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Abstract

BM25 is one of the most widely used information retrieval functions be-
cause of its consistently high retrieval accuracy. Despiteits widespread use,
there have been few studies examining its effectiveness on adocument de-
scription over single and multiple field combinations. We determine the ef-
fectiveness of BM25 on various document fields. We find that BM25 models
relevance on popularity fields such as anchor text and query click informa-
tion no better than a linear function of the field attributes.We also find query
click information to be the single most important field for retrieval. In re-
sponse, we develop a machine learning approach to BM25-style retrieval that
learns, using LambdaRank, from the input attributes of BM25. Our model
significantly improves retrieval effectiveness when the document description
is over single or multiple fields. Our data-driven approach is fast, effective,
avoids the problem of parameter tuning, and can directly optimize for several
common information retrieval measures. We demonstrate theadvantages of
our model on a very large real-world Web data collection.

1 Introduction

BM25 [16] is arguably one of the most important and widely used information
retrieval functions. It has served as a strong baseline in the information retrieval
community, in particular in the TREC Web track [5, 6]. Originally designed to
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be computed over the body and title fields of a Web document, BM25 is a non-
linear combination of three key document attributes: term frequency, document
frequency, and document length.

Recent research suggests that using click information in ranking can signifi-
cantly improve accuracy [1, 7, 24]. Since popularity fields are not generated by
the author of the document, the question has been raised if the foundations be-
hind BM25 are suitable for popularity fields [21]. We are particularly interested in
the retrieval effectiveness of popularity fields. We empirically determine how well
BM25 models content fields, such as the title, URL, and body fields, versuspopu-
larity fields, such as anchor text and query click. We demonstrate that BM25 works
remarkably well for most content fields, but not for popularity fields. BM25F [17]
is an extension of BM25 that prescribes how to combine more than one field in
the document description, and correspondingly how to compute BM25 across the
expanded document description. We determine the contribution of single andmul-
tiple field combinations to retrieval effectiveness and correspondingly evaluate the
retrival capacity of BM25 on these fields.

A challenge to using BM25 and BM25F is the necessity of parameter tun-
ing. Parameters control the contributions of term frequency, field length,and field
weight. BM25F requires the tuning of2K + 1 parameters for a document descrip-
tion containingK fields. Tuning can be accomplished using a grid-search method,
or by using gradient descent [21]. Each method has its drawbacks; grid-search can
be time intensive and in fact prohibitively slow when the data collection is large,
but can find a reasonable set of parameter values for a given target cost function.
Gradient descent is much faster, but the method in [21] does not optimize thepa-
rameters directly for a target evaluation measure and finds parameters no better
than the grid-search technique.

Recently, it has been shown that LambdaRank [3] is empirically optimal [8, 25]
for Mean Average Precision, Mean Reciprocal Rank, and NDCG, andlikely for
other IR measures as well. We could extend the approach in [21] to use Lamb-
daRank and thus optimize the parameters for a chosen IR measure, but the func-
tion is still restricted to the predefined BM25 and BM25F probabilistic models.
The probabilistic model is not the only way to approach information retrieval; we
consider a machine learning approach to develop a BM25-style model. A machine
learning approach has been difficult previously due to the difficulty in obtaining
large amounts of training data. A resulting challenge has been how to prevent a
complex model with many parameters from overfitting the training data. However,
by training LambdaRank [3] on the input attributes of BM25F and over a large data
collection, we are able to build a rich, expressive retrieval model.

Our main interest is in developing an improved ranking model that uses the
same input attributes as BM25; we therefore consider how to develop a retrieval
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function that considers information across fields. Our model learns fromthe same
attributes as BM25, namely term frequency, document frequency, and document
length, and avoids parameter tuning. We learn the function directly from the data
under consideration by training LambdaRank on the input attributes of BM25,
while also optimizing directly for the IR evaluation measure of choice. We call
our model LambdaBM25, since it uses the LambdaRank training method and the
inputs of BM25. Our model is very easy to retrain periodically as attribute values
change (for example, as anchor text and query click fields change over time), and
can be used as a framework for learning other functions by substituting their input
attributes. We believe our model offers value in the design of future information
retreival systems.

Our primary contributions are threefold:

• We empirically determine the effectiveness of BM25 for different field types.
Although BM25 is effective on the title and URL fields, we find that on
popularity fields it does not perform as well as a linear model.

• We develop a machine learning model, called LambdaBM25, that is based on
the attributes of BM25 [16] and the training method of LambdaRank [3]. Our
model is both fast and simple; it does not require any parameter tuning and
is an extension of a state-of-the-art neural net ranking approach. It combines
the input attributes of BM25 with the principles of machine learning and goes
beyond the probabilistic model with a data-driven approach. In addition,
LambdaBM25 optimizes for MAP, MRR, or NDCG, as well as potentially
other IR measures [8, 25].

• We extend our empirical analysis to a document description over various
field combinations. We confirm that BM25F [17] is better than a linear func-
tion of BM25 scores. We then extend our model, LambdaBM25, to docu-
ment descriptions consisting of combinations of fields and find it consistently
outperforms BM25F with statistical significance.

2 Related Work

There have been a number of approaches to document retrieval ranging from sim-
ple to complex models. BM25 [16] is based on a probabilistic information retrieval
model [20] which incorporates attributes of documents, such as term frequencies,
document frequencies, and document length. A generalized inverse document fre-
quency model was recently developed that can also be incorporated into BM25
[13]. BM25 is one of the most widely used retrieval methods and serves asa stan-
dard baseline in the information retrieval community.
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More recently, there has been interest in a simple retrieval function that can
capture signals over multiple document fields. The development of this work began
with Wilkinson [22], who evaluated various ways to weight scores that camefrom
different fields of a document. Ogilvie and Callan [14] overview different field
combination methods as well as propose several novel approaches with acomplete
evaluation. More recently, Robertson et al. proposed a simple method of combining
attributes across multiple fields called BM25F [17].

A drawback of BM25 and BM25F is the difficulty in optimizing the function
parameters for a given information retrieval measure. There have beenextensive
studies on how to set term frequency saturation parameters and length normaliza-
tion parameters [18, 10]. Taylor et al. [21] proposed an approach based on gradient
descent that significantly reduces the tuning time over using standard grid-search
heuristics. Their technique does not, however, directly optimize for the evaluation
measure or offer improved accuracy over a grid-search heuristic.

Recently, it has been shown that LambdaRank [3] is empirically optimal for
several IR measures [8, 25], in particular for NDCG, Mean Average Precision, and
Mean Reciprocal Rank. Our work is a combination of LambdaRank and BM25 at-
tributes, and allows us to optimize directly for the IR measure under consideration.

Recent studies demonstrate the effectiveness of query click data for ranking [1,
7, 9, 24]. However, to our knowledge, there is no detailed study of the effectiveness
of BM25 on single document fields or on subsets of document fields, including
anchor text and query click logs. In addition, we are unaware of efforts to develop
a directly analagous retrieval model based on the same attributes as BM25. Our
work provides both an extensive study of the contributions of differentdocument
fields to information retrieval and a framework for improving BM25-style retrieval.

The remainder of the paper is laid out as follows. In the next section, we review
the fields of a document. Section 4 provides an overview of BM25 and BM25F. In
Section 5, we describe the evaluation measure NDCG [11] and the neural network
ranking algorithm LambdaRank [3]. In Section 5.4, we discuss how to learna
BM25-like retrieval function over a large data collection. In Section 6, we describe
our experiments and present our results. Finally, we conclude in Section 7and
discuss future directions of our of work.

3 Document Fields

A Web document is composed of severalfieldsof information, in particular the title
of the page, the URL, the body text, the anchor text, and queries that lead toa click
on the page. The field may either be written by the owner of the page, as in the case
of the body text, the URL, and the title of the document, or by other authors, asin
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the case of anchor text and query click information. We call the former sources of
informationcontentfields and the latter sources of informationpopularityfields.

Thedocument descriptionis a concatenation of the available fields of informa-
tion. The document desription may be restricted to certain fields, for example,if
no click information is available or if a retrieval system does not crawl anchor text.
To study the effects of various fields, we can restrict the document description to
particular subsets of fields, or to a single field. Such studies can be enlightening
and may lead to further improvements in information retrieval functions.

All field information is preprocessed by removing punctuation, converting to
lowercase, and removing html markup. A queryq is composed of terms; we con-
sider queries which contain at most 10 terms. A document description is decom-
posable into smaller units, for example, characters, terms, or phrases; wefollow
the traditional decomposition into terms. The document frequency for termt is
the number of documents in the collection that contain termt in their document
descriptions. Note that the document description may be over one or several fields.
The term frequency is calculated per term and per field by counting the number of
occurrences of termt in field F of the document under consideration. We measure
the length of a field by counting the number of terms in the field. In this section,
we review the fields of a Web document.

3.1 Content Fields

The content fields of a document include the body text, the document’s title, and the
URL text. The body field consists of the html content of the page. It includesoutgo-
ing link information, image text, navigation bars, and so on, in addition to the core
content. The title field contains the title of the document, indicated by the author
through html ¡TITLE¿ tags. For example, for the sitehttp://webmessenger.msn.com,
the title field ismsn web messenger. The URL field contains the text of the page’s
web address, after word breaking. For example, for the sitehttp://webmessenger.msn.com,
the URL field isweb messenger msn. The body field is typically significantly
longer than the URL and title fields.

3.2 Popularity Fields

Popularity fields include anchor text and query click information. Unlike con-
tent fields, popularity fields are not written or controlled by the document’s owner,
but rather are an aggregation over information about the page from manyauthors.
Popularity fields can be highly repetitive for common pages, and can have ashort
length for lesser-known (tail) pages.
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(msn web messenger, 1802)
(webmessenger, 1278)
(web messenger, 526)
(msn web, 176)
(access messenger via the web, 95)
(web msn, 78)
(web msn messenger, 65)
(msn messenger, 40)
(msn, 37)
(webmsn, 26)
(here, 8)
(msn webmessenger, 7)
(this, 5)
...

Figure 1: Extract of the anchor text field for the sitehttp://webmessenger.msn.com.

3.2.1 Anchor Text Field

The anchor text field is composed of the text of all incoming links to the page.
Anchor text is supposed to indicate the trustworthiness of the document; if people
link to a page, it signals that those people trust its content. Figure 1 lists an extract
of the anchor text field for the sitehttp://webmessenger.msn.com. We compress
the field by listing an anchor text string followed by the number of incoming links
with that string. Note that this representation will preserve term ordering. Our
representation of the anchor text field equally weights all incoming links, regardless
of their parent page. In future research, it may be suitable to weight the text of an
incoming link by the importance of the page it comes from, for example by its
PageRank score [2].

The anchor text field can be highly repetitive. Most Web pages tend to have
large numbers of incoming links containing identical terms. The field may be
repetitive if there are incoming links with repetitive text, or the field may be elab-
orative if the text of incoming links is diverse. For example, in Figure 1, the first
two examples of anchor text contribute a large number of repetitive terms to the
anchor text field. Ideally, this behavior — repetitive versus elaborative— should
be learned automatically from the document collection (see Sections 4 and 5.4).
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3.2.2 Query Click Field

Another source of information for document retrieval is query click information.
Query click information for a document, aggregated across many users, signals
relevance for a given query. It shares the property with anchor textthat the queries
are not authored by the document’s owner.

We follow [1, 9] and build the query click field from query session data. For
details on the query click field, we refer the reader to [9]. We briefly review the
field in this section. Our query click data consists of query sessions extracted from
one year of a commercial search engine’s query log files. A query session consists
of a user-issued query and a ranked list of 10 documents, each of which may or
may not be clicked by the user. A query session can be represented by atriplet
(q, r, c) [12], whereq is the query,r is the ranking of documents, andc is the set
of documents the user clicked on.

In [9], the query click field is represented by a set of query-score pairs (q, Score(d, q)),
whereq is a unique query string andScore(d, q) is a score assigned to that query.
Score(d, q) could be the number of times the document was clicked on for that
query, but it is important to also consider the number of times the page has been
shown to the user and the position in the ranked list at which the page was shown.

The score in [9] represents the importance of the queryq in describing the
relevance of documentd that does not consider position, but does consider the
number of times the document has been shown to users. The score can be derived
from raw click data as

Score(d, q) =
C(d, q, click) + β ∗ C(d, q, last click)

C(d, q)
, (1)

whereC(d, q) is the number of timesd is shown to the user whenq is issued, also
called the number of impressions,C(d, q, click) is the number of timesd is clicked
for q, andC(d, q, last click) is the number of timesd is the temporally last click
of q. β is a scaling factor and can be tuned. Since the last clicked document for a
query is a good indicator of user satisfaction, the score is increased in proportion to
β by the last click count. Figure 2 shows an extract of the query click field for the
sitehttp://webmessenger.msn.com, extracted from [9] for completeness. The term
frequency of termt for the query click field is calculated as

∑

p|t∈p

Score(d, q), (2)

wherep is the set of query-score pairs.
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(msn web, 0.6675749)
(webmessenger, 0.6621253)
(msn online, 0.6403270)
(windows web messenger, 0.6321526)
(talking to friends on msn, 0.6130790)
(school msn, 0.5994550)
(msn anywhere, 0.5667575)
(web message msn com, 0.5476839)
(msn messager, 0.5313351)
(hotmail web chat, 0.5231608)
(messenger web version, 0.5013624)
(browser based messenger, 0.3814714)
(im messenger sign in, 0.2997275)
(msn web browser download, 0.0926431)
(install msn toolbar, 0.0027248)
...

Figure 2: Extract of the query click field for the sitehttp://webmessenger.msn.com
[9].

4 BM25

In this section, we briefly review previous work on BM25, but refer the reader
to [16, 20] for a complete description. BM25 [16, 20] stems from the 2-Poisson
probabilistic model of information retrieval; the task is to answer “What is the
probability that documentd is relevant to queryq?”. The documentd is constrained
to the document description, which may be over one or several fields, as described
in Section 3.

The classic retrieval function BM25 is a function of several field attributes:
term frequencies, document frequencies, and the field length. Althoughthe doc-
ument description could be over several fields, BM25 traditionally has considered
a document description restricted to a single field, or at most two fields, bodyand
title. However, additional fields can provide different signals of relevance and help
improve ranking accuracy. BM25F [17] is an extension of the BM25 function to a
document description over multiple fields. A key property of this function is that it
is nonlinear. Since BM25F reduces to BM25 when calculated over a single field,
we will refer to both functions as BM25F , whereF is a specification of the fields
contained in the document description.

BM25F is computed as follows for documentd, with a document description
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over fieldsF , and queryq:
S =

∑

t∈q

TFt ∗ It. (3)

The sum is over all termst in queryq. It is the Robertson-Sparck-Jones form of
inverse document frequency of termt and is calculated as

It = log
N − df + 0.5

df + 0.5
, (4)

whereN is the number of documents in the collection,df is the document fre-
quency of termt. Note that the document frequency is calculated across the entire
document description. In our experiments, for simplicity, we calculate document
frequency over the body field for all document frequency attributes1.

TFt is a simple term frequency saturation formula that limits the impact of
observing a term multiple times in a field. It is defined as

TFt =
f

k + f
, (5)

wheref is calculated as

f =
∑

F

wF ∗ tfF

βF

. (6)

tfF is the term frequency attribute of termt in field F , k is the saturation parameter
that controls the nonlinearity ofTFt, βF is a function of field length, defined below,
andwF is a tuned field weight parameter.TFt satisfies three key properties: (1)
WhentfF = 0, thenTFt = 0, (2) the function increases monotonically withtfF

and (3) it has an asymptotic limit.
The parameterk is used to tune the saturation of term frequency. Ifk = 0,

the function reduces to 1 and we score the query document pair according to the
presence of the term across the collection only. Ifk is large, the function is nearly
linear in tfF . Small k values are typical, say1 − 2, demonstrating thattfF is
highly nonlinear; after only a few occurrences of the term, the impact of additional
occurrences is minimal.

The 2-Poisson model makes sense only when documents are of equal length,
so BM25F includes a component to account for varying field lengths. Two docu-
ments relevant to the same topic may be different lengths because of wordiness at-
tributable to either repetition or elaboration. The BM25F formula assumes wordi-
ness is only attributable to repetition. The field length component is defined as

βF = (1 − bF ) + bF (ℓF /avgℓF ), (7)

1We also used the whole document description, but found little difference inaccuracy over using
only the body field.
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wherebF is the length tuning parameter,ℓF is the length of the field, andavgℓF is
the average length of the field in the document collection.bF is a tuning constant
between 0 and 1. IfbF = 1, then simple normalization is used, which is meant to
correct for verbosity. IfbF is small, it reduces the effect of normalization.

The instantiation of BM25F requires parameter tuning and setting. BM25F

requires the tuning of2K +1 parameters, when calculated acrossK fields, namely
k, bF , andwF . Tuning can be done using a simple grid-search technique or by
using a gradient-descent method [21]. However, since the parameters should be
tuned on a large dataset, tuning can be time intensive and potentially prohibitively
slow. In our experiments (see Section 6), we tuned the parameters of BM25F

using grid search over 10K queries. We note that the grid search for various field
combinations forK > 3 took over 2 weeks to complete.

5 Learning a BM25-style Function

In this section, we describe our simple machine learning ranking model that uses
the input attributes of BM25F and the training method of LambdaRank. Our ap-
proach is general and may be applied to other retrieval functions. It overcomes
the obstacle of parameter tuning and is completely data driven. We begin by re-
viewing previous work: the target evaluation measure NDCG [11] and the training
algorithm LambdaRank [3].

5.1 NDCG

We choose to evaluate using NDCG, which has been shown to be a good measure
for relevance of web documents to a query. Normalized Discounted Cumulative
Gain (NDCG) [11] is a widely used measure for search metrics. It operates on
multilevel relevance labels. We assume in our work that relevance is measured on
a 5-level scale. NDCG for a given queryq is defined as follows:

NDCG@Lq =
100

Z

L
∑

r=1

2l(r) − 1

log(1 + r)
(8)

wherel(r) ∈ {0, . . . , 4} is the relevance label of the document at rank position
r andL is the truncation level to which NDCG is computed.Z is chosen such
that the perfect ranking would result in NDCG@Lq = 100. Mean NDCG@L is
the normalized sum over all queries:1

N

∑N
q=1 NDCG@Lq. NDCG is particularly

well-suited for Web search applications since it accounts for multilevel relevance
labels and the truncation level can be set to model user behavior. In our studies, we
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consider mean NDCG@1, 3, 10. For brevity, we write NDCG@1, 3, 10. DCG is
simply NDCG (Eqn 8) without the1/Z normalization factor.

5.2 LambdaRank

In the next two subsections, we review a state-of-the-art ranking algorithm called
LambdaRank [3] that optimizes for IR measures. For complete details, we refer
the reader to [3]. LambdaRank is both a list-based and a pair-based neural network
learning algorithm; it is trained on pairs of documents per query, where documents
in a pair have different relevance labels. It is an extension of RankNet [4], another
pair-based ranking algorithm whose cost function is a sigmoid followed by apair-
based cross-entropy cost.

In most machine learning tasks, a target evaluation measure is used to evaluate
the accuracy of the model at test time, and an optimization measure, generally a
smooth approximation to the target measure, is used to train the system. Ideally, the
optimization measure matches the target measure, but typical IR target costs (e.g.
MAP, MRR, mean NDCG, etc.) are either flat or non-differentiable everywhere
and require sorting by model score, which itself is a non-differentiable operation.
Hence, direct optimization of the target measure is quite challenging. LambdaRank
[3] leverages the fact that neural net training only needs the gradientsof the mea-
sure with respect to the model scores, and not the function itself, thus avoiding
the problem of direct optimization. The gradients are defined by specifyingrules
about how swapping two documents, after sorting them by score for a given query,
changes the measure.

LambdaRank provides a significant speed-up over RankNet as well asa new
method for directly optimizing a cost function usingλ-gradients. In the next sec-
tion, we describe theλ-gradient for NDCG, although the gradient definition is
general and can work with any target evaluation measure.

5.3 λ-Gradient for Mean NDCG

A LambdaRank gradient,λj , is defined to be a smooth approximation to the gradi-
ent of a target evaluation measure with respect to the score of the document at rank
positionj. λ-gradients have a physical interpretation; documents are represented
by point masses andλ-gradients are forces on those point masses [3]. On two doc-
uments in a pair in a query, theλ-gradients are equal and opposite, where a positive
λ-gradient indicates a push toward the top of the list, and a negativeλ-gradient in-
dicates a push toward the bottom of the list. With a suitably definedλ-gradient,
the gradient of any target evaluation measure can be smoothly approximatedfor a
given document.
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In [3], several alternatives forλ-gradients are given, and the bestλ-gradient
definition is chosen according to accuracy on validation data. The bestλ-gradient
found in [3] is a combination of the derivative of the RankNet cost [4] scaled by
the NDCG@Lq gain from swapping two documentsi andj with differing labels
for a queryq. We dropq below for brevity.

The RankNet cost is a pairwise cross-entropy cost applied to the logistic func-
tion on the difference of the model scores. Assume documenti has scoresi and
relevance labelli, documentj has scoresj and relevance labellj , andoij ≡ si−sj

is the score difference, then the RankNet cost can be written as follows:

Cij ≡ C(oij) = −Sijoij + log(1 + eSijoij ), (9)

where

Sij =

{

+1 if li > lj
−1 if li < lj

(10)

The derivative of the RankNet cost according to score difference is

δCij/δoij = δCij/δsi = −Sij/(1 + eSijoij ). (11)

Theλ-gradient can now be expressed as

λij ≡ Sij

∣

∣

∣

∣

∆NDCG
δCij

δoij

∣

∣

∣

∣

(12)

= Sij

∣

∣

∣

∣

N(2li − 2lj )

(

1

log(1 + ri)
−

1

log(1 + rj)

)(

1

1 + eSijoij

)∣

∣

∣

∣

whereN is the reciprocal of the maximum DCG for the query andri andrj are
the rank positions of documentsi andj, respectively. Note that the signSij only
depends on the labels of documentsi andj and not on their rank positions. In ad-
dition, if li > lj , then documenti is more relevant than documentj and document
i must move up the ranked list to reduce the cost, soSij = 1 and theλ-gradient for
documenti is positive.

Theλ-gradient for a single document is computed by marginalizing over the
pairwiseλ-gradients,

λi =
∑

j∈P

λij , (13)

where the sum is over all pairsP for queryq which contain documenti (see [3] for
details).

12



5.4 LambdaBM25

Retrieval can be treated as a ranking process, where the ranking modelranks docu-
ments in order of decreasing relevance to the queryq. In the probabilistic IR model
BM25, documents are ranked by probability of relevance to the query. However,
there are several challenges to using BM25, including the requirement ofparameter
tuning, the inability to directly optimize for an IR measure, and the restrictions of
the underlying probabilistic model. In this section we directly address these chal-
lenges by introducing a new machine learning approach to BM25-like retrieval.
Our model, called LambdaBM25, is trained using LambdaRank due to its flexibil-
ity, ease of training, and state-of-the-art ranking accuracy. It employs the NDCG
λ-gradient previously described and learns a function of the BM25F attributes di-
rectly from the data collection.

As mentioned previously, BM25 can be prohibitively expensive when trained
on a document description over many fields. With the growing use of anchor
text and click information, and potentially other metadata, training parameters for
BM25F can be costly. LambdaBM25 does not require parameter tuning since the
function is learned directly from the train collection. In addition, LambdaBM25
can be extended to optimize for several IR measures, since LambdaRank has re-
cently been shown to be empricially optimal for NDCG and other IR measures
[8, 25].

A basic assumption behind the BM25 formula is that two documents about the
same topic may be different lengths because one is more verbose. However, it
may not be true that verbosity is the only reason a document is longer. Verbosity
could imply elaboration or that the document covers multiple topics and not mere
wordiness, in which case it may be appropriate to assign a longer documenta
larger BM25 score, whereas typically it would be assigned a smaller score. The
BM25 formula cannot account for such differences, while LambdaBM25 has the
flexibility to learn from the data if the documents tend to be verbose or elaborative.
In addition, wordiness may be common among some fields and rare among others.
For example, a title or URL field is succinct, while anchor text and query click
fields are verbose due to repeatability. Our method learns these differences through
neural net training and can apply different functions to the fields in the document
description.

Our model has the additional advantage that it does not require that the at-
tributes be statistically independent, as in [20]. LambdaBM25 learns relationships
among the attributes and the fields from the data collection through LambdaRank
training that may not be apparent otherwise. Our machine learning approach to an
improved BM25-style function is trained over a very large data collection so that
our model is effective, robust, and avoids overfitting.
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We recognize that in learning our model directly from a large data collection,
we lose the probabilistic interpretation inherent to BM25. However, our model has
an additional advantage that it is very flexible, and can be extended to include other
fields in the document description as new fields become available.

We develop our model as follows. We optimize for NDCG and use theλ-
gradient as previously described. We train our model using LambdaRankand the
same input attributes as BM25, namely term frequency, document frequency, and
field length, for each field included in the document description. Although we
could include additional attributes, we would like to maintain a fair comparison
to the BM25 retrieval function because it is so widely used. We train single- and
two-layer LambdaRank neural nets with varying numbers of hidden nodes.Since
neural network learning improves when the data is normalized, we apply several
transformations to the input attributes to achieve zero mean, unit variance across
the feature values. Results are discussed in Section 6.

6 Experiments

We perform extensive experiments to determine the effectiveness of BM25 on sin-
gle fields and multiple-field combinations and to determine the most important
fields in a document. We then compare our method, LambdaBM25, to BM25 and
evaluate the techniques on a very large train and test collection. Our goal isto have
our nonlinear (two-layer) LambdaBM25 model demonstrate improved accuracy
over BM25.

6.1 The Data and Evaluation Measure

We evaluate our method on a real-world Web-scale data collection. The data con-
tains queries sampled from query log files of a commercial search engine and cor-
responding URLs. All queries are English queries and can contain up to 10 query
terms. Our data collection includes anchor text, title, URL, body, and query click
fields. We perform stopword removal and some stemming on queries. Field infor-
mation is preprocessed as previously described.

Our train/validation/test data contains 67683/11911/12185 queries, respectively.
Each query is associated with on average 150-200 documents (URLs) together with
a vector of feature attributes extracted for the query-URL pair. The features consist
of the term frequencies for terms in positions 1–10, the document frequencies for
terms in positions 1–10, and field lengths for all fields under consideration.Each
query-URL pair also has a relevance label. The label is human generatedand is on
a 5-level relevance scale, 0 to 4, with 4 meaning documentd is the most relevant
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Table 1: Parameters learned using grid search on the validation set for single-field
BM25F .

FieldF kF bF avgℓF

Title (T) 3.000 0.400 7
URL (U) 1.135 0.331 6
Body (B) 1.000 0.500 1815
Anchor (A) 0.910 0.008 167
Click (C) 101.540 0.504 39

to queryq and 0 meaningd is not relevant toq.
We evaluate model performance using mean NDCG. We report NDCG scores

at truncation levels 1, 3, and 10. We also perform a signficance test, i.e., at-test with
a significance level of 0.05. A significant difference should be read assignificant at
the 95% level. Statistical significance between pairs of models is indicated in bold.

6.2 Effectiveness of Single Fields

We first seek to determine which single field is the most effective in terms of rank-
ing relevant documents using BM25F . The parameters of BM25F , where hereF
is the single field in the document description, are tuned to optimize NDCG@1
on our validation set using a 2-D grid search over the saturation parameterkF

and the length normalization parameterbF , for each fieldF . We follow the grid
search method outlined in [21], except we consider 1000 epochs or convergence of
NDCG@1 as the stopping criterion. It was prohibitively slow to tune the parame-
ters on the training set due to its size. Table 1 lists the parameters found for each
individual field. We also tried an approach similar to the gradient-based approach
in [21] and found results to be almost identical.

In Table 2, we report results for BM25F on a document description restricted
to a single content or popularity field. The three content fields, Title (T), URL (U),
and Body (B), are equally effective in terms of NDCG ranking accuracyon our
test set. At truncation level 10, the body field yields significantly better ranking
accuracy. The URL field appears to be the least reliable for retrieval in terms of
accuracy across the three truncation levels.

For popularity fields, retrieval using only the anchor text field (A) yields im-
proved NDCG scores over retrieval using a single content field. However, BM25C
over the query click field yields almost a 7 point NDCG gain at truncation level1
and a 4 point NDCG gain at truncation level 3 over BM25A. Certainly, if restricted
to a single field, the query click field achieves the highest NDCG accuracy.

We next seek to compare BM25F to single-layer LambdaBM25F on single
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Table 2: Accuracy results on the test set for BM25F for single fields.
Model NDCG@1 NDCG@3 NDCG@10
BM25T 24.50 27.23 33.32

BM25U 24.96 27.24 32.77
BM25B 24.35 27.92 35.07
BM25A 33.50 32.53 33.37
BM25C 40.07 36.62 35.89

Table 3: Accuracy results on the test set for 1-layer LambdaBM25F for sin-
gle fields. Bold indicates statistical significance over the corresponding BM25F

model. Italic indicates statistical significance of the corresponding BM25F model
over the LambdaBM25F model. Parentheses indicate no statistically significant
difference.

Model NDCG@1 NDCG@3 NDCG@10
LambdaBM25T 20.79 24.93 32.51
LambdaBM25U 22.96 26.38 33.17
LambdaBM25B 18.03 21.93 30.60
LambdaBM25A (33.83) 33.11 34.73
LambdaBM25C 39.34 (36.50) (35.96)

field document descriptions. Since BM25F is a highly nonlinear function, we ex-
pect it to outperform a simple linear combination of input attributes, in particular
for the content fields, for which BM25F was originally developed. Our linear
model cannot, for example, divide term frequency by document frequency or field
length; these two operations have been shown to give improved retrieval accuracy
[20]. We train single-layer LambdaBM25F models by choosing the best training
epoch and learning rate based on the validation data. We found a learning rate of
10−5 and 500 epochs to be reasonable settings for all fields.

Table 3 contains results for single-layer LambdaBM25F . At each truncation
level, our results indicate that for each content field, BM25F significantly out-
performs our learned linear function at each truncation level, with the exception
LambdaBM25U , which performs similarly to BM25U at truncation level 10. For
content fields, we conclude that BM25F is significantly better than a linear combi-
nation of input attributes. We anticipated such a result since BM25F was explicitly
designed for improved accuracy over a linear term frequency functionwhen using
content fields.

In the case of popularity fields, the results indicate that our single-layer LambdaBM25F
model performs similar or better than BM25F . For the anchor text field, we find
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Table 4: Number of hidden nodes found on the validation data for single field,
two-layer LambdaBM25F .

FieldF Hidden nodes
T 10
U 15
B 15
A 15
C 5

Table 5: Accuracy results on the test set for 2-layer LambdaBM25F for sin-
gle fields. Bold indicates statistical significance over the corresponding BM25F

model. Italic indicates statistical significance of the corresponding BM25F model
over the LambdaBM25F model. Parentheses indicate no statistically significant
difference.

Model NDCG@1 NDCG@3 NDCG@10
LambdaBM25T (24.31) (27.38) 33.86
LambdaBM25U 23.69 26.70 33.21
LambdaBM25B 27.53 30.49 37.03
LambdaBM25A 36.33 34.68 35.33
LambdaBM25C 41.61 38.01 37.19

that BM25A performs significantly worse at truncation levels 3 and 10 than our
learned linear function LambdaBM25A. Similarly, for the query click field, we
find that BM25C performs similarly to our learned linear function LambdaBM25C .
Such results were hypothesized in [21], and since popularity fields drawcontent
from authors other than the document’s owner, it seems reasonable that theBM25
function, which was built for content fields, may not model the data much better
than a linear function of input attributes.

Finally, we seek to determine if our nonlinear LambdaBM25F model can out-
perform BM25F . We train a two-layer neural net with 5, 10, and 15 hidden nodes,
for various learning rates. We choose the best net according to the validation set.
We found a learning rate of10−5 and 500 epochs to consistently perform well.
Table 4 lists the number of hidden nodes and training parameters used for each
single-field nonlinear model.

Table 5 reports the results of BM25F versus our learned two-layer LambdaBM25F

model. For the Title field, BM25T performs almost identically to LambdaBM25T .
For the URL field, BM25U performs slightly better at most truncation levels than
LambdaBM25U . We conclude that BM25 models these two content fields very
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well. However, for the Body field, we find that LambdaBM25B outperforms sig-
nificantly BM25B across all truncation levels. We hypothesize that BM25F models
short, succinct, non-repeatable fields well, but fails to model longer fieldswith sim-
ilar accuracy. Both the Title and URL fields are reasonably short, while the Body
field on average is around 300 times longer. As the length of the field grows,it
is beneficial to learn richer relationships between term frequency, document fre-
quency, and field length, which LambdaBM25F is able to do.

For popularity fields, we find that two-layer LambdaBM25F consistently out-
performs BM25F , with statistical significance, which further confirms that the
BM25F function was not designed for popularity fields. LambdaBM25F is able
to exploit found relationships in the training data that are restricted in the BM25F

model.

6.3 Effectiveness of Multiple Fields

For a document description over a single field, BM25F exhibits reasonable accu-
racy for content fields, while LambdaBM25F exhibits superior accuracy for pop-
ularity fields. We have also seen that with query click information alone, we can
achieve substantial retrieval accuracy gains. In this section, we perform experi-
ments to examine retrieval effectiveness when the document description contains
multiple fields. We find that our learned nonlinear method, LambdaBM25F , out-
performs BM25F whenF is a document description over multiple fields. We also
verify that a nonlinear combination of multiple fields is required for the best re-
trieval accuracy.

The parameters of BM25F are tuned using a2K-dimensional grid search,
whereK is the number of fields in the document description. We consider sev-
eral combinations of fields; the combinations and their parameters are listed in
Table 6. Note that the parameterk can be absorbed into the field weightswF (see
Eqs 5–6). Thus we assumek = 1 and learn2K parameters instead of2K + 1.

All field weights, with the exception of the query click field weightwc, are
between 0 and 20. In all field combinations, the body field consistently receives
the lowest field weightwB. When the document description is over all fields (final
row of the table), the query click field receives a weight 1000 times more thanthe
anchor text or body fields. We can conclude that the query click field is themost
important field in the document description.

We first seek to determine the most effective combination of fields to include
in the document description for BM25F . Table 7 lists the results of BM25F on
various field combinations. We find that using multiple fields in the document
description is superior to using a single field, unless that single field is the query
click field; the only combination of fields to outperform BM25C are combinations
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Table 6: BM25F parameters learned on the validation set for various field combinations. In all cases,k = 1.
FieldsF wT bT wB bB wU bU wA bA wC bC

T, B 9.8000 0.5406 0.0044 0.420 - - - - - -
T, B, U 0.6454 0.4009 0.0085 0.196 1.6219 0.950 - - - -
T, B, U, A 2.2415 0.6440 0.0490 0.685 5.4024 0.989 0.3202 0.0083 - -
T, B, U, C 1.5811 0.9250 0.0290 0.851 6.7961 0.979 - - 2.9265 0.390
T, B, U, A, C 9.5327 0.7990 0.0944 0.430 18.7944 0.890 0.0935 0.1993 93.8318 0.528

19



Table 7: Accuracy results on the test set for BM25F for multiple fields.
Model FieldsF NDCG@1 NDCG@3 NDCG@10
BM25F T, B 27.84 30.81 36.98
BM25F U, T, B 30.81 33.30 39.53
BM25F A, U, T, B 38.66 38.83 43.42
BM25F C, U, T, B 45.29 43.37 46.83
BM25F C, A, U, T, B 45.41 43.53 46.88

Table 8: Accuracy results on the test set for 1-layer LambdaBM25F for multi-
ple fields. Bold indicates statistical significance over the corresponding BM25F

model. Italic indicates statistical significance of the corresponding BM25F model
over the LambdaBM25F model. Parentheses indicate no statistically significant
difference.

Model FieldsF NDCG@1 NDCG@3 NDCG@10
LambdaBM25F T, B 25.42 28.81 35.80
LambdaBM25F U, T, B 29.28 32.08 38.75
LambdaBM25F A, U, T, B (38.91) (38.84) 42.81
LambdaBM25F C, U, T, B 43.34 41.70 45.04
LambdaBM25F C, A, U, T, B 44.60 42.33 45.44

that include the query click field. Note that using multiple fields outperforms using
only BM25C . Even using the anchor text field in conjunction with all content fields
cannot match the accuracy of BM25C . The addition of anchor text to the C,U,T,B
combination in fact yields very little improvement in accuracy, without statistical
significance. The anchor text field is, however, important when query click infor-
mation is not available, as we can see by the significant accuracy improvement
between the U,T,B and A,U,T,B field combinations.

We next determine if BM25F is better that a linear function of input attributes.
We learn single-layer LambdaBM25F models for each combination of fields listed
in Table 6. For each model, we find a learning rate of10−5 performs best on our
validation data. Table 8 lists the results of our learned linear function LambdaBM25F .
In all cases, we find that BM25F performs as well or better than single-layer
LambdaBM25F ; our results confirm that the motivation for BM25F given in [17]
is accurate that a linear combination of fields is insufficient for good retrieval ac-
curacy.

Finally, we seek to determine if our two-layer LambdaBM25F model learns a
better BM25-style retrieval function than BM25F . We train two-layer LambdaBM25F
models on the field combinations listed in Table 6. We find that a learning rate of
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Table 9: Accuracy results on the test set for 2-layer LambdaBM25F for multi-
ple fields. Bold indicates statistical significance over the corresponding BM25F

model.
Model FieldsF NDCG@1 NDCG@3 NDCG@10
LambdaBM25F T, B 29.61 32.49 38.93
LambdaBM25F U, T, B 34.26 37.03 43.05
LambdaBM25F A, U, T, B 43.70 42.58 46.21
LambdaBM25F C, U, T, B 49.70 46.58 49.14
LambdaBM25F C, A, U, T, B 50.33 47.14 49.47

10−5 and 15 hidden nodes performs well for all field combinations on our valida-
tion data. Table 9 reports results of BM25F versus two-layer LambdaBM25F for
various field combinations. For every field combination, LambdaBM25F achieves
gains with statistical significance over the corresponding BM25F model. As ex-
pected, we see smaller gains between LambdaBM25T,B and BM25T,B since BM25F
models title and body fields very well. For combinations that include anchor text
and query click fields on the otherhand, we see very substantial gains over BM25F

of around 5 points NDCG@1 and 3 points NDCG@10. Note that even 0.5 points
NDCG gain is substantial, in particular for truncation level 1.

We would like to highlight that for both BM25F and two-layer LambdaBM25F
models, the gains achieved when new fields are added to the document description
are consistent. In Tables 7 and 9, the inclusion of the query click field in the
document description yields the highest accuracy. In addition, smaller gains are
achieved by adding the anchor text field to the document description. Ordering by
accuracy, the multiple-field combinations are in the same order for BM25F and
LambdaBM25F .

7 Conclusions and Future Work

We have extensively studied the contributions of various document fields toinfor-
mation retrieval accuracy. We find that query click information is the most effective
field, while the URL field is the least effective field. A document description con-
taining all fields yields the best retrieval accuracy. We also study when BM25
outperforms a linear combination of input attributes. BM25 performs remarkably
well on single content fields, but on single popularity fields, BM25 achieves a re-
trieval accuracy comparable to a linear function of input attributes. For document
descriptions containing multiple fields, we verify that a nonlinear combination of
field attributes attains significantly better accuracy than a linear combination of
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field attributes.
Our main contribution is a new information retrieval model trained using Lamb-

daRank and the input attributes of BM25. LambdaBM25F significantly improves
retrieval effectiveness over BM25F for most single-field, in particular popularity
fields, andall multiple-field document descriptions. LambdaBM25F optimizes
directly for the chosen target IR evaluation measure and avoids the necessity of
parameter tuning, yielding a significantly faster approach. Our model is general
and can potentially act as a framework for modelling other retrieval functions.

There are several future directions of this work. First, we would like to per-
form more extensive studies to determine the importance of attributes in our model.
Since LambdaBM25 is a neural network, it is difficult to determine the actual re-
lationship learned between attributes. However, by using a decision tree learner,
such as LambdaMART [23], we can decipher the trees to determine the ranked list
of important features in our model. Currently, our preliminary results using Lamb-
daMART to learn a BM25-style function indicate that term frequency attributes are
significantly more important to the model than document frequency attributes. The
most important features are the term frequencies of the first two terms of thequery
in the query click field and the title field. In addition, the field lengths of the body
field and the query click field are the most important field length attributes.

Second, we would like to determine the effectiveness of LambdaBM25 as a
scoring function, where the scores can be used as inputs to a more complexranking
system. For example, LambdaBM25 could be used as a single feature in recent
TREC retrieval systems [6, 5].

Finally, we plan to expand our model to learn proximity relationships. Re-
cent work on incorporating proximity information into BM25 has focused on bi-
gram frequencies [15] or frequencies of terms in spans [19]. In bothcases, it has
been unclear how to combinen-gram document frequency information withn-
gram term frequency information. In addition, a challenge has been how toextend
BM25 to account for relationships between a query term appearing as a unigram
or with another query term as a bigram. We plan to examine the effect of bigram
and trigram frequency attributes on our model and determine if incorporating such
features can learn a better function than, for example, the proximity BM25 model
given in [15, 19]. In the presence of proximity field attributes, we expectdifferent
field combinations to yield the highest retrieval accuracy. LambdaBM25 hasthe
advantage of learning the relationship directly from the training collection andre-
quires no tuning of the function. With our approach, we can learn the dependencies
between document and term frequency directly.
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