
Learning to Rank for Information Retrieval

DOI 10.1007/s10791-009-9112-1

Adapting Boosting for Information Retrieval Measures

Qiang Wu · Christopher J. C. Burges ·

Krysta M. Svore · Jianfeng Gao

Received: 21 April 2009 / Accepted: 19 August 2009
c©Springer Science + Business Media, LLC 2009

Abstract We present a new ranking algorithm that combines the strengths of two pre-

vious methods: boosted tree classification, and LambdaRank, which has been shown to

be empirically optimal for a widely used information retrieval measure. Our algorithm

is based on boosted regression trees, although the ideas apply to any weak learners,

and it is significantly faster in both train and test phases than the state of the art,

for comparable accuracy. We also show how to find the optimal linear combination

for any two rankers, and we use this method to solve the line search problem exactly

during boosting. In addition, we show that starting with a previously trained model,

and boosting using its residuals, furnishes an effective technique for model adaptation,

and we give significantly improved results for a particularly pressing problem in Web

Search - training rankers for markets for which only small amounts of labeled data are

available, given a ranker trained on much more data from a larger market.

Keywords Learning to Rank · Boosting · Web Search

1 Introduction

We consider the ranking problem for Information Retrieval (IR), where the task is to

order a set of results (documents, images or other data) by relevance to a query issued

by a user. Ranking is a core technology that is fundamental to widespread applications

such as internet search and advertising, recommender systems, and social networking

systems.

There are two basic categories of ranking algorithms: one scheme is based on learn-

ing the pairwise preference, such as RankNet [5] and LambdaRank [4], which use neural

nets to learn the pairwise preference function; the other scheme is based on relevance

regression or classification such as McRank [17]. Because a perfect ranking implies per-

fect decisions on all pairs’ preferences and an incorrect ranking implies the existence of

Microsoft Research
One Microsoft Way
Redmond, WA 98052
E-mail: {qiangwu,cburges,ksvore,jfgao}@microsoft.com



2

mistakenly ordered pairs, learning a ranking function is equivalent to learning a pair-

wise preference function. On the other hand, although predicting (with classification

or regression) the relevance labels perfectly implies perfect ranking, the converse is not

true. For example, if the classifier assigns class c− 1 to each returned document whose

true class is c, and the documents are ranked by class, then the ranking will be perfect

even though the classification error rate is 100%. Therefore, casting ranking as learning

pairwise preferences is superior to treating it as a classification or regression problem

simply because it avoids solving an unnecessarily hard problem. Another advantage

of the pairwise scheme is the fact that at each stage of boosting, we need train only

one tree, as opposed to training a multiclass classifier, for which each stage of boosting

requires as many trees as there are classes. This results in much smaller and faster

models at test time, which is crucial when ranking millions of documents in real time,

as is required for Web Search.

In this paper, we propose a new ranking algorithm that combines the strengths

of two previous approaches: LambdaRank [4], and boosting. LambdaRank has been

shown to be a very effective ranking algorithm for optimizing IR measures [8]. It is a

pairwise-based approach that leverages the fact that neural net training needs only the

gradients of the cost function, not the function values themselves, and it models those

gradients using the sorted positions of the documents for a given query. This bypasses

two significant problems, namely that typical IR measures [19], viewed as functions

of the model scores, are either flat or discontinuous everywhere [3], and that those

measures require sorting by score, which itself is a non-differentiable operation. On

the other hand, it was recently shown that treating the ranking problem as a simple

classification problem, followed by mapping the outputs to a single score by computing

the expected relevance, and using boosted trees as the classifiers (“McRank”), can

work remarkably well [17]. However, McRank is inefficient in test phase (each round of

boosting requires as many trees as there are classes). Yet, its success suggests that using

boosted trees in an algorithm that directly optimizes the IR cost function, rather than

simply treating the problem as a classification problem, may give further improvement

to the accuracy / speed tradeoff. This paper presents such an algorithm.

We consider retrieval problems with five levels of relevance and we use the Normal-

ized Discounted Cumulative Gain (NDCG) relevance measure [14], which is suitable

for non-binary relevance measures and which emphasizes the top returned results. For

a given query Qi, i = 1, ..., m, the NDCG is defined as:

Ni ≡ ni

T
∑

j=1

(2r(j) − 1)/ log(1 + j) (1)

where r(j) ∈ {0, ..., 4} is the integer label for the relevance level of the jth document in

the sorted list, and where T is the truncation level at which the NDCG is computed.

Here ni is a normalization constant chosen so that Ni = 1 for a perfect ranking for

truncation level T . For multiple queries, the NDCGs are simply averaged.

2 Relation to Previous Work

Recently the problem of learning to rank has attracted increasing attention in the

information retrieval and machine learning communities. The superiority of learned

ranking models over traditional probabilistic retrieval models has been demonstrated



3

on benchmark data sets. For example, Gao et al. [11] showed that a linear ranking

model significantly outperforms a number of state-of-the-art language models [10,20,

24] and the classical probabilistic retrieval model [15] on the ad hoc retrieval task using

TREC test sets.

A key goal of learning to rank is to set up a learning problem that can be solved

efficiently for an underlying problem that is non-smooth, non-convex and in fact com-

binatoric. Yue et al. used SVMs to optimize a convex upper bound on Mean Average

Precision, a widely used binary measure [23]. Le and Smola proposed using the Hun-

garian Marriage algorithm to optimize a convex bound on any general IR measure

[16]. However, although these algorithms are fast in test phase for linear kernels, one

generally needs more expressive models for the Web Search problem, and using general

kernels renders such methods to be unacceptably slow. Other approaches have modified

AdaBoost for NDCG [21] and have considered ranking using the whole list of returned

results as input for computing the score of a given document [6]. At the other extreme,

ignoring the IR measure and treating the problem as a classification problem, using

boosted trees as proposed by Li et al. [17], works remarkably well. However the result-

ing algorithm (“McRank”) is slow (in both train and test phases) since it requires as

many trees per iteration as classes (namely, five, in [17]). One might hope that sim-

ply treating the problem as a regression problem would yield the same performance

speedup for similar accuracy, but [17] showed that regression does not work as well

as classification for this task. Zheng et al. [25] proposed a method of using gradient

boosting for ranking on smooth pairwise loss functions, but most IR metrics, such as

NDCG, are non-smooth and cannot be optimized directly in this framework.

Prior to this work, neural nets were shown to give good results [4,5], and in partic-

ular, a training method called LambdaRank [4] has been shown to optimize the NDCG

measure [8,22], which is a very intriguing result. The LambdaRank trick is basically

to note that neural net training requires only the gradients (of the cost with respect

to the model scores), and that these can be chosen heuristically, based on the rank

position and label of each document, after the sort. The LambdaRank gradients re-

ported in [4,8,22] are the gradients of the pairwise log binomial loss [5] multiplied by

the NDCG gained by swapping the two documents, and then summed over pairs of

documents (see Section 3); they are smooth functions of the document ranks (in that

the gradients change smoothly as two adjacent documents exchange rank positions

during learning); the idea is to rely on the (also smooth) RankNet cost gradient to

smoothly encode the dependence on the document scores.

Boosted trees are very flexible models. For example, they handle categorical and

count data better than neural nets (they can use count data directly, whereas nets

require inputs with similar dynamic ranges); they give models for which the importance

of each feature can be computed directly; and truncating the number of boosted trees

(in the order in which they were trained) gives a simple method for trading off speed

and accuracy. This tradeoff is particularly important for a Search Engine, where one

is often willing to sacrifice accuracy for improved speed. The work described above

raises the following question: can we combine the flexibility of boosted trees, with the

empirical optimality that has been observed for LambdaRank, to construct a ranker

that has the benefits of both methods? It is this question that we investigate in this

paper.

Following [17], we will use MART [9] as the starting point. The principal novelty

of our work springs from three main ideas:



4

1. We use the LambdaRank gradients when training each tree, so that as opposed to

McRank, the number of trees per boosting iteration is just one. In addition, the

use of LambdaRank gradients allows us to consider highly non-smooth IR metrics,

such as DCG and NDCG. Previous work combining pairwise cost functions with

MART allows for only smooth, twice-differentiable risk functions [25] and does

not take the entire results set for a given query into consideration, which is very

important for complex ranking metrics such as NDCG. It is not obvious how to

combine the LambdaRank gradients with MART (for example, the LambdaRank

gradients depend on pairs of samples, and typically MART is used for costs that

depend on individual samples); solving this is a principal contribution of our work,

and contrasts with other recent work on using boosted trees with smooth costs [7].

Our work also differs from [7] in that we solve the ranking problem directly, rather

than solve an intermediate regression problem.

2. A major problem that Search Engines face, beyond the basic ranking problem, is

model adaptation: for example, using labeled data for a large, established market as

a starting point to train models for markets with much smaller labeled dataset sizes.

To address this problem we use the additive nature of boosted trees to replace the

first tree with a previously trained model (a “submodel”); hence the name of our

algorithm, “LambdaSMART”, for Lambda-submodel-MART, or LambdaMART for

the case with no submodel (for more detailed results on model adaptation and

interpolation, see [13]).

3. We present a new method for finding the optimal linear combination of any two

rankers, for any IR measure. This is a basic technique that has many possible appli-

cations: for example, solving the model adaptation problem by optimally combining

a ranker trained on a large amount of data, with one trained on data for a small

market; or, computing the optimal linear combination that is required when adding

a new tree to a model during the learning phase for boosting.

The paper is organized as follows. In Section 3 we describe the LambdaSMART

algorithm. In Section 4 we describe the path-following optimal combination technique.

This technique can be used within the LambdaSMART algorithm to potentially find

a better combination of regression trees. Experimental results are given in Section

5. Our experimental results fall into three main categories: experiments showing the

speedup gained by LambdaSMART over the previous best ranker, McRank; experi-

ments showing the significant gains that can be achieved using model adaptation, for

which LambdaSMART is particularly well-suited; and experiments demonstrating the

optimal combination method. We present conclusions and future work in Section 6.

3 The LambdaSMART Algorithm

LambdaSMART is built on MART (Multiple Additive Regression Trees). We refer the

reader to [9] for details, although here we briefly summarize the MART algorithm for

completeness. MART is a boosted tree algorithm that performs gradient descent in

function space [18]. By this is meant the following: viewing the cost C as a functional

of the model output (or, of the function value F ), then to first order, C = C0 + ∂C
∂F

δF .

Thus as in ordinary gradient descent, by choosing δF ∝ −∂C
∂F for a suitable step

size, the model further reduces the cost. Since the functional gradient ∂C
∂F

can only

be evaluated at the training points, the trees give a means of estimating a smooth



5

regression to the gradients everywhere. Each tree in MART may thus be viewed as

a small step δF in function space, where the step size (which is computed using the

Newton approximation) becomes the weight attached to that tree. Performance can be

further improved by computing a step size for each leaf node. Each tree is computed

as a standard regression tree, using least squared error to compute the best splits.

Our approach also builds regression trees to model the functional gradient of the

cost function of interest, evaluated at all the training points. However we use the

LambdaRank functional gradients, since we are interested in optimizing NDCG. Here

we briefly summarize the ideas behind LambdaRank. Since the NDCG cost is either

flat or discontinuous everywhere, LambdaRank uses an approximation to the gradient

of the cost, called λ-gradients. Consider a set of documents that have been ranked, for

a given query, while training the model. A particular document is given a scalar λ-

gradient which is computed using all the pairs of documents for which that document

occurs as a member of the pair, and for which the other member of the pair was

generated for the same query, but has a different label; the λ-gradient for a given

document thus depends on its position in the sorted list, and on the positions of

the other documents (that have different labels) in the sorted list. Specifically, the

contribution to the λ-gradient for a given document, resulting from its membership in

a given pair of documents, consists of the product of two factors: (1) the RankNet cost

[5] (a pairwise cross-entropy loss, applied to the logistic of the difference of the model

scores), for the pair of documents, and (2) the NDCG gained by swapping the pair,

∆NDCG. Although the first factor is pairwise (only depending on the local information

of the pair), the second factor depends on the global structure of the entire query and

on the metric under consideration (in our case, NDCG). The first factor plays the role

of a smooth cost with a margin built in; that is, even documents that are correctly

ordered, or that have the same rank, get a contribution from the RankNet cost, and

this contribution falls off smoothly as s1 − s2 increases, where s1 (s2) is the score

of the more (less) relevant document. Thus a key intuition behind the λ-gradient is

the observation that NDCG does not treat all pairs equally; the cost depends on the

global sorted order as well as on the labels. It is due to these two separate factors that

LambdaRank can be applied to any IR metric (by substituting that metric for NDCG),

and in fact has been shown to be empirically optimal for several such metrics [8,22] (by

“empirically optimal”, we mean that the algorithm finds a local optimium for the cost

function, which is by no means obvious, given the indirect route that LambdaRank

takes in modeling the cost). This motivates our using the LambdaRank gradients as

target gradients in MART. Concretely, the λ-gradients may be written as

λij ≡ Sij

∣

∣

∣

∣

∆NDCG
∂Cij

∂oij

∣

∣

∣

∣

, (2)

where oij ≡ si − sj is the difference in ranking scores for a pair of documents in a

query (here we are using si as a shorthand for F (xi)),

Cij ≡ C(oij) = sj − si + log(1 + esi−sj ) (3)

is the cross-entropy cost applied to the logistic of the difference of the scores, ∆NDCG

is the NDCG gained by swapping those two documents (after sorting all documents

by their current scores), and Sij ∈ {−1, 1} is plus one if document i is more relevant

than document j (has higher label value) and minus one if document i is less relevant



6

than document j (has lower label value) [4]. Note that

∂Cij/∂oij = ∂Cij/∂si = −1/(1 + eoij ) (4)

and that the overall sign of λij depends only on the labels of documents i and j, and

not on their rank position. Each point then sums its λ-gradients for all pairs P in which

it occurs:

λi =
∑

j∈P

λij . (5)

LambdaRank has a physical interpretation in which the documents are point masses

and the λ-gradients are forces on those point masses; the λ’s generated for any given

pair of documents are equal and opposite. A positive lambda indicates a push toward

the top rank position and a negative lambda indicates a push toward the lower rank

positions [4].

We now combine MART and LambdaRank to form LambdaSMART, which is sum-

marized in Algorithm 1. Here we assume that there are N total documents in our

training set and that we wish to train M boosting stages (trees). The “S” in Lamb-

daSMART refers to a submodel that one can use as the initial model (as opposed to

training the first tree from scratch). We optionally load a submodel in Step 2. This is

easy to implement: one simply starts by computing the LambdaRank functional gra-

dients of the cost function using the scores output by the submodel, and then trains

the trees as described in the algorithm.

LambdaSMART training then proceeds similarly to [9]. M rounds of boosting are

performed, and at each boosting iteration, a regression tree is constructed and trained

on all documents for all queries. We choose the final number of trees for the model by

using a validation set.

Step 6 calculates the λ-gradients for each document i, as described above. Step

7 calculates the second-order derivative using the λ-gradients (which are smooth in

the scores). A regression tree with L terminal nodes is built in step 9, using Mean

Squared Error to determine the best split at any node in the regression tree. The

value associated with a given leaf of the trained tree is computed first as the mean

of the λ-gradients for the training samples that land at that leaf. Then, since each

leaf corresponds to a different mean, a one-dimensional Newton-Raphson line step is

computed for each leaf (Step 11). These line steps may be simply computed as the

derivatives of the LambdaRank gradients with respect to the model scores si. Finally,

in Step 14, the regression tree is added to the current boosted tree model, weighted by

the “shrinkage coefficient” v [9], which is chosen to regularize the model. Choosing a

fixed, global shrinkage coefficient is in fact equivalent to setting the slope of the sigmoid

used in the LambdaRank gradients.

Thus LambdaSMART has three parameters: M , the total number of boosting it-

erations, L, the number of leaf nodes for each regression tree, and v, the “shrinkage

coefficient”. We selected the optimal parameters by using a validation set. Fortunately,

as verified in our experiments, the performance of the algorithm is relatively insensitive

to these parameters as long as they lie within a reasonable range: given the training

set of a few thousand queries or more M = 500, L = 15, and v = 0.1 usually give

good performance. Smaller trees and shrinkage may be used if the training data set is

smaller.



7

Algorithm 1 The LambdaSMART algorithm.

1: for i = 0 to N do
2: F0(xi) = BaseModel(xi) \\BaseModel may be empty or set to a submodel.
3: end for
4: for m = 1 to M do
5: for i = 0 to N do
6: yi = λi \\Calculate λ-gradient for sample i.

7: wi = ∂yi

∂F (xi)
\\Calculate derivative of λ-gradient for sample i.

8: end for
9: {Rlm}L

l=1 \\Create L-terminal node tree on {yi, xi}
N
i=1.

10: for l = 0 to L do

11: γlm =

∑

xi∈Rlm

yi

∑

xi∈Rlm

wi

\\Find the leaf values based on approximate Newton step.

12: end for
13: for i = 0 to N do
14: Fm(xi) = Fm−1(xi) + v

∑

l
γlm1(xi ∈ Rlm) \\Update model based on approximate

Newton step and shrinkage size.
15: end for
16: end for

A further novelty of our approach over the algorithms described in [9] is that we

use a pairwise cost function, in particular for non-smooth metrics, which has been

shown to give excellent performance for ranking [4,5]. Since we are optimizing NDCG

at each step, we do not need the number-of-classes trees per iteration that McRank

needs. We could also achieve one tree per iteration by considering regression instead

of classification. However, regression has been shown to cause a decrease in accuracy

(see Figure 1 of [17]); our approach overcomes this drawback.

4 How To Optimally Combine Two Rankers

The problems that IR measures present for optimization, as described in Section 1,

can be turned to our advantage. Here we show how this property can be leveraged to

find the optimal linear combination of any two rankers. For concreteness we will refer

to NDCG, but the method applies to any of the typically used IR measures [19]. Our

method can be used to combine, for example, rankers trained on different data sets, or

trained using different algorithms; we will use it below to find optimal combinations of

weak learners during boosting.

The idea is a path-following method and is illustrated in Figure 1. There, the

vertical lines represent the ranges of the outputs of two different rankers, R and R′, for

the same single query; each point on each line is the score for a particular document,

where sR
i denotes the score for document i from Ranker R, and the scores sR

i and sR′

i

are convexly combined as

si = (1 − α)sR
i + αsR′

i , (6)

where α ∈ [0, 1]. As α sweeps from 0 to 1, the score for each document follows the cor-

responding line moving from left to right. When α = 0, the score is precisely Ranker

R’s score, and when α = 1, the score is precisely Ranker R′’s score. Due to its dis-

crete nature, the NDCG can only change when two or more lines cross (and when the

corresponding labels of the documents differ). Hence we can simply enumerate all pos-

sible values of α for which the NDCG changes by analytically computing all possible



8

crossing points. Thus, at each crossing point, we only have to evaluate the change in

NDCG caused by swapping the two documents involved in the crossing. This is an

O(n2) algorithm, where n is the mean number of documents returned per query (as

are many ranking algorithms).

Note that the requirement that we keep track of the NDCG as the mixing parameter

α sweeps from 0 to 1 means that (1) for a given query, every pair of documents with

different labels must be examined (since the NDCG will change when they swap rank

positions) and (2) for a given query, every pair of documents with the same label

must also be examined (since we must also keep track of every document’s rank to use

in subsequent computations of the NDCG). These together mean that the algorithm

cannot do better than O(n2). For multiple queries, we compute all crossing points

αc for all queries, and then sort the αc. By traversing this sorted list we can then

analytically compute the change in NDCG for every crossing point across all queries,

and save the value of αc that gives the highest overall NDCG.

One can use this to compute the optimal weights for combining the weak learners

in a boosting model. In functional form, any boosting model may be written

F (x) =
∑

i

αifi(x), (7)

where x is the input feature vector and where the fi are the weak learners. Usually the

weight αi is learned once fi has been trained, using for example a Newton-Raphson

step (which requires an estimate of the inverse Hessian) [9], and αi is then left fixed.

The inverse Hessian is approximated since it is too expensive to compute exactly.

The method proposed here gives an O(n2) algorithm to compute αi exactly, given

the trained fi, obviating the need for the Newton-Raphson step. Methods to avoid

overfitting, such as “shrinkage” [9], can equally well be applied to the α’s computed

using our path following algorithm, which has the significant advantage that the α one

starts with is known to be optimal for the training data. In the case of boosting models,

it is more convenient to fix the weight of the current ranker R output at 1 and let α

vary from 0 up to some maximal value: si = sR
i + αsR′

i , where R =
∑i−1

j=1 αjfj(x) is

the model up to that boosting iteration and R′ = fi(x) is the new tree to be added to

the model.

In computing a given α, degeneracies (where several lines in Figure 1 cross at the

same point) can either be computed analytically or removed by adding jitter (very

small random values) to the scores. Degeneracies at the endpoints (which is commonly

encountered when training trees) can be similarly handled, or can be broken by adding

ǫ ≪ 1 times the value of a strong, floating point feature that correlates positively with

relevance (such as BM25) to the model score; however we chose a more principled

approach, that of computing the expectation of the NDCG, given that the ranks of the

documents with a given score all have equal probability. Note that this expectation

can in fact be computed efficiently with a single loop over the documents for any given

query.

Finally we note that, for cases where limiting the number of trees provides suf-

ficient regularization for the data at hand (so that no shrinkage is needed), we can

get improved fits for all the αi by iteratively recomputing αj given that all αk 6=j are

held fixed, so that at any iteration we are computing the optimal combination of two

rankers. This iterative procedure is guaranteed to converge since the NDCG is mono-

tonically non-decreasing at every step. We emphasize that our method for optimally



9

combining rankers works for any set of rankers (although optimality is only guaranteed

for a given pair of rankers), and in particular it is not limited to boosting models; it

may for example prove useful for constructing ensembles of rankers. Experimental re-

sults for this algorithm, on both artificial and real web data, are given in Section 5.6. In

order to explore the contributions of the various new ideas described in this paper, we

used standard techniques for computing the weights assigned to the trees throughout,

except in Section 5.6, where results for the optimal combiner are given.

sR
k

sR′

k
sR
i

sR′

i

sR
j

sR′

j

α = 0 α = 1

Ranker R Ranker R′

Fig. 1 Optimally combining two rankers. NDCG changes only at the crossing points. The two
vertical lines represent the sorted list of scores output by Ranker R and R′, respectively. sR

i
indicates the score of document i ouput by ranker R.

5 Experiments

We perform experiments to (1) compare the accuracy and speed of LambdaSMART and

LambdaMART to LambdaRank and McRank (the latter two algorithms are state-of-

the-art rankers and have been reported to outperform previous state-of-the-art rankers

on the Web Search task); (2) assess the effectiveness of model adaptation by training a

base model and boosting it using different data sets; and (3) provide preliminary results

on whether the optimal ranker combination improves the NDCG and the learning speed

over the Newton step.

5.1 The Data

The data sets include an artificial set and a Web data set, called Web-1. We perform

model adaptation studies on four language data sets, namely Korean, English, Chinese,

and Japanese, a names data set consisting of only person name queries, and a long

query data set consisting of queries of length four or more1. All data sets contain

samples labeled on a 5-level relevance scale and all train/valid/test sets contain non-

overlapping queries. The Web and language data sets contain features constructed from

the document (including anchor text and URL information), the query, and matches

between the document and the query. Queries were sampled from search engine query

logs and URLs were sampled from search engine results.

The artificial data set, generated as described in [5], was synthetically produced

to mimic a perfectly labeled data set. It was created from random cubic polyno-

mials and contains 50 features. There are 50 URLs per query and 10K/5K/10K in

1 We use query length to mean the number of words in the query.



10

train/valid/test sets. The Web-1 data has 367 features, with on average 26 URLs per

query, and 10K/5K/10K queries for train/valid/test sets.

For across-domain adaptation experiments from non-Korean to Korean markets,

we use Korean data for the adaptation domain, and English, Chinese, and Japanese

data sets as the background domain. The Korean data has 425 features with a total of

4430 queries. The average number of URLs per query is 75. The train/valid/test sets

contain 3724/334/372 queries, respectively. The English data contains 6167 queries,

with on average 198 URLs per query. The Chinese data comprises 32827 queries with

on average 72 URLs per query. The Japanese data comprises 45012 queries with on

average 58 URLs per query.

The names Web data set has 416 features, on average 105 URLs per query, and

5725/158/318 queries in train/valid/test sets. The long query Web data set has 416

features, on average 98 URLs per query, and 6255/176/356 queries in train/valid/test

sets. In our model adaptation experiments, the names and long query data sets serve

as the respective adaptation domains. The background domain is the same for name

and long queries, namely Web-2. Web-2 has 416 features, on average 134 URLs per

query, and 31555 queries in the train set (since we use it for model adaptation, we do

not need a valid or test set).

Although the data sets are not of the size the ranker would see at test phase, the

sets used for training are of the rough order of magnitude of those used for web scale

training. In particular, we show that our algorithm is fast enough at test phase to

handle web scale test data, in particular due to the fewer number of required trees.

The performance of different ranking methods is measured through NDCG eval-

uated against test sets. We report NDCG results (where queries for which all URLs

have the same label have been dropped, since all rankers give identical NDCG on

such queries), at truncation levels 10, 3, and 1. Significance test (i.e., t-test) was also

employed.

5.2 Model Parameters

Model parameters are chosen using validation sets: here we summarize the best settings

found. LambdaRank is tuned by varying the number of layers, the number of hidden

nodes, and the learning rate. For all data sets we use two layers unless otherwise stated,

and ten hidden nodes. On the artificial data, we use a learning rate of 10−4; for the

Web-1 data, we use a learning rate of 10−5; and for the Web-2 data, we use a learning

rate of 10−4. McRank and LambdaSMART are both tuned by varying the number of

leaf nodes L, the shrinkage v, and the number of boosting iterations M . For McRank

we set L = 10, v = 0.05 and M = 1000 for all datasets, as in [17]. For LambdaMART

we use M = 1000 and v = 0.1 for all datasets, L = 10 for the artificial data, and

L = 15 for the Web-1 data. For LambdaSMART (the model adaptation experiments)

we use M = 500, L = 20, and v = 0.1. Although LambdaSMART is in general not

sensitive to model parameters, we report the best parameters found on validation data

for completeness and as a principled way to find model parameters. Our results do not

imply sensitivity to model parameters. Reported experiments do not use the optimal

combiner approach, with the exception of experiments reported in Section 5.6.



11

Table 1 LambdaMART, McRank and LambdaRank results on the artificial and Web-1 data,
with 95% confidence intervals in the parentheses. Results are reported for NDCG at 10, 3 and
1.

Artificial λ-MART McRank λ-Rank

NDCG@10 87.9 (0.16) 83.7 (0.19) 75.4 (0.25)
NDCG@3 81.7 (0.32) 75.6 (0.36) 67.8 (0.41)
NDCG@1 79.6 (0.56) 72.2 (0.65) 65.8 (0.66)

Web-1 λ-MART McRank λ-Rank

NDCG@10 69.3 (0.46) 69.7 (0.46) 68.6 (0.47)
NDCG@3 62.5 (0.60) 62.9 (0.60) 61.5 (0.60)
NDCG@1 61.3 (0.81) 61.6 (0.81) 60.4 (0.82)

5.3 Accuracy Results

We compare results of LambdaRank, McRank, and LambdaMART on the artificial

and Web-1 data. We use LambdaMART since we found that in this setting it performs

as well or better than LambdaSMART on the validation data.

Table 1 lists the NDCG results on the 10K artificial and 10K Web-1 test queries,

with 95% confidence intervals listed in the parentheses based on a statistical t-test. The

artificial data has no label noise, so less strongly regularized models such as McRank

and LambdaMART learn the data well and outperform a 2-layer LambdaRank model.

Both McRank and LambdaMART were run for 1000 iterations; note that McRank

therefore has 5000 trees, as opposed to LambdaMART’s 1000.

On the Web-1 data, McRank and LambdaMART exhibit similar asymptotic perfor-

mance, although as shown in the next section, LambdaMART exhibits better speed/accuracy

tradeoff behavior. The NDCG results on both data sets indicate that McRank and

LambdaMART outperform LambdaRank. We also compared our results against BM25,

since BM25 alone has been used for ranking in the Information Retrieval community

for several years, and we find that BM25 is consistently behind Lambda(S)MART,

McRank, and LambdaRank by several NDCG points, for all datasets.

5.4 Speed vs. Accuracy Results

The most significant advantage of LambdaSMART over McRank is its improved be-

havior regarding the speed/accuracy tradeoff. This is crucial for real time applications

such as Web Search, where typically results must be returned to the user within mil-

liseconds of their issuing a query. Figure 2 plots accuracy (NDCG@10) versus speed

(the number of boosted trees) for both LambdaMART and McRank, for both the

artificial and the Web-1 data. The validation set was used to choose the optimal set-

tings, which were found to be L = 20 and v = 0.15 (from ranges L = 10, 15, 20 and

v = 0.05, 0.1, 0.15). The graphs show the results on the test set, for systems trained

with the above optimal settings. Since both methods use the same number of leaf nodes,

the number of trees provides a reliable measure of speed. The faster learning exhibited

by LambdaMART gives a significant speed-up for a large range of accuracies: although

the curves in the right panel appear close, a single percentage point of NDCG gain is



12

a significant increase in accuracy for Web Search. Achieving the same accuracy, but

with approximately half as many trees, is a big win.

0 100 200 300 400 500

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Boosted Trees

N
D

C
G

@
10

 

 

λMART, artificial
McRank, artificial

0 50 100 150 200 250
0.6

0.62

0.64

0.66

0.68

0.7

Number of Boosted Trees

N
D

C
G

@
10

 

 

λMART, Web−1
McRank, Web−1

a) Artificial b) Web-1

Fig. 2 Speed versus accuracy results for McRank and LambdaMART.

Additional speed-ups can be obtained by increasing the shrinkage parameter at a

small cost in accuracy or by performing early stopping by essentially reducing the num-

ber of boosting iterations. However, these methods can be applied to McRank as well,

and any speed-ups gained by using them for McRank will also benefit LambdaSMART.

5.5 Model Adaptation Results

Ranking model adaptation attempts to adjust the parameters of a ranking model

trained on one domain (called the background domain), for which large amounts of

training data are available, to a different domain (the adaptation domain), for which

only a small amount of training data is available. In Web search applications, domains

can be defined by query length, languages, dates, etc.

Model adaptation has been well-studied in the context of statistical language mod-

els for a variety of natural langauge and speech applications. State-of-the-art adaptation

techniques can be grouped into two categories: maximum a posteriori (MAP) estima-

tion and discriminative training methods. MAP methods adjust the parameters of the

background model so as to maximize the likelihood of the adaptation data [2]. Dis-

criminative training methods, on the other hand, aim at using the adaptation data to

directly minimize the errors on the adaptation data made by the background model [1,

12]. LambdaSMART can be viewed as a discriminative training method. In our experi-

ments we also compare it with model interpolation, a previous state-of-the-art method

of model adaptation [2].

In this section we report results on three adaptation experiments. The first uses a

large set of Web data, Web-2, as the background domain and uses the long query data

set (data containing only queries of length 4 or more) as the adaptation domain. In this

scenario, the idea is that we have very little data for long queries containing 4 or more

words, but we have lots of Web data on queries of all lengths. We compare against

several baselines: a 2-layer LambdaRank model with 15 hidden nodes and a learning

rate of 10−5 trained on Web-2 (called the Background Ranker), a 2-layer LambdaRank



13

Table 2 Results on Long Query test data, for baseline models and LambdaSMART with the
Background Ranker as submodel. Results are reported for NDCG at 10, 3 and 1.

Long Back. In-dom. Interp. λ-SMART

NDCG@10 47.78 48.42 48.71 48.38
NDCG@3 45.32 46.05 46.39 46.19
NDCG@1 45.23 49.10 48.00 47.80

Table 3 Results on Names Query test data, for baseline models and LambdaSMART with
the Background Ranker as submodel. Results are reported for NDCG at 10, 3 and 1.

Names Back. In-dom. Interp. λ-SMART

NDCG@10 54.46 57.74 57.47 59.51
NDCG@3 49.52 52.96 52.54 54.49
NDCG@1 45.75 49.21 47.45 50.42

model with 15 hidden nodes trained on the long query train data set only (called the

In-domain Ranker), and an interpolated ranker, which is a linear interpolation of the

Background Ranker and the In-domain Ranker, and the interpolation weights were

optimized on long query validation data. We “adapt” the Background Ranker to long

queries by training off the Background Ranker with long query training data. We

trained LambdaSMART with M = 500 trees, each with L = 20 leaves, and with a

learning rate of v = 0.1. At each boosting iteration, we randomly selected 70% of

training samples, instead of all training samples, to construct the regression tree. We

found randomness to be crucial to the performance of the model. The results are listed

in Table 2. Here, no statistically significant gain was observed. This, together with

the successful adaptation experiments described below, suggests that for successful

adaptation with LambdaSMART, using just a few thousand queries for the adaptation

training phase is not sufficient.

The second experiment is an adaptation experiment on names queries. Again, Web-

2 serves as the background domain. The adaptation domain is the names query data

set. All experiments report test numbers on the names test set. We again compare

against several baseline rankers: a 2-layer LambdaRank model with 15 hidden nodes

and a learning rate of 10−5 trained on Web-2 (called the Background Ranker), a 2-

layer LambdaRank model with 10 hidden nodes trained on the names query train data

set only (called the In-domain Ranker), and a ranker interpolated on the Background

Ranker and the In-domain Ranker, where the interpolation weights were optimized on

names query validation data. We “adapt” the Background Ranker to names queries

by using the Background Ranker as a submodel for LambdaSMART, and training

LambdaSMART on the names query train data. We again trained LambdaSMART with

M = 500, L = 20 and v = 0.1. At each boosting iteration, we randomly selected 70%

of training samples. Results are given in Table 3. In this case, the In-domain Ranker

and Interpolated Ranker demonstrate similar performance. However, LambdaSMART

far outperforms all baseline rankers significantly, with p-value < 0.05 for all NDCG

levels, according to the paired t-test.

The third experiment is an adaptation experiment involving data from several lan-

guages (Table 4). Two-layer LambdaRank baseline rankers are first built from Korean,

English, Japanese, and Chinese training data and tested on Korean test data. These



14

Table 4 Results for baseline model adaptation, LambdaSMART, and model interpolation
(Interp.). Results are reported for NDCG at 10, 3 and 1.

Baseline Korean English Japanese Chinese

NDCG@10 62.91 58.73 60.27 57.61
NDCG@3 58.24 54.13 56.84 51.05
NDCG@1 59.27 53.71 56.40 49.66

λSMART English Japanese Chinese Interp.

NDCG@10 64.54 63.85 64.15 62.89
NDCG@3 60.57 59.66 60.95 58.70
NDCG@1 60.96 60.14 59.55 58.78

baseline rankers then serve as submodels for LambdaSMART and are “adapted” using

the Korean training data, and tested on the Korean test data. We randomly divided

the Korean dataset into three non-overlapping subsets. Both base and adapted models

use the same feature set. A subset containing 3724 queries is used as training data

(adaptation training data in our model adaptation experiments). The subset contain-

ing 372 queries is used as validation set, and the remaining subset with 334 queries is

used as test set. For the LambdaSMART training, we again used L = 20, M = 500 and

v = 0.1. Although the Korean train data set is much smaller than the other three data

sets, the first table in Table 4 shows that the ranking model trained on the Korean

data set is still much better than the other models trained on much larger cross-domain

training data (due to the domain mismatch between training and test data). This is a

typical result of cross-domain training.

Results are shown in the second table in Table 4. All adaptation results are sta-

tistically significantly better (again with p-value < 0.05 for all comparisons) than the

corresponding baseline. We find that LambdaSMART is a very effective model adaption

technique. We also compared our method with model interpolation 2. Model interpola-

tion is a standard baseline for reporting model adaptation results; see [13]. We linearly

interpolate the four baseline rankers, which are trained respectively on the Korean,

English, Japanese, and Chinese datasets as aforementioned. The interpolation weights

are learned using the Powell Search algorithm to optimize NDCG on the Korean vali-

dation data set. The results are listed in the right hand column of the second table in

Table 4. They are only slightly better than the baseline results. The LambdaSMART

model adaptation achieves statistically significant NDCG gains over interpolation and

over the baseline.

5.6 Optimal Combination Results

Here we present results validating the optimal combination method described in Section

3. For the model we used LambdaMART. We trained a baseline model, which uses the

full Newton step to compute the combination weight for each leaf, and a model “OC”

that uses the optimal combiner to compute the global combination weights (i. e. one

per tree). We used the artificial data as described in [5]. The advantage of the optimal

2 We could also consider merging the data sets and training a model on the merged data.
In our experiments linearly interpolating models trained on background and adaptation data
sets respectively achieves better results than simply training on merged datasets.



15

combiner is that it bypasses the (diagonalized) Newton-Raphson approximation and

returns the exact answer. However, here we are replacing the per-leaf weights (each

computed with its own Newton-Raphson step) with a single global (but optimal) mixing

parameter. Our intent here is simply to show that using the optimal combination

strategy works, and can help, despite the approximation introduced by replacing per-

leaf weights by a single weight per tree; we emphasize that the optimal combination

trick is likely to also prove useful elsewhere.

Figure 3(a) shows the results of training on the 10K artificial queries and using

the 5K validation queries to choose the optimal step size. Note that both training and

test accuracy converge significantly faster using OC. This experiment used a version

of OC where the combined score takes the form si = sR
i + αsR′

i , where R is the model

of previously trained trees and R′ is the new tree to add, which is more convenient for

boosting (the convex combination version requires repeatedly changing the weights of

the previously trained trees). We limit α to lie in the interval [0.1,100]; the lower limit

is necessary because occasionally a new tree provides almost no gain, and the optimal

combiner therefore sets its weight close to zero, resulting in the training essentially

stopping. In this experiment we handle the problem of ties using the probabilistic

averaging method described in Section 4. This data set does not require setting the

shrinkage to a value less than one, but we emphasize that using the optimal combination

method does not preclude using shrinkage, or other regularization methods.

10 110 210 310 410 510
0.6

0.65

0.7

0.75

0.8

0.85

0.9

Boosting Iteration

N
D

C
G

@
10

 

 

Optimal Train
Newton Train
Optimal Test
Newton Test

0 50 100 150 200 250
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74
0.75

Boosting Iteration

N
D

C
G

@
10

 

 

Optimal Train
Newton Train
Optimal Test
Newton Test

a) Artificial b) Web-1

Fig. 3 NDCG@10 versus boosting iteration; the curves are ordered as in the legends.

We performed a similar experiment on the Web-1 data. Figure 3(b) shows the

results of training on the 10K Web-1 queries and using the 5K validation queries to

select the optimal step size α. We trained a baseline LambdaMART model on Web-

1 data using the full Newton step to compute the combination weight for each leaf.

Then we trained a LambdaMART model on Web-1 data using the optimal combiner

to determine the global combination weights. We compute the optimal combined score

using si = sR
i + αsR′

i , where R is the model of previously trained trees and R′ is the

new tree to add. We trained LambdaMART using shrinkage v = 0.1 and L = 15. When

using the optimal combiner, we found using α in the interval [0.1,5] worked best and

helped to prevent overfitting. We also experimented with smaller shrinkage, but found

restricting α worked better in this case. Again, we handle the problem of ties using the



16

probabilistic averaging method described in Section 4. The results show we can achieve

comparable performance using the optimal combiner, but with far fewer trees. We find

using the optimal combiner, we require only 80 trees, whereas using the full Newton

step, we require over three times as many trees, namely 250.

Figure 4 shows the values of α, chosen based on the Web-1 validation set, at each

boosting iteration. Small values of α indicate the new tree provides very little gain,

and thus a fractional step size is found. The fluctuation in α values across iterations

indicates the optimal combiner is doing the right thing, that is it is compensating for

trees of poor generalizability even when the number of trees is large. It also indicates

that we can do much better than constant step size across iterations.

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Boosting Iteration

α

Fig. 4 α versus boosting iteration on the Web-1 data.

6 Discussion and Future Work

LambdaSMART inherits significant advantages from both MART and LambdaRank.

It has the flexibility and the interpretability of boosted trees, and we have shown that

replacing the first tree with a previously trained model significantly improves accuracy

for the model adaptation problem. From LambdaRank it inherits the property of direct

optimization of the IR measure at hand, and in addition produces models that have

significantly better behavior regarding the speed/accuracy tradeoff. It is intriguing

that the gains are so different between the artificial and real data sets. The artificial

data set was chosen to have properties that are as close as possible to the real data

(i.e. the distribution of labels, the number of features, and the number of urls per

query). One significant difference is that the real data is known to be very noisy (with

both label noise and feature noise) and we plan to investigate whether modifying the

boosted tree methods to better handle noise gives further improvements. We also plan

to investigate whether similar ideas - boosted trees trained with LambdaRank-type

gradients - can be used to optimize for other commonly used IR measures. Finally,

the optimal combination results suggest that finding per-leaf optimal weights may also

prove useful.



17

References

1. Bacchiani, M., Roark, B., Saraclar, M.: Language Model Adaptation with MAP estimation
and the Perceptron Algorithm. In: HLT-NAACL, pp. 21–24 (2004)

2. Bellagarda, J.: An Overview of Statistical Language Model Adaptation. In: ITRW on
Adaptation Methods for Speech Recognition, pp. 165–174 (2001)

3. Burges, C.: Ranking as Learning Structured Outputs. In: C.C. S. Agarwal, R. Herbrich
(eds.) Proc. NIPS Workshop on Learning to Rank (2005)

4. Burges, C., Ragno, R., Le, Q.: Learning to Rank with Non-Smooth Cost Functions. In:
NIPS (2006)

5. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.:
Learning to Rank using Gradient Descent. In: ICML. Bonn, Germany (2005)

6. Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F., Li, H.: Learning to Rank: From Pairwise Approach
to Listwise Approach. In: ICML (2007)

7. Chen, K., Lu, R., Wong, C., Sun, G., Heck, L., Tseng, B.: Trada: Tree based ranking func-
tion adaptation. In: ACM 17th Conference on Information and Knowledge Management
(2008)

8. Donmez, P., Svore, K., Burges, C.: On the Optimality of LambdaRank. SIGIR (2008)
9. Friedman, J.: Greedy function approximation: A gradient boosting machine. Annals of

Statistics 29(5) (2001)
10. Gao, J., Nie, J.Y., Wu, G., Cao, G.: Dependence Language Models for Information Re-

trieval. In: SIGIR, pp. 170–177 (2004)
11. Gao, J., Qin, H., Xia, X., Nie, J.Y.: Linear Discriminative Models for Information Retrieval.

In: SIGIR, pp. 290–297 (2005)
12. Gao, J., Suzuki, H., Yuan, W.: An Empirical Study on Language Model Adaptation. ACM

Trans on Asian Language Information Processing 5(3), 207–227 (2006)
13. Gao, J., Wu, Q., Burges, C., Svore, K., Su, Y., Khan, N., Shah, S., Zhou, H.: Model

adaptation via model interpolation and boosting for web search ranking. In: Conference
on Empirical Methods in Natural Language Processing (2009)

14. Jarvelin, K., Kekalainen, J.: IR Evaluation Methods for Retrieving Highly Relevant Doc-
uments. In: SIGIR 23. ACM (2000)

15. Jones, K., Walker, S., Robertson, S.: A Probabilistic Model of Information Retrieval:
Development and Status. Tech. Rep. TR-446, Cambridge University Computer Laboratory
(1998)

16. Le, Q., Smola, A.J.: Direct Optimization of Ranking Measures. CoRR abs/0704.3359
(2007). Informal publication

17. Li, P., Burges, C., Wu, Q.: Learning to Rank Using Classification and Gradient Boosting.
In: NIPS (2007)

18. Mason, L., Baxter, J., Bartlett, P., Frean, M.: Boosting algorithms as gradient descent. In:
T.L. S.A. Solla, K.R. Müller (eds.) Advances in Neural Information Processing Systems
12, pp. 512–518 (2000)

19. Robertson, S., Zaragoza, H.: On Rank-based Effectiveness Measures and Optimization.
Information Retrieval 10(3), 321–339 (2007)

20. Song, F., Croft, B.: A General Language Model for Information Retrieval. In: CIKM, pp.
316–321 (1999)

21. Xu, J., Li, H.: A Boosting Algorithm for Information Retrieval. In: SIGIR (2007)
22. Yue, Y., Burges, C.: On Using Simultaneous Perturbation Stochastic Approximation for

Learning to Rank, and the Empirical Optimality of LambdaRank. Tech. Rep. MSR-TR-
2007-115, Microsoft Research (2007)

23. Yue, Y., Finley, T., Radlinski, F., Joachims, T.: A Support Vector Method for Optimizing
Average Precision. In: SIGIR (2007)

24. Zhai, C., Lafferty, J.: Two-stage Language Models for Information Retrieval. In: SIGIR,
pp. 49–56 (2002)

25. Zheng, Z., Zha, H., Zhang, T., Chapelle, O., Chen, K., Sun, G.: A General Boosting
Method and its Application to Learning Ranking Functions for Web Search. In: NIPS
(2007)


