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Abstract— People’s location histories imply the location correlation 

that states the relations between geographical locations in the space 

of human behavior. With the correlation, we can enable many 

valuable services, such as location recommendation and sales 

promotion. In this paper, by taking into account a user’s travel 

experience (knowledge) and the sequentiality that locations have 

been visited, we learn the location correlation from a large number 

of user-generated GPS trajectories. Using the location correlation, 

we conduct a personalized location recommendation system, which is 

evaluated based on a real-world GPS dataset collected by 112 users 

over a period of 1.5 years. As a result, our method outperforms that 

using the Pearson correlation. 

Keywords- Location Correlation, Spatial Data Mining, Location 

History, GPS trajectory 

I.  INTRODUCTION  

The increasing popularity of location-acquisition 
technologies, such as GPS and GSM network, is leading to the 
collection of large spatio-temporal dataset of individuals. The 
dataset cannot only represent people’s location histories but 
also imply the correlation between geographical regions. This 
correlation denotes the relationship between locations from the 
perspective of human behavior, and might indicate the 
probability that two locations co-occurred in people’s trips. 

Typically, people might visit a few locations in a trip, e.g., 
access some malls when shopping, travel to a branch of 
landmarks in a sightseeing tour, or go to a cinema from a 
restaurant, etc. These locations might be similar or dissimilar, 
nearby or far away from each other; but they are correlated 
from the perspective of human behavior. For example, a 
cinema and a restaurant are not similar in terms of the business 
categories they pertain to. However, in a user’s mind, these 
places would be correlated if most people have visited these 
places in one trip. In other cases, to buy something important 
like a wedding ring, an individual would access some similar 
shops selling jewelry in a trip. In short, these shops visited by 
this individual might be correlated. However, these similar 
shops could be far away from each other, i.e., they might not be 
co-located in geographical spaces. Thus, the correlation covers 
and is far beyond the category similarity and the geographical 
distance between locations.  

      The correlation between locations can enable many 

valuable services, such as location recommendation systems, 

mobile tour guides, sales promotion and bus routes design. For 

instance, as shown in Figure 1 A), a brand new shopping mall 

is built in location A recently. The mall operator is intending 

to set up some billboards or advertisements in other places to 

attract more people’s attention; hence promote the sales of this 

mall. By mining a large number of users’ location histories, 

we discover that, in contrast to locations D and F, locations B, 

C and E have a much higher correlation with location A. 

Hence, if putting the billboards or promotion information in 

locations B, C and E, the operator is more likely to maximize 

the promotion effect with minimal investment. Another 

example can be demonstrated using Figure 1 B). If we 

discover a museum and a landmark is highly correlated to a 

lake by analyzing many people’s location histories, the 

museum and landmark can be recommended to tourists when 

they travel to the lake.  

 

 

Figure 1.   Some application scenarios of the location correlation 

      In this paper, we report on an approach mining the 

correlation between locations from human location history. 

Beyond the geo-distance relationship and the business 

category similarity between locations, the location correlation 

describes the relationship between locations in the space of 

human behavior. The contribution of this paper lies in the 

follows: 

1) We propose an algorithm learning the correlation 

between locations. This algorithm considers users’ travel 

experiences and the sequentiality of the locations in a 

user’s trip.  

2) We conduct a personalized location recommendation 

system, which integrates the correlation into a 

collaborative filtering algorithm. 

3) We evaluated the recommender by using a large-scale 

real-world GPS dataset collected by 112 users over a 

period of one year. As a result, our recommender is more 

effective than the baseline schemes.     

II. PRELIMINARY 

A. Problem Definition 

      Definition 1. Trajectory. A user’s trajectory Traj is a 

sequence of time-stamped points,      〈          〉 , 

where                          ;     is a timestamp, 

               and         are two-dimension 

coordinates of points. 

      Definition 2.             denotes the geospatial distance 

between two points    and   , and           =               

is the time interval between two points. 
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      As shown in Figure 2, from each user’s Traj, we can detect 

some geographic regions, called stay points, where the user 

stayed over a certain time interval. In contrast to a raw point    

in a trajectory, a stay point carries a particular semantic 

meaning, such as the shopping mall the user accessed and the 

restaurant they visited. The extraction of a stay point depends 

on two scale parameters, a time threshold (  ) and a distance 

threshold (  ). As shown in Figure 2, {p1, p2,…, p8} formulate 

a trajectory, and a stay point would be detected from {p3, p4, 

p5, p6} if      and              .  

 

Figure 2.  A trajectory and a stay point 

      Definition 3: Stay Point.  A stay point s is a geographical 

region where a user stayed over a time threshold    within a 

distance threshold of   . In a user’s trajectory, s is 

characterized by a set of consecutive points 

  〈            〉 , where                    
                   and              . Therefore, 

             , where 

       ∑     
 
      ⁄ ,                          (1) 

     ∑     
 
      ⁄ ,                          (2) 

respectively stands for the average x and y coordinates of the 

collection  ;            is the user’s arriving time on s and 

           represents the user’s leaving time. 

     Definition 4: Location History. An individual’s location 

history h is represented as a sequence of stay points they 

visited with corresponding arrival and leaving times, 

   〈  

   
→   

   
→    

     
→     〉,                 (3) 

where           is a stay point and                   
is the time interval between two stay points. 

     However, so far, people’s location histories are still 

inconsistent as the stay points detected from various 

individuals’ trajectories are not identical. So, we put together 

the stay points detected from all users’ trajectories into a 

dataset S, and employ a clustering algorithm to partition this 

dataset into some clusters. Thus, the similar stay points from 

various users will be assigned into the same cluster.  

      Definition 5: Locations.   {          } is a collection 

of Locations, where            {     } is a cluster of 

stay points detected from multiple users’ trajectories;   
         . 

     After the clustering operation, we can substitute a stay 

point in a user’s location history with the cluster ID the stay 

point pertains to. In short, a user’s location history can be 

represented as a sequence of the locations. Supposing 

                 , Equation (3) can be replaced with  

                                〈  
   
→   

   
→    

     
→     〉.                (4) 

    Thus, different users’ location histories become comparable 

and can be integrated to infer the correlation between locations. 

Later, we partition an individual’s location history into some 

trips if the travel time spent between two consecutive locations 

exceeds a certain threshold   .  

      Definition 6: Trip: A trip is a sequence of locations 

consecutively visited by a user,      〈  
   
→   

   
→    

     
→     〉, where       ,        (a threshold) and 

     is a stay-point-cluster ID.  

     In short, a user’s location history can be regarded as a 

collection of trips,   {    } , and each      
〈       〉 is a sequence of locations represented by some 

clusters of stay points. 

      Definition 7: Users.   {          }  denotes the 

collection of users.             is a user having a 

trajectory      , a location history    and certain travel 

experience   . 

B. Framework 

Figure 3 describes the framework for mining location 

correlation. First, as shown in Lines 2~4, we detect stay points 

from each user’s trajectories, and formulate their own location 

histories into a sequence of stay points. Second, as depicted in 

Line 5 and 6, we discover a set of locations   by clustering all 

users’ stay points. Later, a user (  )’s location history (  ) 

can be represented by a sequence of stay-point-clusters called 

locations here (refer to Lines 7 and 8). Third, we put all user’s 

location history together, and learn each user’s travel 

experience (e.g.,    of   ) using a iterative model (refer to 

Lines 9 and 10). Fourth, considering {   ,    ,        }, 
we infer the correlation between locations,           , where 

     and     ,                .  

MiningLocationCorrelation (U,     ,   ,      ) 

Input: A collection of users U and their trajectories      {     }   
a time threshold    and a distance threshold    for stay point 

detection, and a    for trip partition.   

Output: A matrix Cor of correlation between each pair of locations. 

1.  S= ;                                                //temporal variables                                       

2.  Foreach      do 

3.          ST=StayPointDetection(         ,   ); //refer to [8] for details 

4.             = LocHistPresent(ST);              //a sequence of stay points 

5.          S=S    ;                           // a collection of all users’ stay points 

6.     = Clustering(S);          //detect locations by clustering the stay 

points 

7.   Foreach      do 

8.             = LocHistRepresent(    );       //a sequence of locations 

9.          H=      ;                //a collection of all users’ location histories 

10.   =InferUserExperience(     );               //refer to Section 3   

11.  Cor=CalculateLocationCorrelation(L,E  ,  ); //refer to Section 4 

12.  Return Cor. 

Figure 3.  The framework of our approach 

III. INFERRING TRAVEL EXPERIENCE 

As shown in Figure 4, we regard a user’s stay on a location as 

an implicitly directed link from the user to that location, i.e., a 

user would point to many locations and a location would be 

pointed to by many users. Here, a green point stands for a stay 
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point, and a gray-circle region denotes a location, which is a 

cluster of stay points. 

 

Figure 4. The model inferring user travel experience 

    User travel experience E and the location interest   have a 

mutual reinforcement relationship. The user with rich travel 

experiences in a region would visit many interesting places in 

that region, and a very interesting place in that region might be 

accessed by many users with rich travel experiences. More 

specifically, a user’s travel experience can be represented by 

the sum of the interests of the locations they accessed; in turn, 

the interest of a location can be calculated by integrating the 

experiences of the users visiting it. Using a power iteration 

method, each user’s experience and each location’s interest 

can be calculated.  

Given a collection of users U’s location histories  , we can 

build a adjacent matrix M between users and locations. In this 

matrix, an item     stands for the times that    has stayed in 

location   ,                . For instance, the matrix 

specified by Figure 4 can be represented as follows. 

                               

                    
  
  

  
  

[

     
     
     
     

]
;              (5) 

     Then, the mutual reinforcement relationship of user travel 

experience                and location interest   
             is represented as follows: 

                                       ∑           ;                          (6) 

   ∑           ;                          (7)                          

where    stands for   ’s travel experience and    denotes the 

location interest of   . Writing them in the matrix form, 

                                         ,                                       (8)  

        .                                     (9)                                     

If we use    and    to denote location interests and travel 

experiences at the nth iteration, the iterative processes for 

generating the final results are                             

                                    (10) 

                                     (11) 

      Starting with                , we are able to 

calculate the final results using the power iteration method.  

IV. LOCATION CORRELATION 

First, we claim that the correlation between two locations does 

not only depend on the number of users visiting the locations 

in a trip but also lie in these users’ travel experiences. Second, 

the two locations continuously accessed by a user would be 

more correlated than those being visited discontinuously. In 

short, the correlation between two locations can be calculated 

by integrating the travel experiences of the users    who have 

visited them in a trip in a weighted manner. Formally, the 

correlation between location   and   can be calculated as   

                                    ∑          ,              (12) 

where    is the collection of users who have visited   and B in 

a trip,   is   ’s travel experience,      , and       is 

a dumping factor, which will decrease as the interval between 

these two locations’ index in a trip increases. For example, in 

our experiment we set              , where   and   are 

indices of   and B and in the trip they pertain to; i.e., the more 

discontinuously two locations being accessed by a user (| - | 
would be big, thus   will become small), the less contribution 

the user can offer to the correlation between these two location.  

     As depicted in Figure 5, three users (         ) 

respectively access locations (A, B, C) in different manners 

and create three trips (      ,             ). The number 

shown below a node is the index of this node in the sequence.  

According to Equation (12), from       we can calculate 

            and            , since these locations 

have been consecutively accessed by   (i.e.,    ). However, 

         
 

 
    (i.e.,               

 

 
) as    traveled to 

B before visiting C. In other words, the correlation between 

location A and C that we can sense from       might not that 

strong as if they are consecutively visited by   . Likewise, we 

can learn             ,            ,          
 

 
 

   from      , and infer                      

            
 

 
    from      . Later, we can integrate 

these correlation inferred from each user’s trips and obtain the 

following results. 

             
 

 
   ;           

 

 
         ; 

             
 

 
   ;             ;            . 

 

Figure 5. A case calculating the correlation between locations 

      Figure 6 formally describes the algorithm for inferring 

correlation between locations. Here,   is a constant, which is 

set to 2 in our experiment.        stands for the number of 

locations contained in the     and         represents the ith 

location in     . For example, regarding      ,         , 

          (the first location),          , 

                             . 

Supposing we have n trips in a dataset and the average length 

of a trip is m, this mining algorithm takes         
      

 
 

   time. So, the overall computing complexity F of our 

approach is the combination of inferring user travel experience 
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and calculating location correlation, i.e.,              

      
      

 
   . 

CalculateLocationCorrelation (        ) 

Input:   A collection of users’ travel experiences   and their location histories 

H, location collection  , and a threshold    for trip partition. 

Output: A matrix Cor describing the correlation between locations. 

1. Foreach location      Do 

2.        Foreach location          Do 

3.                      (     )   ;         //initialize the location correlation 

4. Foreach         Do               //each user’s location history                          

5.        TP=TripPartition(     );  //partition   ’s location history into trips                       

6.        Foreach Trip in TP Do 

7.                For                    //     location contained in Trip 

8.                         For                      

9.                                              ;        // dumping factor, b is a constant  

10.                                                           ;      

11. Foreach      Do     

12.        Foreach           Do   //normalization 

13.                       (     )     (     ) ‖   (     )      (         )‖ 
 

11. Return    ; 

Figure 6. Algorithm learning the correlation between locations 

V. CASE STUDY 

Notation: As shown in Equation (5), we have a matrix M 

describing the relationship between each user and each 

location. Here, we can regard the times an individual has 

stayed at a location as their implicit ratings on the location. 

The ratings from a user   , called an evaluation, is 

represented as an array    〈             〉 , where     is 

  ’s implicit ratings (the occurrences) in location        

   .  (  ) is the subset of the   ,       (  ),      , i.e., 

the set of items (locations) which has been rated (visited) by 

  . The average of ratings in    is denoted as   
̅̅̅̅ , and the 

number of elements in a set   is    . The collection of all 

evaluations in the training set is  .       means the set of 

evaluations containing item  ,          ,    (  ) . 

Likewise,         is the set of evaluations simultaneously 

containing item   and  . 

A. Baseline Schemes: Traditional CF Models 

Collaborative filtering is a well-known model widely used in 

recommendation systems. CF model can be partition into two 

categories; the user-based and item-based inference methods. 

     1) The Pearson correlation-based CF. The Pearson 

correlation reference scheme [6] is the most popular and 

accurate user-based CF model using the similarity between 

users,    (     ) , to weight the ratings from different 

individuals. Equation (15) and (16) give a formal description 

on calculating       , the predicted   ’s ratings on location   . 

Refer to [7] for details. 

        (     ) = 
 ∑        ̅̅ ̅̅                       ̅̅ ̅̅  

√∑        ̅̅ ̅̅                 ∑        ̅̅ ̅̅                

    (15) 

                       
̅̅̅̅  

∑    (     )                ̅̅ ̅̅  

∑    (     )        
;                   (16) 

As the number of users in a system is much larger and 

increases much faster than the number of items, the user-based 

CF models are not that efficient than the item-based methods. 

      2) The Slope One algorithms [7] are famous and 

representative item-based CF algorithms, which are easy to 

implement, efficient to query and reasonably accurate. Given 

any two items   and   with ratings     and     respectively in 

some user evaluation           , we consider the average 

deviation of item   with regard to item   as Equation (17).  

                               ∑
       

                   ,                           (17) 

      Given that            is a prediction for     based on    , 

a reasonable predictor might be the average of all the 

predictions. 

                 (   )  
 

    
∑                 

,                   (18) 

where    {     (  )     |       |   } is the set of all 

relevant items. Further, the number of evaluations 

simultaneously contain two items has been used to weight the 

prediction regarding different items. Intuitively, to predict 

  ’s rating of item A given    ’s ratings of item B and C, if 

2000 users rated the pair of A and B whereas only 20 users 

rated pair of A and C, then   ’s ratings of item B is likely to 

be a better predictor for item A than   ’s ratings of item C is. 

                (   )  
∑                          (  )    

∑             (  )    

 .              (19) 

B. Our Location Correlation-Based CF Model 

In this case study, we integrated the location correlation into 

the Slop One algorithm to achieve a more effective and 

accurate item-based CF model, which can predict a user’s 

interest in a location they have not been.  

Intuitively, to predict   ’s rating of location A given    ’s 

ratings of location B and C, if location B is more related to A 

beyond C, then   ’s ratings of location B is likely to be a far 

better predictor for location A than   ’s ratings of location C 

is. In contrast to the number of observed ratings (i.e., the 

number of people who have visited two locations) used by the 

weighted Slope One algorithm, the location correlation mined 

from multiple users’ location histories carries more semantic 

meanings. Formally, our approach can be represented as 

                  (   )  
∑                    (  )    

∑       (  )    

,                    (20) 

where     denotes the correlation between location    and   , 

and        is still calculated as Equation (17).  

Using Equation (20), we can predict an individual’s ratings 

on the locations they have not accessed, and then rank these 

locations in terms of the predicted ratings. Later, the top n 

locations with relatively high ratings can be recommended to 

the individual. 

VI. EXPERIEMENT 

A. Settings 

     Dataset: Carrying a GPS-enabled device, 112 users (49 

females and 63 males) recorded their outdoor movements with 

GPS logs from May 2007 to Dec. 2008. As a result, the total 

distance of the GPS logs exceeded 254,030,449 kilometers, 



and the total number of GPS points reached 9,432,747. Most 

parts of this dataset were created in Beijing, China, and other 

parts covered 36 cities in China as well as a few cities in the 

USA, South Korea, and Japan. Considering privacy issues, we 

use these datasets anonymously. 

     Stay point detection: In this experiment, we set    to 20 

minutes and    to 250 meters for stay point detection. Refer to 

paper [11] for more justifications. 

     Clustering: We use a density-based clustering algorithm, 

OPTICS (Ordering Points To Identify the Clustering 

Structure), to cluster the extracted stay points into some 

geospatial regions. In the evaluation step, we set the core-

distance to 100 meters and configure the minimum number of 

points to 8.  

     Trip partition: In the experiment, we investigate the 

performance of our methods changing over   . 

Using these locations and users’ trips, a location graph can be 

constructed as illustrated in Figure 10 B). Here, a node stands 

for a location and an edge between two locations denotes that 

there is at least one trip passing the two locations. Table II 

shows the detailed information of this region.  

     Subjects: We invited 23 subjects from the 112 users to 

participate in a user study, which evaluates the effectiveness 

of the two applications powered by the location correlation 

mined from the given GPS dataset. These subjects have 

logged their location histories over a year and have been in the 

selected region for more than 6 years, i.e., they know this 

region well. 

B. Evaluation Approach 

     Strategy: Respectively using our location correlation-based 

CF model and two baseline methods, we infer each subject’s 

interest level (ratings) in each location that the subject has not 

visited. Then, the top 10 locations with relatively high ratings 

are retrieved as the recommendation for the subject. Later, the 

subject can view the recommendation on a Web map, and 

offer a rating on each recommended location with a level 

described in Table III.  

Table III. Users’ interest levels in a location 

Ratings Explanations 

4 I’d like to plan a trip to that location. 

3 I’d like to visit that location if passing by. 

2 I have no feeling, but don’t oppose others to visit it. 

1 This location does not deserve to visit. 

    Measurements: First, we evaluate the ranking performance 

of the top 10 locations recommended to each subject using 

nDCG and MAP. Later, we calculate an average nDCG and 

MAP by aggregating the results from multiple subjects. 

    Baseline Scheme: The Pearson-based CF model and the 

weighted Slope One. Refer to Section 5.2.1 for details.    

    Measurements: MAP is the most frequently used summary 

measure of a ranked retrieval run. In our experiment, it stands 

for the mean of the precision score after each good 

recommendation is retrieved. Regarding the mobile tour guide, 

a retrieved location is a good recommendation if its integrated 

ground truth equals to 3. With regard to the personalized 

recommendation, a recommended location is deemed as a 

good recommendation if its interest level rated by a subject is 

greater than 2. For instance,                        is a 

rating vector for the top 10 locations recommended to a 

subject; the MAP of the G is computed as  

           ⁄     ⁄  ⁄         

nDCG is used to compute the relative-to-the-ideal 

performance of information retrieval techniques. The 

discounted cumulative gain of a rating vector G is computed 

as follows: (we set b = 2 here) 

                    {

                                         

                         

         
    

     
           

          (21) 

Given the ideal discounted cumulative gain DCG’, then nDCG 

at i-th position can be computed as                
       . 

C. Results 

1) Effectiveness 

Using the average NDCG and MAP, Table V compares the 

effectiveness of different methods in conducting the 

personalized location recommendation. Clearly, our approach 

(Experience + Sequentiality) outperforms the weighted Slope 

One algorithm (T-Test of NDCG@5, p=0.0053<0.01; T-Test 

of MAP, p=0.0049<0.01). Although our method is slightly 

weaker than the Pearson correlation-based CF model in terms 

of the average NDCG and MAP, the T-test result (NDCG@5, 

p=0.678>>0.01; MAP, p=0.741>>0.01) shows that the 

advantage of the Pearson correlation is not significant and not 

clear. In other words, some users thought the recommendation 

generated by our method is even better than that of the 

Pearson correlation-based scheme. Thus, we can claim that at 

least our method is as effective as the Pearson correlation-

based one.  

Table I. Effectiveness of different methods in performing the personalized 
location recommendation 

 
Ours 

The Pearson 

Correlation-Based 

CF model 

The Weighted 

Slope One 

Algorithm NDCG@5 0.840 0.862 0.762 
NDCG@10 0.922 0.938 0.891 

MAP 0.798 0.804 0.665 
 

2) Efficiency 

Suppose we have a GPS dataset generated by T users. From 

this dataset, we discover k locations and n trips; the average 

length (number of locations) of a trip is m. Thus, to predict a 

user’s interest level in a location, the upper bounds of 

computing complexity of different methods are as follows:      

The Pearson correlation-based CF model:            ;  

The Weighted Slope One algorithm:            ; 

Our method (Exp + Seq):              ,  

where                      is the total 

computing complexity of inferring the correlation, and w is the 

iteration times. 



 
Figure 14. Average computing complexity in computing a prediction 

Given the GPS dataset, Figure 14 depicts the upper bound of 

computing complexity of different methods in calculating a 

prediction. Clearly, our method is much more efficient than 

the Pearson correlation-based CF model, while being slightly 

slower than the weighted Slope One algorithm. 

VII. RELATED WORK 

Mining human location history has attracted intensive 

attention in past years [5][20]. Previously, most work focuses 

on detecting significant locations of a user [1][7], predicting 

the user’s movement among these locations and recognizing 

user-specific activities at a location [7] [10], etc. Recently, 

Gonotti et al. [4] mined similar sequences from users’ moving 

trajectories; Mamoulis et al. [12] proposed a framework for 

retrieving maximum periodic patterns in spatio-temporal data. 

MSMLS [8] predicts where a driver may be going as a trip 

progresses. Eagle et al [3] aimed to recognize the social 

pattern in daily user activity from the dataset collected by 

Bluetooth-enabled mobile phones. Zheng et al. [17][18] 

classified people’s GPS trajectories into different categories of 

transportation modes, such as driving and taking a bus. Instead 

of understanding user behavior, we aim to mine people’s 

location histories to learn the correlation between locations.  

     Zheng et al. [19][20] performed a generic travel 

recommender that provides a user with the top interesting 

locations and travel sequences mined from GPS trajectories. In 

contrast to this work, we conduct a personalized location 

recommendation, which predicts an individual’s interests in an 

unvisited location based on her location history and that of 

others. Li and Zheng et al. [11] mined the similarity between 

individuals from their GPS trajectories, and incorporate this 

user similarity into a personalized location recommender [21]. 

Differing from this work, we do not estimate the similarity 

between each pair of users, which causes heavy computation.  

      Co-location pattern mining [13] [6] [12] [14] [16] aims to 

find classes of spatial objects that are frequently located 

together. The major differences between these work and ours 

lie in two aspects: 1) We infer the correlation between each 

pair of locations rather than the co-located patterns of location 

categories. 2) We use human behaviors to estimate the 

correlation between two locations rather than the geospatial 

distance between them. 

VIII. CONCLUSION 

In this paper, by considering the user travel experience and the 

visited sequence between locations, we mine the correlation 

between locations from people’s location histories. Beyond 

the geo-distance and the category relationship between 

locations, the correlation describes the relationship between 

locations in the space of human behavior. Using the 

correlation, we conduct a personalized location recommender, 

which is evaluated by a real-world GPS dataset collected by 

112 users over 1.5 years. As a result, our recommender is 

more effective than the weighted Slope one algorithm with a 

slightly additional computation. In addition, in contrast to the 

Pearson correlation-based CF model, our method is much 

more efficient while keeping the similar effectiveness. 
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