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Abstract

Locally decodable codes are a class of error-correcting codes. Error-
correcting codes help ensure reliable transmission of information over
noisy channels. Such codes allow one to add redundancy, or bit strings,
to messages, encoding them into longer bit strings, called codewords, in
a way that the message can still be recovered even if a certain fraction
of the codeword bits are corrupted. In typical applications of error-
correcting codes the message is first partitioned into small blocks, each
of which is then encoded separately. This encoding strategy allows effi-
cient random-access retrieval of the information, since one must decode
only the portion of data in which one is interested. Unfortunately, this
strategy yields poor noise resilience, since, when even a single block
is completely corrupted, some information is lost. In view of this lim-
itation it would seem preferable to encode the whole message into a
single codeword of an error-correcting code. Such a solution improves
the robustness to noise but is hardly satisfactory, since one needs to
look at the whole codeword in order to recover any particular bit of
the message.
Locally decodable codes are codes that simultaneously provide efficient
random-access retrieval and high noise resilience by allowing reliable



reconstruction of an arbitrary bit of the message from looking at only
a small number of randomly chosen codeword bits. Local decodability
comes at the price of certain loss in terms of code efficiency. Specif-
ically, locally decodable codes require longer codeword lengths than
their classical counterparts. This book introduces and motivates lo-
cally decodable codes, and discusses the central results of the subject,
with the main focus on the recent constructions of codes from families
of “matching” vectors.
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1

Introduction

Locally Decodable Codes (LDCs) are a special kind of error-correcting
codes. Error-correcting codes are used to ensure reliable transmission
of information over noisy channels as well as to ensure reliable storage
of information on a medium that may be partially corrupted over time
(or whose reading device is subject to errors). In both of these appli-
cations the message is typically partitioned into small blocks and then
each block is encoded separately. Such encoding strategy allows efficient
random-access retrieval of the information, since one needs to decode
only the portion of data one is interested in. Unfortunately, this strat-
egy yields very poor noise resilience, since in case even a single block
(out of possibly tens of thousands) is completely corrupted some infor-
mation is lost. In view of this limitation it would seem preferable to
encode the whole message into a single codeword of an error-correcting
code. Such solution clearly improves the robustness to noise, but is
also hardly satisfactory, since one now needs to look at the whole code-
word in order to recover any particular bit of the message (at least in
the case when classical error-correcting codes are used). Such decoding
complexity is prohibitive for modern massive data-sets.

Locally decodable codes are error-correcting codes that avoid the
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2 Introduction

problem mentioned above by having extremely efficient sublinear-time
decoding algorithms. More formally, an r-query locally decodable code
C encodes k-bit messages x in such a way that one can probabilistically
recover any bit x(i) of the message by querying only r bits of the
(possibly corrupted) codeword C(x), where r can be as small as 2.

Hadamard code. The classical Hadamard code [73] encoding k-
bit messages to 2k-bit codewords provides the simplest nontrivial ex-
ample of locally decodable codes. In what follows, let [k] denote the
set {1, . . . , k}. Every coordinate in the Hadamard code corresponds to
one (of 2k) subsets of [k] and stores the XOR of the corresponding bits
of the message x. Let y be an (adversarially corrupted) encoding of
x. Given an index i ∈ [k] and y, the Hadamard decoder picks a set
S in [k] uniformly at random and outputs the XOR of the two coor-
dinates of y corresponding to sets S and S 4 {i}. (Here, 4 denotes
the symmetric difference of sets such as {1, 4, 5} 4 {4} = {1, 5}, and
{1, 4, 5}4{2} = {1, 2, 4, 5}). It is not difficult to verify that if y differs
from the correct encoding of x in at most δ fraction of coordinates
than with probability 1− 2δ both decoder’s queries go to uncorrupted
locations. In such case, the decoder correctly recovers the i-th bit of
x. The Hadamard code allows for a super-fast recovery of the message
bits (such as, given a codeword corrupted in 0.1 fraction of coordinates,
one is able to recover any bit of the message with probability 0.8 by
reading only two codeword bits).

The main parameters of interest in locally decodable codes are the
codeword length and the query complexity. The length of the code
measures the amount of redundancy that is introduced into the message
by the encoder. The query complexity counts the number of bits that
need to be read from the (corrupted) codeword in order to recover a
single bit of the message. Ideally, one would like to have both of these
parameters as small as possible. One however can not minimize the
length and the query complexity simultaneously. There is a trade-off.
On one end of the spectrum we have classical error correcting codes [73,
95] that have both query complexity and codeword length proportional
to the message length. On the other end we have the Hadamard code
that has query complexity 2 and codeword length exponential in the
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message length. Establishing the optimal trade-off between the length
and the query complexity is the major goal of research in the area of
locally decodable codes.

Interestingly, the natural application of locally decodable codes to
data transmission and storage described above is neither the histori-
cally earliest nor the most important. LDCs have a host of applica-
tions in other areas including cryptography [27, 58], complexity the-
ory [93, 35], data structures [28, 26], derandomization [37], and the
theory of fault tolerant computation [84].

1.1 The history of locally decodable codes

Locally decodable codes can be seen as the combinatorial analogs of
self-correctors [70, 21] that have been studied in complexity theory in
the late 1980s. LDCs were also explicitly discussed in the PCP literature
in early 1990s, most notably in [6, 88, 80]. However the first formal
definition of LDCs was given only in 2000 by Katz and Trevisan [64].
See also Sudan et al. [90]. Since then the study of LDCs has grown into
a fairly broad field.

1.1.1 Constructions

One can informally classify the known families of locally decodable
codes into three generations based on the technical ideas that underlie
them. The first generation [64, 13] captures codes that are based on the
idea of polynomial interpolation. Messages are encoded by complete
evaluations of low degree multivariate polynomials over a finite field.
Local decodability is achieved through reliance on the rich structure of
short local dependencies between such evaluations at multiple points.
The ideas behind the first generation of locally decodable codes go
back to classical codes [73, 95], named after their discoverers, Reed
and Muller. Muller discovered the codes [74] in the 1950s, and Reed
proposed the majority logic decoding [83]. In what follows we often
refer to locally decodable codes of the first generation as Reed-Muller
(RM) LDCs. The method behind codes of the first generation is very
general. In particular it yields LDCs for all possible query complexities,
i.e., one can choose r to be an arbitrary function of the message length
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k. For constant query complexity r ≥ 2, RM LDCs have codeword
length exp

(
k1/(r−1)

)
.1

The second generation of locally decodable codes [14, 100] started
with a breakthrough paper of Beimel et al. [14] from 2002 that com-
bined the earlier ideas of polynomial interpolation with a clever use
of recursion to show that (contrary to an earlier conjecture from [27])
Reed-Muller type codes are not optimal. The code construction of [14]
is indirect. Firstly, one obtains certain cryptographic protocols called
Private Information Retrieval schemes, or PIRs, that on their own, are
objects of interest. Secondly, one turns PIRs into LDCs. Locally de-
codable codes of the second generation that are capable of tolerating a
constant fraction of errors, are known to exist only for constant values
of r, i.e., values of r that are independent of the message length k. The

codeword length is given by exp
(
k
O
(

log log r
r log r

))
.

The latest (third) generation of locally decodable codes [101, 81,
65, 38, 61, 36, 17] was initiated by the author of this survey [101] in
2006. New codes are obtained through an argument involving a mix-
ture of combinatorial and algebraic ideas, where the key ingredient is
a design of a large family of low-dimensional (matching) vectors with
constrained dot products. In what follows we often refer to locally de-
codable codes of the third generation as Matching Vector (MV) locally
decodable codes. We summarize the most important developments re-
lated to MV codes below.

• The first family of MV codes was obtained in [101]. There
are two concepts central to the construction, namely, com-
binatorial and algebraic niceness of subsets of finite fields.
Combinatorial niceness measures the size of the family of
matching vectors that underlies the code. Algebraic niceness
indicates whether it is possible to reduce the query complex-
ity of an MV code below the value one gets from the basic
construction.
The construction in [101] relied on a family of matching
vectors modulo a prime. It gave 3-query LDCs of length

1 Throughout the book we use the standard notation exp(x) = 2O(x).
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exp
(
kO(1/ log log k)

)
, under the assumption that there exist in-

finitely many Mersenne primes, and 3-query codes of length
exp

(
k10−7

)
unconditionally (casting a strong doubt in ear-

lier conjectures [44, 50] about the length of optimal locally
decodable codes).

• Raghavendra [81] suggested an alternative “homomorphism-
centric” view of the construction from [101] that later turned
out very important.

• Kedlaya et al. [65] argued that one cannot considerably im-
prove parameters of MV codes from [101] by generalizing
the construction to work starting from families of matching
vectors over arbitrary (not necessarily prime) fields.

• Building on Raghavendra’s view of MV codes Efremenko [38]
generalized the code construction to work starting from fam-
ilies of matching vectors modulo composites. Efremenko [38]
relied on a powerful combinatorial construction of match-
ing vectors due to Grolmusz [53, 54] and for every posi-
tive integer t ≥ 2, obtained a family of 2t-query LDCs of
length exp exp

(
(log k)1/t(log log k)1−1/t

)
. The construction

relied only on the concept of combinatorial niceness (but not
on algebraic niceness).
Efremenko [38] also obtained the first family of 3-query lo-
cally decodable codes that unconditionally have subexponen-
tial length. That construction relied on both algebraic and
combinatorial niceness.

• Itoh and Suzuki [61] showed that in certain cases the query
complexity of codes from [38] can be reduced, and obtained
the shortest currently known families of locally decodable
codes with constant query complexity.

• Dvir et al. [36] introduced yet another “polynomial-centric”
view of MV codes and studied code parameters in the
regime of super-constant query complexity. They proved
that MV locally decodable codes are superior to LDCs
of earlier generations for query complexities smaller than
log k/(log log k)O(1), and that MV codes are inferior to LDCs
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of the first generation for query complexities larger than
(log k)Ω(

√
log k).

• Ben-Aroya et al. [17] independently rediscovered some of the
results of [36]. They also showed that MV codes can be made
to tolerate the optimal fraction of errors. (That is, 1/2 − ε
fraction of errors over large alphabets, and 1/4 − ε over the
binary alphabet). Finally, they studied local list-decoding of
MV codes.

In a related work Woodruff [98] obtained a number of results relating
the query complexity and the codeword length of locally decodable
codes to the fraction of noise that they can tolerate.

1.1.2 Lower bounds

Existing lower bounds for the length of locally decodable codes fit the
following high level strategy. Firstly, one converts a given locally de-
codable code, into a smooth code, i.e., a code where each query of the
decoder is distributed (nearly) uniformly over the set of codeword coor-
dinates. Secondly, one employs either classical combinatorial tools such
as isoperimetric inequalities and random restrictions [64, 51, 30, 78] or
quantum information theory inequalities [66, 96, 97] to obtain a bound
on the length of the smooth code.

The first lower bounds for the length of locally decodable codes
were obtained by Katz and Trevisan [64]. Further work on lower
bounds includes [51, 30, 78, 66, 96, 97, 99]. It is known that 1-
query LDCs do not exist [64]. The length of optimal 2-query LDCs
was settled by Kerenidis and de Wolf in [66] and is exponential in
the message length. However for values of query complexity r ≥ 3
we are still very far from closing the gap between lower and upper
bounds. Specifically, the best lower bounds to date are of the form
Ω̃
(
k1+1/(dr/2e−1)

)
due to Woodruff [97], while the best upper bounds

are exp exp
(
(log k)O(1/ log r)(log log k)1−Ω(1/ log r)

)
[38, 61, 36].

Interestingly, in a recent paper Gal and Mills [43] show that 3-query
LDCs, correcting more than 1/3 fraction of errors require exponential
length.
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1.2 Organization

The goal of this survey is to summarize the state of the art in locally
decodable codes. Our main focus is on codes arising from families of
matching vectors. An earlier survey of LDC literature has been written
by Trevisan [93] in 2004.

Our book is organized into seven chapters. In chapter 2 we formally
define locally decodable codes and give a detailed treatment of Reed-
Muller LDCs. Chapter 3 is dedicated to a detailed review of match-
ing vector codes. We present a transformation that turns an arbitrary
family of matching vectors into a family of locally decodable codes. We
provide a detailed comparison between the parameters of MV LDCs
(based on the currently largest known matching families [53]) and RM
LDCs. Our presentation mostly follows [36]. We also cover some results
from [17]. Chapter 4 contains a systematic study of families of matching
vectors. We present the family of matching vectors due to Grolmusz as
well a few other families. We also discuss upper bounds on the size of
matching families. Section 4.3 of that chapter contains previously un-
published work. The rest of the chapter is based on [53, 54] and [36]. In
chapter 5 we deal with lower bounds for the length of locally decodable
codes and cover results from [64, 66].

In chapter 6 we discuss three most prominent applications of locally
decodable codes, namely, applications to private information retrieval
schemes [27], secure multi party computation [58], and circuit lower
bounds [35]. Finally, in the last chapter we list (and comment on) the
most exciting open questions relating to locally decodable codes and
private information retrieval schemes.



2

Preliminaries

In this chapter we formally define locally decodable and locally cor-
rectable codes, and study parameters of locally decodable codes of the
first generation. We start by setting up the notation and terminology
used in the remainder of the book.

• [k] = {1, . . . , k};
• Fq is a finite field of q elements;
• F∗q is the multiplicative group of Fq;
• (x,y) stands for the dot product of vectors x and y;
• d(x,y) denotes the Hamming distance between vectors x and

y, i.e., the number of coordinates where x and y differ;
• For a vector w ∈ Fnq and an integer l ∈ [n], w(l) denotes the
l-th coordinate of w;
• A D-evaluation of a function h defined over a domain D, is

a vector of values of h at all points of D;
• With a slight abuse of terminology we often refer to a dimen-

sion n of a vector x ∈ Fnq as its length.

We now proceed to define locally decodable codes.

8
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2.1 Locally decodable and locally correctable codes

A q-ary LDC encoding k-long messages to N -long codewords has three
parameters: r, δ, and ε. Informally an (r, δ, ε)-locally decodable code
encodes k-long messages x to N -long codewords C(x), such that for
every i ∈ [k], the coordinate value xi can be recovered with probability
1− ε, by a randomized decoding procedure that makes only r queries,
even if the codeword C(x) is corrupted in up to δN locations. Formally,

Definition 2.1. A q-ary code C : Fkq → FNq is said to be (r, δ, ε)-locally
decodable if there exists a randomized decoding algorithm A such that

(1) For all x ∈ Fkq , i ∈ [k] and all vectors y ∈ FNq such that
d(C(x),y) ≤ δN :

Pr[Ay(i) = x(i)] ≥ 1− ε,

where the probability is taken over the random coin tosses
of the algorithm A.

(2) A makes at most r queries to y.

We would like to have LDCs that for a given message length k and
alphabet size q have small values of r,N and ε and a large value of δ.
However typically the parameters are not regarded as equally impor-
tant. In applications of locally decodable codes to data transmission
and storage one wants δ to be a large constant, (ideally, close to 1/4
for binary codes), and the codeword length N to be small. At the same
time the exact number of queries r is not very important provided that
it is much smaller than k. Similarly the exact value of ε < 1/2 is not
important since one can easily amplify ε to be close to 0, by running
the decoding procedure few times and taking a majority vote. At the
same time in applications of locally decodable codes in cryptography
one thinks of δ > 0 and ε < 1/2 as constants whose values are of
low significance and focuses on the trade-off between r and N, with
emphasis on very small values of r such as r = 3 or r = 4.

A locally decodable code is called linear if C is a linear transforma-
tion over Fq. All constructions of locally decodable codes considered in
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the book yield linear codes. While our main interest is in binary codes
we deal with codes over larger alphabets as well.

A locally decodable code allows to probabilistically decode any co-
ordinate of a message by probing only few coordinates of its corrupted
encoding. A stronger property that is desirable in certain applications
is that of local correctability [70, 20, 9], allowing to efficiently recover
not only coordinates of the message but also arbitrary coordinates of
the encoding. Locally decodable codes of the first generation that we
discuss in the next sections are locally correctable.

Definition 2.2. A code (set) C in the space FNq is (r, δ, ε)-locally cor-
rectable if there exists a randomized correcting algorithm A such that

(1) For all c ∈ C, i ∈ [N ] and all vectors y ∈ FNq such that
d(c,y) ≤ δN :

Pr[Ay(i) = c(i)] ≥ 1− ε,

where the probability is taken over the random coin tosses
of the algorithm A.

(2) A makes at most r queries to y.

The next lemma shows how one can obtain a locally decodable code
from any locally correctable code that is a linear subspace of FNq . Using
Sauer lemma [62] one can prove an analogous statement for general (i.e.,
non-linear) locally correctable codes.

Lemma 2.3. Let q be a prime power. Suppose C ⊆ FNq is a (r, δ, ε)-
locally correctable code that is linear subspace; then there exists a q-ary
(r, δ, ε)-locally decodable linear code C ′ encoding messages of length
dimC to codewords of length N.

Proof. Let I ⊆ [N ] be a set of k = dimC information coordinates of C,
(i.e., a set of coordinates whose values uniquely determine an element
of C.) For c ∈ C let c|I ∈ Fkq denote the restriction of c to coordinates
in I. Given a message x ∈ Fkq we define C ′(x) to be the unique element
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c ∈ C such that c|I = x. It is easy to see that local correctability of C
yields local decodability of C ′.

In what follows we often implicitly assume the translation between
locally correctable linear codes and locally decodable codes. Specifi-
cally, we sometimes talk about message length (rather than dimension)
of such codes.

2.2 Reed-Muller locally decodable codes

A Reed Muller locally decodable code [73, 95] is specified by three
integer parameters. Namely, a prime power (alphabet size) q, number
of variables n, and a degree d < q − 1. The q-ary code consists of
Fnq -evaluations of all polynomials of total degree at most d in the ring

Fq[z1, . . . , zn]. Such code encodes k =
(
n+d
d

)
-long messages over Fq

to qn-long codewords. In sections 2.2.1–2.2.3 we consider three local
correctors (decoders) for RM codes of increasing level of sophistication.
Finally, in section 2.2.4 we show how one can turn non-binary RM LDCs
into binary.

2.2.1 Basic decoding on lines

In this section we present the simplest local corrector for Reed Muller
codes [11, 70]. To recover the value of a degree d polynomial F ∈
Fq[z1, . . . , zn] at a point w ∈ Fnq it shoots a random affine line through
w and then relies on the local dependency between the values of F at
some d+ 1 points along the line.

Proposition 2.4. Let n and d be positive integers. Let q be a prime
power, d < q−1; then there exists a linear code of dimension k =

(
n+d
d

)
in FNq , N = qn, that is (d+ 1, δ, (d+ 1)δ)-locally correctable for all δ.

Proof. The code consists of Fnq -evaluations of all polynomials of total
degree at most d in the ring Fq[z1, . . . , zn]. The local correction proce-
dure is the following. Given an evaluation of a polynomial F corrupted
in up to δ fraction of coordinates and a point w ∈ Fnq the local corrector
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picks a vector v ∈ Fnq uniformly at random and considers a line

L = {w + λv | λ ∈ Fq}

through w. Let S be an arbitrary subset of F∗q , |S| = d+1. The corrector
queries coordinates of the evaluation vector corresponding to points
w + λv, λ ∈ S to obtain values {eλ}. Next, it recovers the unique
univariate polynomial h, deg h ≤ d, such that h(λ) = eλ, for all λ ∈ S,
and outputs h(0).

Note that in case all queries of our corrector go to uncorrupted
locations h is the restriction of F to L, and h(0) = F (w). It remans
to note that since each individual query of the corrector goes to a
uniformly random location, with probability at least 1 − (d + 1)δ, it
never query a corrupted coordinate.

We say that an r-query code C tolerates a δ fraction of errors if
C is (r, δ, ε)-locally correctable (decodable) for some ε < 1/2. Observe
that codes given by proposition 2.4 can only tolerate δ < 1/2(d + 1).
Thus the fraction tolerable noise rapidly deteriorates with an increase
in the query complexity. In the following section we present a better
local corrector for RM codes that tolerates δ close to 1/4 independent
of the number of queries.

2.2.2 Improved decoding on lines

The local corrector presented below goes back to Gemmell et al. [45].
In contrast to the setting of proposition 2.4 we require that d is sub-
stantially smaller than q. To recover the value of a degree d polynomial
F ∈ Fq[z1, . . . , zn] at a point w ∈ Fnq the corrector shoots a random
affine line through w and then relies on the high redundancy among
the values of F along the line.

Proposition 2.5. Let σ < 1 be a positive real. Let n and d be positive
integers. Let q be a prime power such that d < σ(q − 1); then there
exists a linear code of dimension k =

(
n+d
d

)
in FNq , N = qn, that is

(q − 1, δ, 2δ/(1− σ))-locally correctable for all δ.



2.2. Reed-Muller locally decodable codes 13

Proof. The code is exactly the same as in proposition 2.4, and the
correction procedure is related to the procedure above. Given a δ-
corrupted evaluation of a degree d polynomial F and a point w ∈ Fnq
the corrector picks a vector v ∈ Fnq uniformly at random and considers
a line

L = {w + λv | λ ∈ Fq}

through w. The corrector queries coordinates of the evaluation vector
corresponding to points w + λv, λ ∈ F∗q to obtain values {eλ}. Next,
it recovers the unique univariate polynomial h, deg h ≤ d, such that
h(λ) = eλ, for all but at most b(1 − σ)(q − 1)/2c values of λ ∈ F∗q ,
and outputs h(0). If such a polynomial h does not exist the corrector
outputs 0. The search for h can be done efficiently using the Berlekamp-
Welch algorithm [73] for decoding Reed Solomon codes.

It remans to note that since each individual query of the correc-
tor goes to a uniformly random location, by Markov’s inequality the
probability that more than b(1− σ)(q − 1)/2c of the queries go to cor-
rupted locations is at most 2δ/(1 − σ). Therefore with probability at
least 1− 2δ/(1− σ), h is the restriction of F to L, and h(0) = F (w).

When σ is small the local corrector given by proposition 2.5 tolerates
a nearly 1/4 fraction of errors. In the following section we present an
even better corrector that tolerates a nearly 1/2 fraction of errors,
which is optimal for unique decoding.

2.2.3 Decoding on curves

The local corrector presented below goes back to Gemmell and Su-
dan [46]. Again we require that d is substantially smaller than q. To
recover the value of a degree d polynomial F ∈ Fq[z1, . . . , zn] at a point
w ∈ Fnq the corrector shoots a random parametric degree two curve
through w and then relies on the high redundancy among the values of
F along the curve. The advantage upon the decoder of proposition 2.5
comes from the fact that points on a random curve (in contrast to
points on a random line) constitute a two-independent sample from
the underlying space.
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Proposition 2.6. Let σ < 1 be a positive real. Let n and d be positive
integers. Let q be a prime power such that d < σ(q − 1); then there
exists a linear code of dimension k =

(
n+d
d

)
in FNq , N = qn, that for

all positive δ < 1/2− σ is (q − 1, δ, Oσ,δ(1/q))-locally correctable.

Proof. The code is exactly the same as in propositions 2.4 and 2.5, and
the correction procedure is related to the procedures above. Given a δ-
corrupted evaluation of a degree d polynomial F and a point w ∈ Fnq the
corrector picks vectors v1,v2 ∈ Fnq uniformly at random and considers
a degree two curve

χ = {w + λv1 + λ2v2 | λ ∈ Fq}

through w. The corrector tries to reconstruct a restriction of F to χ,
which is a polynomial of degree up to 2d. To this end the corrector
queries coordinates of the evaluation vector corresponding to points
χ(λ) = w +λv1 +λ2v2, λ ∈ F∗q to obtain values {eλ}. Next, it recovers
the unique univariate polynomial h, deg h ≤ 2d, such that h(λ) = eλ,

for all but at most b(1 − 2σ)(q − 1)/2c values of λ ∈ F∗q , and outputs
h(0). If such a polynomial h does not exist the corrector outputs 0. It is
not hard to verify that the corrector succeeds if the number of queries
that go to corrupted locations is at most b(1− 2σ)(q − 1)/2c.

Below we analyze the success probability of the corrector. For a ∈
Fnq and λ ∈ F∗q consider a random variable xλa, which is the indicator
variable of the event χ(λ) = a. Let E ⊆ Fnq , |E| ≤ δN be the set of
a ∈ Fnq such that the values of F at a are corrupted. For every λ ∈ F∗q
consider a random variable

xλ =
∑
a∈E

xλa.

Note that variables
{
xλ
}
, λ ∈ F∗q are pairwise independent. For every

λ ∈ F∗q we have

E
[
xλ
]
≤ δ and D

[
xλ
]
≤ δ − δ2.

Finally consider a random variable

x =
∑
λ∈F∗q

xλ,
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that counts the number of corrector’s queries that go to corrupted
locations. By pairwise independence we have

E[x] ≤ (q − 1)δ and D[x] ≤ (q − 1)(δ − δ2).

By Chebychev’s inequality [3] we have

Pr
[
x ≥

⌊
(1− 2σ)(q− 1)

2

⌋]
≤ 4(δ − δ2)

(q− 1)(1− 2(σ + δ))2
= Oσ,δ

(
1
q

)
.

This concludes the proof.

2.2.4 Binary codes

Propositions 2.4, 2.5, and 2.6 yield non-binary codes. As we stated
earlier our main interest is in binary codes. The next lemma extends
proposition 2.6 to produce binary codes that tolerate a nearly 1/4 frac-
tion of errors, which is optimal for unique decoding over F2. The idea
behind the proof is fairly standard and involves concatenation [41, 73].

Proposition 2.7. Let σ < 1 be a positive real. Let n and d be positive
integers. Let q = 2b be a power of two such that d < σ(q− 1). Suppose
that there exists a binary linear code Cinner of distance µB encoding
b-bit messages to B-bit codewords; then there exists a linear code C
of dimension k =

(
n+d
d

)
· b in FN2 , N = qn · B, that for all positive

δ < (1/2− σ)µ is ((q − 1)B, δ,Oσ,µ,δ(1/q))-locally correctable.

Proof. We define the code C to be the concatenation [73, 95, 41] of
the q-ary code Couter used in propositions 2.4–2.6 and the binary code
Cinner. In order to recover a single bit, the local corrector recovers
the symbol of the q-ary alphabet that the bit falls into. Given a δ-
corrupted concatenated evaluation of a degree d polynomial F and a
point w ∈ Fnq the corrector acts similarly to the corrector from the
proposition 2.6. Specifically, it picks vectors v1,v2 ∈ Fnq uniformly at
random and considers a degree two curve

χ = {w + λv1 + λ2v2 | λ ∈ Fq}

through w. To recover F (w) the corrector attempts to reconstruct
a restriction of F to χ, which is a polynomial of degree up to 2d.
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To this end the corrector queries all (q − 1)B codeword coordinates
corresponding to encodings of values of F at points χ(λ) = w + λv1 +
λ2v2, λ ∈ F∗q and then recovers the unique univariate polynomial h ∈
Fq[λ], deg h ≤ 2d, such that Cinner-encodings of values of h along F∗q
agree with all but at most b(1−2σ)µ(q−1)B/2c observed binary values.
If such a polynomial h does not exist the corrector outputs 0. It is not
hard to verify that the corrector succeeds if the number of queries that
go to corrupted locations is at most b(1−2σ)µ(q−1)B/2c. Decoding can
be done efficiently provided that Cinner has an efficient decoder [40, 41].

Below we analyze the success probability of the corrector. For every
a ∈ Fnq let ta denote the number of corrupted coordinates in the Cinner-
encoding of the value of F at a. We have∑

a∈Fn
q

ta ≤ δqnB.

For a ∈ Fnq and λ ∈ F∗q consider a random variable xλa, which is the
indicator variable of the event χ(λ) = a. For every λ ∈ F∗q consider a
random variable

xλ =
∑
a∈Fn

q

tax
λ
a.

Note that variables
{
xλ
}
, λ ∈ F∗q are pairwise independent. For every

λ ∈ F∗q we have

E
[
xλ
]
≤ δB and D

[
xλ
]
≤ (δ − δ2)B2.

Finally consider a random variable

x =
∑
λ∈F∗q

xλ,

that counts the number of corrector’s queries that go to corrupted
locations. By pairwise independence we have

E[x] ≤ δ(q − 1)B and D[x] ≤ (δ − δ2)(q − 1)B2.



2.3. Summary of parameters 17

By Chebychev’s inequality [3] we have

Pr
[
x ≥

⌊
(1− 2σ)µ(q− 1)B

2

⌋]
≤

≤ 4(δ − δ2)
(q − 1)((1− 2σ)µ− 2δ)2

= Oσ,µ,δ

(
1
q

)
.

This concludes the proof.

Propositions 2.6 and 2.7 give locally correctable codes that tolerate
the amount of error that is nearly optimal for unique (even non-local)
decoding (1/2 fraction of errors over large alphabets, 1/4 over F2). An
important model of error correction that generalizes unique decoding
is that of list decoding [39, 55]. In that model the decoder is allowed
to output a small list of codewords rather than a single codeword.
Decoding is considered successful if the transmitted codeword appears
in the list. List decoding allows for error-correction beyond the “half
the minimum distance barrier”. One can show that Reed Muller codes
are locally list decodable from the nearly optimal amount of noise [5, 90]
(1− ε fraction of errors over large alphabets, 1/2− ε over F2). However
we are not going to discuss these results in this book.

2.3 Summary of parameters

In the previous section we gave a detailed treatment of locally decod-
able codes of the first generation. These codes enjoy a few remarkable
properties. Specifically, they yield the shortest known LDCs when the
query complexity is sufficiently large (r ≥ log k/(log log k)c, for some
constant c) and they constitute the only known family of locally cor-
rectable codes.

The method behind Reed Muller codes is simple and general. It
yields codes for all possible values of query complexity r, i.e., one can
set r to be an arbitrary function of the message length k by specifying
an appropriate relation between n and d in propositions 2.5–2.7 and
letting these parameters grow to infinity. Increasing d relative to n

yields shorter codes of larger query complexity.
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Below we present asymptotic parameters of several families of bi-
nary LDCs of the first generation.

• r = O(1). Proposition 2.4 yields r-query LDCs of length
exp

(
k1/(r−1)

)
over an alphabet of size O(r). One can get

binary LDCs of the same query complexity and the same
asymptotic length from private information retrieval schemes
of [4, 59, 14].
• r = O(log k log log k). In proposition 2.7 set d = n, q = cd

for a large constant c, and let n grow while concatenating
with asymptotically good binary codes of relative distance µ
close to half. This yields a family of r-query binary locally
correctable codes that encode k-bit messages to kO(log log k)-
bit codewords and tolerate a nearly 1/4 fraction of errors
(depending on c and µ).
• r ≤ (log k)t, for constant t > 1. In proposition 2.7 set d = nt,

q = cd and let n grow while concatenating with asymptoti-
cally good binary codes of relative distance close to half. This
yields a family of r-query binary locally correctable codes
that encode k-bit messages to k1+1/(t−1)+o(1)-bit codewords
and tolerate a nearly 1/4 fraction of errors.
• r = O(k1/t log k), for integer constant t ≥ 1. In proposi-

tion 2.7 set n = t, q = cd and let d grow while concatenating
with asymptotically good binary codes of relative distance
close to half. This yields a family of r-query binary locally
correctable codes that encode k-bit messages to tt+o(t) · k-bit
codewords and tolerate a nearly 1/4 fraction of errors.

We summarize the parameters of binary locally correctable codes
obtained above in the following table.

r N

O(1) exp
(
k1/(r−1)

)
O(log k log log k) kO(log log k)

(log k)t, t > 1 k1+1/(t−1)+o(1)

O(k1/t log k), t ≥ 1 tt+o(t) · k
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Matching vector codes

In this chapter we give a detailed treatment of locally decodable codes
that arise from families of matching vectors. Any construction of such
codes naturally falls into two parts: the design of a matching vector
family, and the actual code construction. Here we focus on the sec-
ond part and defer an in-depth study of matching vector families to
chapter 4.

The chapter is organized into seven sections. In section 3.1 we
explain the intuition behind matching vector codes and setup the
language that is used later. Our presentation follows the latest
“polynomial-centric” view of MV codes that fleshes out some intrinsic
similarity between MV codes and Reed Muller codes. In sections 3.2–3.4
we discuss three local decoders for matching vector codes of increas-
ing level of sophistication. In section 3.5 we show how one can turn
non-binary matching vector codes into binary. Finally, in sections 3.6
and 3.7 we summarize asymptotic parameters of MV codes and pro-
vide a detailed comparison between matching vector locally decodable
codes and Reed Muller locally decodable codes.

19
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3.1 The framework

Our constructions are centered around a “polynomial-centric” view of
MV codes [36] that fleshes out some intrinsic similarity between match-
ing vector codes and Reed Muller codes. In this view an MV code con-
sists of a linear subspace of polynomials in Fq[z1, . . . , zn], evaluated at
all points of Cn

m, where Cm is a certain multiplicative subgroup of F∗q .
The decoding algorithm is similar to traditional local decoders for RM
codes given by propositions 2.4–2.5. The decoder shoots a line in a
certain direction and decodes along it. The difference is that the mono-
mials which are used are not of low-degree, they are chosen according
to a matching family of vectors. Further, the lines for decoding are
multiplicative, a notion that we define shortly. In what follows let Zm
denote the ring of integers modulo an integer m.

Definition 3.1. Let S ⊆ Zm \ {0}. We say that families U =
{u1, . . . ,uk} and V = {v1, . . . ,vk} of vectors in Znm form an S-matching
family if the following two conditions are satisfied:

• For all i ∈ [k], (ui,vi) = 0;
• For all i, j ∈ [k] such that i 6= j, (uj ,vi) ∈ S.

We now show how one can obtain an matching vector locally de-
codable code out of a matching family. We start with some notation.

• We assume that q is a prime power, m divides q − 1, and
denote the unique subgroup of F∗q of order m by Cm;

• We fix some generator g of Cm;
• For w ∈ Znm, we define gw ∈ Cn

m by
(
gw(1), . . . , gw(n)

)
;

• For w,v ∈ Znm we define the multiplicative lineMw,v through
w in direction v to be the multi-set

Mw,v =
{
gw+λv | λ ∈ Zm

}
; (3.1)

• For u ∈ Znm, we define the monomial monu ∈ Fq[z1, . . . , zn]
by

monu(z1, . . . , zn) =
∏
`∈[n]

zu(`)
` . (3.2)
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Observe that for any w,u,v ∈ Znm and λ ∈ Zm we have

monu

(
gw+λv

)
= g(u,w)

(
gλ
)(u,v)

. (3.3)

The formula above implies that the Mw,v-evaluation of a monomial
monu is a Cm-evaluation of a (univariate) monomial

g(u,w)y(u,v) ∈ Fq[y]. (3.4)

This observation is the foundation of our decoding algorithms. We now
specify the encoding procedure and outline the main steps taken by
all decoding procedures described later on (propositions 3.2, 3.4, 3.5,
and 3.6). Let U ,V be an S-matching family in Znm.

Encoding: We encode a message (x(1), . . . ,x(k)) ∈ Fkq by the Cn
m-

evaluation of the polynomial

F (z1, . . . , zn) =
k∑
j=1

x(j) ·monuj(z1, . . . , zn). (3.5)

Notice that F = Fx is a function of the message x (we will omit the
subscript and treat x as fixed throughout this section).

Abstract decoding: The input to the decoder is a corrupted Cn
m-

evaluation of F and an index i ∈ [k].

(1) The decoder picks w ∈ Znm uniformly at random;
(2) The decoder recovers the noiseless restriction of F to Mw,vi .

To accomplish this the decoder may query the corrupted
Mw,vi-evaluation of F at m or fewer locations.

To see that noiseless Mw,vi-evaluation of F uniquely determines
x(i) note that by formulas (3.3), (3.4) and (3.5) the Mw,vi-evaluation
of F is a Cm-evaluation of a polynomial

f(y) =
k∑
j=1

x(j) · g(uj ,w)y(uj ,vi) ∈ Fq[y]. (3.6)

Further observe that the properties of the S-matching family U ,V
and (3.6) yield

f(y) = x(i) · g(ui,w) +
∑
s∈S

 ∑
j : (uj ,vi)=s

x(j) · g(uj ,w)

 ys. (3.7)
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For a polynomial h ∈ Fq[y] we denote by supp(h) the set of monomials
with non zero coefficients in h, where a monomial ye is identified with
the integer e. It is evident from formula (3.7) that supp(f) ⊆ S ∪ {0}
and

x(i) = f(0)/g(ui,w). (3.8)

In sections 3.2–3.4 we describe several local decoders that follow the
general paradigm outlined above.

3.2 Basic decoding on lines

The proposition below gives the simplest local decoder for MV codes.
In the current form it has first appeared in [38]. Earlier versions based
on matching vectors modulo primes can be found in [101, 81].

Proposition 3.2. Let U ,V be a family of S-matching vectors in Znm,
|U| = |V| = k, |S| = s. Suppose m | q−1, where q is a prime power; then
there exists a q-ary linear code encoding k-long messages to mn-long
codewords that is (s+ 1, δ, (s+ 1)δ)-locally decodable for all δ.

Proof. The encoding procedure has already been specified by for-
mula (3.5). To recover the value x(i)

(1) The decoder picks w ∈ Znm at random, and queries the (cor-
rupted) Mw,vi-evaluation of F at (s+1) consecutive locations{
gw+λvi | λ ∈ {0, . . . , s}

}
to obtain values c0, . . . , cs.

(2) The decoder recovers the unique sparse univariate polyno-
mial h(y) ∈ Fq[y] with supp(h) ⊆ S ∪ {0} such that for all
λ ∈ {0, . . . , s}, h(gλ) = cλ. (The uniqueness of h(y) follows
from standard properties of Vandermonde matrices. [68])

(3) Following the formula (3.8) the decoder returns h(0)/g(ui,w).

The discussion in section 3.1 implies that if all (s + 1) locations
queried by the decoder are not corrupted then h(y) is indeed the noise-
less restriction of F to Mw,vi , and decoder’s output is correct. It re-
mains to note that each individual query of the decoder goes to a
uniformly random location and apply the union bound.
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In the proposition above we interpolate the polynomial h(y) to re-
cover its free coefficient. In certain cases (relying on special properties
of the integer m and the set S) it may be possible to recover the free
coefficient in ways that do not require complete interpolation and thus
save on the number of queries. This general idea has been used in [101]
under the name of “algebraic niceness”, in [38] for the case of three-
query codes, and in [61] to obtain the shortest currently know LDCs
in the regime of r = O(1). Currently the quantitative improvements
one gets through the use of “algebraic niceness” are relatively small.
Therefore we are not go into detail on them in this book.

3.3 Improved decoding on lines

The local decoder for MV codes given in section 3.2 is similar to the
local decoder for RM codes given in section 2.2.1 in that it can only
tolerate δ < 1/2r fraction of errors. Thus the fraction of tolerable noise
rapidly deteriorates with an increase in query complexity r. Below we
introduce the concept of a bounded matching family of vectors and
show how matching vector codes based on bounded matching families
can be decoded from a nearly 1/4 fraction of errors independent of r.

In what follows we identify Zm with the subset {0, . . . ,m − 1} of
real numbers. This imposes a total ordering on Zm, 0 < 1 < . . . < m−1
and allows us to compare elements of Zm with reals. We say that a set
S ⊆ Zm is b-bounded if for all s ∈ S, s < b.

Definition 3.3. Let b be a positive real. An S-matching family U ,V
in Znm is b-bounded if the set S is b-bounded.

The proposition below is due to Dvir et al. [36]. Some ideas behind
it were independently rediscovered by Ben-Aroya et al. [17].

Proposition 3.4. Let σ be a positive real. Let U ,V be a σm-bounded
family of S-matching vectors in Znm, |U| = |V| = k. Suppose m | q − 1,
where q is a prime power; then there exists a q-ary linear code encoding
k-long messages to mn-long codewords that is (m, δ, 2δ/(1−σ))-locally
decodable for all δ.
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Proof. The encoding procedure has already been specified by (3.5). To
recover the value x(i),

(1) The decoder picks w ∈ Znm at random, and queries every
point of the (corrupted) Mw,vi-evaluation of F at all m lo-
cations

{
gw+λvi | λ ∈ Zm

}
to obtain values c0, . . . , cm−1.

(2) The decoder recovers the univariate polynomial h(y) ∈ Fq[y]
of degree less than σm such that for all but at most (m −
σm)/2 values of λ ∈ Zm, h(gλ) = cλ. If such an h does not
exist the decoder encounters a failure, and returns 0. Note
that deg h < σm implies that h(y) is unique, if it exists. The
search for h(y) can be done efficiently using the Berlekamp-
Welch algorithm [73].

(3) Following the formula (3.8) the decoder returns h(0)/g(ui,w).

The discussion in section 3.1 implies that if the Mw,vi-evaluation of
F is corrupted in at most (m − σm)/2 locations, then h(y) is indeed
the noiseless restriction of F to Mw,vi , and the decoder’s output is
correct. It remains to note that each individual query of the decoder
goes to a uniformly random location and thus by Markov’s inequality
the probability that more than (m− σm)/2 of decoder’s queries go to
corrupted locations is at most 2δ/(1− σ).

3.3.1 Further improvement for small S

The local decoder of proposition 3.4 does not use any information about
the size of the set S (only the fact that all elements in S are bounded).
Below we show how one can reduce the query complexity in the cases
when |S| is small and ln q is small relative to m. [36]

Proposition 3.5. Let σ be a positive real. Let U ,V be a σm-bounded
family of S-matching vectors in Znm, |U| = |V| = k, |S| = s. Suppose
m | q−1, where q is a prime power; then there exists a q-ary linear code
encoding k-long messages to mn-long codewords that is (r, δ, ε)-locally
decodable for all 0 < α < 1− σ, δ, where

r =
⌈
(s+ 2) ln q/α2

⌉
, ε = 2δ/(1− σ − α).
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Proof. Our decoding algorithm is similar to the one of proposition 3.4.
The saving in the number of queries comes from the fact that the de-
coder does not query all points on the multiplicative line but rather
partitions the line into classes, and queries all points within a certain
class. Our proof consists of two parts. Firstly, we establish the exis-
tence of an appropriate partition. Secondly, we present the decoding
algorithm. We start with some notation. Let α > 0 be fixed.

• Let L ⊆ Fq[y] be the linear space of polynomials whose sup-
port is contained in {0} ∪ S;

• Let T ⊆ Zm. We say that T is α-regular, if for all h ∈ L we
have ∣∣∣T ∩ {λ ∈ Zm | h(gλ) = 0

}∣∣∣ < (σ + α)|T |; (3.9)

• Let t ≤ m be a fixed positive integer. Let π be a partition
of Zm into p = bm/tc classes where each class is of size t or
more

Zm =
p⊔
`=1

π`; (3.10)

• We say that π is α-regular, if for each ` ∈ [p], π`, is α-regular.

We now argue that for a sufficiently large t, there exists a partition π
satisfying (3.10) that is α-regular. Fix an arbitrary non-zero polynomial
h ∈ L. Let W =

{
λ ∈ Zm | h(gλ) = 0

}
. Clearly, |W | < σm. Fix t′ ≥ t

and pick a set T ⊆ Zm of size exactly t′ uniformly at random.

Pr [|T ∩W | ≥ (σ + α)t′] = Pr [|T ∩W | − σt′ ≥ αt′] ≤

Pr [|T ∩W | − E(|T ∩W |) > αt′] ≤ exp(−2α2t),
(3.11)

where the last inequality follows from [34, theorem 5.3].
Now let t = d(s + 2) ln q/2α2e. If t > m; then the proposition

trivially follows from the proposition 3.4. We assume t ≤ m and pick
π to be a random partition satisfying (3.10). Clearly, no class in π has
size more than 2t−1. Relying on (3.11), the union bound, and m/t < q

we conclude that π is α-regular with positive probability since

(m/t)(q(s+1) − 1) < e2α2t. (3.12)
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Fix an α-regular partition π. We are now ready to define the code.
The encoding procedure has already been specified by formula (3.5).
To recover the value x(i)

(1) The decoder picks w ∈ Znm and ` ∈ [p] uniformly at ran-
dom, and queries points of the (corrupted) Mw,vi-evaluation
of F at |π`| locations

{
gw+λvi | λ ∈ π`

}
to obtain values

{cλ | λ ∈ π`} .
(2) The decoder recovers the univariate polynomial h(y) ∈ Fq[y]

with supp(h) ⊆ {0}∪S such that for all but at most (1−σ−
α)|π`|/2 values of λ ∈ π`, h(gλ) = cλ. If such an h does not
exist the decoder encounters a failure, and returns 0. Note
that the properties of π imply that h(y) is unique, if it exists.

(3) Following the formula (3.8) the decoder returns h(0)/g(ui,w).

The discussion in section 3.1 implies that if at most (1−σ−α)|πl|/2
locations queried by the decoder are corrupted; then h(y) is indeed
the noiseless restriction of F to Mw,vi , and the decoder’s output is
correct. It remains to note that each individual query of the decoder
goes to a uniformly random location and thus by Markov’s inequality
the probability that more than (1−σ−α)|πl|/2 queries go to corrupted
locations is at most 2δ/(1−σ−α), and to observe that the total number
of queries is at most 2t− 1.

3.4 Decoding on collections of lines

The local decoder for MV codes given in section 3.3 is similar to the
local decoder for RM codes given in section 2.2.2 in that it can only
tolerate δ < 1/4 fraction of errors. Below we present an even better
local decoder that tolerates a nearly 1/2 fraction of errors, which is
optimal for unique decoding. All results in this section are due to Ben-
Aroya et al. [17].

The idea behind the improved local decoder is different from the
idea behind the Gemmell Sudan decoder [46] for Reed Muller codes
(proposition 2.6). There we exploited restrictions of RM codewords to
parametric degree two curves. It is however not clear how to utilize
similar restrictions in the setting of matching vector codes. Instead, we
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randomly pick a sufficiently large (but constant) number of multiplica-
tive lines. We assign weights to candidate values of the desired message
symbol based on the number of errors along the collection of lines. We
argue that the symbol with the largest weight is with high probability
the correct symbol. This technique bears some similarity to Forney’s
GMD decoding [40, 41].

Proposition 3.6. Let σ be a positive real. Let U ,V be a σm-bounded
family of S-matching vectors in Znm, |U| = |V| = k. Suppose m | q − 1,
where q is a prime power; then for every positive integer l there exists a
q-ary linear code encoding k-long messages to mn-long codewords that
for all δ < (1− σ)/2 is (lm, δ, expσ,δ(−l))-locally decodable.

Proof. The encoding procedure has already been specified by (3.5). We
setup the notation needed to describe the decoder. Given a polynomial
h(y) ∈ Fq[y], supp(h) ⊆ S∪ {0} and a multiplicative line M we denote
the number of coordinates where Cm-evaluation of h agrees with the M -
evaluation of F by agr(h,M). For a symbol e ∈ Fq and a multiplicative
line M we define

weight(e,M) = max
h:h(0)=e

agr(h,M),

where the maximum is taken over all h(y) ∈ Fq[y], supp(h) ⊆ S ∪ {0}.
We now proceed to the local decoder. To recover the value x(i),

(1) The decoder picks vectors w1, . . . ,wl ∈ Znm uniformly at ran-
dom, and queries values of the corrupted evaluation of F
along each of l multiplicative lines

{
Mwj ,vi

}
, j ∈ [l].

(2) For every symbol e ∈ Fq the decoder computes its weight,

weight(e) =
l∑

j=1

weight
(
e,Mwj,vi

)
.

The weight measures the likelihood that x(i) = e given the
observed values of the corrupted evaluation of F.

(3) The decoder outputs the symbol that has the largest weight.
If such a symbol is not unique the decoder outputs 0.
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Below we analyze the success probability of the decoder. Firstly,
note that there cannot be two symbols e1 6= e2 that both have weight
above lm(1+σ)/2. Otherwise one of the multiplicative lines would give
us two distinct polynomials h1(y), h2(y) ∈ Fq[y] of degree less than σm
whose Cm-evaluations agree in at least σm locations. Secondly, note
that by Chernoff bound [34] the probability that the total number of
corrupted locations on lines

{
Mwj ,vi

}
, j ∈ [l] exceeds lm(1 − σ)/2 is

at most expσ,δ(−l), provided that δ < (1− σ)/2.

3.5 Binary codes

In cases when query complexity r is super-constant proposi-
tions 3.2, 3.4, 3.5 and 3.6 yield codes over growing alphabets. As we
stated earlier our main interest is in binary codes. The next lemma
extends proposition 3.6 to produce binary codes that tolerate a nearly
1/4 fraction of errors, which is optimal for unique decoding over F2.

The proof uses standard concatenation [41, 73].

Proposition 3.7. Let σ be a positive real. Let U ,V be a σm-bounded
family of S-matching vectors in Znm, |U| = |V| = k. Suppose m | q − 1,
where q = 2b. Further suppose that there exists a binary linear code
Cinner of distance µB encoding b-bit messages to B-bit codewords; then
for every positive integer l there exists a binary linear code C encoding
kb-bit messages to mn ·B-bit codewords that for all δ < (1− σ)µ/2 is
(lmB, δ, expσ,µ,δ(−l))-locally decodable.

Proof. We define the code C to be the concatenation [73, 95, 41] of
the q-ary code Couter used in propositions 3.2–3.6 and the binary code
Cinner. In order to recover a single bit, the local decoder recovers the
symbol of the q-ary alphabet that the bit falls into. Given a δ-corrupted
concatenated evaluation of a polynomial F the decoder acts similarly
to the decoder from the proposition 3.6.

We setup the notation needed to describe the decoder formally.
Given a polynomial h(y) ∈ Fq[y], supp(h) ⊆ S∪{0} and a multiplicative
line M we denote the number of coordinates where Cinner-concatenated
Cm-evaluation of h agrees with corrupted Cinner-concatenated M -
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evaluation of F by agr(h,M). For a symbol e ∈ Fq and a multiplicative
line M we define

weight(e,M) = max
h:h(0)=e

agr(h,M),

where the maximum is taken over all h(y) ∈ Fq[y], supp(h) ⊆ S ∪ {0}.
To recover the i-th symbol of the outer code,

(1) The decoder picks vectors w1, . . . ,wl ∈ Znm uniformly at ran-
dom, and queries the coordinates corresponding to encodings
of values of F along each of l lines

{
Mwj ,vi

}
, j ∈ [l].

(2) For every symbol e ∈ Fq the decoder computes its weight,

weight(e) =
l∑

j=1

weight
(
e,Mwj,vi

)
.

The weight measures the likelihood that the i-the symbol
of the outer code equals e given the observed values of the
corrupted evaluation of F.

(3) The decoder outputs the required bit of the symbol that has
the largest weight. If such a symbol is not unique the decoder
outputs 0.

Below we analyze the success probability of the decoder. Firstly,
note that there cannot be two symbols e1 6= e2 that both have weight
above lmB(1 − (1 − σ)µ/2). Otherwise one of the multiplicative lines
would give us two distinct polynomials h1(y), h2(y) ∈ Fq[y] of degree
less than σm whose concatenated Cm-evaluations agree in at least
(1−(1−σ)µ)mB locations. Secondly, note that by Chernoff bound [34]
the probability that the total number of corrupted locations on lines{
Mwj ,vi

}
, j ∈ [l] exceeds lmB(1− σ)µ/2 is at most expσ,µ,δ(−l), pro-

vided that δ < (1− σ)µ/2.

Propositions 3.6 and 3.7 give matching vector codes that tolerate
the amount of error that is nearly optimal for unique (even non-local)
decoding (1/2 fraction of errors over large alphabets, 1/4 over F2).
In [17] Ben-Aroya et al. design local decoders for MV codes that correct
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the nearly optimal amount of noise in the list decoding model [5, 90]
(1− ε fraction of errors over large alphabets, 1/2− ε over F2). We are
not going to discuss these results in this book.

3.6 Summary of parameters

Parameters of matching vector codes (propositions 3.2–3.7) are deter-
mined by parameters of the underlying family of matching vectors. In
section 3.6.1 we apply proposition 3.7 to Grolmusz’s family of match-
ing vectors to obtain some explicit trade-offs between query complexity
and codeword length of MV codes. In section 3.6.2 we use existing up-
per bounds on the size of matching vector families to establish lower
bounds on the codeword length of MV codes.

3.6.1 Upper bounds

The largest currently know families of matching vectors are closely
based on Grolmusz’s construction of set systems with restricted inter-
sections modulo composites [53, 54]. The following lemma captures the
parameters of these families. We defer the proof to chapter 4.

Lemma 4.8. Let m =
∏t
i=1 pi be a product of distinct primes. Let w

be a positive integer. Let {ei}, i ∈ [t] be integers such that for all i,
we have pei

i > w1/t. Let d = maxi pei
i , and h ≥ w be arbitrary. Then

there exists an
(
h
w

)
-sized σm-bounded family of matching vectors in

Znm, where n =
(
h
≤d

)
and σ is an arbitrary real larger than

∑
i∈[t] 1/pi.

A combination of proposition 3.7 and lemma 4.8 yields

Lemma 3.8. Let m =
∏t
i=1 pi be a product of distinct primes. Let w

be a positive integer. Suppose integers {ei}, i ∈ [t] are such that for
all i, we have pei

i > w1/t. Let d = maxi pei
i , and h ≥ w be arbitrary.

Let σ be an arbitrary real number larger than
∑

i∈[t] 1/pi. Suppose
m | q − 1, where q = 2b. Further suppose that there exists a binary
linear code Cinner of distance µB encoding b-bit messages to B-bit
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codewords; then for every positive integer l there exists a binary linear

code C encoding
(
h
w

)
· b-bit messages to m

(
h
≤d

)
·B-bit codewords that

for all δ < (1− σ)µ/2 is (lmB, δ, expσ,µ,δ(−l))-locally decodable.

In what follows we estimate asymptotic parameters of our codes.

Lemma 3.9. For all integers t ≥ 2, k ≥ 2t there exists a binary linear
code encoding k-bit messages to

N = exp exp
(

(log k)1/t(log log k)1−1/tt ln t
)

-bit codewords that is (r, δ, exp(−t))-locally decodable for r = tO(t) and
δ = 1/4−O(1/ ln t).

Proof. The proof follows by setting parameters in lemma 3.8.

(1) By [87, theorem 5.7] there exists a universal constant c′ such
that the range [(c′/2)t ln t, c′t ln t] contains at least t distinct
odd primes p1, . . . , pt;

(2) Note that
∑

i∈[t] 1/pi = O(1/ ln t);
(3) Set m =

∏
i∈[t] pi. Clearly, m = tΘ(t);

(4) Set b to be the smallest positive integer such that m
∣∣2b − 1

Clearly, b = tO(t). Set q = 2b;
(5) A standard greedy argument (that is used to prove the clas-

sical Gilbert-Varshamov bound [73, 95]) implies that there is
a universal constant c′′ such that for all integers s ≥ 1, there
exists a binary linear code of distance (1/2−c′′/

√
s)s2 encod-

ing s-bit messages to s2-bit codewords. We set Cinner to be a
binary linear code that encodes b-bit messages to B = tΘ(t)-
bit codewords and has distance µB, for µ ≥

(
1/2− c′′/tΘ(t)

)
;

(6) We now assume that there exists a positive integer w which
is a multiple of t such that k = ww/t. Clearly, we have w =
Θ(t log k/ log log k);

(7) Following lemma 3.8 for every i ∈ [t], let ei be the smallest
integer such that pei

i > w1/t. Let d = maxi pei
i . Clearly, d =

O(w1/tt ln t);
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(8) Set h =
⌈
w1+1/t

⌉
;

(9) Observe that
(
h
w

)
· b ≥ (h/w)w ≥ k;

(10) Note that
(
h
≤d

)
≤ d(eh/d)d;

(11) Set N = m

(
h
≤d

)
·B ≤ tx, where x = O(t)(ew)O(w1/tt ln t);

(12) Set l = t;
(13) We combine lemma 3.8 with inequalities that we proved

above and make basic manipulations to obtain a binary lin-
ear code encoding k-bit messages to

exp exp
(

(log k)1/t(log log k)1−1/tt ln t
)

-bit codewords that is (r, δ, exp(−t))-locally decodable for
r = tO(t) and δ = 1/4−O(1/ ln t);

(14) Finally, we note that the assumption about k = ww/t, for
some w can be safely dropped. If k does not have the required
shape, we pad k-bit messages with zeros to get messages of
length k′, where k′ has the shape ww/t and then apply the
procedure above. One can easily check that such padding
requires at most a quadratic blow up in the message length
and therefore does not affect asymptotic parameters.

This completes the proof.

The following theorem gives asymptotic parameters of matching
vector codes in terms of the query complexity and the message length.

Theorem 3.10. For every large enough integer r and every k ≥ r

there exists a binary linear r-query locally decodable code encoding
k-bit messages to

exp exp
(

(log k)O(log log r/ log r)(log log k)1−Ω(log log r/ log r) log r
)

(3.13)

bit codewords and tolerating δ = 1/4−O(1/ ln ln r) fraction of errors.

Proof. The proof follows by setting parameters in lemma 3.9. Set t to
be the largest integer such that tO(t) ≤ r, where the constant in O-
notation is the same as the one in lemma 3.9. Assuming r is sufficiently
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large we have t = Θ(log r/ log log r). One can also check that k ≥ r

implies that the condition of lemma 3.9 is satisfied. An application of
the lemma concludes the proof.

Theorem 3.10 presents a trade-off between the query complexity and
the codeword length of matching vector codes that tolerate a nearly
optimal fraction of errors. In section 2.1 we mentioned that not all ap-
plications of LDCs require codes of such a high error tolerance. Specif-
ically, applications of locally decodable codes in cryptography need
short codes of constant query complexity r = O(1), that tolerate some
constant fraction of errors that is low significance.

It is possible to get a small saving in terms of codeword length in
theorem 3.10 if one disregards the fraction of tolerable noise. Below we
give two theorems that apply in that setting. The next theorem is due to
Itoh and Suzuki [61]. We omit the proof that slightly improves on what
one gets by a simple combination of proposition 3.2 and lemma 4.8.

Theorem 3.11. For every integer t ≥ 2, and for all k ≥ 2, there exists
an r = 3 · 2t−2-query linear locally decodable code over F2t encoding
k-long messages to

exp expt
(

(log k)1/t(log log k)1−1/t
)

-long codewords and tolerating δ = O(1/r) fraction of errors.

Theorem 3.11 yields non-binary codes. One can turn these codes
into binary without an increase in the number of queries using the
technique from [38, section 4]. Again we omit the proof.

Theorem 3.12. For every integer t ≥ 2, and for all k ≥ 2, there exists
a r = 3 ·2t−2-query binary linear locally decodable code encoding k-bit
messages to

exp expt
(

(log k)1/t(log log k)1−1/t
)

-bit codewords and tolerating δ = O(1/r) fraction of errors.
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Locally decodable codes given by propositions 3.2–3.7 and theo-
rems 3.10 and 3.11 are perfectly smooth, i.e., on an arbitrary input
each individual query of the decoder is distributed perfectly uniformly
over the codeword coordinates. Binary codes given by theorem 3.12 are
not perfectly smooth.

To conclude we remark here that the entire construction and analy-
sis of matching vector codes described in the preceding sections (apart
from the parts dealing with reduction to the binary case) work also if
the underlying field, Fq, is replaced with the complex number field C.
The only property we used in Fq is that it contains an element of order
m, which trivially holds over C for every m. This implies the existence
of linear locally decodable codes with essentially the same parameters
as above also over the complex numbers (the definition of locally de-
codable codes over an arbitrary field is the same as for finite fields, we
simply allow the decoder to preform field arithmetic operations on its
inputs). Once one has a linear code over the complex numbers, it is
straightforward to get a code over the reals by writing each complex
number as a pair of real numbers. Interestingly, other than matching
vector codes (and trivial 2-query codes of exponential stretch), there
are no known constructions of locally decodable codes neither over C
nor over R. LDCs over characteristic zero have applications in arith-
metic circuit complexity [37, 35].

3.6.2 Lower bounds

Let k(m,n) denote the size of the largest family of S-matching vectors
in Znm where we allow S to be an arbitrary subset of Zm \ {0}. It is
easy to see that the rate of any locally decodable code obtained via
propositions 3.2– 3.7 is at most k(m,n)/mn.

In this section we use existing upper bounds on the size of matching
vector families to establish lower bounds on the codeword length of
matching vector codes. The codeword length lower bounds we get are
very general. In particular they apply to all matching vector codes,
irrespective of their query complexity.

The following upper bounds on k(m,n) are due to Dvir et al. [36].
We defer the proofs to chapter 4.
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Theorem 4.23. Let m and n be arbitrary positive integers. Suppose
p is a prime divisor of m; then

k(m,n) ≤ 5mn

p(n−1)/2
.

Theorem 4.25. Let m and n be arbitrary positive integers; then

k(m,n) ≤ mn−1+om(1).

We now translate upper bounds on matching vector families to lower
bounds on the encoding length of matching vector codes. We first argue
that any family of non-binary matching vector codes, i.e., codes that
for some m and n, encode k(m,n)-long messages to mn-long codewords
has an encoding blow-up of at least 2Ω(

√
log k).

Theorem 3.13. Consider an infinite family of matching vector codes
C` : Fkq → FNq for ` ∈ N, where k = k(`) and N = N(`) go to infinity
with `. For large enough `, we have

k ≤ N

2Ω(
√

logN)
⇒ N ≥ k2Ω(

√
log k).

Proof. For each `, we have a family of matching vectors in Znm where
m,n depend on `. We have N = mn while k ≤ k(m,n). First assume
that n >

√
logN . Then by theorem 4.23 with p a prime divisor of m,

we have

k ≤ 5mn

p(n−1)/2
≤ 5N

20.5
√

logN−1/2
≤ N

20.4
√

logN
,

where the last inequality holds for large enough N , and hence for all
large `. Hence assume that n ≤

√
logN so that m ≥ 2

√
logN . As `
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goes to infinity, N and hence m go to infinity. So for large enough `,
theorem 4.25 gives k(m,n) ≤ mn−1+om(1) ≤ mn−0.9. Hence

k ≤ mn

m0.9
≤ N

20.9
√

logN
.

Thus k ≤ N

2Ω(
√

log N) for large enough `. This implies that N ≥

k2Ω(
√

log k) for large enough `.

One can generalize theorem 3.13 to get a similar statement for bi-
nary matching vector codes, i.e., codes obtained by a concatenation of
a non-binary MV code with an asymptotically good binary code.

Theorem 3.14. Let {m`} and {n`}, ` ∈ N be two arbitrary sequences
of positive integers, such that m`

n` monotonically grows to infinity.
Consider an infinite family of binary codes C` : Fk`

2 → FN`
2 for ` ∈ N,

where each code C` is obtained via a concatenation of an MV code
encoding k(m`, n`)-long messages tomn`

` -long codewords over Fq` , (here
q` = 2t is the smallest such that m` | 2t − 1) with an asymptotically
good binary code of some fixed rate; then for large enough ` the relative
redundancy of C` is at least 2Ω(

√
log k`).

Proof. Pick a sufficiently large value of `. Consider two cases

• n` 6= 1. It is not hard to see that k(m`, n`) ≥ k(m`, 2) ≥ m`.

Now note that by theorem 3.13 relative redundancy of the

non-binary code is at least 2Ω
(√

log k(m`,n`)
)
, and the concate-

nation with a binary code can only increase relative redun-
dancy. Finally note that the dimension k` of the binary code
is at most k(m`, n`) ·m` ≤ k2(m`, n`). Thus

2Ω
(√

log k(m`,n`)
)
≥ 2Ω(

√
log k`),

for an appropriately chosen constant in Ω notation.
• n` = 1. Set k′ = k(m`, n`). Be theorem 4.25, k′ = m

o(1)
` . Note

that k` = k′t and N` = Ω(m` · t), for some t ≤ m`. These
conditions yield N` ≥ Ω

(
k

3/2
`

)
.

This completes the proof.
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3.7 MV codes vs. RM codes

In this section we provide a comparison between matching vector codes
and Reed Muller codes. We show that matching vector codes given by
theorems 3.10, 3.12 have shorter codeword lengths than Reed Muller
codes when the query complexity is low,

r ≤ log k/(log log k)c,

for some constant c. We also show that all matching vector codes have
longer codeword lengths than Reed Muller codes when the query com-
plexity is high,

r ≥ (log k)c(
√

log k),

for some constant c.
Recall that a Reed Muller locally decodable code (section 2.2) is

specified by three integer parameters. Namely, a prime power (alphabet
size) q, a number of variables n, and a degree d < q−1. The q-ary code
consists of Fnq -evaluations of all polynomials in Fq[z1, . . . , zn] of total

degree at most d. Such code encodes k =
(
n+d
d

)
-long messages to qn-

long codewords and has query complexity r = q − 1. If d < σ(q − 1),
the code tolerates δ = 1/2 − σ fraction of errors. When q is a power
of 2 non-binary RM LDCs can be turned into binary via concatenation.
Concatenation with an asymptotically good code of relative distance µ
yields an r-query binary linear code encoding k-bit messages to N -bit
codewords and tolerating δ = (1/2− σ)µ fraction of errors, where

k =
(
n+ d

d

)
log q, N = Θ(qn log q), r = Θ(q log q). (3.14)

3.7.1 Low query complexity regime

We now argue that RM LDCs are inferior to codes of theo-
rems 3.10, 3.12 for all r ≤ log k/(log log k)c, where c is a universal
constant. To arrive at such a conclusion we need a lower bound on the
codeword length of Reed Muller locally decodable codes.

Let d, n, and q be such that formulas (3.14) yield an r-query LDC,
where r belongs to the range of our interest. We necessarily have d ≤ n
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(otherwise r > log k). Thus

k =
(
n+ d

d

)
log q ≤ (en/d)d log q ≤ nO(d), (3.15)

and n ≥ kΩ(1/d). Therefore writing exp(x) to denote 2Ω(x), we have

N ≥ exp exp (log k/d) ≥ exp exp (log k/r) . (3.16)

Note that when r is a constant then already 3-query codes of theo-
rem 3.12 improve substantially upon (3.16). To conclude the argument
one needs to verify that there exists a constant c such that for every
nondecreasing function r(k), where r(k) grows to infinity, and satisfies
r(k) ≤ log k/(log log k)c, for all sufficiently large k the right hand side
of (3.16) evaluates to a larger value than (3.13).

3.7.2 High query complexity regime

Here we argue that all matching vector codes have longer codeword
lengths than Reed Muller codes when r ≥ (log k)c(

√
log k), where c is

a universal constant. Given the theorem 3.14 all we need to do is for
every constant c′ construct binary Reed Muller LDCs that have a blow-
up of less than 2c

′√log k and query complexity of (log k)O(
√

log k). By
formula (3.14) the relative redundancy of any RM LDC specified by
parameters n, d and q is given by

k/N ≤ O
((

n+ d

d

)
/qn
)
.

We assume that n < d; then
(
n+d
d

)
≤ (2ed/n)n. Therefore (relying of

d ≤ q) we get
k/N ≤ O((2e/n)n).

Thus to have relative redundancy below 2c
′√log k it suffices to have

n = Oc′
(√

log k/ log log k
)
. (3.17)

Given k we choose n to be the largest integer satisfying (3.17). Next we
choose d to be the smallest integer satisfying k ≤

(
n+d
d

)
log q. One can

easily check that this yields d = (log k)O(
√

log k), giving an RM LDC
with desired parameters.
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Matching vectors

In the previous chapter we have seen how parameters of matching vec-
tor locally decodable codes are governed by the parameters of the un-
derlying families of matching vectors. This chapter contains a system-
atic study of such families.

In the first three sections we deal with constructions. In section 4.1
we present a bounded family of matching vectors based on the Grol-
musz’s construction of set systems with restricted intersections modulo
composites. This family underlies the main families of matching vector
codes (theorems 3.10–3.12). In section 4.2 we present an elementary
construction of a bounded family of matching vectors. This family im-
proves upon the Grolmusz’s family for large values of the modulus m.
Finally, in section 4.3 we obtain an algebraic construction of an asymp-
totically optimal matching family in the narrow case of 4-dimensional
vectors modulo a prime. This result has not been published previously.

In sections 4.4–4.6 we deal with upper bounds on the size of match-
ing families. We gradually build up the necessary machinery and in
section 4.6 prove theorems 4.23 and 4.25 that have been used in the
previous chapter to establish lower bounds on the codeword length of
matching vector codes (theorems 3.13 and 3.14).

39
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4.1 The Grolmusz family

The construction of the matching family presented below is modeled
along the lines of Grolmusz’s construction of set systems with restricted
intersections modulo composites [53, 54]. Grolmusz’s original construc-
tion uses the low-degree OR representations of Barrington et al. [10].
However, we will use lemma 4.2 to bypass the set system and go di-
rectly to the matching family from polynomials. In addition to being
more direct, this also gives a slightly larger collection of vectors. Our
presentation follows [36]. We first show how to get a family of matching
vectors that is not bounded, and then in section 4.1.1 show how to turn
this family into a bounded one.

Definition 4.1. Let S ⊆ Zm \ {0}. We say that a set of polyno-
mials F = {f1, . . . , fk} ⊆ Zm[z1, . . . , zh] and a set of points X =
{x1, . . . ,xk} ⊆ Zhm form a polynomial S-matching family of size k if

• For all i ∈ [k], fi(xi) = 0;
• For all i, j ∈ [k] such that i 6= j, fj(xi) ∈ S.

Let F ,X be a k-sized polynomial matching family. For i ∈ [k], let
supp(fi) denote the set of monomials in the support of the polynomial
fi. We define supp(F) =

⋃k
i=1 supp(fi) and dim(F) = |supp(F)|. The

following lemma was observed by Sudan [89].

Lemma 4.2. An k-sized polynomial S-matching family F ,X over Zm
yields a k-sized S-matching family U ,V in Znm, where n = dim(F).

Proof. Let mon1, . . . ,monn be the set of monomials in supp(F). For
every j ∈ [k] we have

fj(z1 . . . , zh) =
n∑
l=1

cjlmonl.

We define the vector uj to be the n-dimensional vector of coefficients
of the polynomial fj . Similarly, for i ∈ [k], we define the vector vi to
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be the vector of evaluations of monomials mon1, . . . ,monn at the point
xi. It is easy to check that for all i, j ∈ [k], (uj ,vi) = fj(xi) and hence
the sets U ,V indeed form an S-matching family.

Definition 4.3 (Canonical set). Let m =
∏t
i=1 pi be a product of

distinct primes. The canonical set in Zm is the set of all non-zero s

such that for every i ∈ [t], s ∈ {0, 1} mod pi.

Our goal now is to prove the following

Lemma 4.4. Let m =
∏t
i=1 pi be a product of distinct primes. Let w

be a positive integer. Let {ei}, i ∈ [t] be integers such that for all i, we
have pei

i > w1/t. Let d = maxi pei
i , and h ≥ w be arbitrary. Let S be

the canonical set; then there exists an
(
h
w

)
-sized family of S-matching

vectors in Znm, where n =
(
h
≤d

)
.

We assume that parameters m, t, {pi}i∈[t], {ei}i∈[t], w, h, and the set
S satisfy the condition of lemma 4.4 whose proof we defer. Our proof
of the lemma below follows [52, theorem 2.16].

Lemma 4.5. For every i ∈ [t], there is an explicit multilinear polyno-
mial fi(z1, . . . , zh) ∈ Zpi [z1, . . . , zh] where deg(fi) ≤ pei

i − 1 such that
for x ∈ {0, 1}h, we have

fi(x) ≡

{
0 mod pi, if

∑h
l=1 x(l) ≡ w mod pei

i ,

1 mod pi, otherwise.

Proof. Our proof relies on the classical Lucas theorem [23, p. 28], stat-
ing that for all primes p and all integers

b =
∑
j≥0

bj · pj , 0 ≤ bj < p

s =
∑
j≥0

sj · pj , 0 ≤ sj < p,
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we have (
b

s

)
≡
∏
j

(
bj
sj

)
mod p.

Let x ∈ {0, 1}h be an arbitrary vector of Hamming weight b. Let
(b0, b1, . . .) be a p-ary expansion of b. Further, let ` be an arbitrary
positive integer, and let Sp` be the h-variate multilinear symmetric
polynomial of degree p`. By the Lucas theorem we have

Sp`(x) =
(
b

p`

)
≡
(
b`
1

)∏
j 6=`

(
bj
0

)
≡ b` mod p.

To prove the lemma we need to write the function fi as a polynomial
of degree less than pei

i . Observe that fi : {0, 1}h → {0, 1} is a symmetric
function, i.e., its value stays the same under an arbitrary permutation
of coordinates of an input vector x. Moreover note that the value of
fi(x) depends only on ei least significant digits b0, . . . , bei−1 of the pi-
ary expansion of the Hamming weight b of x.

Using the fact that every function from Zei
pi
→ Zpi is computed by

some polynomial, fi can be written as a polynomial g(b0, . . . , bei−1)
over Zpi with the degree of each bj ≤ p − 1. But Spj (x) ≡ bj mod pi.
Hence the polynomial

g
(
S1(x), . . . , S

p
ei−1
i

(x)
)
∈ Zpi [z1, . . . , zh]

computes the function f on binary inputs. It is a symmetric polynomial
whose degree is bounded by

∑ei−1
j=0 pji (pi − 1) = pei

i − 1.

Corollary 4.6. There is an explicit multilinear polynomial
f(z1, . . . , zh) ∈ Zm[z1, . . . , zn] such that for all x ∈ {0, 1}h, we
have

f(x) =

{
0 mod m, if

∑h
l=1 x(l) = w,

s mod m, for s ∈ S, if
∑h

l=1 x(l) < w,

where coordinates of x are summed as integers.
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Proof. Define the polynomial f so that for all i ∈ [t], f(z1, . . . , zh) ≡
fi(z1, . . . , zh) mod pi. We claim that it satisfies the above requirement.
Observe that by the Chinese remainder theorem

f(x) = 0 mod m iff for all i ∈ [t],
h∑
l=1

x(l) ≡ w mod pei
i .

This is equivalent to saying that
h∑
l=1

x(l) ≡ w mod
∏
i

pei
i .

Note that for all i ∈ [t], pei
i > w1/t. Hence m =

∏
i p
ei
i > w. Thus

whenever the integer sum
∑h

l=1 x(l) < w, we have
∑h

l=1 x(l) 6≡ w mod
m, which proves the claim.

Proof. [of lemma 4.4] For every T ⊆ [h] of size w, define the polynomial
fT wherein the polynomial f from corollary 4.6, we set zj = 0 for
j 6∈ T (but zj stays untouched for j ∈ T ). Define xT ∈ {0, 1}h to be
the indicator of the set T . Viewing vectors x ∈ {0, 1}h as indicator
vectors xL for sets L ⊆ [h], it is easy to check that for all T, L ∈ [h],
fT (xL) = f(xL∩T ). Combining this with Corollary 4.6 gives

• For all T ⊆ [h], where |T | = w, fT (xT ) = f(xT ) ≡ 0 mod m,
• For all T 6= L ⊆ [h], where |T | = |L| = w, fT (xL) =
f(xL∩T ) ∈ S mod m,

where the second bullet follows from the observation that |L ∩ T | ≤
w − 1. Thus the set of polynomials F = {fT }T⊆[h],|T |=w and points
X = {xT }T⊆[h],|T |=w form a polynomial S-matching family.

It is clear that k = |F| =
(
h
w

)
. To bound n, we note that deg(f) ≤

d and f is multilinear. Thus we can take supp(F) to be the set of
all multilinear monomials in variables z1, . . . , zh of degree at most d.
Clearly, this yields dim(F) =

(
h
≤d

)
.

4.1.1 A bounded family

The following lemma shows that the canonical set can be turned into
a bounded one via scaling by an invertible element. It has been ob-
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served in [36] and independently in [17]. Let Z∗m denote the is the set
of invertible elements of Zm.

Lemma 4.7. Let m =
∏t
i=1 pi be a product of distinct primes. Let S

be the canonical set in Zm. There exists an α ∈ Z∗m such that the set
αS is σm-bounded for any σ >

∑
i∈[t] 1/pi.

Proof. We start with some notation.

• For every i ∈ [t], define the integer p̂i = m/pi;
• Let α ∈ Z∗m be the unique element such that for all i ∈

[t], α = p̂i mod pi.

Observe that for any i, j ∈ [t],

(
α−1p̂i

)
mod pj =

{
1, if i=j;
0, otherwise.

Let s ∈ S be arbitrary. Set I = {i ∈ [t] | pi does not divide s}. Observe
that s = α−1

∑
i∈I p̂i. Therefore

αs =
∑
i∈I

p̂i ≤ m
∑
i∈[t]

1/pi.

This concludes the proof.

The argument above shows that any S-matching family U ,V where
S is the canonical set can be turned into a bounded one (by scaling
all vectors in V by an invertible element). Combining lemma 4.7 with
lemma 4.4 we obtain

Lemma 4.8. Let m =
∏t
i=1 pi be a product of distinct primes. Let w

be a positive integer. Suppose integers {ei}, i ∈ [t] are such that for all
i, we have pei

i > w1/t. Let d = maxi pei
i , and h ≥ w be arbitrary. Let S

be the canonical set modulo m; then there exists an
(
h
w

)
-sized family

of S-matching vectors in Znm, where n =
(
h
≤d

)
.
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4.2 An elementary family

In this section we give an elementary construction of a bounded fam-
ily of matching vectors. The construction works for both prime and
composite moduli. The family improves upon the family of lemma 4.8
for large values of m. In what follows we use Z≥0 to denote the set of
non-negative integers.

Definition 4.9. Let b(m′, n) denote the number of vectors w ∈ Zn≥0

such that ‖w‖22 = m′.

Thus b(m′, n) counts the number of integer points on the surface of
the n-dimensional ball of radius

√
m′ in the positive orthant.

Lemma 4.10. Let m′ < m and n ≥ 2 be arbitrary positive integers.
There exists a b(m′, n− 1)-sized (m′ + 1)-bounded family of matching
vectors in Znm.

Proof. Let k = b(m′, n− 1) and let w1, . . . ,wk be the vectors in Zn−1
≥0

such that ‖wi‖22 = m′. For each wi, we define vectors in Zn by

ui = (1,−wi), vi = (m′,−wi).

We claim that the resulting family of vectors is a {1, . . . ,m′}-matching
family. To prove this, observe that (ui,vj) = m′ − (wi,wj). If i = j,
then (wi,wj) = ‖wi‖22 = m′ whereas if i 6= j; then by Cauchy-Schwartz

(wi,wj) ≤ ‖wi‖2‖wj‖2 = m′.

In fact the inequality must be strict since wi and wj both lie on the
surface of the same ball, hence they are not collinear. But since their
inner product lies in Z≥0, we conclude that

(wi,wj) ∈ {0, . . . ,m′ − 1},

hence (ui,vj) ∈ {1, . . . ,m′}. Now note that since m > m′, the inter-
sections do not change modulo m.

The lemma below follows by combining lemma 4.10 with some crude
lower bounds for b(m′, n− 1).



46 Matching vectors

Lemma 4.11. Let m′ < m and n ≥ 2 be arbitrary positive integers.
There exists a k-sized (m′ + 1)-bounded family of matching vectors in
Znm, where

k = 1
m′+1

(
m′

n−1

)(n−1)/2
for m′ ≥ n, (4.1)

k =
(
n−1
m′

)
for m′ < n. (4.2)

Proof. To prove (4.1), we set d =
⌊√

m′/(n− 1)
⌋
. For every vector

w ∈ {0, . . . , d}n−1, we have 0 ≤ ‖w‖2 ≤ (n − 1)d2 ≤ m′. By the
pigeonhole principle, there exists some m′′ ∈ {0, . . . ,m′} such that
b(m′′, n − 1) ≥ (d+ 1)n−1/(m′ + 1), which by lemma 4.10 yields an
(m′ + 1)-bounded matching family of size

k ≥ 1
m′ + 1

(⌊√
m′

n− 1

⌋
+ 1

)n−1

≥ 1
m′ + 1

(
m′

n− 1

)(n−1)/2

.

Note that the condition m′ ≥ n is only needed to ensure that the bound
in meaningful.

To prove (4.2), we observe that b(m′, n − 1) ≥
(
n−1
m′

)
by taking all

vectors in {0, 1}n−1 of Hamming weight exactly m′. The bound follows
from lemma 4.10.

It is interesting to observe that while matching vector codes of
theorem 3.10 improve upon Reed Muller locally decodable codes only
when r ≤ log k/(log log k)c, one can get MV codes that asymptotically
match RM LDCs of query complexity r = Θ(log k log log k) combining
lemma 4.11 (where m has the shape 2b − 1, n = m+ 1 and m′ = n/2)
with proposition 3.7.

4.3 An algebraic family

Below we give a previously unpublished construction of Ω(p2)
four-dimensional F∗p-matching vectors modulo a prime p. Later in
lemma 4.20 we establish its asymptotic optimality. The technique here
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is different from the techniques used in sections 4.1 and 4.2. The result-
ing family however is not bounded, therefore it does not immediately
imply locally decodable codes capable of tolerating a constant fraction
of errors.

Lemma 4.12. Let p be a prime and n be a positive integer. Let π be
an Fp-hyperplane in Fpn and let G be a multiplicative subgroup of F∗pn .

Suppose |π ∩ G| = d; then there exists a k = b|G|/dc-sized family of
F∗p-matching vectors in Fnp .

Proof. Let φ : Fpn → Fp be a linear map such that kerφ = π. Note
that there exist exactly d elements x ∈ G such that φ(x) = 0. Consider
a bilinear map Φ : Fpn × Fpn → Fp, such that for all y, z,

Φ(y, z) = φ(y · z).

Note that for every y ∈ G there exist exactly d elements z ∈ G such
that Φ(y, z) = 0. Fix a basis of Fpn over Fp and represent the map Φ in
the coordinate form Φ : Fnp ×Fnp → Fp. This yields a matrix M ∈ Fn×np

such that for every vector y ∈ G ⊆ Fnp there exist exactly d vectors
z ∈ G such that

y ·M · zt = 0.

For every vector g ∈ G set ug = g and vg = M · gt. Now for every
vector in {ug}g∈G there exist exactly d vectors in {vh}h∈G such that

(ug,uh) = 0.

We apply the greedy procedure to the two families of vectors above to
obtain new families U ,V where for each u ∈ U there exists a unique
v ∈ V such that (u,v) = 0.

Lemma 4.13. Let p be an odd prime. Then the hyperplane

π = {x ∈ Fp4 | x− xp + xp
2 − xp3

= 0}

and the multiplicative group

G = {x ∈ F∗p4 | xp
2+1 = 1}.

share exactly two elements of Fp4 . Namely ±1.
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Proof. First, note that π is indeed a hyperplane. This follows from the
fact that π is a kernel of a linear map, whose image is of size p, (since
for every z in the image of the polynomial x− xp + xp

2 − xp3
we have

zp+z = 0.) Now let x ∈ π∩G. Combining xp
2

= 1/x with the equation
defining π we conclude

(x+ 1/x)− (x+ 1/x)p = 0. (4.3)

Thus x + 1/x ∈ Fp. Therefore x satisfies a quadratic equation with
coefficients in Fp. Thus x ∈ Fp2 , and xp

2
= x. Recall that earlier we

had xp
2

= 1/x. Thus x2 = 1.

Combining lemma 4.12 and lemma 4.13 we get

Theorem 4.14. Let p be an odd prime. There exists a (p2 +1)/2-sized
family of F∗p-matching vectors in F4

p.

4.4 Upper bounds for families modulo primes

We now turn to upper bounds on k(m,n), where k(m,n) denotes the
size of the largest family of (Zm \ {0})-matching vectors in Znm. Note
that there is a body of work in combinatorics on the closely related
problem of bounding the size of set systems with restricted modular
intersections. The problem there is to bound the size of the largest set
family F on [n], where the sets in F have cardinality 0 modulo some
integer m, while their intersections have non-zero cardinality modulo
m. The classical result in this area shows that when m is a prime power
an upper bound of nO(m) holds [7]. No such bound applies when m is
composite [53]. The best bound for general m is |F| ≤ 2n/2 [85].

We start by bounding k(m,n) in the case when m = p is prime
and present two bounds. The first bound is based on the linear algebra
method [7] and is tight when p is a constant.

Theorem 4.15. For any positive integer n and any prime p, we have

k(p, n) ≤ 1 +
(
n+ p− 2
p− 1

)
.
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Proof. Let U = {u1, . . . ,uk}, V = {v1, . . . ,vk} be a family of S-
matching vectors of Fnp , for some S ⊆ F∗p. For each i ∈ [k], we consider
the polynomial

Pi(z1, . . . , zn) = 1−

(
n∑
l=1

vi(l) · zl

)p−1

in the ring Fp[z1, . . . , zn]. It is easy to see that Pi(ui) = 1, whereas
Pi(uj) = 0 for all j 6= i. This implies that the k polynomials {Pi}ki=1 are
linearly independent. But these polynomials all lie in an Fp vector-space

of dimension 1 +
(
n+p−2
p−1

)
, since they are spanned by the monomial 1

and all monomials of degree exactly p− 1 in z1, . . . , zn.

Note that equation (4.2) shows that for constant p and growing n,
the above bound is asymptotically tight.

Our second bound comes from translating the problem of con-
structing matching vectors into a problem about points and hyper-
planes in projective space. The n− 1 dimensional projective geometry
PG(Fp,n−1) over Fp consist of all points in Fnp \{0n} under the equiv-
alence relation λv ≡ v for λ ∈ F∗p. Projective hyperplanes are specified
by vectors u ∈ Fnp \ {0n} under the equivalence relation λu ≡ u for
λ ∈ F∗p; such a hyperplane contains all points v where (u,v) = 0.

We define a bipartite graph H(U, V ) where the vertices on the left
correspond to all hyperplanes in PG(Fp,n − 1), vertices on the right
correspond to all points in PG(Fp,n − 1) and u and v are adjacent if
(u,v) = 0. For X ⊆ U and Y ⊆ V , we define N(X) and N(Y ) to be
their neighborhoods. We use N(u) for the neighborhood of u.

Definition 4.16. Let n be a positive integer and p be a prime. Let U
be the set of hyperplanes in PG(Fp,n − 1). We say that a set X ⊆ U

satisfies the unique neighbor property if for every u ∈ X, there exists
v ∈ N(u) such that v is not adjacent to u′ for any u′ ∈ X \ {u}.

Lemma 4.17. Let n be a positive integer and p be a prime. Let U
be the set of hyperplanes in PG(Fp,n − 1). There exists a set X ⊆ U,
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|X| = k satisfying the unique neighbor property if and only if there
exists a k-sized family of Z∗p-matching vectors in Znp .

Proof. Assume that X = {u1, . . . ,uk} satisfies the unique neighbor
property. Let Y = {v1, . . . ,vk} be such that vi is a unique neighbor of
ui. This implies that (ui,vi) = 0 and (uj ,vi) 6= 0 for i 6= j. Thus X,Y
gives a Z∗p-matching vector family in Znp .

For the converse, let us start with a k-sized matching vector family
U ,V in Znp . In case k = 1 the lemma holds trivially. We claim that if
k ≥ 2; then u ∈ U implies that λu 6∈ U for any λ ∈ F∗p\{1}. This is true
since (u,v) = 0 implies (λu,v) = 0, which would violate the definition
of a matching vector family. Thus we can associate each u ∈ U with a
distinct hyperplane in PG(Fp,n− 1). Similarly, we can associate every
v ∈ V with a distinct point in PG(Fp,n− 1). It is easy to see that vi is
a unique neighbor of ui, hence the set U satisfies the unique neighbor
property.

Corollary 4.18. Let n be a positive integer and p be a prime. Let U
be the set of hyperplanes in PG(Fp, n − 1). The size of the largest set
X ⊆ U that satisfies the unique neighbor property is exactly k(p, n).

The expansion of the graph H(U, V ) was analyzed by Alon using
spectral methods [1, theorem 2.3]. We use the rapid expansion of this
graph to bound the size of the largest matching vector family.

Lemma 4.19. Let n ≥ 2 be an integer and p be a prime. Let U (V )
be the set of hyperplanes (points) in PG(Fp, n − 1). Let u = pn−1

p−1 =
|U | = |V |. For any nonempty set X ⊆ U with |X| = x,

|N(X)| ≥ u− u
n

n−1 /x. (4.4)

Lemma 4.20. Let n be a positive integer and p be a prime; then

k(p, n) ≤ 4pn/2 + 2. (4.5)
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Proof. If n = 1, inequality (4.5) holds trivially. We assume n ≥ 2. Let
U ⊆ U , V ⊆ V be a matching family of size k(p, n). Pick X ⊆ U of size
x > 0. By formula (4.4),

|N(X)| ≥ u− u
n

n−1 /x.

Since every point in U \ X must contain a unique neighbor from the
set V \N(X), we have

|U \X| ≤ |V \N(X)| ≤ u
n

n−1

x
⇒ |U| ≤ u

n
n−1

x
+ x. (4.6)

Note that the inequality in the right hand side of (4.6) holds for all
positive integers x. Picking x =

⌈
u

n
2(n−1)

⌉
gives

|U| ≤ 2
⌈
u

n
2(n−1)

⌉
≤ 2

(
pn

p− 1

) n
2(n−1)

+ 2 =

= 2
(

p

p− 1

) n
2(n−1)

pn/2 + 2 ≤ 4pn/2 + 2,

where the last inequality is a simple calculation.

Equation (4.1) shows that k(p, n) = Ω
(
p(n−3)/2

)
, so the above upper

bound is nearly tight when n is a constant and p grows to infinity.
Note that for this setting of parameters, the linear-algebra bound gives
k(p, n) ≤ O(pn−1), so the bound above gives a significant improvement.

4.5 Upper bounds for families modulo prime powers

Bounds for matching families modulo prime powers are obtained via a
reduction to the prime case.

Lemma 4.21. Let n be a positive integer, p be a prime and e ≥ 2. We
have

k(pe, n) ≤ p(e−1)nk(p, n+ 1).

Proof. Assume for contradiction that we have a matching family U =
{u1, . . . ,uk},V = {v1, . . . ,vk} of size k > p(e−1)nk(p, n+1) in Znpe . For
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every i ∈ [k], write ui = u′i + pe−1u′′i where u′i ∈ Znpe−1 and u′′i ∈ Znp .
By the pigeonhole principle, there are k′ > k(p, n + 1) values of i
which give the same vector u′i ∈ Znpe−1 , assume for convenience that
the corresponding vectors in U are u1, . . . ,uk′ with matching vectors
v1, . . . ,vk′ . We will use these vectors to construct a matching vector
family of size k′ > k(p, n+ 1) in Zn+1

p , which gives a contradiction.
For each i ∈ [k′], we extend u′′i to a vector ūi by appending 1 in

the last coordinate. For every i ∈ [k′], write vi = v′i + pv′′i where
v′i ∈ Znp and v′′i ∈ Znpe−1 . We extend v′i to a vector v̄i by appending
(u′i,vi)/p

e−1 ∈ Zp in the last coordinate (we will show that this ratio
is in fact integral).

We claim that for all i ∈ [k′], (ūi, v̄i) = 0 mod p. To see this, observe
that

(ūi, v̄i) = (u′′i ,v
′
i) + (u′i,vi)/p

e−1. (4.7)

But we have

(ui,vi) = (u′i,vi) + pe−1(u′′i ,vi) ≡
≡ (u′i,vi) + pe−1(u′′i ,v

′
i) = 0 mod pe.

From this we conclude that (u′i,vi) ≡ 0 mod pe−1, and that (u′′i ,v
′
i) +

(u′i,vi)/p
e−1 = 0 mod p. From equation (4.8), we conclude that

(ūi, v̄i) = 0 mod p. Next we claim that (ūj , v̄i) 6= 0 mod p for i 6=
j ∈ [k′]. We have

(ūj , v̄i) = (u′′j ,v
′
i) + (u′i,vi)/p

e−1 (4.8)

But, since u′i = u′j , we also have

(uj ,vi) = (u′j ,vi) + pe−1(u′′j ,vi) ≡
≡ (u′i,vi) + pe−1(u′′j ,v

′
i) 6≡ 0 mod pe,

which implies that (u′′j ,v
′
i) + (u′i,vi)/p

e−1 6≡ 0 mod p. This shows that
the vectors {ūj}k

′
j=1, {v̄i}k

′
i=1 give a matching vector family of size k′ >

k(p, n+ 1), which is a contradiction.

4.6 Upper bounds for families modulo composites

Bounds for matching families modulo composites are obtained via re-
ductions to the prime power case.
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Lemma 4.22. Let m,n, and q be arbitrary positive integers such that
q|m and (q,m/q) = 1; then

k(m,n) ≤ (m/q)n k(q, n).

Proof. Let us write m/q = r. Let U = {u1, . . . ,uk}, V = {v1, . . . ,vk}
be a family of S-matching vectors of Znm, for some S ⊆ Zm \ {0}. For
each vector u ∈ Znm we can define the vectors u′ ≡ u mod q ∈ Znq and
u′′ ≡ u mod r ∈ Znr . From the definition of a matching vector family,
we have that

• For all i ∈ [k], (u′i,v
′
i) = 0 and (u′′i ,v

′′
i ) = 0;

• For all i, j ∈ [k] such that i 6= j, (u′j ,v
′
i) 6= 0 or (u′′j ,v

′′
i ) 6= 0.

Assume k > (m/q)n k(q, n). By the pigeonhole principle, there exists
a vector u ∈ Znr such that u′′j = u holds for k′ > k(q, n) values of
j ∈ [k]. Let us assume that these values are 1, . . . , k′. Note that for any
i, j ∈ [k′] we have (u′′j ,v

′′
i ) = (u′′i ,v

′′
i ) = 0. Hence, by the definition of

a matching family, we must have

• For all i ∈ [k′], (u′i,v
′
i) = 0;

• For all i, j ∈ [k′] such that i 6= j, (u′j ,v
′
i) 6= 0.

Thus vectors {u′1, . . . ,u′k′} and {v′1, . . . ,v′k′} form a matching family
mod q of size larger than k(q, n) which gives a contradiction.

Theorem 4.23. Let m and n be arbitrary positive integers. Suppose
p is a prime divisor of m; then

k(m,n) ≤ 5
mn

p(n−1)/2
.

Proof. Let pe be the largest power of p which divides m. By lemmas
4.22, 4.21 and 4.20, we get

k(m,n) ≤
(
m

pe

)n
p(e−1)n

(
4p(n+1)/2 + 2

)
≤ 5

mn

p(n−1)/2

This concludes the proof.
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The above bound is weak when n and p are constants, for instance it
is meaningless for n = 1. We give another bound below which handles
the case of small m. We start with the case when n = 1.

Lemma 4.24. Let m ≥ 2 be an arbitrary positive integer; then

k(m, 1) ≤ mO(1/ log logm) = mom(1).

Proof. Let U = {u1, . . . ,uk},V = {v1, . . . ,vk} be a family of Zm \{0}-
matching vectors in Z1

m. We treat every vector u ∈ U as an integer and
observe that for any i 6= j ∈ [k], gcd(ui,m) 6= gcd(uj ,m). (Otherwise
(ui,vi) = 0 would yield (uj ,vi) = 0.) An application of a standard
upper bound on the number of distinct divisors of an integer [56] con-
cludes the proof.

We now proceed to the case of general n.

Theorem 4.25. Let m and n be arbitrary positive integers; then

k(m,n) ≤ mn−1+om(1).

Proof. Given a vector u ∈ Znm, we define the Zm-orbit of u to be the
set of all vectors that can be written as λu for λ ∈ Zm. Unlike over
Zp, these orbits are no longer disjoint. We claim that all of Znm can be
covered by no more mn

φ(m) orbits, and that each such orbit can contribute
at most k(m, 1) vectors to U .

Let U ⊆ Znm denote the set of all vectors u such that the GCD of
all coordinates of u is 1. Any vector u′ ∈ Znm can be written it as λu
for u ∈ U and λ ∈ Zm. Thus the orbits of vectors in U cover all of Znm.
For u,u′ ∈ U , we say that u′ ≡ u′′ if u′′ lies in the Zm orbit of u′. It
is easy to see that this is indeed an equivalence relation on U , which
divides U into equivalence classes of size φ(m). Thus if we pick U ′ ⊆ U
which contains a single representative of each equivalence class, then
the orbits of U ′ contain all of Znm. Thus we have |U ′| = |U |

φ(m) ≤
mn

φ(m) .
Now consider the orbit of any vector u. Assume that it contributes

the vector u1 = λ1u, . . . , λtu to U where λi ∈ Zm. Assume that
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the matching vectors in V are v1, . . . ,vt. Then it is easy to see that
U ′ = {λ1, . . . , λt} and V ′ = {(u,v1), . . . , (u,vt)} are a matching vector
family in one dimension, so that t ≤ k(m, 1). Thus we conclude that

k(m,n) ≤ mn

φ(m)
k(m, 1) ≤ mn−1+om(1).

using a standard lower bound on φ(m) [56] and lemma 4.24.
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Lower bounds

In this chapter we review existing lower bounds for the codeword length
of general locally decodable codes. The proofs of these bounds fit the
following high level strategy. Firstly, one converts a locally decodable
code into a normal form where the decoder is restricted to operate by
outputting a modulo 2 sum of some r codeword coordinates coming
from a family of disjoint r-tuples. Secondly, one argues that any code
presented in a normal form requires a large codeword length.

In section 5.1 we deal with the conversion to the normal form. In
section 5.2 we establish polynomial lower bounds for the codeword
length of r-query codes for general r. The bound rapidly deteriorates
as r increases. In section 5.3 we deal with the narrow case of 2-query
codes and establish tight exponential lower bounds. Throughout the
chapter we restrict our attention to binary codes of constant query
complexity.

5.1 Preliminaries

General locally decodable codes can be quite complex. Decoders may
invoke complicated adaptive procedures to decide which codeword bits

56
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to query. They may also perform arbitrary computation to come up
with the output. In order to prove lower bounds for locally decodable
codes it is convenient to first turn them into the following normal form.

Definition 5.1. A binary code C : Fk2 → FN2 is said to be (r, η, β)-
normally decodable if for each i ∈ [k] there a collection Mi of η · N
disjoint tuples of exactly r indices from [N ] such that for every t ∈Mi

the following holds

Prx∈Fn
2

xi =
∑
j∈t

C(x)j

 ≥ 1
2

+ β, (5.1)

where the probability is taken uniformly over x.

Hence to decode xi from C(x), the decoder can just add up the
indices in a randomly chosen tuple t from Mi. Note that normally
decodable codes are somewhat weaker objects than usual locally de-
codable codes. Specifically, normally decodable codes only provide an
“average-case” guarantee of correct decoding. Our main goal in this
section is to prove the following lemma from [64].

Lemma 5.2. Suppose there exists a (r, δ, ε)-locally decodable code en-
coding k-bit messages to N -bit codewords where ε < 1/2; then there
exists a (r, η, β)-normally decodable code encoding k-bit messages to
O(N)-bit codewords where

η ≥ (1/2− ε)δ
3 · r22r−1

and β ≥ 1/2− ε
22r

.

Proof. Our proof proceeds in four steps. On the first step we turn a
potentially adaptive decoder of the code C into a non-adaptive one,
i.e., a one that makes all queries to the codeword simultaneously. On
the second step we turn the locally decodable code into a smooth one,
i.e., a one where no codeword coordinate in queried too often. On the
third step, we ensure that r-tuples of coordinates that may be read by
the decoder interested in the i-th message bit are all disjoint. Finally on
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the fourth step, we ensure that the decoder always returns a modulo 2
sum of the accessed codeword coordinates. On each step we incur a
certain loss in code parameters. Let α = 1/2 − ε be the advantage of
the local decoder of the code C over random guessing.

Step 1: Let A be the potentially adaptive local decoder for C. We
now construct a non-adaptive local decoder A′ for the same code C at
a price of reducing the value of α to α/2r−1. The decoder A′ guesses
the values of the first r−1 coordinates that may be accessed by A, and
submits the set of queries based upon this guess. If A′ guesses correctly
the decoding procedure works with probability 1/2 + α; otherwise, A′
returns a random bit which is correct with probability 1/2.

Step 2: We now adjust the nonadaptive r-query decoding proce-
dure A that we got from the previous step to obtain a new decoding
procedure A′ such that for all x ∈ Fk2 and i ∈ [k], we have

Pr
[
A′(C(x), i) = xi

]
≥ 1/2 + α/2r−1, (5.2)

and for every i ∈ [k] and j ∈ [N ],

Pr
[
A′(·, i) reads index j

]
≤ r/δN. (5.3)

For every i ∈ [k], let Si ⊆ [N ] denote the set of codeword coordinates
that are accessed by A on an input i with probability above r/δN. Since
A reads at most r indices in every invocation, for every i ∈ [k], we have
|Si| ≤ δ · N. We define the new decoder A′ as follows: A′(·, i) runs
A(·, i) in a black-box manner by reading indices from the codeword,
and returning their values to A. The only exception is that if A requests
an index in Si, A′ does not read that index, but instead simply returns
0 to A. Thus the output of A′ on C(x) is the same as the output of
A on a certain string y such that d(C(x),y) ≤ δN. It remains to note
that given access to any such string A outputs xi with probability at
least 1/2 + α/2r−1.

Step 3: We now modify the decoding procedure A that we got from
the previous step to ensure that for every i, the tuples of coordinates
that may be read by the decoder interested in the i-the message bit are
all disjoint. Fix i ∈ [k]. Let S ⊆ [N ], |S| ≤ r be arbitrary. We say that
S is γ-good if

Prx [A(C(x, i)) = xi | A reads coordinates in S] ≥ 1/2 + γ. (5.4)
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Consider a hypergraph H that contains N vertices labeled by elements
of [N ]. The hyperedges of H, denoted E are defined by

E = {e ⊆ [N ] | e is α/2r-good}.

We now argue that the probability that A(·, i) reads an edge from E

is at least α/2r−1. To see this note that by formula (5.2)

1/2 + α/2r−1 ≤
Prx [A(C(x), i) = xi | A(·, i) reads E] · Pr [A(·, i) reads E] +

Prx [A(C(x), i) = xi | A(·, i) reads Ec] · Pr [A(·, i) reads Ec] ≤
Prx [A(·, i) reads E] + (1/2 + α/2r) · (1− Pr [A(·, i) reads E]).

For each hyperedge e ∈ E let pe denote the probability that A(·, i)
reads e. The argument above implies that∑

e∈E
pe ≥ α/2r−1.

Furthermore, for every j ∈ [N ] formula (5.3) yields∑
e∈E | j∈e

pe ≤ r/δN.

Let V be a vertex cover for the hypergraph H. Since for every e ∈ E
we have e ∩ V 6= 0, it follows that∑

e∈E | e∩V 6=0

pe ≥ α/2r−1.

Therefore

α/2r−1 ≤
∑

e∈E | e∩V 6=0

pe ≤
∑
j∈V

∑
e∈E | j∈e

pe ≤ |V |r/δN,

which implies that the minimum vertex cover for H has size at least
m = αδN/r2r−1. Recall that every hyperedge in H has cardinality at
most r. An application of a standard graph theory result implies that
H contains a matching M , i.e., a collection of disjoint edges of size at
least |M | ≥ m/r = αδN/r22r−1.

We define the new decoder A′ as follows: on input i, A′ picks one
of the edges in the matching M uniformly at random, reads the corre-
sponding codeword coordinates and runs A(·, i) in a black box manner.



60 Lower bounds

Step 4: We first adjust the code C (by making it sometimes read
some extra coordinates) and the decoding procedure A (by fixing some
randomness) to ensure that for all i ∈ [k], A(·, i) operates by randomly
choosing a tuple t of exactly r codeword coordinates coming from a
matching Mi, and then applying a deterministic function to fi,t(C(x)|t)
to obtain the output. For all i ∈ [k] and t ∈Mi we have

Prx∈Fn
2

[xi = fi,t (C(x)|t)] ≥ 1/2 + α/2r. (5.5)

In what follows we modify the decoder A to ensure that for all indices
i and tuples t ∈Mi, the function fi,t is simply a modulo 2 sum.

Fix some i ∈ [k] and t ∈ Mi. Consider a function f = fi,t. Let
(c1, . . . , cr) be the restriction of a codeword C(x) to coordinates in t.

Switching from the {0, 1} notation to the {1,−1} notation allows yields

Ex [f(c1, . . . , cr) · xi] ≥ α/2r−1.

Representing f in the Fourier basis we get

1
2r

Ex

[∑
χ

f̂(χ) · χ(c1, . . . , ct) · xi

]
≥ α/2r−1.

Equivalently,∑
χ

f̂(χ)/2r · Ex [χ(c1, . . . , ct) · xi] ≥ α/2r−1.

Observe that for all χ ∈ F̂k2 we have |f̂(χ)/2r| ≤ 1. Therefore there
exists a character χ ∈ F̂k2 such that

Ex [χ(c1, . . . , ct) · xi] ≥ α/22r−1.

Returning to the {0, 1} notation, for some set S ⊆ [r] we must have
either

Prx∈Fk
2

xi =
∑
j∈S

C(x)j

 ≥ 1
2

+ α/2r,

or

Prx∈Fk
2

x̄i =
∑
j∈S

C(x)j

 ≥ 1
2

+ α/2r,
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Replacing every coordinate c of C(x) with a triple {0, c, c̄}, we bring the
decoder to the normal form. For each i ∈ [k] the decoder operates by
picking one of r-tuples of coordinates from a matching Mi at random,
and outputting the modulo 2 sum. It is not hard to verify that our
construction yields matchings of size at least (1/2 − ε)δN/3 · r22r−1.

The advantage over random guessing is at least α/22r.

5.2 Polynomial lower bound for r-query codes

In this section we prove an Ω
(
kr/(r−1)

)
lower bound for the codeword

length of an arbitrary r-query locally decodable code due to Katz and
Trevisan [64]. Somewhat stronger lower bounds of Ω̃

(
k1+1/(dr/2e−1)

)
have been obtained in [96, 97]. The main idea of the proof is that of
a random restriction. We show that if a locally decodable code C is
short, then a restriction of C to a randomly chosen small subset of
coordinates carries too much information about the message.

Let H(·) denote the standard entropy function. We need the follow-
ing information theory lemma.

Lemma 5.3. Let C : Fk2 → D be an arbitrary function. Assume there
exists a randomized algorithm A such that for all i ∈ [k],

Prx [A(C(x), i) = xi] ≥
1
2

+ β,

where the probability is taken over the random coins of A as well as
over all strings x; then

log |D| ≥ (1−H(1/2 + β))k.

Proof. Let I(x;C(x)) denote the mutual information between x and
C(x). We have

I(x;C(x)) ≤ H(C(x)) ≤ log |D|.
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Note that we also have

I(x;C(x)) = H(x)−H(x|C(x))

≥ H(x)−
k∑
i

H(xi|C(x))

≥ (1−H(1/2 + β))k.

Combining the inequalities above completes the proof.

We are now ready to establish

Theorem 5.4. Suppose there exists an (r, δ, ε)-locally decodable code
encoding k-bit messages to N -bit codewords; then we necessarily have

N ≥ Ω

((
(1/2− ε)δ

r2

)1/(r−1)((
1−H

(
1
2

+
1/2− ε

22r

))
· k
)r/(r−1)

)
.

provided that k is sufficiently large.

Proof. Assume the contrary. Then for infinitely many k we have codes
violating the inequality from the theorem statement. Consider such a
code C. Apply lemma 5.2 to turn C into a normal form. This yields an
(r, η, β)-normally decodable code, where

η ≥ (1/2− ε)δ
3 · r22r−1

and β ≥ 1/2− ε
22r

.

Let {Mi}, i ∈ [k] be the collection of k matchings used by the decoder of
C. Let α be a constant to be fixed later. Pick a set S ⊆ [N ] at random,
including every element of [N ] into S with probability αk/N. Let y be
the random variable counting the number of matchings {Mi}, i ∈ [k]
that have at least one hyperedge completely contained in S. It is not
hard to verify that

E[y] ≥

[
1−

[
1−

(
αk

N

)r]ηN]
· k ≥

[
1−

(
1
e

)η(αk)r/Nr−1
]
· k.

Since C violates the inequality from the theorem statement we have
N = Or,δ,ε

(
kr/(r−1)

)
. Thus the right hand side of the inequality above
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is at least Ωr,δ,ε(k). Note that the random variable y takes non-negative
integer values up to k. Therefore there is a positive constant probability
that y is larger than E[y]/2. Also note that by the Chernoff bound the
probability that |S| > 2αk is exponentially small in k. Thus there exists
a set S ⊆ [N ] such that |S| ≤ 2αk and S contains a hyperedge from at
least

m = 0.5 ·

[
1−

(
1
e

)η(αk)r/Nr−1
]
· k

distinct matchings {Mi}, i ∈ [k]. This implies that the restriction of C
to coordinates in S allows one to make (1/2 + β)-accurate predictions
about m coordinates of x. Be lemma 5.3 we necessarily have[

1−
(

1
e

)η(αk)r/Nr−1
]
· (1−H(1/2 + β)) · k ≤ 4αk

Setting α = (1 − H(1/2 + β)) and making some basic manipulations
we obtain

N ≥ Ω
(
kr/(r−1) · η1/(r−1) · αr/(r−1)

)
.

Expressing η and α in terms of δ and ε we conclude the proof.

5.3 Exponential lower bound for 2-query codes

In this section we prove an asymptotically tight 2Ω(k) lower bound
for the codeword length of an arbitrary 2-query locally decodable code
due to Kerenidis and de Wolf [66]. The proof uses quantum information
theory. We argue that short 2-query locally decodable codes yield short
quantum random access codes and then apply a theorem of Nayak [76]
bounding the length of such codes. Our presentation follows [33, 92].

We start with a brief introduction to quantum information theory
needed for the proof. A comprehensive treatment of this area can be
found in [77].

5.3.1 Quantum information theory

Let n be a positive integer. For our purposes an n-qubit quantum state
is vector q ∈ R2n

such that
∑

j∈[2n] q
2
j = 1. Let B = {bj}, j ∈ [2n] be
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an orthonormal basis of R2n
. Measuring a quantum state q in the basis

B yields an output j ∈ [2n] with probability (y,bj)2.

A quantum random access code is an encoding x → qx of k-bit
strings x into n-qubit states qx, such that any individual bit xi, i ∈ [k]
can be recovered with some probability p ≥ 1/2 + β from qx, where
the probability is over a uniform choice of x and the measurement
randomness. The following theorem which is a special case of the Holevo
bound [57] is due to Nayak [76].

Theorem 5.5. Any encoding x → qx of k-bit strings into n-qubit
states with recovery probability at least 1/2 + β, necessarily has

n ≥ (1−H(1/2 + β))k.

5.3.2 Lower bound

We are now ready to establish

Theorem 5.6. If there exists an (2, δ, ε)-locally decodable code C en-
coding k-bit messages to N -bit codewords; then

N ≥ 2Ω((1/2−ε)4δ2k).

Proof. Apply lemma 5.2 to turn the code C into a normal form. This
yields an (2, η, β)-normally decodable code, where

η ≥ Ω((1/2− ε)δ) and β ≥ Ω(1/2− ε).

We pad the code with zeros to ensure that the codeword length N is
a power of two, N = 2n. For every x ∈ {0, 1}k consider a n-qubit state
qx, where for all j ∈ [N ],

qj = (−1)C(x)j/
√
N. (5.6)

We claim that the map x→ qx is a quantum random access code. Let
i ∈ [k] be arbitrary. To recover the bit xi from the quantum state qx,

we make a measurement in a suitable basis. Let em denote the m-th
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unit vector in RN , and let Mi =
{

(c`1, c
`
2)
}
`∈[ηN ]

be the matching used
by the normal decoder for C. Consider an orthonormal basis B = {bj}
for RN , where

bj =


ej if j 6∈ supp(Mi);

1√
2

(
ec`1 + ec`2

)
if j = c`1 for some `;

1√
2

(
ec`1 − ec`2

)
if j = c`2 for some `.

Observe that

(bj ,qx)2 =



1/N if j 6∈ supp(Mi);
2/N if j = c`1 for some `, and C(x)c`1 ⊕ C(x)c`2 = 0;
0 if j = c`1 for some `, and C(x)c`1 ⊕ C(x)c`2 = 1;
2/N if j = c`2 for some `, and C(x)c`1 ⊕ C(x)c`2 = 1;
0 if j = c`2 for some `, and C(x)c`1 ⊕ C(x)c`2 = 0.

The decoder for the quantum random access code interested in xi mea-
sures the state qx in the basis B. If the output is j 6∈ supp(Mi) it out-
puts a uniformly random bit; otherwise it outputs the modulo two sum
of the two coordinates of C(x) from the matching Mi. Such decoder
has an advantage of ηβ over random guessing. Thus by theorem 5.5 we
must have

n ≥ (1−H(1/2 + ηβ)) · k.

Expressing η and β in terms of δ and ε and using the fact that 1 −
H(1/2 + τ) = Θ(τ2) we conclude the proof.

The dependence on δ and ε in the exponent can be improved to
(1/2− ε)2δ [66]. An alternative proof of theorem 5.6 is given [18], using
an extension of the Bonami-Beckner hypercontractive inequality. How-
ever, that proof still follows the outline of the above quantum-inspired
proof, albeit in linear-algebraic language.



6

Applications

In this chapter we discuss three most prominent applications of locally
decodable codes, namely, applications to private information retrieval
(section 6.1), secure multiparty computation (section 6.2), and lower
bounds for arithmetic circuits (section 6.3).

6.1 Private information retrieval

Private Information Retrieval (PIR) schemes are cryptographic proto-
cols designed to safeguard the privacy of database users. They allow
clients to retrieve records from public databases while completely hid-
ing the identity of the retrieved records from database owners. The pos-
sibility of retrieving database records without revealing their identities
to the owner of the database may seem beyond hope. Note, however,
that a trivial solution is available: When users want a single record,
they can ask for a copy of the whole database. This solution involves
enormous communication overhead and is likely to be unacceptable. It
turns out that for users who want to keep their privacy fully protected
(in the information-theoretic sense), this trivial solution is optimal.

Fortunately, the negative result applies only to databases stored on

66
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a single server, rather than those replicated across several servers. In
1995, Chor et al. [27] came up with PIR schemes that enable private
retrieval of records from replicated databases, with a nontrivially small
amount of communication. In such protocols, users query each server
holding the database. The protocol ensures that each individual server
(by observing only the query it receives) gets no information about the
identity of the items of user interest.

We now make the notion of private information retrieval schemes
more concrete. We model database as a k-long q-ary string x that is
replicated between r non-communicating servers. The user holds an
index i (which is an integer between 1 and k) and is interested in
obtaining the value of the i-th coordinate of x. To achieve this goal,
the user tosses some random coins, queries each of the r servers and
gets replies from which the desired value can be computed. The query
to each server is distributed independently of i therefore each server
gets no information about what the user is after. Formally,

Definition 6.1. A r-server private information retrieval protocol is
a triplet of non-uniform algorithms P = (Q,A, C). We assume that
each algorithm is given k as an advice. At the beginning of the pro-
tocol, the user U tosses random coins and obtains a random string
rand. Next U invokes Q(i, rand) to generate an r-tuple of queries
(que1, . . . , quer). For j ∈ [r], U sends quej to the server Sj . Each
server Sj , j ∈ [r] responds with an answer ansj = A(j,x, quej). Fi-
nally, U computes its output by applying the reconstruction algorithm
C(ans1, . . . , ansr, i, rand). A protocol as above should satisfy the follow-
ing requirements:

• Correctness : For any k, x ∈ [q]k and i ∈ [k], U outputs the
correct value of xi with probability 1 (where the probability
is over the random strings rand).
• Privacy : Each server individually learns no information

about i. More precisely, we require that for any k and for
any j ∈ [r], the distributions quej(i, rand) are identical for
all values i ∈ [k].
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The communication complexity of a PIR protocol P, is a function
of k measuring the total number of bits communicated between the
user and the servers, maximized over all choices of x ∈ [q]k, i ∈ [k],
and random inputs. The major goal of PIR related research to design
r-server private information retrieval schemes with optimal (i.e., the
smallest possible) amount of communication for every r.

Following the seminal paper of Chor et al. [27] there has been a
large a body of work on private information retrieval [4, 13, 14, 100,
96, 101, 81, 38, 61]. A large number of extensions of the basic PIR
model have also been studied. These include extensions to t-private
protocols, in which the user is protected against collusions of up to
t servers [27, 13, 9]; extensions which protect the servers holding the
database in addition to the user, termed symmetric PIR [49, 75]; ex-
tensions to computational schemes [67, 22, 69, 47] that only ensure
that a server cannot get any information about the user’s intensions
unless it solves a certain computationally hard problem; and other ex-
tensions [15, 16, 24, 31, 48, 79]. In many of those extensions the proto-
cols are obtained by adding some extra layers on top of a basic private
information retrieval scheme. Therefore improving parameters of ba-
sic private information retrieval schemes yields improvements for many
other problems. See [44, 102] for surveys of PIR literature.

The gap between upper and lower bounds for communication com-
plexity of private information retrieval schemes is fairly large. Cur-
rently, the most efficient r-server schemes for r ≥ 3 are obtained
through r-query locally decodable codes. Communication complex-
ity of such schemes is roughly logarithmic in the codeword length of
corresponding codes. This, for instance, yields 3-server schemes with
exp

(√
log k log log k

)
communication to access a k-bit database [38].

Two server private information retrieval schemes do not rely on LDCs.
The most efficient such schemes to date require O(k1/3) communica-
tion [27]. The best lower bound for the communication complexity of
two server PIR is 5 log k due to Wehner and de Wolf [96]. Single server
PIR schemes require Θ(k) communication [27].

In what follows we review existing constructions of private informa-
tion retrieval schemes in more detail. In section 6.1.1 we discuss the con-
struction of schemes from locally decodable codes and in section 6.1.2
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we present a two server scheme based on polynomial interpolation.

6.1.1 From codes to schemes

The following lemma obtains an r-server private information retrieval
scheme out of any perfectly smooth r-query locally decodable code, i.e.,
a code where each decoder’s query is distributed perfectly uniformly
over the set of codeword coordinates.

Lemma 6.2. Suppose there exists a perfectly smooth q-ary r-query lo-
cally decodable code C encoding k-long messages to N -long codewords;
then there exists an r-server private information retrieval scheme with
O(r · log2(Nq)) communication to access a q-ary k-long database.

Proof. At the preprocessing stage servers S1, . . . ,Sr encode the k-long
database x with the code C. Next the user U who is interested in
obtaining the value of the i-th coordinate of x, tosses random coins
and generates an r-tuple of queries (que1, . . . , quer), such that xi can
be computed from C(x)que1

, . . . , C(x)quer
. For every j ∈ [r], the user

sends the query quej to the server Sj . Each server Sj responds with a
q-ary value C(x)quej

. The user combines servers’ responses to obtain xi.
It is straightforward to verify that the protocol above is private

since for every j ∈ [r] the query quej is uniformly distributed over
the set of codeword coordinates. The total communication is given by
r · (dlog2Ne+ dlog2 qe).

Combining lemma 6.2 with theorem 3.11 we get

Theorem 6.3. For every integer t ≥ 2, and for all k ≥ 2, there exists
a 3 · 2t−2-server private information retrieval scheme with

expt
(

(log k)1/t(log log k)1−1/t
)
−

bit communication to access a k-bit database.

6.1.2 Two server private information retrieval

Below we present a two server PIR scheme due to Woodruff et
al. [100]. The scheme involves O

(
k1/3

)
communication to access a k-bit
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database and is arguably the most intuitive among existing two server
schemes [27, 13, 100]. The ideas behind the scheme are similar to those
behind Reed Muller locally decodable codes (section 2.2).

Let n be an arbitrary positive integer. Set k =
(
n
3

)
. In what fol-

lows we obtain a 2-server scheme with O(n) bits of communication
to access an k-bit database. Pick γ : [k] → {0, 1}n to be an arbi-
trary bijection between the set [k] and the set of n-dimensional {0, 1}-
vectors of Hamming weight three. For i ∈ [k] and j ∈ {1, 2, 3} let
γ(i)j denote the j-th nonzero coordinate of γ(i). Given a database
x = (x1, . . . ,xk) ∈ Fk2 each server obtains the following polynomial F
in the ring F2[z1, . . . , zn],

F (z1, . . . , zn) =
k∑
i=1

xi · zγ(i)1
· zγ(i)2

· zγ(i)3
.

The key properties of the polynomial F are the following:

• F encodes the database: For every i ∈ [k], F (γ(i)) = xi;
• F has low degree: deg f = 3.

Note that the polynomial F can be naturally treated as a polyno-
mial over F4. The basic idea behind our private information retrieval
scheme is the idea of polynomial interpolation. Suppose the user wants
to retrieve the i-th coordinate of the database. Given i, the user obtains
the vector w = γ(i) ∈ Fn4 . Now the user’s goal is to recover the value
of the polynomial F (held by the servers) at the point w.

Obviously, the user cannot explicitly request the value of F at w
from any of the servers, since such a request would ruin the privacy
of the protocol; that is, some server will get to know which database
bit the user is after. Instead, the user obtains the value of F (w) indi-
rectly, relying on the rich structure of local dependencies between the
evaluations of a cubic polynomial F at multiple points. Specifically, the
user randomly selects an affine line L ∈ Fn4 containing the point w and
discloses certain points on L to the servers. Each server computes and
returns the value of F and the values of partial derivatives of F at the
point that it is given. Finally, the user reconstructs the restriction of
F to L. In particular the user obtains the desired value F (w). Below
is a more formal description.
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We use the standard mathematical notation ∂F
∂zl

∣∣∣
y

to denote the

value of the partial derivative [68, 29] of F with respect to a variable zl
at a point y. Let λ1, λ2 ∈ F4 be distinct and non-zero. Let U denote the
user and S1,S2 denote the servers. The protocol proceeds as follows,

U : Picks v ∈ Fn4 uniformly at random.
U → Sh : w + λhv

U ← Sh : F (w + λhv), ∂F∂z1

∣∣∣
w+λhv

, . . . , ∂F
∂zm

∣∣∣
w+λhv

Note that in the protocol above the input of each server Sh, h ∈
{1, 2} is a uniformly random point in Fn4 . Therefore the protocol is
private. It is also easy to verify that both the queries that the user sends
to servers and the servers’ responses are of length O(n) = O(k1/3).
(Every query is simply a point in Fn4 . Every response is a list of n
values of partial derivatives of F plus the value of F itself.) It remains
to show how the user obtains F (w) from the servers’ responses.

Consider the line L = {w + λv | λ ∈ F4}. Let f(λ) = f(w + λv) ∈
F4[λ] be the restriction of F to L. Clearly, f(λh) = F (w + λhv). Thus
the user knows the values {f(λh)} for h ∈ {1, 2}. This, however, does
not suffice to reconstruct the polynomial f, since the degree of f may
be up to three. The main observation underlying our protocol is that
knowing the values of partial derivatives ∂F

∂z1

∣∣∣
w+λhv

, . . . , ∂F∂zn

∣∣∣
w+λhv

,

the user can reconstruct the value of f ′(λh). The proof is a straightfor-
ward application of the chain rule:

∂f

∂λ

∣∣∣∣
λh

=
∂F (w + λv)

∂λ

∣∣∣∣
λh

=
n∑
l=1

∂F

∂zl

∣∣∣∣
w+λhv

vl.

Thus the user can reconstruct {f(λh)} and {f ′(λh)} for h ∈ {1, 2}.
Combining this observation with the standard algebraic fact that a
cubic univariate polynomial is uniquely determined by its values and
derivatives at two points [68], we conclude that the user can reconstruct
f and obtain xi = F (w) = f(0).
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6.2 Secure multiparty computation

A fundamental result of Ben-Or et al. [19] and Chaum et al. [25] from
1988 asserts that information-theoretic secure multiparty computation
is feasible. Specifically, in [19, 25] it is shown that r ≥ 3 players that
are allowed to exchange messages over secure channels, can jointly com-
pute any function of their local inputs while hiding the inputs from each
other; i.e., one can always arrange a protocol as to ensure that after per-
forming the joint computation any specific player gets no information
about the inputs of other players (apart from the information contained
in the value of the function).

In all known protocols for secure multiparty computation the com-
munication complexity of the protocol grows linearly with the circuit
size of the function being computed. This results in 2Ω(k) amount of
communication for securely computing most of the functions of k-bit
inputs. A natural question that was explicitly asked in several papers
from the late 1980’s and early 1990’s [32, 12] is whether all functions can
be securely computed with only a polynomial (or at least a subexpo-
nential) amount of communication in the input length. It was observed
by Ishai and Kushilevtiz [58] that this question is closely related to the
complexity of private information retrieval schemes.

The construction of private information retrieval schemes given
in section 6.1 yields quantitative progress on the question mentioned
above (via the reduction of [58]). Specifically, theorem 6.3 implies that
a group of 18 or more players can securely compute any function of
their k-bit inputs with a total communication of exp

(√
k log k

)
, for

all k.

6.3 Circuit lower bounds

In 1977 Valiant [94] has put forward the following definition.

Definition 6.4. A k×N matrix G over a field F is called (r, d)-rigid,
if G cannot be written as a sum of two matrices G = L+ S, where the
rank of L is at most r, and S contains at most d non-zero entries in
every column.
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Valiant [94] showed that if a matrix G ∈ Fk×N is (k/2, kα)-rigid, where
N = O(k) and α > 0; then the linear transformation from Fk to
FN induced by G cannot be computed by a linear arithmetic circuit
that simultaneously has size O(k) and depth O(log k). Valiant’s work
naturally led to the challenge of constructing explicit rigid matrices
since such matrices yield explicit linear maps for that we have circuit
lower bounds. (It is not hard to verify that a random k × k matrix is
(k/2,Ω(k))-rigid with high probability.) This challenge has triggered a
long line of work. For references see [42, 63, 71, 86, 72]. However, after
more than three decades of efforts, we are still nowhere close to con-
structing explicit rigid matrices with parameters needed to get impli-
cations in complexity theory. The best explicit family of (k/2, d)-rigid
matrices of size k ×N has N(k) = k · exp(d) due to Alon et al. [2].

Recently Dvir [35] suggested an approach to obtaining explicit rigid
matrices through establishing lower bounds on the codeword length
of linear locally correctable codes. Specifically, Dvir [35] proposed the
following

Conjecture 6.5. There exists a field F and positive constants α, β, γ, ε
such that for sufficiently large k there does not exist a linear
(kα, 1/kβ, ε)-locally correctable code of dimension k in F(1+γ)k.

Dvir [35] argued that if the conjecture above holds; then any gen-
erator matrix G of a certain appropriately chosen Reed Muller code is
sufficiently rigid to yield circuit lower bounds. On the high level, the
proof proceeds as follows: Suppose G is not rigid. Then, the mapping
induced by G can be approximated by a sparse mapping S (a map-
ping in which each output depends on a small number of inputs) in
the sense that there exists a large subspace on which G agrees with S.
Next, we observe that this subspace is a locally correctable code, since
we can correct each coordinate in a corrupted codeword y by invoking
the local decoder for y ·G and simulating each query to y ·G using a
small number of queries to the original string y. Finally, we obtain a
contradiction with the conjecture 6.5.

We remark that the setting of code parameters in the conjecture
above is somewhat different from the settings that we have addressed
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in previous chapters. Specifically, the conjecture talks about locally
correctable codes of very high rate, tolerating a sub-constant fraction
of errors. It also interesting to observe that both Valiant’s and Dvir’s
reductions apply over an arbitrary (not necessarily finite) field.



7

Future directions

In this chapter we list and comment on the most exciting open questions
relating to locally decodable codes and private information retrieval
schemes.

7.1 3-query locally decodable codes

It is very interesting to determine the optimal length of 3-query codes.
The best upper bound to date is exp exp

(√
log k · log log k

)
due to Efre-

menko [38]. The best lower bound is Ω̃(k2) due to Woodruff [97, 99].
A natural approach to improving the upper bound is through the

matching vector codes machinery detailed in chapters 3 and 4. This
calls for constructing families of S-matching vectors in Znm, for small
sets S of size larger than what one gets from the Grolmusz construction.
We remark that improving the Grolmusz construction for constant val-
ues of m will have significant implications other than improved upper
bounds for locally decodable codes, e.g., [53] (if explicit) it will give an
explicit family of Ramsey graphs beyond the Frankl-Wilson bound dif-
ferent from [8]. One approach to improving the Grolmusz construction
is to improve upper bounds for the degree of polynomial representation
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of the OR function modulo composites [10, 91].

7.2 r-query locally decodable codes

Again, main questions here relate to the true shape of the trade-off
between query complexity and codeword length of locally decodable
codes. Currently the improvement that matching vector codes provide
over Reed Muller codes rapidly deteriorates with an increase in the
number of queries, and vanishes entirely once the query complexity
reaches log k/(log log k)c. The next two benchmarks we have here for
constructions both come from Reed Muller codes. They are to

• Construct codes with r = O(log k) and polynomial stretch;
• Construct codes with r = ko(1) and positive rate.

Theorems 3.13 and 3.14 indicate that matching vector are unlikely to
help us achieve the second benchmark. At the same time it is quite
plausible that MV codes may achieve the first benchmark. This calls
for new bounded families of matching vectors in Znm, where m is compa-
rable to (or larger than) n. This regime has almost not been addressed
in the past.

It is also interesting to understand the power of matching vector
codes for other values of the query complexity. The following conjecture
has been made by Dvir et al. [36] in this regard. (Recall that k(m,n)
denotes the size of the largest Zm \ {0}-matching family in Znm.)

Conjecture 7.1. Let m and n be arbitrary positive integers; then

k(m,n) ≤ O
(
mn/2

)
.

By lemma 4.20 the conjecture holds for prime m. If the conjecture holds
in general; then any matching vector code must have length N = Ω(k2),
and thus MV codes are inferior to Reed Muller codes once r ≥ log2 k

by an argument similar to the one in section 3.7.2.
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7.3 Locally correctable codes

In chapter 2 we remarked that Reed Muller codes constitute the only
class of locally correctable codes known to date. It is interesting to see
if there exist shorter codes that are locally correctable. In particular
we do not know if matching vector codes (that share many properties
of Reed Muller codes) can be made locally correctable.

7.4 Two server private information retrieval

Unlike PIR schemes involving three or more servers, existing two server
schemes are not based on locally decodable codes. While a number of
different two server schemes are known [27, 4, 13, 60, 14, 100], all of
them have the same asymptotic communication complexity of O

(
k1/3

)
as the earliest such schemes proposed in [27]. The best lower bound
is 5 · log k due to Wehner and de Wolf [96].

One approach to improving the bounds for the communication com-
plexity of two server private information retrieval has been proposed
by Razborov et al. [82] who showed that under some weak technical
restriction two server schemes with O(c) communication to access a k-
bit database are equivalent to matrices M of size exp(c)× exp(c) with
entries from the alphabet {x1, . . . , xk, ∗} such that:

(1) Every variable xi, i ∈ [k] appears exactly once in each row
and each column of M ;

(2) For all 2k assignments of F2 values to variables {xi}i∈[k], there
is a completion of the matrix, (i.e., assignment of F2 values
to locations containing stars) such that the F2-rank of the
resulting matrix is O(c).

7.5 Private information retrieval with preprocessing

Our review of the state of the art in private information retrieval has
concentrated on the most studied aspect of PIR schemes, namely, their
communication complexity. Another important aspect of such schemes
is the amount of computation that servers need to perform in order to
respond to user queries. In fact, it is the overwhelming computational
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complexity of PIR schemes, that currently presents the main bottleneck
to their practical deployment.

Computational complexity of early private information retrieval
schemes has been addressed in [15, 100] where it was shown that prepro-
cessing the database can lead to notable savings. It will be interesting
to see further results in this direction as well as address the computa-
tional complexity of private information retrieval schemes arising from
matching vector codes.
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