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Abstract

BM25 is one of the most widely used information retrievaldtions be-
cause of its consistently high retrieval accuracy. Deststevidespread use,
there have been few studies examining its effectivenessdotament de-
scription over single and multiple field combinations. Weedmine the ef-
fectiveness of BM25 on various document fields. We find tha@BIvhodels
relevance on popularity fields such as anchor text and quielkyioforma-
tion no better than a linear function of the field attributéé& also find query
click information to be the single most important field fotrieval. In re-
sponse, we develop a machine learning approach to BM2&-&rieval that
learns, using LambdaRank, from the input attributes of BM@uir model
significantly improves retrieval effectiveness when theudoent description
is over single or multiple fields. Our data-driven approacfast, effective,
avoids the problem of parameter tuning, and can directlyropé for several
common information retrieval measures. We demonstratadkiantages of
our model on a very large real-world Web data collection.

1 Introduction

BM25 [16] is arguably one of the most important and widely used information
retrieval functions. It has served as a strong baseline in the informatidaval
community, in particular in the TREC Web track [5, 6]. Originally designed to



be computed over the body and title fields of a Web document, BM25 is a non-
linear combination of three key document attributes: term frequency, detume
frequency, and document length.

Recent research suggests that using click information in ranking caifi-sign
cantly improve accuracy [1, 7, 24]. Since popularity fields are not igeee by
the author of the document, the question has been raised if the foundations b
hind BM25 are suitable for popularity fields [21]. We are particularly irdezd in
the retrieval effectiveness of popularity fields. We empirically determinewell
BM25 models content fields, such as the title, URL, and body fields, vemus
larity fields, such as anchor text and query click. We demonstrate thabBbgks
remarkably well for most content fields, but not for popularity fields. 289 [17]
is an extension of BM25 that prescribes how to combine more than one field in
the document description, and correspondingly how to compute BM25ste
expanded document description. We determine the contribution of singlaand
tiple field combinations to retrieval effectiveness and correspondingliyate the
retrival capacity of BM25 on these fields.

A challenge to using BM25 and BM25F is the necessity of parameter tun-
ing. Parameters control the contributions of term frequency, field leagthfield
weight. BM25F requires the tuning @f< + 1 parameters for a document descrip-
tion containingK fields. Tuning can be accomplished using a grid-search method,
or by using gradient descent [21]. Each method has its drawbacd#isseprrch can
be time intensive and in fact prohibitively slow when the data collection is large,
but can find a reasonable set of parameter values for a given tagj€uaction.
Gradient descent is much faster, but the method in [21] does not optimipathe
rameters directly for a target evaluation measure and finds parameteettao b
than the grid-search technique.

Recently, it has been shown that LambdaRank [3] is empirically optimal [8, 25
for Mean Average Precision, Mean Reciprocal Rank, and NDCG likely for
other IR measures as well. We could extend the approach in [21] to use-Lamb
daRank and thus optimize the parameters for a chosen IR measure, bundhe f
tion is still restricted to the predefined BM25 and BM25F probabilistic models.
The probabilistic model is not the only way to approach information retrieval; w
consider a machine learning approach to develop a BM25-style model. Amaach
learning approach has been difficult previously due to the difficulty iniointzg
large amounts of training data. A resulting challenge has been how to preven
complex model with many parameters from overfitting the training data. Hoywever
by training LambdaRank [3] on the input attributes of BM25F and over &ldega
collection, we are able to build a rich, expressive retrieval model.

Our main interest is in developing an improved ranking model that uses the
same input attributes as BM25; we therefore consider how to developievabtr
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function that considers information across fields. Our model learnstineraame
attributes as BM25, namely term frequency, document frequency, aruhtent
length, and avoids parameter tuning. We learn the function directly fromatze d
under consideration by training LambdaRank on the input attributes of BM25
while also optimizing directly for the IR evaluation measure of choice. We call
our model LambdaBM25, since it uses the LambdaRank training method and the
inputs of BM25. Our model is very easy to retrain periodically as attributeegalu
change (for example, as anchor text and query click fields changdime), and
can be used as a framework for learning other functions by substitutimgrthet
attributes. We believe our model offers value in the design of future infiooma
retreival systems.

Our primary contributions are threefold:

o We empirically determine the effectiveness of BM25 for different field sype
Although BM25 is effective on the title and URL fields, we find that on
popularity fields it does not perform as well as a linear model.

e We develop a machine learning model, called LambdaBM25, that is based on
the attributes of BM25 [16] and the training method of LambdaRank [3]. Our
model is both fast and simple; it does not require any parameter tuning and
is an extension of a state-of-the-art neural net ranking approactmbines
the input attributes of BM25 with the principles of machine learning and goes
beyond the probabilistic model with a data-driven approach. In addition,
LambdaBM25 optimizes for MAP, MRR, or NDCG, as well as potentially
other IR measures [8, 25].

e We extend our empirical analysis to a document description over various
field combinations. We confirm that BM25F [17] is better than a linear func-
tion of BM25 scores. We then extend our model, LambdaBM25, to docu-
ment descriptions consisting of combinations of fields and find it consistently
outperforms BM25F with statistical significance.

2 Reated Work

There have been a number of approaches to document retrievalgdragyimsim-

ple to complex models. BM25 [16] is based on a probabilistic information retrieva
model [20] which incorporates attributes of documents, such as termeineces,
document frequencies, and document length. A generalized invecaendat fre-
guency model was recently developed that can also be incorporated M25 B
[13]. BM25 is one of the most widely used retrieval methods and servastan-
dard baseline in the information retrieval community.
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More recently, there has been interest in a simple retrieval function that ca
capture signals over multiple document fields. The development of this vegekb
with Wilkinson [22], who evaluated various ways to weight scores that deone
different fields of a document. Ogilvie and Callan [14] overview différield
combination methods as well as propose several novel approachesositiptete
evaluation. More recently, Robertson et al. proposed a simple method ofrdomb
attributes across multiple fields called BM25F [17].

A drawback of BM25 and BM25F is the difficulty in optimizing the function
parameters for a given information retrieval measure. There havedxtemsive
studies on how to set term frequency saturation parameters and lengthlizar
tion parameters [18, 10]. Taylor et al. [21] proposed an approasédban gradient
descent that significantly reduces the tuning time over using standardegidh
heuristics. Their technique does not, however, directly optimize for tHeaien
measure or offer improved accuracy over a grid-search heuristic.

Recently, it has been shown that LambdaRank [3] is empirically optimal for
several IR measures [8, 25], in particular for NDCG, Mean AverageiBion, and
Mean Reciprocal Rank. Our work is a combination of LambdaRank and5B2
tributes, and allows us to optimize directly for the IR measure under consatera

Recent studies demonstrate the effectiveness of query click datankongd1,
7,9, 24]. However, to our knowledge, there is no detailed study of feetafeness
of BM25 on single document fields or on subsets of document fields, imgjud
anchor text and query click logs. In addition, we are unaware oftsffordevelop
a directly analagous retrieval model based on the same attributes as BM25. O
work provides both an extensive study of the contributions of diffedestiment
fields to information retrieval and a framework for improving BM25-styleiestl.

The remainder of the paper is laid out as follows. In the next section,viewe
the fields of a document. Section 4 provides an overview of BM25 and BMB25
Section 5, we describe the evaluation measure NDCG [11] and the netwalrk
ranking algorithm LambdaRank [3]. In Section 5.4, we discuss how to laarn
BM25-like retrieval function over a large data collection. In Section 6, veediee
our experiments and present our results. Finally, we conclude in Sectwonl 7
discuss future directions of our of work.

3 Document Fields

A Web document is composed of sevdialdsof information, in particular the title
of the page, the URL, the body text, the anchor text, and queries that laatit&

on the page. The field may either be written by the owner of the page, as iasée c
of the body text, the URL, and the title of the document, or by other authois, as



the case of anchor text and query click information. We call the formecesiof
informationcontentfields and the latter sources of informatipopularityfields.

Thedocument descriptiois a concatenation of the available fields of informa-
tion. The document desription may be restricted to certain fields, for exaifiple,
no click information is available or if a retrieval system does not crawl antext.

To study the effects of various fields, we can restrict the documentigiso to
particular subsets of fields, or to a single field. Such studies can be eniigite
and may lead to further improvements in information retrieval functions.

All field information is preprocessed by removing punctuation, converting to
lowercase, and removing html markup. A queris composed of terms; we con-
sider queries which contain at most 10 terms. A document description isndeco
posable into smaller units, for example, characters, terms, or phrasdellove
the traditional decomposition into terms. The document frequency for tésm
the number of documents in the collection that contain teimtheir document
descriptions. Note that the document description may be over one oakfistels.

The term frequency is calculated per term and per field by counting the muhbe
occurrences of terrin field F' of the document under consideration. We measure
the length of a field by counting the number of terms in the field. In this section,
we review the fields of a Web document.

3.1 Content Fields

The content fields of a document include the body text, the document’s titi¢han

URL text. The body field consists of the html content of the page. It incladégo-

ing link information, image text, navigation bars, and so on, in addition to the core
content. The title field contains the title of the document, indicated by the author
through html j TITLE¢, tags. For example, for the $itgp://webmessenger.msn.com

the title field ismsn web messengerhe URL field contains the text of the page’s

web address, after word breaking. For example, for théniipe//webmessenger.msn.com
the URL field isweb messenger msrirhe body field is typically significantly
longer than the URL and title fields.

3.2 Popularity Fields

Popularity fields include anchor text and query click information. Unlike-con
tent fields, popularity fields are not written or controlled by the document’seo,
but rather are an aggregation over information about the page from augingrs.
Popularity fields can be highly repetitive for common pages, and can hsivera
length for lesser-known (tail) pages.



(msn web messenger, 1802)
(webmessenger, 1278)
(web messenger, 526)

(msn web, 176)

(access messenger via the web, 95)
(web msn, 78)

(web msn messenger, 65)
(msn messenger, 40)

(msn, 37)

(webmsn, 26)

(here, 8)

(msn webmessenger, 7)
(this, 5)

Figure 1: Extract of the anchor text field for the ditp://webmessenger.msn.com

3.2.1 Anchor Text Field

The anchor text field is composed of the text of all incoming links to the page.
Anchor text is supposed to indicate the trustworthiness of the documenggfepe
link to a page, it signals that those people trust its content. Figure 1 lists attextr
of the anchor text field for the sitettp://webmessenger.msn.coM/e compress
the field by listing an anchor text string followed by the number of incoming links
with that string. Note that this representation will preserve term orderingr. O
representation of the anchor text field equally weights all incoming linkaydégss

of their parent page. In future research, it may be suitable to weightxheftan
incoming link by the importance of the page it comes from, for example by its
PageRank score [2].

The anchor text field can be highly repetitive. Most Web pages tend ® hav
large numbers of incoming links containing identical terms. The field may be
repetitive if there are incoming links with repetitive text, or the field may be elab-
orative if the text of incoming links is diverse. For example, in Figure 1, tteg fi
two examples of anchor text contribute a large number of repetitive terms to the
anchor text field. ldeally, this behavior — repetitive versus elaborativehould
be learned automatically from the document collection (see Sections 4 and 5.4).



3.22 Query Click Field

Another source of information for document retrieval is query click imfation.
Query click information for a document, aggregated across many usgng|ss
relevance for a given query. It shares the property with anchothekthe queries
are not authored by the document’s owner.

We follow [1, 9] and build the query click field from query session datar Fo
details on the query click field, we refer the reader to [9]. We briefly revtee
field in this section. Our query click data consists of query sessions tedriiom
one year of a commercial search engine’s query log files. A querjosesansists
of a user-issued query and a ranked list of 10 documents, each df wiag or
may not be clicked by the user. A query session can be representettipietl
(q,m,¢) [12], whereq is the queryy is the ranking of documents, ards the set
of documents the user clicked on.

In [9], the query click field is represented by a set of query-scors pa Score(d, q)),
wheregq is a unique query string anglcore(d, ¢) is a score assigned to that query.
Score(d, q) could be the number of times the document was clicked on for that
query, but it is important to also consider the number of times the page has bee
shown to the user and the position in the ranked list at which the page wag.sho

The score in [9] represents the importance of the queiy describing the
relevance of document that does not consider position, but does consider the
number of times the document has been shown to users. The score cativbd d
from raw click data as

C(d, q,click) + 8 x C(d, q, last_click)

Score(d, q) = Cldq ,

1)

whereC'(d, q) is the number of timed is shown to the user whenis issued, also
called the number of impressiors(d, q, click) is the number of timeg is clicked

for ¢, andC(d, q, last_click) is the number of timed is the temporally last click

of ¢q. ¢ is a scaling factor and can be tuned. Since the last clicked document for a
guery is a good indicator of user satisfaction, the score is increasedgontion to

0 by the last click count. Figure 2 shows an extract of the query click figltht®

site http://webmessenger.msn.cosmtracted from [9] for completeness. The term
frequency of ternt for the query click field is calculated as

Z Score(d, q), (2)

pltep

wherep is the set of query-score pairs.



(msn web, 0.6675749)

(webmessenger, 0.6621253)

(msn online, 0.6403270)

(windows web messenger, 0.6321526)
(talking to friends on msn, 0.6130790)
(school msn, 0.5994550)

(msn anywhere, 0.5667575)

(web message msn com, 0.5476839)
(msn messager, 0.5313351)

(hotmail web chat, 0.5231608)
(messenger web version, 0.5013624)
(browser based messenger, 0.3814714)
(im messenger sign in, 0.2997275)
(msn web browser download, 0.0926431)
(install msn toolbar, 0.0027248)

Figure 2: Extract of the query click field for the shi&p://webmessenger.msn.com

[9).

4 BM25

In this section, we briefly review previous work on BM25, but refer thader

to [16, 20] for a complete description. BM25 [16, 20] stems from the 2d@ois
probabilistic model of information retrieval; the task is to answer “What is the
probability that document is relevant to query?”. The documend is constrained

to the document description, which may be over one or several fieldssasited

in Section 3.

The classic retrieval function BM25 is a function of several field attributes
term frequencies, document frequencies, and the field length. Althinegtioc-
ument description could be over several fields, BM25 traditionally hasidered
a document description restricted to a single field, or at most two fields, drudly
title. However, additional fields can provide different signals of releezand help
improve ranking accuracy. BM25F [17] is an extension of the BM25tiondo a
document description over multiple fields. A key property of this function isitha
is nonlinear. Since BM25F reduces to BM25 when calculated over a siedye fi
we will refer to both functions as BM25 whereF' is a specification of the fields
contained in the document description.

BM25 is computed as follows for documetit with a document description



over fieldsF, and query;:
S=> TFxI. (3)
teq
The sum is over all termsin queryq. I; is the Robertson-Sparck-Jones form of
inverse document frequency of tetrand is calculated as

N —df +0.5
f +05

where N is the number of documents in the collectiaff, is the document fre-
guency of termt. Note that the document frequency is calculated across the entire
document description. In our experiments, for simplicity, we calculate dosume
frequency over the body field for all document frequency attriButes

TF; is a simple term frequency saturation formula that limits the impact of
observing a term multiple times in a field. It is defined as

I; = log (4)

_ ]
TF = m7 (%)
wheref is calculated as ;
. WE * t F

t fr is the term frequency attribute of ternm field ', k is the saturation parameter
that controls the nonlinearity @f F, 8 is a function of field length, defined below,
andwp is a tuned field weight parametef.F; satisfies three key properties: (1)
Whent fr = 0, thenTF; = 0, (2) the function increases monotonically witfy
and (3) it has an asymptotic limit.

The parametek: is used to tune the saturation of term frequencyk H= 0,
the function reduces to 1 and we score the query document pair aggaoodine
presence of the term across the collection only: ig large, the function is nearly
linear intfr. Small k values are typical, say — 2, demonstrating thatfr is
highly nonlinear; after only a few occurrences of the term, the impact dfiaddl
occurrences is minimal.

The 2-Poisson model makes sense only when documents are of equh| leng
so BM25 includes a component to account for varying field lengths. Two docu-
ments relevant to the same topic may be different lengths because of vgsrdine
tributable to either repetition or elaboration. The BM2®rmula assumes wordi-
ness is only attributable to repetition. The field length component is defined as

BF = (1 — bF) + bp(ép/avgép), (7)

lWe also used the whole document description, but found little differenaedaracy over using
only the body field.




wherebr is the length tuning parametéy; is the length of the field, angvg/r is
the average length of the field in the document collecttgnis a tuning constant
between 0 and 1. i = 1, then simple normalization is used, which is meant to
correct for verbosity. bz is small, it reduces the effect of normalization.

The instantiation of BM2p requires parameter tuning and setting. BIj25
requires the tuning dK + 1 parameters, when calculated acrés§elds, namely
k, by, andwg. Tuning can be done using a simple grid-search technique or by
using a gradient-descent method [21]. However, since the parambtars He
tuned on a large dataset, tuning can be time intensive and potentially prolybitive
slow. In our experiments (see Section 6), we tuned the parameters of BM25
using grid search over 10K queries. We note that the grid search fiougdield
combinations foX’ > 3 took over 2 weeks to complete.

5 Learning a BM25-style Function

In this section, we describe our simple machine learning ranking model that us
the input attributes of BM25 and the training method of LambdaRank. Our ap-
proach is general and may be applied to other retrieval functions. ttaves

the obstacle of parameter tuning and is completely data driven. We begin by re
viewing previous work: the target evaluation measure NDCG [11] and &ir@nig
algorithm LambdaRank [3].

51 NDCG

We choose to evaluate using NDCG, which has been shown to be a goodreneas
for relevance of web documents to a query. Normalized Discounted Cuweulati
Gain (NDCG) [11] is a widely used measure for search metrics. It opemte
multilevel relevance labels. We assume in our work that relevance is mdasure
a 5-level scale. NDCG for a given quegys defined as follows:

og(l+r) (8)

100 &~ 210 — 1
NDCG@L, = —- > 1
r=1

wherel(r) € {0,...,4} is the relevance label of the document at rank position
r and L is the truncation level to which NDCG is computed. is chosen such
that the perfect ranking would result in NDCGE@@ = 100. Mean NDCG@.L is

the normalized sum over all querieﬁ:Zé\f:1 NDCG@L,. NDCG is particularly
well-suited for Web search applications since it accounts for multilevel neteva
labels and the truncation level can be set to model user behavior. Itudigs we
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consider mean NDCG®3, 10. For brevity, we write NDCG@, 3,10. DCG is
simply NDCG (Egn 8) without theé /Z normalization factor.

5.2 LambdaRank

In the next two subsections, we review a state-of-the-art rankingitdgocalled
LambdaRank [3] that optimizes for IR measures. For complete details, &e ref
the reader to [3]. LambdaRank is both a list-based and a pair-baseal network
learning algorithm; it is trained on pairs of documents per query, wheneneats

in a pair have different relevance labels. It is an extension of Ranldletrfiother
pair-based ranking algorithm whose cost function is a sigmoid followedgaira
based cross-entropy cost.

In most machine learning tasks, a target evaluation measure is used tdevalua
the accuracy of the model at test time, and an optimization measure, generally a
smooth approximation to the target measure, is used to train the system. Ideally, th
optimization measure matches the target measure, but typical IR targetegsts (
MAP, MRR, mean NDCG, etc.) are either flat or non-differentiable evagre
and require sorting by model score, which itself is a non-differentiabéeation.
Hence, direct optimization of the target measure is quite challenging. Larab&aR
[3] leverages the fact that neural net training only needs the gradiétlie mea-
sure with respect to the model scores, and not the function itself, thidireyo
the problem of direct optimization. The gradients are defined by specifyieg
about how swapping two documents, after sorting them by score foea givery,
changes the measure.

LambdaRank provides a significant speed-up over RankNet as walhaw
method for directly optimizing a cost function usinggradients. In the next sec-
tion, we describe the\-gradient for NDCG, although the gradient definition is
general and can work with any target evaluation measure.

5.3 M-Gradient for Mean NDCG

A LambdaRank gradiend;, is defined to be a smooth approximation to the gradi-
ent of a target evaluation measure with respect to the score of the dacaimaink
positionj. A-gradients have a physical interpretation; documents are represented
by point masses anklgradients are forces on those point masses [3]. On two doc-
uments in a pair in a query, thegradients are equal and opposite, where a positive
A-gradient indicates a push toward the top of the list, and a negatirradient in-
dicates a push toward the bottom of the list. With a suitably defirgdadient,

the gradient of any target evaluation measure can be smoothly approxifoated
given document.
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In [3], several alternatives fak-gradients are given, and the bésgradient
definition is chosen according to accuracy on validation data. The\egstdient
found in [3] is a combination of the derivative of the RankNet cost [4]led by
the NDCG@L, gain from swapping two documentsaind j with differing labels
for a queryq. We dropg below for brevity.

The RankNet cost is a pairwise cross-entropy cost applied to the logiste f
tion on the difference of the model scores. Assume documbas scores; and
relevance labél;, documeny has score; and relevance labé, ando;; = s; —s;
is the score difference, then the RankNet cost can be written as follows:

Cij = Coi5) = —Sijoi5 + log(1 + %9%9), 9)
where
o +1 if I; > lj
Sij = { 1< (10)

The derivative of the RankNet cost according to score difference is
(502']'/(502']' = (5013/(532 = —Sz'j/(l + esijoij). (11)
The A-gradient can now be expressed as

50@‘
(SOij

1 1 1
N2 —2b) — —
log(1+7r;) log(1+7) ) \ 1+ e%is%;

whereN is the reciprocal of the maximum DCG for the query andndr; are
the rank positions of documentsindj, respectively. Note that the sigf); only
depends on the labels of documen#nd;j and not on their rank positions. In ad-
dition, if ; > [;, then document is more relevant than documepaind document
< must move up the ranked list to reduce the cosfy;so= 1 and theA-gradient for
document is positive.

The A-gradient for a single document is computed by marginalizing over the
pairwise-gradients,

(12)

= Sy

Ai = Z Aijs (13)
jEP
where the sum is over all pair3 for queryq which contain documerit(see [3] for
details).
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54 LambdaBM?25

Retrieval can be treated as a ranking process, where the ranking rankiedocu-
ments in order of decreasing relevance to the qyehy the probabilistic IR model
BM25, documents are ranked by probability of relevance to the querwekder,
there are several challenges to using BM25, including the requirempatarneter
tuning, the inability to directly optimize for an IR measure, and the restrictions of
the underlying probabilistic model. In this section we directly address thede ch
lenges by introducing a new machine learning approach to BM25-like rakriev
Our model, called LambdaBM25, is trained using LambdaRank due to its flexibil-
ity, ease of training, and state-of-the-art ranking accuracy. It ersgley NDCG
A-gradient previously described and learns a function of the BM&f&ributes di-
rectly from the data collection.

As mentioned previously, BM25 can be prohibitively expensive whenerhin
on a document description over many fields. With the growing use of anchor
text and click information, and potentially other metadata, training parameters fo
BM25r can be costly. LambdaBM25 does not require parameter tuning since the
function is learned directly from the train collection. In addition, LambdaBM25
can be extended to optimize for several IR measures, since LambdaRsam&-h
cently been shown to be empricially optimal for NDCG and other IR measures
[8, 25].

A basic assumption behind the BM25 formula is that two documents about the
same topic may be different lengths because one is more verbose. Howeve
may not be true that verbosity is the only reason a document is longerositsrb
could imply elaboration or that the document covers multiple topics and not mere
wordiness, in which case it may be appropriate to assign a longer docament
larger BM25 score, whereas typically it would be assigned a smaller.sdtme
BM25 formula cannot account for such differences, while LambdaBK&s the
flexibility to learn from the data if the documents tend to be verbose or elaberati
In addition, wordiness may be common among some fields and rare among others
For example, a title or URL field is succinct, while anchor text and query click
fields are verbose due to repeatability. Our method learns these ditsrdmough
neural net training and can apply different functions to the fields in tioement
description.

Our model has the additional advantage that it does not require that the at-
tributes be statistically independent, as in [20]. LambdaBM25 learns relhipss
among the attributes and the fields from the data collection through LambdaRank
training that may not be apparent otherwise. Our machine learning aghpi@an
improved BM25-style function is trained over a very large data collection &b th
our model is effective, robust, and avoids overfitting.
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We recognize that in learning our model directly from a large data collection,
we lose the probabilistic interpretation inherent to BM25. However, our iiae
an additional advantage that it is very flexible, and can be extended taéather
fields in the document description as new fields become available.

We develop our model as follows. We optimize for NDCG and useXhe
gradient as previously described. We train our model using Lambda&ahkhe
same input attributes as BM25, namely term frequency, document freyjusrd
field length, for each field included in the document description. Although we
could include additional attributes, we would like to maintain a fair comparison
to the BM25 retrieval function because it is so widely used. We train single- a
two-layer LambdaRank neural nets with varying numbers of hidden n&iese
neural network learning improves when the data is normalized, we appyadev
transformations to the input attributes to achieve zero mean, unit variarmssac
the feature values. Results are discussed in Section 6.

6 Experiments

We perform extensive experiments to determine the effectiveness o5BIM2in-

gle fields and multiple-field combinations and to determine the most important
fields in a document. We then compare our method, LambdaBM25, to BM25 and
evaluate the techniques on a very large train and test collection. Our golase

our nonlinear (two-layer) LambdaBM25 model demonstrate improved acgur
over BM25.

6.1 TheData and Evaluation M easure

We evaluate our method on a real-world Web-scale data collection. The data co
tains queries sampled from query log files of a commercial search engireoan
responding URLs. All queries are English queries and can contain up qoidry
terms. Our data collection includes anchor text, title, URL, body, and quieky ¢
fields. We perform stopword removal and some stemming on queries. Field inf
mation is preprocessed as previously described.

Our train/validation/test data contains 67683/11911/12185 queriesctivabe
Each query is associated with on average 150-200 documents (URE#)¢owvith
a vector of feature attributes extracted for the query-URL pair. Tharfesconsist
of the term frequencies for terms in positions 1-10, the document frempsefor
terms in positions 1-10, and field lengths for all fields under considerdataah
guery-URL pair also has a relevance label. The label is human genarates on
a 5-level relevance scale, 0 to 4, with 4 meaning docurdesthe most relevant
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Table 1: Parameters learned using grid search on the validation setdte-8&id
BM25p.

Field I /ﬁF bF CLUng
Title (T) | 3.000 | 0.400] 7
URL (U) | 1.135 |0.331|6
Body (B) | 1.000 | 0.500]| 1815
Anchor (A) | 0.910 0.008 | 167
Click (C) 101.540| 0.504 | 39

to queryg and 0 meaning is not relevant tq.
We evaluate model performance using mean NDCG. We report NDCGsscore
attruncation levels 1, 3, and 10. We also perform a signficance test titestavith
a significance level of 0.05. A significant difference should be reaibasficant at
the 95% level. Statistical significance between pairs of models is indicated in bold

6.2 Effectivenessof Single Fields

We first seek to determine which single field is the most effective in terms kf ran
ing relevant documents using BM25 The parameters of BM25 where here”

is the single field in the document description, are tuned to optimize NDCG@1
on our validation set using a 2-D grid search over the saturation parafeter
and the length normalization parameter, for each field”. We follow the grid
search method outlined in [21], except we consider 1000 epochs werg@mce of
NDCG@1 as the stopping criterion. It was prohibitively slow to tune the parame
ters on the training set due to its size. Table 1 lists the parameters founc:for ea
individual field. We also tried an approach similar to the gradient-baseagip

in [21] and found results to be almost identical.

In Table 2, we report results for BM250n a document description restricted
to a single content or popularity field. The three content fields, Title (T), (R,
and Body (B), are equally effective in terms of NDCG ranking accuatyur
test set. At truncation level 10, the body field yields significantly betteringnk
accuracy. The URL field appears to be the least reliable for retrievatrimstef
accuracy across the three truncation levels.

For popularity fields, retrieval using only the anchor text field (A) yields im-
proved NDCG scores over retrieval using a single content field. HexvBM25-
over the query click field yields almost a 7 point NDCG gain at truncation level
and a 4 point NDCG gain at truncation level 3 over BM2%ertainly, if restricted
to a single field, the query click field achieves the highest NDCG accuracy.

We next seek to compare BM250 single-layer LambdaBM25 on single
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Table 2: Accuracy results on the test set for BMZ6r single fields.

Model | NDCG@1| NDCG@3| NDCG@10
BM25r | 24.50 27.23 33.32
BM25; | 24.96 27.24 32.77
BM25p | 24.35 27.92 35.07
BM25, | 33.50 32.53 33.37
BM25. | 40.07 36.62 35.89

Table 3: Accuracy results on the test set for 1-layer LambdaBM&5 sin-

gle fields. Bold indicates statistical significance over the correspondin@5gM
model. Italic indicates statistical significance of the corresponding BMBabdel
over the LambdaBM25 model. Parentheses indicate no statistically significant
difference.

Model NDCG@1| NDCG@3| NDCG@10
LambdaBM25 | 20.79 24.93 3251
LambdaBM2%, | 22.96 26.38 33.17
LambdaBM25; | 18.03 21.93 30.60
LambdaBM25, | (33.83) | 33.11 34.73
LambdaBM2%; | 39.34 (36.50) | (35.96)

field document descriptions. Since BM2% a highly nonlinear function, we ex-
pect it to outperform a simple linear combination of input attributes, in particular
for the content fields, for which BM25 was originally developed. Our linear
model cannot, for example, divide term frequency by document frexyuer field
length; these two operations have been shown to give improved retraiakbay
[20]. We train single-layer LambdaBM25models by choosing the best training
epoch and learning rate based on the validation data. We found a leaautengf r
10~° and 500 epochs to be reasonable settings for all fields.

Table 3 contains results for single-layer LambdaBM2%At each truncation
level, our results indicate that for each content field, BiM2Zbgnificantly out-
performs our learned linear function at each truncation level, with thepéxce
LambdaBM2%;, which performs similarly to BM25 at truncation level 10. For
content fields, we conclude that BM25%s significantly better than a linear combi-
nation of input attributes. We anticipated such a result since BM&&s explicitly
designed for improved accuracy over a linear term frequency funatian using
content fields.

In the case of popularity fields, the results indicate that our single-layebdaBM25
model performs similar or better than BM25 For the anchor text field, we find
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Table 4: Number of hidden nodes found on the validation data for single field
two-layer LambdaBM2p.

Field F | Hidden nodes
10
15
15
15

5

o> mcC| -

Table 5: Accuracy results on the test set for 2-layer LambdaBM&8 sin-

gle fields. Bold indicates statistical significance over the corresponding5sM
model. Italic indicates statistical significance of the corresponding BM26del
over the LambdaBM25 model. Parentheses indicate no statistically significant
difference.

Model NDCG@1| NDCG@3[ NDCG@10
LambdaBM25 | (24.31) | (27.38) | 33.86
LambdaBM25, | 23.69 26.70 33.21
LambdaBM25; | 27.53 30.49 37.03
LambdaBM25, | 36.33 34.68 35.33
LambdaBM2%; | 41.61 38.01 37.19

that BM254 performs significantly worse at truncation levels 3 and 10 than our
learned linear function LambdaBM25 Similarly, for the query click field, we
find that BM2% performs similarly to our learned linear function LambdaBI25
Such results were hypothesized in [21], and since popularity fields doatent
from authors other than the document’s owner, it seems reasonable tBifl#te
function, which was built for content fields, may not model the data muchrbette
than a linear function of input attributes.

Finally, we seek to determine if our nonlinear LambdaBM2Bodel can out-
perform BM25-. We train a two-layer neural net with 5, 10, and 15 hidden nodes,
for various learning rates. We choose the best net according to thatiaticet.

We found a learning rate afo—> and 500 epochs to consistently perform well.
Table 4 lists the number of hidden nodes and training parameters usedcfor ea
single-field nonlinear model.

Table 5 reports the results of BM2%ersus our learned two-layer LambdaBM25
model. For the Title field, BM2p performs almost identically to LambdaBM25
For the URL field, BM2% performs slightly better at most truncation levels than
LambdaBM2%. We conclude that BM25 models these two content fields very
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well. However, for the Body field, we find that LambdaBM286utperforms sig-
nificantly BM25g across all truncation levels. We hypothesize that BM&todels
short, succinct, non-repeatable fields well, but fails to model longer figttisim-
ilar accuracy. Both the Title and URL fields are reasonably short, while tity B
field on average is around 300 times longer. As the length of the field gibws,
is beneficial to learn richer relationships between term frequency,noeaufre-
guency, and field length, which LambdaBM2 able to do.

For popularity fields, we find that two-layer LambdaBMz26onsistently out-
performs BM25%:, with statistical significance, which further confirms that the
BM25x function was not designed for popularity fields. LambdaBM2$ able
to exploit found relationships in the training data that are restricted in the BM25
model.

6.3 Effectivenessof Multiple Fields

For a document description over a single field, Bi2&hibits reasonable accu-
racy for content fields, while LambdaBM2%exhibits superior accuracy for pop-
ularity fields. We have also seen that with query click information alone, we ca
achieve substantial retrieval accuracy gains. In this section, werpedrperi-
ments to examine retrieval effectiveness when the document descriptitaireo
multiple fields. We find that our learned nonlinear method, LambdaBM&&it-
performs BM25- when F' is a document description over multiple fields. We also
verify that a nonlinear combination of multiple fields is required for the best re
trieval accuracy.

The parameters of BM25b are tuned using & K-dimensional grid search,
where K is the number of fields in the document description. We consider sev-
eral combinations of fields; the combinations and their parameters are listed in
Table 6. Note that the parametecan be absorbed into the field weighis (see
Egs 5-6). Thus we assume= 1 and learr2 K parameters instead 8 + 1.

All field weights, with the exception of the query click field weiglt, are
between 0 and 20. In all field combinations, the body field consistentlyvexei
the lowest field weightv 5. When the document description is over all fields (final
row of the table), the query click field receives a weight 1000 times morethean
anchor text or body fields. We can conclude that the query click field isnthet
important field in the document description.

We first seek to determine the most effective combination of fields to include
in the document description for BM25 Table 7 lists the results of BM250n
various field combinations. We find that using multiple fields in the document
description is superior to using a single field, unless that single field is thg que
click field; the only combination of fields to outperform BM2%re combinations
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Table 6: BM25: parameters learned on the validation set for various field combinationt.chsask = 1.

FieldsF wTr br wpB bp wyr by WA ba we bo
T,B 9.8000| 0.5406| 0.0044| 0.420| - - - - - -
T,B,U 0.6454| 0.4009| 0.0085| 0.196| 1.6219 | 0.950| - - - -
T,B,UA 2.2415]| 0.6440| 0.0490| 0.685| 5.4024 | 0.989| 0.3202| 0.0083] - -
T,B,U,C 1.5811| 0.9250| 0.0290| 0.851| 6.7961 | 0.979] - - 2.9265 | 0.390
T,B,U,A C| 9.5327| 0.7990| 0.0944| 0.430| 18.7944| 0.890 | 0.0935| 0.1993| 93.8318| 0.528




Table 7: Accuracy results on the test set for BMZ6r multiple fields.

Model | FieldsF NDCG@1| NDCG@3| NDCG@10
BM25r | T, B 27.84 30.81 36.98
BM25r | U, T, B 30.81 33.30 39.53
BM25r | AU, T,B 38.66 38.83 43.42
BM25r | C,U,T,B 45.29 43.37 46.83
BM25r | C,A, U, T,B | 45.41 43.53 46.88

Table 8: Accuracy results on the test set for 1-layer LambdaBM26 multi-

ple fields. Bold indicates statistical significance over the correspondin@5gM
model. Italic indicates statistical significance of the corresponding BMBabdel
over the LambdaBM25 model. Parentheses indicate no statistically significant

difference.
Model FieldsF NDCG@1| NDCG@3| NDCG@10
LambdaBM2% | T, B 25.42 28.81 35.80
LambdaBM2% | U, T, B 29.28 32.08 38.75
LambdaBM2% | A,U, T, B (38.91) (38.84) 42.81
LambdaBM2% | C,U, T, B 43.34 41.70 45.04
LambdaBM2% | C,A,U, T,B | 44.60 42.33 45.44

that include the query click field. Note that using multiple fields outperformsgyusin
only BM25¢. Even using the anchor text field in conjunction with all content fields
cannot match the accuracy of BM25The addition of anchor text to the C,U,T,B
combination in fact yields very little improvement in accuracy, without statistical
significance. The anchor text field is, however, important when quity iofor-
mation is not available, as we can see by the significant accuracy improvemen
between the U,T,B and A,U,T,B field combinations.

We next determine if BM2p is better that a linear function of input attributes.
We learn single-layer LambdaBM25nodels for each combination of fields listed
in Table 6. For each model, we find a learning ratd @f® performs best on our
validation data. Table 8 lists the results of our learned linear function Lami@&B.
In all cases, we find that BM256 performs as well or better than single-layer
LambdaBM2%:; our results confirm that the motivation for BM25F given in [17]
is accurate that a linear combination of fields is insufficient for good retirize-
curacy.

Finally, we seek to determine if our two-layer LambdaBM2%odel learns a
better BM25-style retrieval function than BM25We train two-layer LambdaBM25
models on the field combinations listed in Table 6. We find that a learning rate of
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Table 9: Accuracy results on the test set for 2-layer LambdaBM2B multi-
ple fields. Bold indicates statistical significance over the correspondingsBM
madel.

Model FieldsF NDCG@1| NDCG@3| NDCG@10
LambdaBM2% | T, B 29.61 32.49 38.93
LambdaBM2% | U, T, B 34.26 37.03 43.05
LambdaBM2% | A,U, T, B 43.70 42.58 46.21
LambdaBM2% | C,U, T, B 49.70 46.58 49.14
LambdaBM2% | C,A, U, T, B | 50.33 47.14 49.47

10~? and 15 hidden nodes performs well for all field combinations on our valida-
tion data. Table 9 reports results of BM2¥ersus two-layer LambdaBM25for
various field combinations. For every field combination, LambdaBM&éhieves
gains with statistical significance over the corresponding BM&®del. As ex-
pected, we see smaller gains between LambdaBi&nd BM25- 5 since BM25:
models title and body fields very well. For combinations that include anchor text
and query click fields on the otherhand, we see very substantial gan8M25x
of around 5 points NDCG@1 and 3 points NDCG@10. Note that even 0.5 points
NDCG gain is substantial, in particular for truncation level 1.

We would like to highlight that for both BM25and two-layer LambdaBM25
models, the gains achieved when new fields are added to the documaeiyitiasc
are consistent. In Tables 7 and 9, the inclusion of the query click field in the
document description yields the highest accuracy. In addition, smalles gaén
achieved by adding the anchor text field to the document descriptionri@ydsy
accuracy, the multiple-field combinations are in the same order for BM#
LambdaBM25%..

7 Conclusions and Future Work

We have extensively studied the contributions of various document fieldfote
mation retrieval accuracy. We find that query click information is the mostte

field, while the URL field is the least effective field. A document descriptiom-c
taining all fields yields the best retrieval accuracy. We also study whe@8BM
outperforms a linear combination of input attributes. BM25 performs rerbgrka
well on single content fields, but on single popularity fields, BM25 aclsievee-
trieval accuracy comparable to a linear function of input attributes. Fourdent
descriptions containing multiple fields, we verify that a nonlinear combination of
field attributes attains significantly better accuracy than a linear combination of
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field attributes.

Our main contribution is a new information retrieval model trained using Lamb-
daRank and the input attributes of BM25. LambdaBM2ignificantly improves
retrieval effectiveness over BM25for most single-field, in particular popularity
fields, andall multiple-field document descriptions LambdaBM25% optimizes
directly for the chosen target IR evaluation measure and avoids thesitgoafs
parameter tuning, yielding a significantly faster approach. Our model isrgen
and can potentially act as a framework for modelling other retrieval funstion

There are several future directions of this work. First, we would like te pe
form more extensive studies to determine the importance of attributes in out. mode
Since LambdaBM25 is a neural network, it is difficult to determine the acasal r
lationship learned between attributes. However, by using a decision treetlea
such as LambdaMART [23], we can decipher the trees to determine thedrisk
of important features in our model. Currently, our preliminary results usargh-
daMART to learn a BM25-style function indicate that term frequency attriate
significantly more important to the model than document frequency attributbes. T
most important features are the term frequencies of the first two terms gtiéng
in the query click field and the title field. In addition, the field lengths of the body
field and the query click field are the most important field length attributes.

Second, we would like to determine the effectiveness of LambdaBM25 as a
scoring function, where the scores can be used as inputs to a more coanieg
system. For example, LambdaBM25 could be used as a single feature i rece
TREC retrieval systems [6, 5].

Finally, we plan to expand our model to learn proximity relationships. Re-
cent work on incorporating proximity information into BM25 has focused Bn b
gram frequencies [15] or frequencies of terms in spans [19]. In tadks, it has
been unclear how to combinegram document frequency information with
gram term frequency information. In addition, a challenge has been hextd¢ad
BM25 to account for relationships between a query term appearing aig&aon
or with another query term as a bigram. We plan to examine the effect ofnbigra
and trigram frequency attributes on our model and determine if incorpgrstich
features can learn a better function than, for example, the proximity BM2®imod
given in [15, 19]. In the presence of proximity field attributes, we exgéfdrent
field combinations to yield the highest retrieval accuracy. LambdaBM25Heas
advantage of learning the relationship directly from the training collectiorrend
guires no tuning of the function. With our approach, we can learn thendiepeies
between document and term frequency directly.
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