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Abstract

Learning the structure of discrete Bayesian
networks has been the subject of exten-
sive research in machine learning, with most
Bayesian approaches focusing on fully ob-
served networks. One of the few methods that
can handle networks with latent variables is
the ”structural EM algorithm” which inter-
leaves greedy structure search with the es-
timation of latent variables and parameters,
maintaining a single best network at each
step.

We introduce Structural Expectation Propa-
gation (SEP), an extension of EP which can
infer the structure of Bayesian networks hav-
ing latent variables and missing data. SEP
performs variational inference in a joint model
of structure, latent variables, and parameters,
offering two advantages: (i) it accounts for
uncertainty in structure and parameter val-
ues when making local distribution updates
(ii) it returns a variational distribution over
network structures rather than a single net-
work, and . We demonstrate the performance
of SEP both on synthetic problems and on
real-world clinical data.

1 Introduction and Overview

A Bayesian network represents a multivariate distri-
bution as a directed acyclic graph (DAG), such that
the joint distribution factorizes into local distributions
of single variables, conditioned on their parents in
the graph. Bayesian networks are widely used tools
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in multivariate data analysis, in part because they al-
low conditional independencies and causal relationships
between variables to be expressed in terms of graph
properties. Learning the network structure from data
has been the subject of extensive research, especially
in the case of discrete networks whose local distribu-
tions are conditional probability tables. Approaches to
this problem can broadly be grouped into constraint-
based methods, which attempt to construct a network
that satisfies a set of conditional independence con-
straints, and score-based methods, which aim to find
the network that maximizes a penalized likelihood score.
We use a Bayesian score-based approach and evaluate
each network G according to its posterior probability
given data, D. This criterion is equivalent to the data
marginal likelihood p(D|G) under a uniform prior over
valid networks.

In fully observed networks, the marginal likelihood has
the same factorization as the joint distribution and it
can be computed in closed form, under standard inde-
pendence and modularity assumptions on the model
parameters [Heckerman et al., 1995]. This factorization
has been exploited by many efficient structure learning
algorithms, including greedy local searches [Heckerman
et al., 1995,Chickering and Meek, 2002], dynamic pro-
gramming [Koivisto, 2006, Tian et al., 2010], convex
relaxations [Jaakkola et al., 2010], various sampling
strategies [Friedman and Koller, 2000,Eaton and Mur-
phy, 2007], and branch-and-bound algorithms [de Cam-
pos and Ji, 2011]. However, learning fully observed net-
works is mostly practical for problems of limited size.
In complex high-dimensional systems, it is often useful
or even essential to incorporate additional assumptions
on structure regularities via parameter sharing and/or
latent variables [Segal et al., 2003,Mansinghka et al.,
2006,Shafto et al., 2011].

When the network includes latent variables, the
marginal likelihood no longer decomposes and be-
comes intractable. Common approximations such as
Cheeseman-Stutz [Cheeseman et al., 1988] and the
variational Bayes lower bound [Beal and Ghahramani,
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2006] rely on a simpler variational distribution over
latent variables and parameters. As this variational
distribution needs to be re-inferred for every candi-
date network, efficient local search algorithms are no
longer applicable. One possible strategy in this case is
to alternate between optimizing structure given a fixed
distribution over latent variables and parameters, and
inferring latent variables and parameters for the current
best structure. This is the idea behind the structural
expectation maximization (SEM) algorithm and its vari-
ants [Friedman, 1998,Meila and Jordan, 2000,Thiesson,
1997, Elidan and Friedman, 2005]. A potential weak-
ness of this approach is that it only considers a single
structure at each iteration, making it susceptible to
local optima. The more recent “cross-categorization
model” [Shafto et al., 2011] uses sampling to obtain
posterior distributions over structures. However, sam-
pling can be slow, and the model is limited to bipartite
networks in which each observed variable has a single
latent parent.

In this paper we extend the highly successful Expec-
tation Propagation (EP) [Minka, 2001] algorithm for
inference over variables in a fixed network, to allow
for joint inference over the structure of the network
along with the latent variables and parameters. The
posterior distribution over structure G, latent variables
U, and parameters Θ is estimated using a mean field
variational distribution:

p(G = g,U = u,Θ = θ|D) u q(g)q(u)q(θ). (1)

This approximation is still intractable, due to the ex-
ponential cardinality of G. We reduce the size of the
latent space by representing the network as a collec-
tion of discrete variables {G1, ..., GD}, where each Gi
indexes the parents of a variable Xi in the network.
We approximate the network posterior by a factorized
distribution over G1, ..., GD:

q(g) =
∏
i

q(gi). (2)

Although the cardinality of Gi can be exponential in
general, this representation is manageable for many
problems involving latent variable networks. For exam-
ple, if we are interested in bipartite networks in which
latent variables are the parents of observed variables
and we limit the number of parents of each variable to
two, |Gi| is quadratic in the number of latent variables.
This class of structures is sufficiently rich for many
problems of interest.

In conventional Expectation Propagation, local distri-
butions representing factors of a variational approxi-
mation to the true posterior distribution are updated
iteratively. Each local update is informed by a ‘con-
text’ given by the current variational factors over the

θ1 θ2 θ3

1 2 3
f1 f2 f3c

Figure 1: Gated factor graph for a mixture g(c, θ) =∏
k f(θk)δ(c=k). Only one of the factors fk included in

the model at a time, and the active factor is indexed
by the variable c.

rest of the network. In this paper, we extend this con-
text to include uncertainty in network structure, where
the structure is described using local discrete variables
and represented using a graphical formalism called
gates [Minka and Winn, 2008]. This allows us to ex-
tend EP to perform joint inference over structure, latent
variables, and parameters. Each local inference is in-
formed by a context comprising a variational posterior
distribution over the remaining quantities. Thus, the
distributions over latent variables and parameters are
computed by probabilistically considering all possible
networks, in contrast to structural EM which considers
only a single network structure when updating variables
and parameters.

2 Inference Background

2.1 Gated Factor Graphs

To represent the model and derive inference updates, we
use the graphical notation of gated factor graphs. Factor
graphs [Kschischang et al., 2001] are bipartite graphs
consisting of variable nodes and factor nodes. Each fac-
tor fa evaluates a potential function over its neighbors
xa in the graph, and the joint distribution factorizes
as the product of all potentials, p(x) =

∏
a fa(xa). In

some models, factor potentials contain additional struc-
ture that is not encoded in the graph; the simplest
example is a mixture model:

g(c, θ1, ...θk) =
∏
k

fk(θk)δ(c=k). (3)

In a regular factor graph, g is connected to all mix-
ture components θk, hiding the fact that only one is
active at a time. Such context-specific independencies
can be made explicit by augmenting the factor graph
with the gates notation. A gate is a dashed rectangle
that encloses a part of a factor graph and includes or
excludes it from the model depending on the value of
a selector variable, and a set of gates indexed by the
same selector variable is a gate block. A gated factor
graph for the mixture model of Equation 3 is shown in
Figure 1.
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2.2 Expectation Propagation

Expectation Propagation approximates a distribution
p(x) =

∏
a fa(xa) by a distribution with the same fac-

torization q(x) =
∏
a f̃a(xa), where all factors are in

the exponential family. EP iteratively refines the ap-
proximating factors through “deletion/inclusion” and
moment matching steps, as follows. Each approximat-
ing factor f̃a(xa) is deleted to yield a partial posterior
‘context’ q\a(x), and updated so that the following
holds:

f̃a(x)q\a(xa) = proj
[
fa(x)q\a(xa)

]
. (4)

Here, the proj[·] operator denotes the projection of its
argument onto an exponential family distribution with
matching moments.

When the approximation is fully factorized so that
each approximating factor also factorizes as f̃a(x) =∏
i f̃ai(xi), each marginal q(xi) only depends on the

factors that are functions of xi, which we will denote
by ne(xi). The contribution of each factor fa ∈ ne(xi)
can be thought of as a message mai(xi) received by
xi, and q(xi) is computed as the product of all such
messages:

q(xi) =
∏

a,fa∈ne(xi)

mai(xi). (5)

In analogy to the sum-product algorithm [Kschischang
et al., 2001], ma(x) corresponds to a factor-to-variable
message, and q\a(x) to a variable-to-factor message. EP
iterative factor refinements correspond to the following
message updates:

ma(xi) ∝
proj[

∑
xa\xi

q\a(xa)fa(xa)]

q\a(xi)
(6)

In particular, a gate block factor of the form ga(c,xa) =∏
k fk(xa)

δ(c=k) sends the following message to the
selector variable c:

ma(c = k) ∝
∑
xa

fk(xa)q\a(xa) (7)

The message from ga(c,xa) to a variable xi ∈ xa has
the following form:

ma(xi) =
proj[

∑
k q

\a(c = k)rk(xi)]

q\a(xi)
(8)

where rk(xi) =
∑
xa\xi

fk(xa)q\a(xa) (9)

The EP approximation of the marginal likelihood is a
product of contributions from all variables and factors.

The contributions of a variable xi, factor fa(xa), and
gate block gb(c,xb) are respectively:

si =
∑
xi

q(xi) (10)

sa =

∑
xa
q\a(xa)fa(xa)∑

xa

∏
xj∈xa

q(xj)
(11)

sb =

∑
k

∑
xb
q\b(xb)fk(xb)∑

xb

∏
xj∈xb

q(xj)
(12)

3 Single-Parent Model

In this section, we fully specify the model of a bipar-
tite discrete network in which latent variables are the
parents of observed variables, and the structure is un-
known. We assume that each observed variable is the
child of a single latent parent, and defer the extension
to multiple latent parents to Section 4.

Let X = {X1, ..., XD} and U = {U1, ..., UK} be the
observed and latent variables, respectively. Let Gi ∈
{1, ...,K} be a latent structure variable such that Gi =
k indicates that variable Uk is the parent of Xi, and
let G = {G1, ..., GD}. We assume uniform priors on
the structure variables Gi, as well as on the latent
variables Uk. Let Θij be the multinomial parameters
for the conditional probability of variable Xi given that
its parent takes on the value j. We assume Dirichlet
priors on Θij , and use the shorthand notation Θi =
{Θi1, ...,ΘiJ} and Θ = {Θ1, ...,ΘD}. We indicate the
values taken on by random variables either using lower-
case symbols, or by explicitly writing X = x.

Given N observations D = {x1, ...,xN}, the joint dis-
tribution of structure, parameters, and variables can
be written as:

p(g, θ,u1:N ,x1:N ) = (13)∏
n

∏
i

p(gi)p(θi)p(x
n
i )p(un)hni(gi,u

n, θi, x
n
i )

hni(gi,u
n, θi, x

n
i ) =

∏
k

bnik(unk , θi, x
n
i )δ(gi=k)(14)

bnik(unk , θi, x
n
i ) =

∏
j

dnij(θij , x
n
i )δ(u

n
k=j) (15)

dnij(θij , x
n
i ) =

∏
l

θij,l
δ(xn

i =l). (16)

Here, each factor dnij(θij , x
n
i ) evaluates the probabil-

ity of observation xni given multinomial parameters
θij . Each factor bnik(unk , θi, x

n
i ) is a discrete mixture

model, selecting parameters θij for xni whenever the
parent variable takes on the value j. Finally, each factor
hni(gi,u

n, θi, x
n
i ) selects the parent for Xn

i among vari-
ables {Un1 , ..., UnK} based on the coresponding structure
variable Gi. The gated factor graph corresponding to
this model is shown in Figure 2.
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Figure 2: Gated factor graph representing a bipartite
network in which each observed variable Xi has a single
latent parent Uk, and the parent is indexed by Gi.

4 Inference

We use EP to estimate a factorized variational pos-
terior distribution q(g)q(u)q(θ) over structure, latent
variables, and parameters. We list the message up-
dates here, and provide more detailed derivations in
the supplementary material. As before, q\i(x) denotes
the posterior marginal of x after removing message
from the factor indexed by i. In addition, we denote
the expectation of a factor f(x) under the distribution
q(x) by Eq(x)[f(x)].

4.1 Messages to Gi

The posterior q(Gi = k) over each structure variable is
the product of the prior and the messages γni(Gi = k),
n = 1, ..., N from factors hni(gi,u

n, θi, x
n
i ):

q(Gi = k) ∝ p(Gi = k)
∏
n

γni(Gi = k) (17)

γni(Gi = k) ∝
∑
j

q\i(Unk = j)Eq\n(θij)[dnij(θij , x
n
i )].

(18)
Each message γni(Gi = k) is proportional to the evi-
dence for a mixture model in which Unk is the parent
of Xn

i , under a “leave-one-out” posterior over Unk and
θi, computed using all observations except xni . Expec-
tations Eq(θ)[d(θ, x)] can be computed in closed form;
when q(θ) is parameterized by pseudocounts λ and λx is
the pseudocount indexed by x, Eq(θ)[d(θ, x)] evaluates
to:

Eq(θ)[d(θ, x)] =
Γ(λ0)

Γ(λ0 + 1)

Γ(1 + λx)

Γ(λx)
=
λx
λ0
. (19)

4.2 Messages to Unk

The posterior of each latent variable q(unk ) is the prod-
uct of the prior and the messages νnik(unk ) from factors
hni(gi,u

n, θi, x
n
i ), i = 1, ..., D:

q(unk ) ∝ p(unk )
∏
i

νnik(unk ) (20)

νnik(unk ) ∝
∑
k′ q

\n(Gi = k′)rnik′(u
n
k )

q\i(unk )
. (21)

Each message νnik(unk ) is a weighted average of the
evidence for unk given different structures, with weights
given by the approximate posterior q\n(Gi = k′).

To compute the terms rnik′(u
n
k ) following Eq. 9, we

consider the cases k′ = k and k′ 6= k separately. When
k′ 6= k,

rnik′(U
n
k = j) ∝ q\i(Unk = j) (22)

×
∑
j′

q\i(Unk′ = j′)Eq\n(θij′ )[dnij′(θij′ , x
n
i )].

When k′ = k,

rnik′(U
n
k = j) = q\i(Unk = j)Eq\n(θij)[dnij(θij , x

n
i )].
(23)

4.3 Messages to θij

Each parameter posterior distribution q(θij) is com-
puted as the product of the prior and the messages
ρnij(θij) from factors hni(gi,u

n, θi, x
n
i ), n = 1, ..., N :

q(θij) = p(θij)
∏
n

ρnij(θij) (24)

ρnij(θij) =
proj[

∑
k q

\n(Gi = k)snijk(θij)]

q\n(θij)
. (25)

The message ρnij(θij) is a weighted average of Dirichlet
messages, projected onto a Dirichlet distribution with
matching moments (see [Minka, 2000] or [Minka and
Lafferty, 2002] for details). The terms snijk(θij) are
EP messages in a discrete mixture model where Uk is
the parent of Xi. Each snijk(θij) is a moment-matched
weighted average two Dirichlet distributions, for the
two cases where Unk = j and Unk 6= j:

snijk(θij) = proj
[
q\n(θij)q

\i(Unk = j)dnij(θij , x
n
i )

+q\n(θij)
∑
j′ 6=j

q\i(Unk = j′)Eq\n(θij′ )[dnij′(θij′ , x
n
i )]
]
.

(26)
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Z1 Z2
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Figure 3: The top network can be converted to the
bottom network via a one-to-one mapping from parent
variables Z1, Z2 to child variables U1, U2, U3.

4.4 Inference with Multiple Latent Parents

To allow observed variables to have multiple latent
parents in the model, we only need to augment the
inference algorithm with a few extra messages if we
modify the network as follows. Let {Z1, ..., ZL} be the
set of latent variables in the model, and let each variable
Uk deterministically encode the interaction of several
variables Zk, as illustrated in Figure 3. A structure in
which Uk is the parent of an observed variable Xi is
then equivalent to a structure in which variables Zk
are the parents of Xi.

We encode the mapping from Zk to Uk using indica-
tor factors Ink(unk , z

n
uk

). The marginal of Znl ∈ Znk is
computed from marginals of its children as follows:

q(znl ) = p(znl )
∏

k,Zl∈Zk

∑
un
k ,z

n
k\z

n
l

q\I(unk )Ink(unk , z
n
k ),

(27)
where q\I(unk ) is the posterior q(unk ) computed using all
messages except the one from Ink(unk , z

n
k ). This extra

message to Unk is

µ(unk ) =
∑
zn
Uk

∏
l,Zl∈Zk

q\k(znl )Ink(unk , z
n
k ), (28)

where q\k(znl ) is the marginal of variable Znl computed
using all of its children except Unk .

4.5 Handling Missing Values

Datasets corresponding to many real problems may
include missing values. This is easy to handle in our
framework: we can simply exclude messages from all
factors hni(gi,u

n, θi, x
n
i ) for which the observation xni

is missing.

5 Obtaining the MAP Network

A key feature of SEP is that the results are expressed
as a posterior distribution over network structures.
In some situations, however, we also seek the single
most-probable structure, and the simplest approxima-
tion to this is to set each structure variable Gi to its
mode. When some posterior structure marginals are
multimodal, we can compare the marginal likelihood of
networks corresponding to different modes and select
the top ones. If this search space is too large, we can
possibly reduce it using cutset conditioning, i.e. we
can condition on one or more variables Gi taking on a
particular value, re-infer the remaining variables, and
repeat until we obtain a smaller set of solutions. Here
we use a more subtle procedure to reduce the number
of modes without making hard decisions on structure,
which conditions on the latent variables Unk . Following
inference, we set all latent variables Unk with confi-
dent unimodal marginals to their modes, and re-run
inference over all other latent variables and parameters.

6 Experiments

We first evaluated SEP on synthetic data, generated
by sampling networks in which observed variables had
up to two latent parents. MAP networks found by SEP
were compared to the solutions obtained by the SEM
algorithm in terms of the data marginal likelihood and
structural similarity to the true network. We also ap-
plied our approach to a real-world clinical dataset com-
ing from an allergy study where patients were tested
for allergic sensitization to a large number of different
proteins, comprising components of common allergens.
Here, structural inference helped discover subsets of
proteins to which patients have similar allergic reac-
tions as well as latent patient characteristics.

6.1 Synthetic Data

We generated synthetic data by sampling network struc-
tures and sampling data for each structure. Each net-
work contained 50 observed variables, K ∈ {2, 3, 4, 5}
latent variables, and N ∈ {100, 200, 500, 1000} data-
points. All latent variables were binary, all observed
variables had cardinality four, and model parameters
were set following [Chickering and Meek, 2002] to en-
sure variable dependence.1 For each setting of K and
N , we sampled 100 single-parent structures and 100
structures in which observed variables had up to two
latent parents.

In initializing SEP, we constrained the maximum num-

1P (Uk = 0) = 0.67, θi0 = [0.48, 0.24, 0.16, 0.12], and
θi1 = [0.12, 0.48, 0.24, 0.16]
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Figure 4: Average marginal likelihood log loss per
data point for solutions obtained by SEP and SEM on
datasets sampled from single-parent networks.
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Figure 5: Average marginal likelihood log loss per
data point for solutions obtained by SEP and SEM on
datasets sampled from networks with up to two parents
for each observed variable.

ber of parents of each observed variable to be either
one (SEP1) or two (SEP2), as appropriate. For SEP1,
we obtained a single structure simply by assigning each
variable Gi to its MAP value. For SEP2, we applied
the conditioning procedure described in Section 5: we
set all latent variables with q(Unk = j) > 0.9 to their
MAP values and re-inferred the remaining variables,
repeated this one more time, and finally assigned struc-
ture variables to MAP values.

We compared our approach to an SEM implementa-
tion2, where we used the Cheeseman-Stutz approxima-
tion of the marginal likelihood, greedy hill climbing
network search, and a bipartite fully connected initial
network. Constraining the number of parents was not
possible for SEM as this would cause the greedy search
to get stuck at initalization.

To evaluate the obtained solutions, we computed the
average difference in the log marginal likelihood per
data point between SEP/SEM solutions and the true

2available at http://compbio.cs.huji.ac.il/LibB/

Table 1: Absolute difference in structure between the
true network and SEP1 and SEM solutions for the
single-parent datasets (mean across 100 networks).

N K=2 K=3 K=4 K=5
100 SEP 7.55 24.50 38.67 44.85

SEM 20.77 44.97 59.70 66.24
200 SEP 2.34 4.54 11.95 18.32

SEM 5.97 13.97 40.72 57.46
500 SEP 3.04 4.54 6.30 8.63

SEM 10.72 13.97 20.05 35.84
1000 SEP 2.53 2.69 5.84 6.28

SEM 23.34 21.58 17.94 22.89

Table 2: Absolute difference in structure between the
true network and SEP2 and SEM solutions for datasets
with up to two parents for each observed variable (mean
across 100 networks).

N K=2 K=3 K=4 K=5
100 SEP 25.01 53.83 70.16 80.76

SEM 36.40 64.08 77.29 84.72
200 SEP 20.87 45.08 60.49 72.16

SEM 27.38 55.03 71.68 82.88
500 SEP 17.02 32.79 53.00 67.33

SEM 18.99 36.5 60.12 75.55
1000 SEP 13.3 34.74 53.56 67.35

SEM 21.15 43.43 58.01 66.73

network. Marginal likelihood was evaluated using the
EP approximation for 1000 test data points sampled
from the true network. The results are shown in Fig-
ures 4 and 5 as averages across 100 datasets for each
setting of N and K. We also evaluated the structural
similarity of the learned networks to the true network
gtrue for each dataset, in terms of the absolute differ-
ence d(g,gtrue) =

∑
i,k |gi,k − gtruei,k |. These results are

summarized in Tables 1 and 2, as averages across 100
datasets for each N and K, and qualitatively agree
with the marginal likelihood score.

SEP outperforms SEM in most settings, and the differ-
ence is greater for small datasets. We speculate that this
is a consequence incorporating structural uncertainty
in the estimation the latent variables and parameters,
as well as only considering networks of lower complex-
ity. Unsurprisingly, the performance of both methods
deteriorates as the number of latent variables increases.
In networks with two and three latent variables, SEM
results become worse when the number of training
datapoints is increased to 1000, suggesting possible
overfitting.

For SEP, conditioning on a subset of latent variables
and re-running inference generally led to improvements
and disambiguation in structure whenever the initial
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Figure 6: The effect of conditioning and re-running
inference on two datasets with 4 latent variables and
500 data points. The top row shows the true structures,
where a white rectangle at position (i, k) indicates the
presence of an edge, i.e. Gi = k. The next three rows
show the structure posteriors after running SEP2 with
no conditioning, after one iteration of conditioning,
and after two iterations of conditioning, top to bottom.
Structural improvements typically occur if the initial
solution sufficiently captures the ground truth.

solution was reasonably close to the true network. This
is illustrated in Figure 6, where the first row shows
two ground truth structures, the second row shows the
structures inferred by SEP, and the next two rows show
the posteriors after one and two iterations of condi-
tioning. In the first network, the initial SEP solution
is fairly similar to the ground truth and conditioning
leads to structural improvements, while in the second
network one of the latent variables is not adequately
captured by the initial solution and conditioning cannot
recover it.

SEP has a disadvantage when it comes to runtime and
memory usage: both increase when we allow multiple la-
tent parents, as a consequence of maintaining posterior
distributions over all variables and their interactions.
SEM is invariant to this, as it only maintains a single
structure at each iteration. Although it is difficult to
directly compare running times, we provide some ref-
erence values for N = 1000, D = 50, and K = 3. In
this setting, the SEM compiled C++ executable took
about 10 minutes for a dataset sampled from a network
in which observed variables had one parent, and 16
minutes for a dataset in which observed variables had
two parents. For the same datasets and on the same
machine, our SEP1 and SEP2 implementations in C#
relying on the Infer.NET library [Minka et al., 2010]
took 10 minutes and 42 minutes respectively, with no
conditioning re-runs.

Table 3: Log marginal likelihood of held-out clinical
data given the learned structures (mean across 100
cross-validation splits).

K SEM SEP1 SEP2
2 -837.7 -836.9 -845.3
3 -819.2 -821.8 -828.0
4 -809.8 -805.9 -812.7
5 -804.8 -805.0 -800.9

6.2 Clinical Data

We used SEP to discover structure in clinical data
obtained from a birth cohort study of asthma and aller-
gies. In the study, N = 221 allergy-prone patients were
tested for sensitization to D = 71 different allergen
components. The testing was performed by measuring
the response of IgE antibodies in blood to each compo-
nent, and the results were categorized as negative, low,
medium, or high, according to common clinical cutoffs.

We modeled this data by assuming a bipartite net-
work in which binary latent variables are the parents
of observed variables. Thus, learning network structure
enabled us to discover groups of proteins to which pa-
tients have similar reactions, as well as to infer latent
patient characteristics. To determine the number of
latent variables K, we learned structure using SEM,
SEP1, and SEP2 on 100 random subsets of 120 data-
points for K ∈ {2, 3, 4, 5}, and evaluated the solutions
in terms of the marginal likelihood of the remaining
101 datapoints. For SEP, we used MAP solutions but
treated all variables Xi such that maxk(Gi = k) < 0.5
as independent. Based on the obtained results (see Ta-
ble 3), we chose K = 5 for SEM and SEP2 and K = 4
for SEP1.

The networks inferred from all data are shown in Figure
7, along with the raw data sorted according to MAP
values of the variables Gi and Unk in the SEP1 solution.
An attractive feature of our solutions is that most of
the posterior uncertainty corresponds to those allergen
components to which there are few positive tests overall.
SEP1 provides the simplest summary of the data, while
SEM and SEP2 two solutions capture more of the
feature subtleties, some of which may be an artefact of
small sample size. The final network choice will depend
on both the prior over structures and the marginal
likelihood.

The inferred posterior distributions over structure and
latent variables provide a useful way to visualize of
complex high-dimensional clinical data, and can po-
tentially lead to an improved understanding of patient
characteristics. More information on this study can be
obtained from the authors.
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Figure 7: Top: networks learned by SEM and SEP on all clinical data, where a rectangle at position (i, k) indicates
the posterior probability q(Gi = k). Bottom: raw data with allergen components along the horizontal axis,
patients along the vertical axis, and values color-coded as negative, low, medium, and high. Proteins are sorted
according to MAP values of structure variables Gi, and patients according to MAP values of latent variables Unk
in the SEP1 solution.

7 Discussion and Future Work

In this paper we have introduced Structural Expec-
tation Propagation, a novel method for learning the
structure of discrete latent variable networks. SEP iter-
atively updates a variational posterior distribution over
networks, and this uncertainty in structure is taken into
account in estimating latent variables and parameters.
To the best of our knowledge, this is the first applica-
tion of approximate Bayesian inference to this problem,
and it demonstrably leads to improved inference of
network structure. Although this comes at the expense
of additional memory requirements and increased run-
time, there exist strategies for improving computational
efficiency. One possibility is to dynamically adapt the
latent space during inference, for example by setting a
subset of latent variables to their MAP values.

The bipartite networks we have considered in this pa-
per correspond to a type of nonlinear dimensionality
reduction for categorical variables. However, the frame-
work can also be extended to hierarchical models, by
allowing latent variables in the model to have their

own latent parents and inferring the corresponding
structure and parameters. Another potential direction
for future work is to explore different structure pri-
ors to specify network constraints or preferences. For
example, we can use the prior to constrain the total
number of edges, to force a set of variables to share
the same parents, or to assign variables to different
parents. Beyond discrete networks, it would be inter-
esting to apply Structural Expectation Propagation to
problems involving different distributions, where some
work already exists for sparse linear regression with
spike-and-slab priors [Hernandez-Lobato et al., 2010].
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