
Mining Entity Attribute Synonyms via Compact Clustering

Yanen Li1, Bo-June (Paul) Hsu2, ChengXiang Zhai1, Kuansan Wang2

1Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
{yanenli2, czhai}@illinois.edu

2Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
{paulhsu, kuansan.wang}@microsoft.com

ABSTRACT
Entity attribute values, such as “lord of the rings” for movie.title
or “infant” for shoe.gender, are atomic components of entity ex-
pressions. Discovering alternative surface forms of attribute values
is important for improving entity recognition and retrieval. In this
work, we propose a novel compact clustering framework to jointly
identify synonyms for a set of attribute values. The framework can
integrate signals from multiple information sources into a similarity
function between attribute values. And the weights of these signals
are optimized in an unsupervised manner. Extensive experiments
across multiple domains demonstrate the effectiveness of our clus-
tering framework for mining entity attribute synonyms.

1. INTRODUCTION
The Web contains a wealth of structured data, such as various

entity databases, web tables, etc. There is a growing trend in com-
mercial search engines to match unstructured user queries to these
structured data sources. However, user expressions of such enti-
ties often do not match the canonical specifications from the data
providers. For example, in the movie domain, the full title “the lord
of the rings: the return of the king” can be specified by users as
“lotr 3”, “lotr: return of the king”, or “the return of the king”. For
shoes, people may describe the standard gender value “infant” as
“baby” or “toddler”. Thus, entity synonym identification, the dis-
covery of alternative ways people describe entities, has become a
critical problem to bridge the above mentioned gap between data
providers and consumers.

Traditionally, entity synonym research has focused on finding
synonyms of named entities, where the entity itself is completely
specified by the referent string. Here we are interested in finding
synonyms of entity attribute values (also referred to as entity at-
tribute synonyms throughout this paper). While the attribute values
can be entity mentions, they can also be arbitrary strings (adjec-
tives, verbs, etc). In fact, our problem definition is a generalization
of finding named entity synonyms, because the named entity ex-
pression is often just an attribute of the entity. Fig. 1 illustrates an
example of such general cases collected from a product title and
two user issued queries. Here “canon” is a named entity, but it also
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matches attribute digital-camera.brand. And “12.1 mega pixel” is
an attribute value; but it cannot be interpreted as a stand-alone en-
tity. As seen in Fig. 1, there are a lot of variations in describing
the same attribute values. Successful identification of their surface
forms will enable better query intent understanding and better nor-
malization of products from different providers, etc. In the case

Figure 1: Entity Attribute Value Variations

the attribute value itself is an entity mention, our problem setup is
the same as traditional entity synonym finding. Previous research
has addressed the synonym identification problem from multiple
perspectives. For example, [10, 4] tried to reconcile different ref-
erences to the same database record. Other works identified alter-
native forms of a query for web search by measuring query sim-
ilarity [6, 12], query-document click-graphs [1] and query-entity
click-graphs [9]. For non-entity attribute values (arbitrary strings),
there are also research efforts from the Natural Language Process-
ing community on finding semantic synonyms based on distribu-
tional similarity [14, 15], syntactic patterns [11, 5] et. al.

However, two major challenges remain. First, finding synonyms
without context can not handle semantic ambiguity. There are re-
cent research attempts to identify synonyms with additional con-
text, such as paragraph context in [22]. But for structured database,
such information is not always available. Second, previous ap-
proaches usually focus on utilizing a single signal, such as distribu-
tional similarity [14, 15], syntactic patterns [11, 5], or query-entity
clicks [9]. Some recent works explored more information sources
[17, 7]. However, the weights for combining these information
sources are usually manually tuned largely based on experience.

In this work we focus on finding synonyms for a set of entity
attribute values simultaneously. Our problem setup is a general-
ization of the entity synonym identification problem, in which the
input can be an entity mention or an arbitrary string. To address the
deficiencies of existing approaches discussed above, we propose
a compact clustering model that enables the integration of multi-
ple heterogeneous information sources. Our main contributions are
summarized as follows:

• Joint synonym mining from a set of attribute values. Most
previous synonym identification methods search for synonyms
one entity at a time. However, processing a set of entity attribute
values simultaneously has several advantages. First, as the values
are from the same attribute, they exhibit distinctive contextual pat-



terns. Mining such patterns allows us to define a novel categori-
cal pattern similarity function to tackle the ambiguity problem.
Second, joint modeling of multiple attribute values also provides
prior knowledge about the relationship among candidates. For
example, for entity mention “lord of the rings 2”, “lord of the
rings 3" could be identified as synonym mistakenly. But if we
learn synonyms from those two values jointly, this error could be
corrected easily because of the awareness of “lord of the rings 3".
• Integrating multiple information sources. Synonym values
generally exhibit similarities in more than one aspect. Some syn-
onym values only differ in a few characters, due to spelling errors
or morphological differences. Also, queries that differ only in
synonym values tend to have clicks on similar sets of documents.
In addition, synonym values generally have similar surrounding
contexts within queries and documents. Among these signals,
some are more important than others in determining synonym re-
lations. Furthermore, the relative importance of these signals also
depends on the domain: a feature that is crucial in the movie do-
main might be only marginal in the camera domain. Therefore
automatic determination of the weights of different information
sources is critical. In this work we propose to automatically learn
these weights via compact clustering – a novel clustering proce-
dure that maximizes the similarity of points within a cluster.

2. RELATED WORK
There is a rich body of work on the general topic of automatic

synonym discovery. This topic can be divided into sub-areas, in-
cluding finding word synonyms, entity/attribute synonyms, and re-
lated query identification. Identifying word level synonyms from
text is a traditional topic in the NLP community. Such synonyms
can be discovered using simple dictionary based methods such as
WordNet; distributional similarity based methods [14, 15]; and ap-
proximate string matching approaches [18]. In this work we focus
on finding entity attribute synonyms, which usually have more do-
main context than plain words.

Researchers have employed several similarity metrics to find syn-
onyms from web data. Such similarities include distributional sim-
ilarity [14, 15], coclick similarity [9, 7], pointwise mutual informa-
tion [21], and co-occurrence statistics [3]. Unlike these works, our
work introduces a novel similarity metric called categorical pattern
similarity for jointly finding synonyms from a set of attributes.

Although several similarity metrics have been introduced to find
synonyms, most previous approaches use only a single metric. [7]
tries to combine multiple metrics, however they manually choose a
set of thresholds for individual metrics, leading to a precision ori-
ented approach. Instead, our approach combines the metrics with
weights, and learns these weights automatically in an unsupervised
manner. In this sense our work is also related to the previous works
on semi-supervised metric learning [23, 20, 2]. We differ from
these works in that our metric learning approach is embedded in
the compact clustering framework.

3. PROBLEM DEFINITION
In our problem setup, the input consists of (1) a set of canonical

entity attribute values from a domain; (2) candidate synonyms of
the canonical attribute values. And the output is the true synonyms
of this set of attribute values. As there are multiple interpretations
of “alternative expressions”, we focus on synonyms that convey the
equivalent meaning of the canonical value in the (implied) domain,
including semantic alterations, abbreviations, acronyms, permuta-
tions, spelling errors, etc. For example, for the input “IBM”, the
synonyms include “International Business Machines”, “Big blue”,
“IBM corporation” etc.

Formally, given a set of K semantically distinct values V =
{v1, v2, ..., vK} from an unspecified entity attribute, where each
value v ∈ V is represented by a canonical string expression, such
as “5d mark iii” for camera.model. From a set of N candidate syn-
onym values X = {x1, . . . , xN}, we can define an oracle mapping
F : X → V ∪ {v0}, which assigns each candidate value x to its
unique canonical synonym value v, or if x is not a synonym of
any value in V, to the special background value v0. Note that we
assume each candidate synonym expression maps to at most one
canonical value. Now, we can define the synonym identification
problem as follows:
Definition 1: For each canonical attribute value v ∈ V, find the
subset Xv = {x ∈ X|F(x) = v}, representing the set of synonym
expressions for value v.

Note that we assume values in V are semantically distinct and
homogeneous. This assumption is reasonable in several applica-
tion scenarios. For instance, for product providers such as eBay
and Amazon, a set of distinct and homogeneous canonical attribute
values can be easily obtained from product catalog. The homoge-
neous assumption implies that the inputs are from the same domain,
which can be leveraged for mining their synonyms collectively.

4. COMPACT CLUSTERING
As mentioned in the introduction, most previous synonym identi-

fication methods search for synonyms one input at a time. However,
such strategy have two major drawbacks. First, without modeling
the attribute values jointly, it’s very difficult to tackle the ambi-
guity problem since the category context implied by a set of at-
tribute values is lost. Second, this strategy doesn’t leverage the
prior knowledge multiple attribute values bring to the candidates.
In order to take advantage of a set of canonical attribute values,
we propose to identify synonyms of attribute values by a clustering
model with multiple similarity kernels called compact clustering.
In this model, attribute values X = {x1, x2, ..., xN} are modeled
as data points. And points are connected with others with similarity
function f . Data points form clusters such that points in the same
cluster are considered synonyms. In this section we first define the
similarity kernel functions. Then we introduce a basic model by
motivating the concept of cluster compactness. By addressing the
limitations of this model, we propose several extensions that lead
to the standard compact clustering model.
4.1 Similarity Kernels

In our clustering framework, data points (attribute values) are re-
lated to each other in different aspects. For example, in the do-
main of movie.title, two titles are similar if people click on the
same set of documents after querying for these titles. Two titles
also are similar if they follow similar lexical distribution. In fact,
there are heterogeneous types of information that can be leveraged
to infer the synonym relationship. Suppose from information type
t, the similarity of points xi and xj is defined as a similarity kernel
ft(xi, xj) ∈ [0, 1], and each type of similarity kernel is associ-
ated with a weight wt reflecting its relative importance, then the
overall distance between xi and xj can be defined by these similar-
ity kernels. Here we define the distance between xi and xj as the
combination of the similarity kernels with weights:

d(xi, xj) =

T∑
t=1

wα
t · dt(xi, xj) (1)

=

T∑
t=1

wα
t · (1− ft(xi, xj))

where ft(xi, xj) ∈ [0, 1] is the similarity kernel of xi and xj cal-



culated based on evidence from information source t ∈ {1, ..., T}.
Likewise dt(xi, xj) = 1 − ft(xi, xj) ∈ [0, 1] is the distance be-
tween xi and xj . α is a constant whose value is set to 2 in this
work. And wt ≥ 0 are the weights needed to be learned, following
constraint

∑T
t=1 wt = 1.

The special choice of α is to make the optimal wt easier to solve
under the above constraint, as introduced in previous work [8]. In
the following, we specifically define four similarity kernels accord-
ing to four types of information. Note that our framework is not
restricted to these kernels. In fact our model can support arbitrary
number of similarities from different information sources.

1. Categorical pattern similarity. This is a novel similarity ker-
nel which leverages a set of attribute values simultaneously. A
key insight is that canonical values in the same category should
share common lexical or semantic patterns. Table. 1 illustrates
the pattern distribution over 50 attribute values from shoe.brand.
These patterns are found by extracting the left and right lexical
context from a set of search queries. It clearly shows that the brand
names are much more likely to appear at the beginning of a query
(#EMPTY# pattern on the left); and the word “shoes” is frequently
following the brand name. By mining the this context, we are able
to discover categorical patterns, which would otherwise be impos-
sible had we looked for synonyms one attribute value at a time due
to data sparseness. Specifically, given data points xi, xj and the left
and right categorical pattern distributions Ω̄l, Ω̄r derived from the
canonical attribute values, we define the categorical pattern simi-
larity between xi and xj as:

f1(xi, xj) = 1− |Jaccard(Ωi, Ω̄)− Jaccard(Ωj , Ω̄)| (2)

where Jaccard(Ωi, Ω̄) is the average Jaccard similarity of the
left context and right context between xi (Ωi,l,Ωi,r) and the cate-
gory (Ω̄l, Ω̄r):

Jaccard(Ωi, Ω̄) =
1

2
·
(
||Ωi,l ∩ Ω̄l||
||Ωi,l ∪ Ω̄l||

+
||Ωi,r ∩ Ω̄r||
||Ωi,r ∪ Ω̄r||

)
(3)

Note that the categorical pattern similarity kernel is large only if
both xi and xj share similar context distributions with the categor-
ical patterns, which is especially effective for excluding the am-
biguous candidate strings. For example, for the canonical value
“Apple” in the domain of IT companies (implied by inputs “Ap-
ple”, “IBM”, etc.), a candidate “Apple fruit” will have very low
categorical pattern similarity because this candidate has very dif-
ferent query context.

Table 1: Categorical Patterns in Shoe.brand
Left Patterns Count Right Patterns Count
1. #EMPTY# 3823 1. #EMPTY# 333
2. www 55 2. shoes 109
3. cheap 38 3. com 67
4. discount 35 4. boots 60
5. women 30 5. sandals 42
... ...

2. Coclick similarity. Two attribute values are similar if users
click on similar documents when they issue queries containing the
two attribute values (proxy queries). Let the set of proxy queries
of xi be Qi = {qi1, qi2, ..., qini

}. For each query qil , the users have
clicks on a set of documents, which is denoted as Φl = {ϕl

1, ϕ
l
2, ..., ϕ

l
M},

where M is the total number of documents. And let the accumula-
tion of these clicks be:

Φ =
∑
l

ϕl =

{∑
l

ϕl
1,
∑
l

ϕl
2, ...,

∑
l

ϕl
M

}
(4)

Then for points xi and xj , we define their coclick similarity as the
cosine similarity of Φi and Φj :

f2(xi, xj) =
Φi · Φj

||Φi|| · ||Φj ||
(5)

3. Lexical context similarity. Under the distributional similar-
ity assumption [16], two strings will carry similar meaning if they
share similar context. We observe that for true synonyms, the two
attribute values will share common left and right context in web
search queries. However this similarity is different from the cat-
egorical pattern similarity in that the lexical context similarity is
more specific to a particular attribute value while the categorical
pattern similarity is related to the patterns of a set of values. We
define the lexical context similarity of xi and xj as the Jaccard
similarity of their left and right context:

f3(xi, xj) =
1

2
·
(
||Ωi,l ∩ Ωj,l||
||Ωi,l ∪ Ωj,l||

+
||Ωi,r ∩ Ωi,r||
||Ωi,r ∪ Ωj,r||

)
(6)

4. Pseudo document similarity. This similarity kernel has been
successfully applied to finding entity synonyms [7]. It essentially
measures the similarity between two attribute values based on the
number of co-occurrences in the query-clicked pseudo document
pairs. Please refer to [7] for more detail.

4.2 Basic Model
After defining the overall distance function and similarity ker-

nels, we now describe the formulation of the clustering model. As
for a clustering model, we must specify the cluster centers. For
the attribute synonym finding problem it’s natural to nominate the
canonical attribute values as the cluster centers since they should
be close to their synonyms. Moreover, synonymous attribute val-
ues should be close with each other in a cluster and far away from
other clusters, which motivates our compact clustering model.
Formally, in the basic model we aim at minimizing the following
objective function:

g0(R,Z,W ) (7)

=

K∑
k=1

N∑
i=1

ri,k · d(xi, zk) +

N∑
i=1

ri,0 · d(xi, z0)

=
K∑

k=1

N∑
i=1

T∑
t=1

ri,k · w2
t · dt(xi, zk) +

N∑
i=1

ri,0 · γ

subject to: 

K∑
k=0

ri,k = 1, 1 ≤ i ≤ N

ri,k ∈ {0, 1}, 1 ≤ i ≤ N, 0 ≤ k ≤ K

wt ≥ 0,

T∑
t=1

wt = 1, 1 ≤ t ≤ T

(8)

The above objective function is the sum of within-cluster disper-
sions. In Eq. (7), the first term is the overall within-cluster dis-
tances of the normal clusters, and the second term is the within-
cluster distances in the background cluster. Such formulation is to
make the resulting clusters more compact. Note that in our model
there is no need to represent data points with explicit feature vec-
tors, instead, we only require that d(xi, xj) ≥ 0 . The notations of
variables in the formula are listed below:



• d(xi, zk) is the overall distance function between xi and zk,
as defined in Eq. (1);

• R is an N × (K + 1) partition matrix, where N is the total
number of points and K+1 is the number of clusters; ri,k ∈
{0, 1} indicates whether object xi is in kth cluster;

• Z = {z0, z1, ..., zK} are the medoids of the clusters. In
the basic model, the first K medoids are fixed to the target
attribute values {v1, v2, ..., vK} for which we look for syn-
onyms;

• W = {w1, w2, ..., wT } are the weights of distance kernels;

• γ is a constant measuring the distance of x ∈ X to the back-
ground cluster.

Rationale of the objective function: The above objective func-
tion is similar to K-medoids[13]. The advantage of this framework
compared to K-means is that the distance function between data
points can be defined in arbitrary form. However, there are im-
portant differences between our basic model and the K-medoids
model: firstly, the first K medoids in our model are fixed to the
canonical attribute values, assuming they are best representatives of
these clusters. Secondly, in our model the distance between points
is a weighted distance function, which is very different from the
standard K-medoids model. Thirdly, in our model we add a back-
ground cluster in order to attract the random points.

Although the basic compact clustering model can partition the
data points into synonym clusters, it suffers from the following lim-
itations: (1) Using a single fixed representative for a cluster may be
problematic. First, the canonical value is not always the most pop-
ular or most representative. It may have idiosyncrasies that are not
shared by other members of the cluster. Second, because the sim-
ilarity features are noisy, if we only compare a candidate against
the canonical value, a noisy feature may bias it towards an incor-
rect cluster. (2) Manually setting the constant γ is very difficult.
(3) No measurement of uncertainties of a point belonging to the
background.

4.3 Standard Model
Generally, Limitation 1 can be addressed by employing a flexi-

ble representative or a small set of representatives for each cluster.
However it’s not desirable to have flexible medoids since in our
problem setup the canonical values are good representatives and it
is more robust to include them into the medoids. Therefore we pro-
pose to use a small subset of points, including the canonical value,
to form a new pseudo-medoid. The subset is viewed as a committee
that determines which other points belong to the cluster. A similar
idea of clustering with committees of points has been successfully
applied to the document clustering problem [19]. Specifically, in
our new proposal, we form the new pseudo-medoid by including
the L− 1 most similar values to the canonical value as well as the
canonical value itself.

To address Limitation 2, we propose to randomly select µ pro-
portion of points from the background cluster, and estimate γ by
taking the average of the distance from x to this random subset.
Results show that the final synonyms are stable with respect to dif-
ferent setting of µ.

We address Limitation 3 by introducing a prior probability p that
a given point x belongs to the background cluster. If we further
assume x follows a uniform prior distribution for normal clusters,
then the prior probability of x belonging to a normal cluster is 1−p

K
.

Based on these new proposals, we present the standard compact

clustering model by minimizing the updated objective function:

g1(R,Z′,W ) (9)

=
1− p

K

K∑
k=1

N∑
i=1

ri,k · d(xi, z
′
k) + p

N∑
i=1

ri,0 · d(xi, z0)

=
1− p

K

K∑
k=1

N∑
i=1

∑
xj∈z′

k

T∑
t=1

1

|z′k|
· ri,k · w2

t · dt(xi, xj)

+ p

N∑
i=1

∑
xj∈A

T∑
t=1

1

|A|ri,0 · w
2
t · dt(xi, xj)

subject to Eq. (8). Where z′k is the pseudo-medoid, A is the sub-
set of random points in the background cluster, whose size is con-
trolled by the parameter µ. And the prior probability p is a tunable
parameter. The standard compact clustering model aims at induc-
ing more compact clusters.

4.4 Solving the Standard Model
In the standard model there are three sets of unknown variables:

R, Z′ and W , which are dependent on each other. There is no
exact solution to solve all of them at the same time. Instead we
solve this optimization problem by iteratively solving the following
minimization problems:

1. Fix Z′ = Ẑ′ and W = Ŵ ; find the best R that minimizes
g1(R, Ẑ′, Ŵ )

2. Fix W = Ŵ and R = R̂; find the best medoids Z′ that
minimizes g1(R̂, Z′, Ŵ )

3. Fix Z′ = Ẑ′ and R = R̂; solve the best parameters W that
minimizes g1(R̂, Ẑ′,W )

Sub-problem 1 (cluster assignment) can be solved by:{
ri,k = 1 if d′(xi, z

′
k) ≤ d′(xi, z

′
l), 0 ≤ k, l ≤ K

ri,k = 0 otherwise (10)

where {
d′(xi, z

′
k) =

1− p

K
· d(xi, z

′
k) if k > 0

d′(xi, z
′
k) = p · d(xi, z

′
0) if k = 0

For sub-problem 2, we update the pseudo-medoids of first K clus-
ters by including up to the top L − 1 most similar values to the
canonical value as well as the canonical value itself:

z′k ← vk ∪ {L− 1 nearest neighbors of vk in cluster k} (11)

For the background cluster, there is no need to calculate the updated
medoid. We follow the basic ideas from weighted K-means [8]
to solve sub-problem 3. Because after fixing R and Z, Eq. (9)
is a convex quadratic function, we apply the Lagrange Multiplier
method and obtain a closed form solution to W (not shown due to
the page limitation). Intuitively, a larger weight is assigned to a
feature function which makes the clusters more compact.

5. EXPERIMENTS AND RESULTS
To test the effectiveness of our proposed compact clustering model,

we first make direct comparison of our model to the baselines on
the traditional setting that the attribute values are also entities men-
tions. We then conduct another set of experiments on the setting
that the attribute values are arbitrary strings. After that, we will
show results in cases where the attribute values have ambiguous
senses. Furthermore, we investigate the relative importance of sim-
ilarity kernels.



5.1 Datasets and Evaluation Metrics
In order to evaluate the proposed models, we have collected sev-

eral attribute synonym datasets from multiple categories (see Table
2). Specifically, 3 datasets are constructed to test the traditional en-
tity synonym finding. 3 other sets are selected to test the synonym
identification where the attribute values don’t look like entity men-
tions. Furthermore, we have collected a set of ambiguous attribute
values to discuss the challenging issue of ambiguity. Because ob-
taining a set of ambiguous values from a single category is hard,
we get the results from 5 datasets, select 18 such ambiguous values
and then label them. In terms of evaluation metrics, We evaluate
our system based on the standard expected precision, expected re-
call and expected F1 measure.

Table 2: Test Datasets
Type Dataset #Values #Labels %Positive

movie.title 50 3272 15.9
entity mentions shoe.brand 50 3370 17.2

doctor.specialty 50 2105 12.5
shoe.gender 5 96 19.8

arbitrary strings babyclothing.age 15 129 21.0
movie.genre 21 340 15.4
shoe.brand 6
movie.title 3
movie.genre 3

ambiguous values itcompany.name 3 410 16.8
insurance.provider 3

5.2 Baselines

1. Individual features. Individual features are included as base-
lines so as to reveal their strength and weakness on identifying en-
tity attribute synonyms both in the form of entity mentions as well
as arbitrary strings. Synonyms are identified by single attribute
value at a time. We try several settings and manually choose the
best thresholds for these feature functions.

2. Chakrabarti-2012. We also include a strong baseline proposed
by Chakrabarti et. al [7], which identifies entity synonyms by com-
bining multiple similarity scores with manually tuned thresholds.
We consider it a state-of-the-art multi-feature, single value at a time
approach. For a fair comparison, this system works on the same set
of query log and clickthroughs as our approach for calculating sim-
ilarities. We collect final outputs in the form of an unordered list
of synonyms for each input attribute value via the system interface
provided by the authors of [7].

3. Clustering with Fixed Weights. In order to reveal the effective-
ness of the kernel weights learning, we add a baseline that uses the
same clustering model, yet with fixed (equal) kernel weights.

5.3 Entity Mentions
We first evaluate the performance of the compact clustering model

on attribute values that are also entity mentions. Among the three
test datasets, movie.title and shoe.brand are from popular domains
while doctor.specialty is from tail domain. Table 3 shows the ex-
pected precision, recall, and F1 scores. Firstly, the results show
consistently across three datasets that using single feature doesn’t
achieve competitive results. Specifically, categorical pattern has
somewhat good precision but suffers from very low recall. pseudo
document similarity is a relatively robust method achieving bal-
anced precision and recall. However it fails to get competitive per-
formance compared to methods combining multiple features such
as Chakrabarti-2012 and our model. Secondly, the Chakrabarti-
2012 approach achieves relatively high on precision but low on

recall, confirming its precision orientated nature. Thirdly, learn-
ing synonyms jointly in our clustering framework clearly demon-
strates advantages: it achieves better F1 scores than Chakrabarti-
2012 across three datasets by simply fixing the weights to be all
equal. Finally, our proposed compact clustering model is consis-
tently obtaining balanced precision and recall, resulted in best F1
scores. It clearly outperforms the baseline of clustering with fixed
weights, showing the benefit of automatic weight learning. More-
over, its F1 score also consistently outperforms Chakrabarti-2012.
In fact, in two of the three datasets, the statistical T-Test indicates
that there is statistically significant difference between our model
and Chakrabarti-2012 at confidence level p = 0.01. This reveals
the effectiveness of our proposed model that identifies synonyms
jointly with kernel weights automatically tuned.

Table 3: Attribute Values as Entity Mentions
Dataset Method Precision Recall F1

categorical pattern 0.463 0.202 0.2811
coclick 0.381 0.405 0.393
lexical context 0.398 0.372 0.385
pseudo document 0.412 0.437 0.424

movie.title Chakrabarti-2012 0.706 0.400 0.470
clst. w. fixed weights 0.503 0.525 0.514
compact clustering 0.541 0.572 0.556∗
categorical pattern 0.455 0.258 0.329
coclick 0.425 0.446 0.435
lexical context 0.431 0.418 0.424
pseudo document 0.454 0.477 0.465

shoe.brand Chakrabarti-2012 0.762 0.470 0.545
clst. w. fixed weights 0.713 0.510 0.595
compact clustering 0.768 0.560 0.647∗
categorical pattern 0.398 0.19 0.257
coclick 0.359 0.337 0.348
lexical context 0.365 0.328 0.346
pseudo document 0.380 0.359 0.369

doctor.specialty Chakrabarti-2012 0.683 0.520 0.590
clst. w. fixed weights 0.665 0.543 0.598
compact clustering 0.673 0.558 0.610

Note: The F1 score marked by ∗ means it has statistically significant
difference compared to Chakrabarti-2012 at confidence level p = 0.01.

The same as in the remaining tables.

5.4 Arbitrary Strings
We then compare the results on attribute values that don’t look

like entity mentions. Such values include interesting instances like
infant, women in shoe.gender, thriller in movie.genre, 2 year in
babyclothing.age. We summarize the results in Table 4. As ex-
pected, categorical pattern, pseudo document behave similarly as
in the previous experiment, confirming using them individually is
not effective in both forms of attribute values. Also, the clustering
with fixed weights performs slightly better than Chakrabarti-2012.
Further, the compact clustering model achieves significantly better
results than Chakrabarti-2012 across three datasets. We list some
interesting cases that our proposed model identifies successfully
but Chakrabarti-2012 fails. For example, for thriller, Chakrabarti-
2012 finds “michael jackson thriller” as its synonym while com-
pact cluster doesn’t. In fact, “michael jackson thriller” is not the
synonym of thriller in the particular domain of movie.genre. And
our model identifies “scary” as its synonym, which is more appro-
priate. The superior performance of compact clustering might be
due to two reasons: first is that we aggregate all referent strings
of the attribute value as proxies, therefore resulting in more robust
estimate of similarity measures. And second, the joint modeling of
multiple attribute values from the same implied domain effectively
handles the ambiguity problem, which we will further discuss be-
low.



Table 4: Attribute Values as Arbitrary Strings
Dataset Method Precision Recall F1

categorical pattern 0.371 0.179 0.242
coclick 0.343 0.362 0.352
lexical context 0.360 0.336 0.348
pseudo document 0.370 0.400 0.384

shoe.gender Chakrabarti-2012 0.489 0.372 0.423
clst. w. fixed weights 0.485 0.502 0.493
compact clustering 0.500 0.550 0.524∗
categorical pattern 0.382 0.190 0.254
coclick 0.412 0.455 0.432
lexical context 0.462 0.421 0.441
pseudo document 0.401 0.544 0.462

babyclothing.age Chakrabarti-2012 0.592 0.380 0.463
clst. w. fixed weights 0.562 0.466 0.510
compact clustering 0.669 0.543 0.599∗
categorical pattern 0.355 0.140 0.201
coclick 0.325 0.355 0.340
lexical context 0.343 0.312 0.327
pseudo document 0.331 0.362 0.346

movie.genre Chakrabarti-2012 0.591 0.482 0.531
clst. w. fixed weights 0.580 0.554 0.567
compact clustering 0.594 0.588 0.591∗

5.5 Ambiguous Attribute Values
Ambiguous synonyms handling is important for finding domain

specific synonyms. Here we compare our model to Chakrabarti-
2012 on a set of attribute values that are ambiguous. They include
{jordan, coach, lv} from shoe.brand, {app, sun, adobe} from it-
company.name, {aarp, advantage, aim} from insurance.provider,
{thriller} from movie.genre, {matrix} from movie.title. Results on
Table clearly indicate that compact clustering is much more effec-
tive than Chakrabarti-2012 on handling ambiguous attribute val-
ues. Interestingly, the baseline of clustering with fixed weights also
significantly outperforms Chakrabarti-2012 in this case, suggest-
ing that joint modeling of multiple attribute values is particularly
effective for ambiguous synonyms handling.

Table 5: Ambiguous Attribute Values
Method Precision Recall F1
Chakrabarti-2012 0.581 0.465 0.517
clst. w. fixed weights 0.613 0.574 0.593∗
compact clustering 0.677 0.582 0.626∗

5.6 Contribution of Similarity Kernels
Our proposed model is able to learn the weights of similarity

kernels. In this experiment we look into the learnt weights to see
whether they reflect the relative importance of the similarity ker-
nels. For this purpose, we have conducted the ablation test, in
which we remove one similarity kernel at a time and run the model.
We also report the weights learnt without removing any kernels.
Results on three domains are shown in Table 6. These results
indicate that pseudo document similarity seems to play relatively
higher importance than other kernels. For example, both in movie.title
and doctor.specialty, it carries the highest weights; and the F1 mea-
sures drop to the lowest when removing this kernel (the lowest F1
is marked in bold). Interestingly, the categorical pattern similarity
plays an important role in shoe.brand. Note that in this domain
there are more ambiguous inputs (6 values) than other domains,
suggesting the importance of categorical pattern similarity for dis-
ambiguation.
6. CONCLUSIONS AND FUTURE WORKS

For the problem of finding entity attribute synonyms, we pro-
pose a compact clustering framework to simultaneously identify

Table 6: Relative Importance of Similarity Kernels
Dataset W/F1 categorical coclick lexical pseudo

pattern context document
movie.title W 0.20 0.20 0.27 0.33

F1 0.505 0.510 0.489 0.464
shoe.brand W 0.29 0.16 0.25 0.3

F1 0.569 0.601 0.589 0.573
doctor.specialty W 0.13 0.22 0.30 0.35

F1 0.573 0.567 0.55 0.538

synonyms for a set of attribute values. In this framework, mul-
tiple sources of information are integrated into a kernel function
and synonyms are learned via unsupervised clustering. We have
also proposed a novel similarity kernel called Categorical Pattern
Similarity, which has proven to be effective for improving the per-
formance of the compact clustering model. Extensive experiments
demonstrate the effectiveness of our clustering framework over pre-
vious approaches for identifying entity attribute synonyms, both in
the cases where they are entity mentions or are arbitrary strings.
We have also demonstrated the effectiveness of our model for am-
biguity handling for identifying domain specific synonyms.

Further, besides attribute value synonym identification, our un-
supervised framework of simultaneously modeling multiple inputs
and integrating multiple kernels can be potentially applied to other
applications, such as looking for related queries, product recom-
mendation, question paraphrasing et. al.
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