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Abstract

When labelled training data is plentiful, discriminative
techniques are widely used since they give excellent gen-
eralization performance. However, for large-scale appli-
cations such as object recognition, hand labelling of data
is expensive, and there is much interest in semi-supervised
techniques based on generative models in which the ma-
jority of the training data is unlabelled. Although the gen-
eralization performance of generative models can often be
improved by ‘training them discriminatively’, they can then
no longer make use of unlabelled data. In an attempt to
gain the benefit of both generative and discriminative ap-
proaches, heuristic procedure have been proposed [2, 3]
which interpolate between these two extremes by taking a
convex combination of the generative and discriminative
objective functions.

In this paper we adopt a new perspective which says that
there is only one correct way to train a given model, and
that a ‘discriminatively trained’ generative model is funda-
mentally a new model [7]. From this viewpoint, generative
and discriminative models correspond to specific choices
for the prior over parameters. As well as giving a prin-
cipled interpretation of ‘discriminative training’, this ap-
proach opens door to very general ways of interpolating be-
tween generative and discriminative extremes through alter-
native choices of prior. We illustrate this framework using
both synthetic data and a practical example in the domain of
multi-class object recognition. Our results show that, when
the supply of labelled training data is limited, the optimum
performance corresponds to a balance between the purely
generative and the purely discriminative.

1. Introduction

Machine learning techniques are now widely used in
computer vision. In many applications the goal is to take
a vector x of input features and to assign it to one of a num-
ber of alternative classes labelled by a vector c (for instance,
if we have C classes, then c might be a C-dimensional bi-
nary vector in which all elements are zero except the one

corresponding to the class). Throughout this paper we will
have in mind the problem of object recognition, in which x
corresponds to an image (or a region within an image) and c
represents the categories of object (or objects) present in the
image, although the techniques and conclusions presented
are much more widely applicable.

In the simplest scenario, we are given a training data set
comprising N images X = {x1, . . . ,xN} together with
corresponding labels C = {c1, . . . , cN}, in which we as-
sume that the images, and their labels, are drawn indepen-
dently from the same fixed distribution. Our goal is to pre-
dict the class ĉ for a new input vector x̂, and so we require
the conditional distribution

p(ĉ|x̂,X,C). (1)

To determine this distribution we introduce a paramet-
ric model governed by a set of parameters θ. In a dis-
criminative approach we define the conditional distribution
p(c|x,θ), where θ are the parameters of the model. The
likelihood function is then given by

L(θ) = p(C|X,θ) =
N∏

n=1

p(cn|xn,θ). (2)

The likelihood function can be combined with a prior p(θ),
to give a joint distribution

p(θ,C|X) = p(θ)L(θ) (3)

from which we can obtain the posterior distribution by nor-
malizing

p(θ|X,C) =
p(θ)L(θ)
p(C|X)

(4)

where

p(C|X) =
∫

p(θ)L(θ) dθ. (5)

Predictions for new inputs are then made by marginalizing
the predictive distribution with respect to θ weighted by the
posterior distribution

p(ĉ|x̂,X,C) =
∫

p(ĉ|x̂,θ)p(θ|X,C) dθ. (6)



In practice this marginalization, as well as the normalization
in (5), are rarely tractable and so approximation, schemes
such as variational inference, must be used. If training data
is plentiful a point estimate for θ can be made by maximiz-
ing the posterior distribution to give θMAP, and the predic-
tive distribution then estimated using

p(ĉ|x̂,X,C) � p(ĉ|x̂,θMAP). (7)

Note that maximizing the posterior distribution (4) is equiv-
alent to maximizing the joint distribution (3) since these dif-
fer only by a multiplicative constant. In practice, we typi-
cally take the logarithm before maximizing as this gives rise
to both analytical and numerical simplifications. If we con-
sider a prior distribution p(θ) which is constant over the
region in which the likelihood function is large, then max-
imizing the posterior distribution is equivalent to maximiz-
ing the likelihood. In all cases, however, the key quantity
for model training is the likelihood function L(θ). Discrim-
inative methods give good predictive performance and have
been widely used in many applications.

In recent years there has been growing interest in a com-
plementary approach based on generative models, which
define a joint distribution p(x, c|θ) over both input vec-
tors and class labels [4]. One of the motivations is that in
complex problems such as object recognition, where there
is huge variability in the range of possible input vectors, it
may be difficult or impossible to provide enough labelled
training examples, and so there is increasing use of semi-
supervised learning in which the labelled training examples
are augmented with a much larger quantity of unlabelled
examples. A discriminative model cannot make use of the
unlabelled data, as we shall see, and so in this case we need
to consider a generative approach.

The complementary properties of generative and dis-
criminative models have led a number of authors to seek
methods which combine their strengths. In particular, there
has been much interest in ‘discriminative training’ of gen-
erative models [2, 3, 12] with a view to improving classi-
fication accuracy. This approach has been widely used in
speech recognition with great success [5] where generative
hidden Markov models are trained by optimizing the pre-
dictive conditional distribution. As we shall see later, this
form of training can lead to improved performance by com-
pensating for model mis-specification, that is differences
between the true distribution of the process which gener-
ates the data, and the distribution specified by the model.
However, as we have noted, discriminative training cannot
take advantage of unlabelled data. In particular, Ng et al.
[8] show that logistic regression (the discriminative counter-
part of a Naive Bayes generative model) works better than
its generative counterpart, but only for a large number of
training datapoints (large depending on the complexity of
the problem), which confirms the need for using unlabelled
data.

Recently several authors [2, 3] have proposed hybrids
of the generative and discriminative approaches in which a
model is trained by optimizing a convex combination of the
generative and discriminative log likelihood functions. Al-
though the motivation for this procedure was heuristic, it
was sometimes found that the best predictive performance
was obtained for intermediate regimes in between the dis-
criminative and generative limits.

In this paper we develop a novel viewpoint [7] which
says that, for a given model, there is a unique likelihood
function and hence there is only one correct way to train
it. The ‘discriminative training’ of a generative model is in-
stead interpreted in terms of standard training of a different
model, corresponding to a different choice of distribution.
This removes the apparently ad-hoc choice for the training
criterion, so that all models are trained according to the prin-
ciples of statistical inference. Furthermore, by introducing
a constraint between the parameters of this model, through
the choice of prior, the original generative model can be re-
covered.

As well as giving a novel interpretation for ‘discrimina-
tive training’ of generative models, this viewpoint opens the
door to principled blending of generative and discriminative
approaches by introducing priors having a soft constraint
amongst the parameters. The strength of this constraint
therefore governs the balance between generative and dis-
criminative.

In Section 2 we give a detailed discussion of the new in-
terpretation of discriminative training for generative mod-
els, and in Section 3 we illustrate the advantages of blend-
ing between generative and discriminative viewpoints using
a synthetic example in which the role of unlabelled data and
of model mis-specification becomes clear. In Section 4 we
show that this approach can be applied to a large scale prob-
lem in computer vision concerned with object recognition in
images, and finally we draw some conclusions in Section 5.

2. A New View of ‘Discriminative Training’

A parametric generative model is defined by specifying
the joint distribution p(x, c|θ) of the input vector x and the
class label c, conditioned on a set of parameters θ. Typ-
ically this is done by defining a prior probability for the
classes p(c|π) along with a class-conditional density for
each class p(x|c,λ), so that

p(x, c|θ) = p(c|π)p(x|c,λ) (8)

where θ = {π,λ}. Since the data points are assumed to be
independent, the joint distribution is given by

LG(θ) = p(X,C,θ) = p(θ)
N∏

n=1

p(xn, cn|θ). (9)

This can be maximized to determine the most proba-
ble (MAP) value of θ. Again, since p(X,C,θ) =



p(θ|X,C)p(X,C), this is equivalent to maximizing the
posterior distribution p(θ|X,C).

In order to improve the predictive performance of gen-
erative models it has been proposed to use ‘discriminative
training’ [12] which involves maximizing

LD(θ) = p(C,θ|X) = p(θ)
N∏

n=1

p(cn|xn,θ) (10)

in which we are conditioning on the input vectors instead of
modelling their distribution. Here we have used

p(c|x,θ) =
p(x, c|θ)∑
c′ p(x, c′|θ)

. (11)

Note that (10) is not the joint distribution for the original
model defined by (9), and so does not correspond to MAP
for this model. The terminology of ‘discriminative training’
is therefore misleading, since for a given model there is only
one correct way to train it. It is not the training method
which has changed, but the model itself.

This concept of discriminative training has been taken
a stage further [2, 3] by maximizing a function given by a
convex combination of (9) and (10) of the form

α lnLD(θ) + (1 − α) ln LG(θ) (12)

where 0 � α � 1, so as to interpolate between generative
(α = 0) and discriminative (α = 1) approaches. Unfor-
tunately, this criterion was not derived by maximizing the
distribution of a well-defined model.

Following [7] we therefore propose an alternative view
of discriminative training, which will lead to an elegant
framework for blending generative and discriminative ap-
proaches. Consider a model which contains an additional
independent set of parameters θ̃ = {π̃, λ̃} in addition to
the parameters θ = {π,λ}, in which the likelihood func-
tion is given by

q(x, c|θ, θ̃) = p(c|x,θ)p(x|θ̃) (13)

where
p(x|θ̃) =

∑
c′

p(x, c′|θ̃). (14)

Here p(c|x,θ) is defined by (11), while p(x, c|θ̃) has inde-
pendent parameters θ̃.

The model is completed by defining a prior p(θ, θ̃) over
the model parameters, giving a joint distribution of the form

q(X,C,θ, θ̃) = p(θ, θ̃)
N∏

n=1

p(cn|xn,θ)p(xn|θ̃). (15)

Now suppose we consider a special case in which the
prior factorizes, so that

p(θ, θ̃) = p(θ)p(θ̃). (16)

We then determine optimal values for the parameters θ and
θ̃ in the usual way by maximizing (15), which now takes
the form[

p(θ)
N∏

n=1

p(cn|xn,θ)

] [
p(θ̃)

N∏
n=1

p(xn|θ̃)

]
. (17)

We see that the resulting value of θ will be identical to that
found by maximizing (11), since it is the same function
which is being maximized. Since it is θ and not θ̃ which
determines the predictive distribution p(c|x,θ) we see that
this model is equivalent in its predictions to the ‘discrimi-
natively trained’ generative model. This gives a consistent
view of training in which we always maximize the joint dis-
tribution, and the distinction between generative and dis-
criminative training lies in the choice of model.

The relationship between the generative model and the
discriminative model is illustrated using directed graphs in
Figure 1.
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Figure 1. Probabilistic directed graphs, showing on the left, the
original generative model, and on the right the corresponding dis-
criminative model.

Now suppose instead that we consider a prior which en-
forces equality between the two sets of parameters

p(θ, θ̃) = p(θ)δ(θ − θ̃). (18)

Then we can set θ̃ = θ in (13) from which we recover the
original generative model p(x, c|θ). Thus we have a sin-
gle class of distributions in which the discriminative model
corresponds to independence in the prior, and the generative
model corresponds to an equality constraint in the prior.

2.1. Blending Generative and Discriminative

Clearly we can now blend between the generative and
discriminative extremes by considering priors which im-
pose a soft constraint between θ̃ and θ. Why should we
wish to do this?

First of all, we note that the reason why ‘discriminative
training’ might give better results than direct use of the gen-
erative model, is that (15) is more flexible than (9) since
it relaxes the implicit constraint θ̃ = θ. Of course, if the
generative model were a perfect representation of reality (in
other words the data really came from the model) then in-
creasing the flexibility of the model would lead to poorer



results. Any improvement from the discriminative approach
must therefore be the result of a mis-match between the
model and the true distribution of the (process which gener-
ates the) data. In other words, the benefit of ‘discriminative
training’ is dependent on model mis-specification.

Conversely, the benefit of the generative approach is that
it can make use of unlabelled data to augment the labelled
training set. Suppose we have a data set comprising a set
of inputs XL for which we have corresponding labels CL,
together with a set of inputs XU for which we have no la-
bels. For the correctly trained generative model, the func-
tion which is maximized is given by

p(θ)
∏
n∈L

p(xn, cn|θ)
∏

m∈U

p(xm|θ) (19)

where p(x|θ) is defined by

p(x|θ) =
∑
c′

p(x, c′|θ). (20)

We see that the unlabelled data influences the choice of θ
and hence affects the predictions of the model. By contrast,
for the ‘discriminatively trained’ generative model the func-
tion which is now optimized is again the product of the prior
and the likelihood function and so takes the form

p(θ)
∏
n∈L

p(xc|xn,θ) (21)

and we see that the unlabelled data plays no role. Thus,
in order to make use of unlabelled data we cannot use a
discriminative approach.

Now let us consider how a combination of labelled and
unlabelled data can be exploited from the perspective of our
new approach defined by (15), for which the joint distribu-
tion becomes

q(XL,CL,XU,θ, θ̃) = p(θ, θ̃)[∏
n∈L

p(cn|xn,θ)p(xn|θ̃)

] [ ∏
m∈U

p(xm|θ̃)

]
(22)

We see that the unlabelled data (as well as the labelled data)
influences the parameters θ̃ which in turn influence θ via
the soft constraint imposed by the prior.

In general, if the model is not a perfect representation
of reality, and if we have unlabelled data available, then we
would expect the optimal balance to lie neither at the purely
generative extreme nor at the purely discriminative extreme.

As a simple example of a prior which interpolates
smoothly between the generative and discriminative limits,
consider the class of priors of the form

p(θ, θ̃) ∝ p(θ)p(θ̃)
1
σ

exp
{
− 1

2σ2
‖θ − θ̃‖2.

}
(23)

If desired, we can relate σ to an α like parameter by defining
a map from (0, 1) to (0,∞), for example using

σ(α) =
(

α

1 − α

)2

. (24)

For α → 0 we have σ → 0, and we obtain a hard constraint
of the form (18) which corresponds to the generative model.
Conversely for α → 1 we have σ → ∞ and we obtain an
independence prior of the form (16) which corresponds to
the discriminative model.

3. Illustration

We now illustrate the new framework for blending be-
tween generative and discriminative approaches using an
example based on synthetic data. This is chosen to be as
simple as possible, and so involves data vectors xn which
live in a two-dimensional Euclidean space for easy visual-
ization, and which belong to one of two classes. Data from
each class is generated from a Gaussian distribution as illus-
trated in Figure 2. Here the scales on the axes are equal, and
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Figure 2. Synthetic training data, shown as red crosses and blue
dots, together with contours of probability density for each of the
two classes. Two points from each class are labelled (indicated by
circles around the data points).

so we see that the class-conditional densities are elongated
in the horizontal direction.

We now consider a continuum of models which inter-
polate between purely generative and purely discriminative.
To define this model we consider the generative limit, and
represent each class-conditional density using an isotropic
Gaussian distribution. Since this does not capture the hori-
zontally elongated nature of the true class distributions, this
represents a form of model mis-specification. The parame-
ters of the model are the means and variances of the Gaus-
sians for each class, along with the class prior probabilities.

We consider a prior of the form (23) in which σ(α)
is defined by (24). Here we choose p(θ, θ̃|α) =
p(θ) N(θ̃|θ, σ(α)), where p(θ) are the usual congugate pri-
ors (a gaussian prior for the means, a gamma prior for the
variances, and a dirichlet for the class priors). This results
in a proper prior.

The training data set comprises 200 points from each
class, of which just 2 from each class are labelled, and the



test set comprises 200 points all of which are labelled. Ex-
periments are run 10 times with differing random initializa-
tions and the results used to computer a mean and variance
over the test set classification, which are shown by ‘error
bars’ in Figure 3. We see that the best generalization occurs
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Figure 3. Plot of the percentage of correctly classified points on
the test set versus α for the synthetic data problem.

for values of α intermediate between the generative and dis-
criminative extremes.

To gain insight into this behaviour we can plot the con-
tours of density for each class corresponding to different
values of α, as shown in Figure 4. We see that a purely gen-
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Figure 4. Results of fitting an isotropic Gaussian model to the syn-
thetic data for various values of α. The top left shows α = 0
(generative case) while the bottom right shows α = 1 (discrimina-
tive case). The yellow area corresponds to points that are assigned
to the red class.

erative model is strongly influenced by modelling the den-
sity of the data and so gives a decision boundary which is

orthogonal to the correct one. Conversely a purely discrim-
inative model attends only to the labelled data points and
so misses useful information about the horizontal elonga-
tion of the true class-conditional densities which is present
in the unlabelled data.

4. Object Recognition

We now apply our approach to a realistic application in-
volving object recognition in static images. This is a widely
studied problem which has been tackled using a range of
different discriminative and generative models. The long
term goal of such research is to achieve near human levels
of recognition accuracy across thousands of object classes
in the presence of wide variations in location, scale, ori-
entation and lighting, as well as changes due to intra-class
variability and occlusion.

4.1. The data

We used 8 different classes: airplanes, bikes, cows,
faces, horses, leaves, motorbikes, sheep. The cows
and sheep images come from Microsoft Research
(http://www.research.microsoft.com/mlp), the airplanes,
faces, leaves and motorbikes images come from the Caltech
database (http://www.robots.ox.ac.uk/∼vgg/data), the
bikes images were downloaded from the Technical Uni-
versity of Graz (http://www.emt.tugraz.at/∼pinz/data),
and the horses images were downloaded from
the Mathematical Sciences Research Institute
(http://www.msri.org/people/members/eranb). Together
these images exhibit a wide variety of poses, colours, and
illumination, as illustrated by the sample images shown in
Figure 5.

Each image contains one or more objects from a particu-
lar class, and the goal is to build a true multi-class classifier
in which each image is assigned to one of the classes (rather
than simply classifying each class separately versus the rest,
which would be a much simpler problem).

All images were re-scaled to 300×200, and raw patches
of size 48×48 were extracted on a regular grid of size 24×
24 (i.e. every 24th pixel).

4.2. The features

Our features are taken from [11], in which the original
RGB images are first converted into the CIE (L, a, b) colour
space [6]. Each image is then convolved with 17 filters,
and the set of corresponding pixels from each of the filtered
images represents a 17-dimensional vector. All these fea-
ture vectors are clustered using K-means with K = 100.
Since this large value of K is computationally costly in later
stages of processing, PCA is used to give a 15-dimensional
feature vector. Winn et al. [11] use a more powerful tech-
nique to reduce the number of features, but since this is a
supervised method based on fully labelled training data, we



Figure 5. Sample images from the training set.

did not re-implement it here. The cluster centers obtained
through K-means are called textons [10].

The filters are quite standard: the first three filters are
obtained by scaling a Gaussian filter, and are applied to each
channel of the colour image, which gives 3×3 = 9 response
images. Then a Laplacian filter is applied to the L channel,
at 4 different scales, which gives 4 more response images.
Finally 2 DoG (difference of Gaussians) filters (one along
each direction) are applied to the L channel, at 2 different
scales, giving another 4 responses.

From these response images, we extract every pixel on a
4 × 4 grid, and apply K-means to obtain K textons. Now
each patch will be represented by a histogram of these tex-
tons, i.e. by a K-dimensional vector containing the propor-
tion of each texton. Textons were obtained from 25 training
images per class (half of the training set). Note that the tex-

ton features are found using only unlabelled data. These
vectors are then reduced using PCA to a dimensionality of
15.

4.3. The model

We consider the generative model introduced in [9],
which we now briefly describe. Each image is represented
by a feature vector xn, where n = 1, . . . , N , and N is the
total number of images. Each vector comprises a set of J
patch vectors x = {xnj} where j = 1, . . . , J . We assume
that each patch belongs to one and only one of the classes,
or to a separate ‘background’ class, so that each patch can
be characterized by a binary vector τnj coded so that all
elements of τnj are zero except the element corresponding
to the class. We use cn to denote the image label vector
for image n with independent components cnk ∈ {0, 1} in
which k = 1, . . . C labels the class.

The overall joint distribution for the model can be rep-
resented as a directed graph, as shown in Figure 6. We

J

xnjxnj

cncn

�

�

�
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�nj�nj

Figure 6. The generative model for object recognition expressed as
a directed acyclic graph, for unlabelled images, in which the boxes
denote ‘plates’ (i.e. independent replicated copies). Only the patch
feature vectors {xnj} are observed, corresponding to the shaded
node. The image class labels cn and patch class labels τ nj are
latent variables.

can therefore characterize the model completely in terms of
the conditional probabilities p(c), p(τ |c) and p(x|τ ). This
model is most easily explained generatively, that is, we de-
scribe the procedure for generating a set of observed feature
vectors from the model.

First we choose the overall class of the image accord-
ing to some prior probability parameters ψk where k =
1, . . . , C, and 0 � ψk � 1, with

∑
k ψk = 1, so that

p(c) =
C∏

k=1

ψck

k . (25)



Given the overall class for the image, each patch is then
drawn from either one of the foreground classes or the back-
ground (k = C + 1) class. The probability of generating a
patch from a particular class is governed by a set of param-
eters πk, one for each class, such that πk � 0, constrained
by the subset of classes actually present in the image. Thus

p(τ j |c) =

(
C+1∑
l=1

clπl

)−1 C+1∏
k=1

(ckπk)τjk . (26)

Note that there is an overall undetermined scale to these
parameters, which may be removed by fixing one of them,
e.g. πC+1 = 1.

For each class, the distribution of the patch feature vector
x is governed by a separate mixture of Gaussians which we
denote by

p(x|τ j) =
C+1∏
k=1

φk(xj ;λk)τjk (27)

where λk denotes the set of parameters (means, covari-
ances and mixing coefficients) associated with this mixture
model.

If we assume N independent images, and for image n
we have J patches drawn independently, then the joint dis-
tribution of all random variables is

N∏
n=1

p(cn)
J∏

j=1

p(xnj |τnj)p(τnj |cn)

 . (28)

Here we are assuming that each image has the same num-
ber J of patches, though this restriction is easily relaxed if
required.

The graph shown in Figure 6 corresponds to unlabelled
images in which only the feature vectors {xnj} are ob-
served, with both the image category and the classes of each
of the patches being latent variables. It is also possible to
consider images which are ‘weakly labelled’, that is each
image is labelled according to the category of object present
in the image. This corresponds to the graphical model of
Figure 7 in which the node cn is shaded. Of course, for a
given size of data set, better performance is expected if all
of the images are ‘strongly labelled’, that is segmented im-
ages in which the region occupied by the object or objects is
known so that the patch labels τnj become observed vari-
ables. The graphical model for a set of strongly labelled
images is also shown in Figure 7. Strong labelling requires
hand segmentation of images, and so is a time consuming
and expensive process as compared with collection of the
images themselves. For a given level of effort it will always
be possible to collect many unlabelled or weakly labelled
images for the same cost as a single strongly labelled im-
age. Since the variability of natural images and objects is
so vast we will always be operating in a regime in which
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Figure 7. Graphical models corresponding to Figure 6 for weakly
labelled images (left) and strongly labelled images (right).

the size of our data sets is statistically small (though they
will often be computationally large).

For this reason there is great interest in augmenting ex-
pensive strongly labelled images with lots of cheap weakly
labelled or unlabelled images in order to better character-
ize the different forms of variability. Although the two
stage hierarchical model shown in Figure 6 appears to
be more complicated than in the simple example shown
in Figure 1, it does in fact fall within the same frame-
work. In particular, for labelled images the observed data
is {xn, cn, τnj}, while for ‘unlabelled’ images only {xn}
are observed. The experiments described here could readily
be extended to consider arbitrary combinations of strongly
labelled, weakly labelled and unlabelled images if desired.

If we let θ = {ψk, πk,λk} denote the full set of parame-
ters in the model, then we can consider a model of the form
(22) in which the prior is given by (23) with σ(α) defined
by (24), and the terms p(θ) and p(θ̃) taken to be constant.

We use conjugate gradients to optimize the parameters.
Due to lack of space we do not write down all the deriva-
tives of the log likelihood function required by the conju-
gate gradient algorithm. However, the correctness of the
mathematical derivation of these gradients, as well as their
numerical implementation, can easily be verified by com-
parison against numerical differentiation [1]. The conju-
gate gradients is the most used technique when it comes
to blending generative and discriminative models, thanks to
its flexibility. Indeed, because of the discriminative com-
ponent p(cn|xn,θ) which contains a normalising factor, an
algorithm such as EM would require much more work, as
nothing is directly tractable anymore. However, a compari-
son of the two methods is currently being investigated.

4.4. Results

We use 50 training images per class (giving 400 training
images in total) of which 5 images per class (a total of 40)
were fully labelled i.e. both the image and the individual
patches have class labels. All the other images are left to-
tally unlabelled, i.e. not even the category they belong to is
given. Note that this kind of training data is 1) very cheap



to get and 2) very unusual for a discriminative model. The
test set consists of 100 images per class (giving a total of
800 images), the task is to label each image.

Experiments are run 5 times with differing random ini-
tializations and the results used to compute a mean and vari-
ance over the test set classification, which are shown by
‘error bars’ in Figure 8. Note that, since there are 8 bal-
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Figure 8. Influence of the term α on the test set classification per-
formance.

anced classes, random guessing would give 12.5% correct
on average. Again we see that the best performance is ob-
tained with a blend between generative and discriminative
extremes.

5. Conclusions

In this paper we have shown that ‘discriminative train-
ing’ for generative models can be re-cast in terms of stan-
dard training methods applied to a modified model. This
new viewpoint opens the door to a wide range of new mod-
els which interpolate smoothly between generative and dis-
criminative approaches and which can benefit from the ad-
vantages of both. The main drawback of this framework is
that the number of parameters in the model is doubled lead-
ing to greater computational cost.

Although we have focussed on a specific application
in computer vision concerned with object recognition, the
techniques proposed here have very wide applicability.

A principled approach to combining generative and dis-
criminative approaches not only gives a more satisfying
foundation for the development of new models, but it also
brings practical benefits. In particular, the parameter α
which governs the trade-off between generative and dis-
criminative is now a hyper-parameter within a well defined
probabilistic model which is trained using the (unique) cor-
rect likelihood function. In a Bayesian setting the value of
this hyper-parameter can therefore be optimized by maxi-
mizing the marginal likelihood in which the model parame-
ters have been integrated out, thereby allowing the optimal

trade-off between generative and discriminative limits to be
determined entirely from the training data without recourse
to cross-validation [1]. This extension of the work described
here is currently being investigated.
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