieve venues 7’ in R

2. U « users who have visited V"

3. while True do

4. for level / from bottom to the root-1 in u.wch do

5. Wmin <— minimum preference weight at /

6. for each category c in user’s u.wch at level / do

7. ke — |UW/ Wi /[Calculate the number of users

8. e «—Top(k, U, ¢) /I Select top-k users based on u’.h
9. for each u' € e do

10. Ly « vUu'Vlocated in R

11. E—EUe

12. if enough candidate venues |V| > N or E == U then

13. L Return local experts £ and candidate locations V'

4. ONLINE RECOMMENDATION

In this section, we preseminline recommendatiopart of our
system, which consists of: Dreference-aware candidate selec-
tion, which selects the candidéteal expertbased on the user’s
preferences and )cation rating calculationwhich infers a pred-
ication score of the candidate locations the user would lgased
on CF-based inference model using the similarity comparss
tween the user and selectiedal experts

4.1 Preference-Aware Candidate Selection

This component selects a set of candidatal expertsand venues
in the user specified geospatial range using our preferawege
candidate selection algorithm (i.e., demonstrated asrithgo 1),
which guarantees the number of selected venues exceedudthe i
vidual's requirement and the category distribution of the selected
local expertsfits the individual's preferences. The algorithm sig-
nificantly improves the efficiency of the online recommeratat
process as we do not need to compute the similarity between th
individual and all the users in the area any more. Meanwltile,
location history of users with very little knowledge abobe tre-
gion can be excluded, as they may have limited contributiomise
final score inference. The experiments show that the caredita
lection increases the efficiency significantly while maiimitag the
effectiveness.

Specifically, given a geospatial ranfespecified by the individ-
ual, this algorithm first retrieves the venué§located in the range
and userg/ who have visited these venues (Line 1 and 2).The can-
didatelocal expertselection process initiates from the bottom level
of the individual's WCH (which has a finer granularity) andvas

(a) WCH of u;

(b) WCH of u, (¢) WCH of us

Figure 7: Diversities of Users’ Preferences.

4.2 Location Rating Inference

Step 1. User Similarity Computing. In this step, we compute a
similarity score between an individual (who issues the meoen-
dation request) and eattcal expert(selected by Algorithm 1) ac-
cording to their WCHSs. Since a WCH is essentially a tree, wa-me
sure the similarity between the two WCHSs in terms of bothrthei
structures and the preference weights associated with @ath
lapped node. Specifically, we decompose the similarity betw
two WCHs as a weighted sum of the similarities between each co
responding level of the WCHs (i.et,wch.l; vs. u’.wch.l1). The
deeper levels are given a bigger weight as they represenea fin
granularity of an individual's preferences. Further, timaikrity
between the same levels of two different WCHSs is measuretidoy t
following two aspects:

The first one is the number of overlapped nodes at the level and
their values, as shown in Equation 6. The more overlappedshod
two WCHSs have the more similar the two users could be. The min-
imum preference weight of an overlapped nedeselected to rep-
resent two users’ common interests.

LevelSinfu, u’,1) = Z min(u.we, v’ w.),

cecl

(6)

The other is the entropy of each level, which can effectizely-
ture the diversity of a user’s preferences [7], as shown inaEq
tion 7, whereH (u, 1) is useru’s entropy at level and P(c) is the
probability thatu visited category: in her historical data.

- > u.P(c)

cecl

x lgu.P(c), @

Figure 7 illustrates the importance of this entropy usingxam-
ple, where three users share some same preferences (marked b
in WCHSs) and the values represent the weights. Without densi
ing the entropy of each level, the similarity scoBs(u1, u2) and
Sim(u1, us3) are identical. However, we can clearly observe that
is more similar tous who is relatively focused thans who has a
variety of interests. Or, we can say is more different fromu;
as compared withiy sinceus has more different categories. We

up to the next higher level if the number of venues cannot meet validated the effectiveness of the entropy in later expenits.

the required number of recommendations. When selectingegen

Finally, the similarity between two WCHSs can be calculated a

at one level of WCH, we choose the node (a category) having the Equation 8, wherg is a weight varying in the depth of the level of

minimum valuewnm. Later, we calculate & value using === |

to decide the number ddcal expertave select in this category, "and
then topk users with a relatively high expertise (hub score) in cat-
egoryc are selected as candidate expertsine 7-8). The venues
(located inR) visited by the users im will be retrieved and de-
posited intoV. After that, candidate expertsare merged withE/
(Line 9-11). The algorithm will stop once we obtain enougimau
ber of venues or all the users who have visited redidmave been
scanned. As aresult, a set of venlieand a set ofocal expertst

are returned.

the location category (the depth of a root is 0) in the hidrnarén
the experiment we choos#=2' as we found the overlapped nodes
decreased exponentially as the depth of levels increases.

U

ZB

That is, two users are more likely to be similar if 1) they har
more nodes with a bigger preference weight, 2) the diffexdree

LevelSinfu, u’, 1)
1+ |H(u,l) — H(u',1)|

Sim(u, u") (8)



tween each level's entropy is small, and 3) these nodesdddata
lower level in their own WCHs.

Step 2. Location Rating Calculation.In this step, we place tHe-
cal expertsand candidate venues selected by Algorithm 1 back into
a user-location matrix, which is fed into a user-based CFahtm
infer a user’s rating of a candidate venue. The generaltiotube-
hind a CF model is that similar users rate the same itemsagimil
As users usually do not offer explicit ratings to a venue irBSN,
we regard a user’s number of visits to the venue as an impditit
ing (of the venue). Formally, the rating that usewould give to
venuev is calculated as Equation 9.

>

u’ €E&VEY

Ry (v) Sim(u,u') x v(u',v), 9)

wherev(u’, v) denotes the number of visits of usérat venuev.
Note that the user similarit@im(u, u') is computed in the Step 1
based on WCHs rather than the simple Cosine similarity betwe
two users’s location vectors. That is, we can still make neaoen-
dations for a user even if the user has not visited any locstio

a new city. Finally, the system returns the tdpvenues with the
highest scores to the user as the location recommendations.

5. EXPERIMENTAL EVALUATION

In this section, we first describe the settings of experisamt
cluding the dataset, baseline approaches, and the ewaluagthod.
After that, we report on major results on both the effectagmnand
efficiency of our system followed by some discussions.

5.1 Experiment Settings

Datasets. We study the top two largest cities in USA, obtaining
221,128tips generated by 49,062 users in New York City (NYC)
and 104,478ips generated by 31,544 users in Los Angeles (LA)
from Foursquare. At the meantime, we collect these ugigsin
other cities so as to model a user’s preferences thorougbly.square
blocked the API for crawling a user&heck-indata due to the pri-
vacy concern, but leaving tips open to download. Our metioodbc
be more effective if usingheck-indata (though it is not bad using
thetips). On the other handips have their own advantages in re-
flecting a user’s real interests. Some-times, people checit a
venue without doing anything at the venue. But, leavirgpan a
venue usually means a user has carried out some esseritigiesct
(like dinning and shopping) at the venue.

The following information is recorded when collecting thetat
1) user profile information, including the user ID, name, Aonthe
city; 2) venue profile information, consisting of a venu&s hame,
address, GPS coordinates, and its categories; and 3) ustiolo
histories, represented by all ttips a user left in the system. Each

denotes the average diagonal distance of the minimal bogrodix
of the locations visited by the user in the querying city. Tla¢a
presented in Table 1 tells two stories. First, users have mjppor-
tunities traveling to nearby locations, thereby genegathoretips
in total in a nearby city than a distant one. Second, usersvigiio
LA traveled in a large range than those visiting NYC. Thisiine
with the fact that LA is larger than NYC geographically.
Baseline approaches.We compare our method with the follow-
ing three baseline approaches, detailed in Table 2, wherérgt
three baseline approaches are the existing recommendensys
and the fourth one (ours w/o CS) means our method withougusin
the preference-aware candidate selection algorithm.

1) Most-Preferred-Category-based (MPC) recommendat®inen
a user-specified geospatial range and the user's WCH, thisagh
chooses the top¥ venues as the final recommendations based on
an iterative inference model, which is similar to [29]. Aswquared
with our method, this approach does not consider local Uspiis-
ions on the recommended locations.

2) Location-based Collaborative Filtering (LCH)ocation-based
Collaborative Filtering (LCF) is the most common way thabjple
would come up with [24], which applies the collaborativesfiihg
method directly over the venues. This baseline utilizesuters’
location histories in a city with a user-venue matrix (anrgiie-
notes the number of visits of a user to a venue) and applies the
traditional user-based CF method to make recommendatitims.
Cosine similarity between two users’ location vector is tyed
as the similarity between the two users, and the inferenperis
formed offline. Finally, the locations in the user-specifradge
and having a relatively inference score will be recommended

3) Preference-based Collaborative Filtering (PCH)his base-
line first retrieves all the users and venues in the userifsgic
range, formulates a user-venue matrix online, and thenesppl
user-based CF model to predict a user’s rating of a venue. ahi
proach starts considering the opinions from other usersveder,
the similarity between two users is represented by the @asini-
larity between the category vectors corresponding to tleusers
(without considering the category hierarchy).

Method Social | Category of | Preference | Candidate
Opinion Location Hierarchy Selection
MPC v/ V4 v/
LCF VA
PCF V4 v/
Ours w/o CS vV v/ vV
Ours V4 v V4 IV

Table 2: Comparison Between Baseline Methods and Ours.

Evaluation methods. We evaluate both the effectiveness of the

tip is associated with a venue 1D, comments and a timestamp. Fromsuggested recommendations and the efficiency for gengratin

the dataset we collected, we choose the users whose honis city
located in New Jersey (NJ) state and study the location retwm
dations made for these users in NYC and LA respectively. Eo-gu
antee the validity of the experimental results, we furttedect the
user who has over#psin a city as a candidate query user. Table 1
shows the details about these NJ users, where the footpriger

Home | Querying | Total Tips Tips | Footprint All
City City Users | in City | /User (miles) Tips
NJ LA 228 2,553 [ 11.20 531 9,836
NJ NYC 2,886 | 72,170 | 25.01 3.93 106,870

Table 1: Statistics of Experimental Data Set.

line recommendations with the baseline solutions.

1) Recommendation effectiveneltss very difficult to carry out
a large-scale in-the-field study for evaluating the effegtess of
the location recommendations. To make the effectivenesisiav
tion, we divide a user’s location history into two parts: 1§ select
the location history generated in a querying city as a tesaise
2) we use the rest of the user’s location history as a traisitg
for us to learn the user’s preferences. We regard the vehags t
user has visited in the querying city as the ground truthsmaaith
the recommended locations against these venues. The ncorare
mended locations truly visited by a user in the test city, rtfere
effective the recommendation method is. Specifically, asvshin
the left part of Figure 8, the black dots are the venues theace
tually visited, and we regard the minimum bounding box ot!ad!
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Figure 8: Recommendation Effectiveness Evaluation Method

visited venues in the querying city to simulate the geospatinge
that would be specified in the user’s recommendation reqéRest
member that our recommendation system is location-aware ai
spatial range is needed here to evaluate the effectiverissn,
based on the given geospatial range and the user’s locastamh
some venues will be recommended by our system, as illudtigte
the striped dots in the right part of Figure 8. Based on theigglo
truth and recommendations, we are able to compute a precisid
recall according to Equation 8 and 9.

number of recovered ground truths

total number of recommendations

number of recovered ground truths
total number of ground truths

precision=

(10)

recall =

1y

In fact, this is a very strict evaluation measurement as armag
still like a venue even if the user did not visit the venue. &r,
user has visited a location while the user forgot to letpe In
other words, our method is actually more effective than tina-n
ber shown in the following experimental results. Meanwhile
results still reveal the advantages of our method beyondlibas
from the perspective of a relative comparison.

The precision and recall are affected by the following three
jor factors: 1) the number of requested recommendatién®) the
scale of a user’s location history (i.e., the number of eisito-
cations, including locations outside a querying city), &)cthe
density of venues withips in a user’s query range (for simplicity
termed as venue density). For example, the venue densitynsho
in the left part of Figure 8 is 6 (if the size of the bounding hiex
1 mile?). Therefore, in the rest of the paper, we study the effec-
tiveness of our system changing over these three factdrgy tie
NJ users’ data shown in Table 1. Figure 9 respectively ilfuss
the distributions of the NJ users in LA and NYC with respect to
the scale of location history and the venue density (the rurob
venues withips per mile?).

2) Recommendation efficiencyhe efficiency of the online rec-
ommendation mainly depends on the following two aspectthe)
size of the user-specified geospatial range and b) the nuofber
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Figure 9: User Location History Distributions.

(b) New Jersey Users in NYC.
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15 20

venues recommended. Therefore, we test the efficiency afyaur
tem changing over these two factors. At the same, we exphere t
benefit the candidate selection component brings to thersyst

5.2 Experimental Results

5.2.1 Effectiveness of Recommendations

Figure 10 and 11 show the average precision and recall of dif-
ferent methods varying in the number of recommended logstio
(N). Clearly, our method outperforms baseline approachesfsig
icantly. First, LCF drops behind other three methods, shgwfe
advantage of using location categories to model a useratitmt
history and carrying a location-dependent inference. B&cBCF
and our method outperform MPC, justifying the benefit braumh
considering social opinions. Third, our method exceeds B@F
to the advantages of WCH, which is more capable of modeling a
user’s preferences. Finally, our method has a very simiafop-
mance between using and without using the candidate séfgst a
rithm, as shown in Table 3 (we did not plot it on Figure 10 and 11
as the difference is minor). This is a good result as the caneli
selection improves the efficiency of our method (see latsults)
significantly while having the same (or even better) effextess
as (or than) using the full set of locations falling in a uspecified
geospatial range.

As shown in Figure 10 and 11, the recall of our method increase
quickly though the precision drops slightly as the numbeeocbm-
mendation increases. Our method achieves the best perfoema
when N=15 in LA (F-measure0.771), andN=20 in NYC (F-
measure=0.385), where F-measurg2x %m In addition,
the precision in LA is higher than that of NYC though NJ users
have more location histories in NYC beyond LA. In other words
the venues to be visited by a user are more predicable when the

Method Precision Recall
N=5[ N=I0[ N=20 ]| N=5] N=10] N=20
Ours 0.80 [ 0.79 0.71 0.21 ] 0.42 0.70
Ours w/o CS| 0.81 0.80 0.70 0.21 0.42 0.68

Table 3: Comparison of Ours & Oursw/o CS (NJ users in LA).
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user travels to a new city. This seems somehow surprisingsat fi
glance. However, we found it is true given the following fa@eo-
ple usually visit some well-known places (e.qg., touristaattions or
restaurants introduced in a travel guide book) in a new oithém,
while would travel to any venues in a city they are very faanili
with (e.g., hometown). This is also one of the reasons |epttira
lower recall in NYC. Besides that, NJ users have visited nhore
cations in NYC, causing a bigger denominator in Equation &iwvh
further reduces the recall. Figure 12 further justifies ttéém by
visualizing the distribution of a user’s location historydifferent
categories (in LA and NYC respectively). Here, each rowellin
represents a user and each column (line) denotes a categery.
select the top-50 users with the largest scale of locatistoty,
ranking them from the top to the bottom in the figure. Mean®shil
we group the sub-categories belonging to the same categargét
of separators on the horizontal axis (refer to Figure 2 b)gafly,
these users’ location histories are more focused in LA thaMC
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two users’ WCHs (i.e., Equation 6). “Simple+Level” meane th
similarity taking into account both the overlapped noded e
granularity of a WCH (nodes on a deeper level are assignddawit
bigger ). Finally, “Simple + Level + Entropy” is the similarity we
defined in Equation 8. The results show the benefit by addiog ea
component to our similarity function. In addition, the ey of a
WCH brings a significant improvement.

5.2.2 Efficiency of Recommendations

In the efficiency study, we test 200 users in LA and NYC re-
spectively, randomly choosing a location in the city for theer.
The experiments were evaluated on a computer running Wisdow
7 with an Intel Xeon CPU 2.80GHz processor and 24 GB RAM.

Figure 16 presents the average online efficiency of differeth-
ods varying in the number of recommendations, setting 18

(as NYC is much closer to New Jersey than LA), therefore easy a query range. For example, on average our method can finthtop-

to predict. It is similar to the discovery in [5] that a longsthnce
travel is more influenced by the social network ties.

location recommendations (that could interest a user mwagtjn
a distance of 10 mile (to a user’s current position) in 40mkAn

To further explore the performance of our method, Figure 13 and about 60ms in NYC. It is not surprising that our method is
presents the precision of different methods changing dvestale slower than MPC which does not consider the location histdry
of a user’s locations history (where a user requests 10 neeom other users. LCF achieves the best efficiency because wetdo no
dations, i.e.,N=10). As a result, the more locations that a user count the time for the CF-based inference (which is supptséd
has visited the more accurate we can model a user’s pregsenc carried out offline). Theoretically, no method can outperf@. CF
thereby leading to a better performance. Additionally, pheci- in efficiency as it only does an online selection (of courke, éf-
sion of the other three methods increases faster beyond k@ea  fectiveness of LCF is the worst among these approaches)oBut
number of visited location increases, showing the advantdido- method is faster than PCF due to the candidate selectiorithigo
cation category in dealing with data sparseness problemile8ito and is not significantly slower than MPC and LCF. The processi
Figure 10, the precision in LA is still higher than NYC. time only increases slightly as the number of recommendstiio-
Figure 14 plots the precision of different methods changivey creases. Additionally, the online recommendation onlysadittle
the venue density. The results match our intuition that gesdr bit more time in NYC (than LA) though the venue density in NYC
venues located around a user the more location candidatdseca ; ‘ 08
recommended. Therefore, the prediction becomes hardethand 0 el Sime o 07
the precision decreases. Actually, to guarantee the gualitec-

Entropy+Level+Simple —@—
Level+Simple —3—
Simple —¥—

Recall

Simple —¥— 0.6
ommendations, our system can help a user smartly deterimine t $ o gi
number of venues that should be recommended based on tke scak 06 03
of her location history and the venue density around. Invlzg, a ' 02
user does not need to do anything when using our system. o1

Figure 15 further studies the user similarity function gsthe Ts I N ’s I N
defined precision and recall criteria), justifying the autesye of umbers of Recommendatons (1) urmbers of Recommendzrons (N)
each component we defined in Equation 8. Here, “Simple” denot (a) Precision (NJusersin LA).  (b) Recall (NJ users in LA).
the user similarity solely considering the overlapped sduigween Figure 15: Similarity Functions w.r.t Recommendations.
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is higher than LA.

Figure 17 shows the average efficiency of different appresach
changing over the geospatial range specified by a usengetti10.
Intuitively, a larger range will incorporate more locatiand user
candidates, leading to a heavier computational load. Betfimd
the similar trends as that shown in Figure 17 (LEMPC > ours
> PCF). As people would not request location recommendaéion f
away from them, we only study the efficiency up to 20 miles. ©ve
all, our method is efficient and scalable, besides the éffantss
we have justified before.

To explore the benefit brought by the candidate selection-alg
rithm, we further study the difference between using andhovit
using the candidate selection algorithm. Figure 18 a) andkb)
spectively present the number of users and that of locatibbasen
for the CF model, varying in number of recommendations ifsptt

rangeR=10 miles) For instance, our method with candidate selec-

tion only employs 1/3 users and 1/5 location candidates éor g
erating 10 location recommendations, which is as good agusi
the full set. In addition, the smaller number of recommeiaatest
requested, the more inexperienced users and low qualifitos
removed. Figure 19 a) and b) respectively plot the numbesefal
and that of locations chosen for the CF model, changing dwer t
size of the user-specified geospatial range. As a resultatber
range a user specifies, the more inexperienced users andityq
locations our candidate selection algorithm removes. titsthe
candidate selection algorithm improves the efficiency ofsystem
significantly while maintaining the effectiveness.

6. RELATED WORK

We summarize the existing location recommendations into tw
categories: 1) generic location recommendations and 2Zppal-
ized location recommendations.

6.1 Generic Location Recommendations

Regardless of the preferences of an individual, generiatioc
recommendation systems encapsulate the public opiniorls-on
cations to provide people with the most popular venues aelra
routes in a city. For example, [29] mines the most intergdtica-
tions and travel sequences from a large number of user-gfeaer
GPS trajectories. Given a user-location matrix, a HITSeHds-
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ference model was also proposed to predict the interesit dévae
physical location and the knowledge of a user. [3] furthaeeds
this work by considering the correlation between locatioiten
doing the inference. However, both of them do not differsetihe
locations from different categories. Though these recontaton
systems have their own applications, sometimes, it wouldibe
ficult to say which one is more interesting, a shopping malh or
museum, as different users may have different answers.

6.2 Personalized Location Recommendation

Some simple personalized recommendation systems request a

user to manually specify her personal interests by categdlike
restaurants and parks) [11, 18], which will be employed tede
mine the POls (around the user) to be shown on a mobile icrfa
As a user’s preferences are not actually binary decisiodshame

a certain granularity, manually specifying personal mesfees is
obtrusive and usually bring a user too many or too few recomme
dations. Meanwhile, such systems do not incorporate otbensu
opinions on a venue, losing a lot of valuable information.

A branch of recent research starts learning a user’s irigsfiresn
the user’s location history and incorporates the socialrenment
of the user to make recommendations. Specifically, [6, 1422B
deposit people’s location histories into a user-locati@trir where
a row corresponds to a user’s location history and each collen
notes a venue like a restaurant. Each entry in the matriesepts
the number of visits of a particular user to a physical vertren,

a user-based CF model is employed to infer a user’s intevest t
unvisited venue. However, the similarity between two ugesim-
ply represented by the Cosine similarity between the twasise
rows, overlooking the features of human mobility in geodiiap
spaces, such as sequential and hierarchical propertiesatfdns.
To better estimate the similarity between users, Zheng.428]
proposed a hierarchical-graph-based similarity measemértak-
ing the human mobility features into account. The locatieo-r
ommendation system using the user similarity outperfornose
using the Cosine similarity. While the user-based CF maziable
to capture people’s mobility in the physical world, it has @op
scalability as adding a new user into a system will triggearge
number of similarity computing operations. To address ttubp
lem of scalability, [26] proposed a location-based CF macéhg
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the location correlation mined from many users’ GPS tracea a

distance measure between two locations. The locationdb@ge [1]
model is slightly less effective than the user-based onéevidging 2
much more efficient.

Unfortunately, solely using a CF model (no matter the usesed
or the location-based) cannot handle the data sparsengsiemr 3]
very well if we directly formulate a user-location matrixhdugh [15, 4]
24] applied Single Value Decomposition to a user-locatiatrim
so as to reduce the data sparseness problem to some exient, th
method does not work well when there is no overlap betweersuse
location histories. In fact, this is quite common when aniidial (5]
travels to a city that is new to her.

Our recommendation system differs from the above-mentione [6]
work in the following two aspects: 1) We project a user’s loca -

tion history into the category space and model a user’s prebées
using a WCH. This method handles the data sparseness problem

and enables the computing of similarity between users whaodo 8]
share any physical location histories, e.g., living ingliént cities.

Unlike the traditional cold-start problem in the recommenslys- [9]
tem [21, 1], where the users or items come to the system with no
ratings, a user is new only for the unfamiliar area in termshef

new city problem in location-based recommendation. As e ta [
advantage of the category information of the user’s histbrio- 11]
cation, we can recommend locations to a user in a city based on
her location history in other cities. 2) Pervious CF-moda$dd
methods have to infer a user's interests in a venue offlinetdue (12

the heavy computation and then present the locations witigta h
ranking around a user. Such methods cannot guarantee the qua [13]
ity of the recommended locations as a user’s current locagioot
truly incorporated in the inference. But, our system cheasadi-

date venues according to a user’s current location (or azatitmn el

specified by a user) and carries out the inference online.tH#o, [15]

venues recommended by our system are not only preferenmesaw

but also really location-based. (16]

7. CONCLUSION o
This paper presents a location-based and preference-ag@re

ommender system, which provides a user with location recemam

dations around the specified geo-position based on 1) thesuse [18]

personal preferences learnt from her location history grebgial

opinions mined from théocal expertsnvho could share similar in- [19]

terests. This recommender system can facilitate peopé/sltnot

only near their living areas but also to a city that is new tenth 20]

(even if they have not visited any places there). By takingaad 1]

tage of the category information of a user’s location higtour

system overcomes the data sparsity problem in the origised-u [22]

location matrix. We evaluated our system using extensiyekx

ments based on a real data set (221,fig8generated by 49,062 (23]

users in NYC and 104,478ps generated by 31,544 users in Los

Angeles) collected from Foursquare. According to the axpen- [24]

tal results, our approach significantly outperforms somgmnia-

cation recommendation methods (MPC, LCF, and PCF) in effec- [25]

tiveness (measured by precision and recall). The resudtsjas-

tify each component proposed in our system, e.g., takirgaot [26]

count location history of others, category-hierarchy dasesfer-

ence modeling, user similarity computing, and CF-baseatanfce. [27]

Meanwhile, the proposed candidate selection algorithnriorgs

the efficiency of our approach tremendously while maintajrthe [28]

effectiveness, enabling an online recommendation saariargen-

eral, our system can provide 10 quality location recommgoas [29]

within a 10-mile spatial range within 60ms. In the future, are
going to incorporate the temporal and weather featuregfetoec-
ommendation system.
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