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Abstract

Variational Message Passing (VMP) is an algorithmic implementation of the Vari-
ational Bayes (VB) method which applies only in the special case of conjugate
exponential family models. We propose an extension to VMP, which we refer to
as Non-conjugate Variational Message Passing (NCVMP) which aims to alleviate
this restriction while maintaining modularity, allowing choice in how expecta-
tions are calculated, and integrating into an existing message-passing framework:
Infer.NET. We demonstrate NCVMP on logistic binary and multinomial regres-
sion. In the multinomial case we introduce a novel variational bound for the soft-
max factor which is tighter than other commonly used bounds whilst maintaining
computational tractability.

1 Introduction

Variational Message Passing [20] is a message passing implementation of the mean-field approxima-
tion [1, 2], also known as variational Bayes (VB). Although Expectation Propagation [12] can have
more desirable properties as a result of the particular Kullback-Leibler divergence that is minimised,
VMP is more stable than EP under certain circumstances, such as multi-modality in the posterior
distribution.

Unfortunately, VMP is effectively limited to conjugate-exponential models since otherwise the mes-
sages become exponentially more complex at each iteration. In conjugate exponential models this
is avoided due to the closure of exponential family distributions under multiplication. There are
many non-conjugate problems which arise in Bayesian statistics, for example logistic regression or
learning the hyperparameters of a Dirichlet.

Previous work extending Variational Bayes to non-conjugate models has focused on two aspects.
The first is how to fit the variational parameters when the VB free form updates are not viable.
Various authors have used standard numerical optimization techniques [15, 17, 3], or adapted such
methods to be more suitable for this problem [7, 8]. A disadvantage of this approach is that the
convenient and efficient message-passing formulation is lost.

The second line of work applying VB to non-conjugate models involves deriving lower bounds
to approximate the expectations [9, 18, 5, 10, 11] required to calculate the KL divergence. We
contribute to this line of work by proposing and evaluating a new bound for the useful softmax factor,
which is tighter than other commonly used bounds whilst maintaining computational tractability. We
also demonstrate, in agreement with [19] and [14], that for univariate expectations such as required
for logistic regression, carefully designed quadrature methods can be effective.

Existing methods typically represent a compromise on modularity or performance. To maintain
modularity one is effectively constrained to use exponential family bounds (e.g. quadratic in the
Gaussian case [9, 5]) which we will show often gives sub-optimal performance. Methods which uses
more general bounds, e.g. [3], must then resort to numerical optimisation, and sacrifice modularity.
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This is a particular disadvantage for an inference framework such as Infer.NET [13] where we want
to allow modular construction of inference algorithms from arbitrary deterministic and stochastic
factors. We propose a novel message passing algorithm, which we call Non-conjugate Variational
Message Passing (NCVMP), which generalises VMP and gives a recipe for calculating messages
out of any factor. NCVMP gives much greater freedom in how expectations are taken (using bounds
or quadrature) so that performance can be maintained along with modularity.

The outline of the paper is as follows. In Sections 2 and 3 we briefly review VB and VMP. Section 4
is the main contribution of the paper: Non-conjugate VMP. Section 5 describes the binary logistic
and multinomial softmax regression models, and implementation options with and without NCVMP.
Results on synthetic and standard UCI datasets are given in Section 6 and some conclusions are
drawn in Section 7.

2 Mean-field approximation

Our aim is to approximate some model p(x), represented as a factor graph p(x) =
∏
a fa(xa)

where factor fa is a function of all x ∈ xa. The mean-field approximation assumes a fully-factorised
variational posterior q(x) =

∏
i qi(xi) where qi(xi) is an approximation to the marginal distribution

of xi (note however xi might be vector valued, e.g. with multivariate normal qi). The variational
approximation q(x) is chosen to minimise the Kullback-Leibler divergence KL(q||p), given by

KL(q||p) =
∫
q(x) log

q(x)
p(x)

dx = −H[q(x)]−
∫
q(x) log p(x)dx. (1)

whereH[q(x)] = −
∫
q(x) log q(x)dx is the entropy. It can be shown [1] that if the functions qi(xi)

are unconstrained then minimising this functional can be achieved by coordinate descent, setting
qi(xi) = exp〈log p(x)〉¬qi(xi), iteratively for each i, where 〈...〉¬qi(xi) implies marginalisation of
all variables except xi.

3 Variational Message Passing on factor graphs

VMP is an efficient algorithmic implementation of the mean-field approximation which lever-
ages the fact that the mean-field updates only requires local operations on the factor graph.
The variational distribution q(x) factorises into approximate factors f̃a(xa). As a result of the
fully factorised approximation, the approximate factors themselves factorise into messages, i.e.
f̃a(xa) =

∏
xi∈xa

ma→i(xi) where the message from factor a to variable i is ma→i(xi) =
exp〈log fa(xa)〉¬qi(xi). The message from variable i to factor a is the current variational poste-
rior of xi, denoted qi(xi), i.e. mi→a(xi) = qi(xi) =

∏
a∈N (i)ma→i(xi) where N (i) are the

factors connected to variable i.

For conjugate-exponential models the messages to a particular variable xi, will all be in the same
exponential family. Thus calculating qi(xi) simply involves summing sufficient statistics. If, how-
ever, our model is not conjugate-exponential, there will be a variable xi which receives incoming
messages which are in different exponential families, or which are not even exponential family dis-
tributions at all. Thus qi(xi) will be some more complex distribution. Computing the required
expectations becomes more involved, and worse still the complexity of the messages (e.g. the num-
ber of possible modes) grows exponentially per iteration.

4 Non-conjugate Variational Message Passing

In this section we give some criteria under which the algorithm was conceived. We set up required
notation and describe the algorithm, and prove some important properties. Finally we give some
intuition about what the algorithm is doing. The approach we take aims to fulfill certain criteria:

1. provides a recipe for any factor
2. reduces to standard VMP in the case of conjugate exponential factors
3. allows modular implementation and combining of deterministic and stochastic factors
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NCVMP ensures the gradients of the approximate KL divergence implied by the message match the
gradients of the true KL. This means that we will have a fixed point at the correct point in parameter
space: the algorithm will be at a fixed point if the gradient of the KL is zero.

We use the following notation: variable xi has current variational posterior qi(xi; θi), where θi is
the vector of natural parameters of the exponential family distribution qi. Each factor fa which is
a neighbour of xi sends a message ma→i(xi;φa→i) to xi, where ma→i is in the same exponential
family as qi, i.e. ma→i(xi;φ) = exp(φTu(xi)−κ(φ)) and qi(xi; θ) = exp(θTu(xi)−κ(θ)) where
u(·) are sufficient statistics, and κ(·) is the log partition function. We define C(θ) as the Hessian of
κ(·) evaluated at θ, i.e. Cij(θ) = ∂2κ(θ)

∂θi∂θj
. It is straightforward to show that C(θ) = cov(u(x)|θ)

so if the exponential family qi is identifiable, C will be symmetric positive definite, and therefore
invertible. The factor fa contributes a term Sa(θi) =

∫
qi(xi; θi)〈log fa(x)〉¬qi(xi)dxi to the KL

divergence, where we have only made the dependence on θi explicit: this term is also a function of
the variational parameters of the other variables neighbouring fa. With this notation in place we are
now able to describe the NCVMP algorithm.

Algorithm 1 Non-conjugate Variational Message Passing
1: Initialise all variables to uniform θi := 0∀i
2: while not converged do
3: for all variables i do
4: for all neighbouring factors a ∈ N (i) do
5: φa→i := C(θi)−1 ∂Sa(θi)

∂θi

6: end for
7: θi :=

∑
a∈N (i) φa→i

8: end for
9: end while

To motivate Algorithm 1 we give a rough proof that we will have a fixed point at the correct point in
parameter space: the algorithm will be at a fixed point if the gradient of the KL divergence is zero.
Theorem 1. Algorithm 1 has a fixed point at {θi : ∀i} if and only if {θi : ∀i} is a stationary point
of the KL divergence KL(q||p).

Proof. Firstly define the function

S̃a(θ;φ) :=
∫
qi(xi; θ) logma→i(xi;φ)dxi, (2)

which is an approximation to the function Sa(θ). Since qi andma→i belong to the same exponential
family we can simplify as follows,

S̃a(θ;φ) =
∫
qi(xi; θ)(φTu(xi)− κ(φ))dxi = φT 〈u(xi)〉θ − κ(φ) = φT

∂κ(θ)
∂θ

− κ(φ), (3)

where 〈·〉θ implies expectation wrt qi(xi; θ) and we have used the standard property of exponential
families that 〈u(xi)〉θ = ∂κ(θ)

∂θ . Taking derivatives wrt θ we have ∂S̃a(θ;φ)
∂θ = C(θ)φ. Now, the

update in Algorithm 1, Line 5 for φa→i ensures that

C(θ)φ =
∂Sa(θ)
∂θ

⇔ ∂S̃a(θ;φ)
∂θ

=
∂Sa(θ)
∂θ

. (4)

Thus this update ensures that the gradients wrt θi of S and S̃ match. The update in Algorithm 1,
Line 7 for θi is minimising an approximate local KL divergence for xi:

θi := arg min
θ

−H[qi(xi, θ)]−
∑

a∈N (i)

S̃(θ;φa→i)

 =
∑

a∈N (i)

φa→i (5)

where H[.] is the entropy. If and only if we are at a fixed point of the algorithm, we will have

∂

∂θi

−H[qi(xi, θi)]−
∑

a∈N (i)

S̃a(θi;φa→i)

 =
∂H[qi(xi, θi)]

∂θi
−

∑
a∈N (i)

∂S̃a(θi;φa→i)
∂θi

= 0
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for all variables i. By (4), if and only if we are at a fixed point (so that θi has not changed since
updating φ) we have

−∂H[qi(xi, θi)]
∂θi

−
∑

a∈N (i)

∂Sa(θi)
∂θi

=
∂KL(q||p)

∂θi
= 0 (6)

for all variables i.

Theorem 1 showed that if NCVMP converges to a fixed point then it is at a stationary point of
the KL divergence KL(q||p). In practice this point will be a minimum because any maximum
would represent an unstable equilibrium. However, unlike VMP we have no guarantee to decrease
KL(q||p) at every step, and indeed we do sometimes encounter convergence problems which require
damping to fix: see Section 7. Theorem 1 also gives some intuition about what NCVMP is doing.
S̃a is a conjugate approximation to the true Sa function, chosen to have the correct gradients at the
current θi. The update at variable xi for θi combines all these approximations from factors involving
xi to get an approximation to the local KL, and then moves θi to the minimum of this approximation.

Another important property of Non-conjugate VMP is that it reduces to standard VMP for conjugate
factors.

Theorem 2. If 〈log fa(x)〉¬qi(xi) as a function of xi can be written µTu(xi)− c where c is a con-
stant, then the NCVMP message ma→i(xi, φa→i) will be the standard VMP message ma→i(xi, µ).

Proof. To see this note that 〈log fa(x)〉¬qi(xi) = µTu(xi) − c ⇒ Sa(θ) = µT 〈u(xi)〉θ − c,
where µ is the expected natural statistic under the messages from the variables connected to fa other
than xi. We have Sa(θ) = µT ∂κ(θ)∂θ − c ⇒ ∂Sa(θ)

∂θ = C(θ)µ so from Algorithm 1, Line 7 we
have φa→i := C(θ)−1 ∂Sa(θ)

∂θ = C(θ)−1C(θ)µ = µ, the standard VMP message.

The update for θi in Algorithm 1, Line 7 is the same as for VMP, and Theorem 2 shows that for
conjugate factors the messages sent to the variables are the same as for VMP. Thus NCVMP is a
generalisation of VMP.

NCVMP can alternatively be derived by assuming the incoming messages to xi are fixed apart from
ma→i(xi;φ) and calculating a fixed point update for ma→i(xi;φ). Gradient matching for NCVMP
can be seen as analogous to moment matching in EP. Due to space limitations we defer the details
to the supplementary material.

4.1 Gaussian variational distribution

Here we describe the NCVMP updates for a Gaussian variational distribution q(x) = N(x;m, v)
and approximate factor f̃(x;mf , vf ). Although these can be derived from the generic formula using
natural parameters it is mathematically more convenient to use the mean and variance (NCVMP is
parameterisation invariant so it is valid to do this).

1
vf

= −2
dS(m, v)

dv
,

mf

vf
=
m

vf
+
dS(m, v)
dm

. (7)

5 Logistic regression models

We illustrate NCVMP on Bayesian binary and multinomial logistic regression. The regression part
of the model is standard: gkn =

∑D
d=1WkdXdn + mk where g is the auxiliary variable, W is a

matrix of weights with standard normal prior, X is the design matrix and m is a per class mean,
which is also given a standard normal prior. For binary regression we just have k = 1, and the
observation model is p(y = 1|g1n) = σ(g1n) where σ(x) = 1/(1 + e−x) is the logistic function.
In the multinomial case p(y = k|g:n) = σk(g:n) where σk(x) = exk∑

l e
xl

is the “softmax” function.
The VMP messages for the regression part of the model are standard so we omit the details due to
space limitations.
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5.1 Binary logistic regression

For logistic regression we require the following factor: f(s, x) = σ(x)s(1 − σ(x))1−s where we
assume s is observed. The log factor is sx − log(1 + ex). There are two problems: we cannot
analytically compute expectations wrt to x, and we need to optimise the variational parameters. [9]
propose the “quadratic” bound on the integrand

σ(x) ≥ σ̃(x, t) = σ(t) exp
(

(x− t)/2− λ(t)
2

(x2 − t2)
)
, (8)

where λ(t) = tanh (t/2)
t = σ(t)−1/2

t . It is straightforward to analytically optimise t to make the
bound as tight as possible. The bound is conjugate to a Gaussian, but its performance can be poor.
An alternative proposed in [18] is to bound the integral:

〈log f(x)〉q ≥ sm−
1
2
a2v − log(1 + em+(1−2a)v/2)), (9)

where m, v are the mean and variance of q(x) and a is a variational parameter which can be opti-
mised using the fixed point iteration a := σ(m−(1−2a)v/2). We refer to this as the “tilted” bound.
This bound is not conjugate to a Gaussian, but we can calculate the NCVMP message, which has
parameters: 1

vf
= a(1−a), mf

vf
= m

vf
+s−a, where we have assumed a has been optimised. A final

possibility is to use quadrature to calculate the gradients of S(m, v) directly. The NCVMP message
then has parameters 1

vf
= 〈xσ(x)〉q−m〈σ(x)〉q

v ,
mf

vf
= m

vf
+ s − 〈σ(x)〉q . The univariate expecta-

tions 〈σ(x)〉q and 〈xσ(x)〉q can be efficiently computed using Gauss-Hermite or Clenshaw-Curtis
quadrature.

5.2 Multinomial softmax regression

Consider the softmax factor f(x, p) =
∏K
k=1 δ (pk − σk(x)), where xk are real valued and p is a

probability vector with current Dirichlet variational posterior q(p) = Dir(p; d). We can integrate
out p to give the log factor log f(x) =

∑K
k=1(dk − 1)xk − (d. − K) log

∑
l e
xl where we define

d. :=
∑K
k=1 dk. Let the incoming message from x be q(x) =

∏K
k=1N(xk;mk, vk). How should

we deal with the log
∑
l e
xl term? The approach used by [3] is a linear Taylor expansion of the log,

which is accurate for small variances v:

〈log
∑
i

exi〉 ≤ log
∑
i

〈exi〉 = log
∑
i

emi+vi/2, (10)

which we refer to as the “log” bound. The messages are still not conjugate, so some numerical
method must still be used to learn m and v: while [3] used LBFGS we will use NCVMP. Another
bound was proposed by [5]:

log
K∑
k=1

exk ≤ a+
K∑
k=1

log(1 + exk−a), (11)

where a is a new variational parameter. Combining with (8) we get the “quadratic bound” on the
integrand, with K + 1 variational parameters. This has conjugate updates, so modularity can be
achieved without NCVMP, but as we will see, results are often poor. [5] derives coordinate ascent
fixed point updates to optimise a, but reducing to a univariate optimisation in a and using Newton’s
method is much faster (see supplementary material).

Inspired by the univariate “tilted” bound in Equation 9 we propose the multivariate tilted bound:

〈log
∑
i

exi〉 ≤ 1
2

∑
j

a2
jvj + log

∑
i

emi+(1−2ai)vi/2 (12)

Setting ak = 0 for all k we recover Equation 10 (hence this is the “tilted” version). Maximisation
with respect to a can be achieved by the fixed point update (see supplementary material): a :=
σ
[
m + 1

2 (1− 2a) · v
]
. This is a O(K) operation since the denominator of the softmax function

is shared. For the softmax factor quadrature is not viable because of the high dimensionality of the
integrals. From Equation 7 the NCVMP messages using the tilted bound have natural parameters
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1
vkf

= (d. − K)ak(1 − ak), mkf

vkf
= mk

vkf
+ dk − 1 − (d. − K)ak where we have assumed a has

been optimised. As an alternative we suggest choosing whether to send the message resulting from
the quadratic bound or tilted bound depending on which is currently the tightest, referred to as the
“adaptive” method. Finally we consider a simple Taylor series expansion of the integrand around
the mean of x, denoted “Taylor”, and the multivariate quadratic bound of [4], denoted “Bohning”
(see the Supplementary material for details).

6 Results

Here we aim to present the typical compromise between performance and modularity that NCVMP
addresses. We will see that for both binary logistic and multinomial softmax models achieving
conjugate updates by being constrained to quadratic bounds is sub-optimal, in terms of estimates of
variational parameters, marginal likelihood estimation, and predictive performance. NCVMP gives
the freedom to choose a wider class of bounds, or even use efficient quadrature methods in the
univariate case, while maintaining simplicity and modularity.

6.1 The logistic factor

We first test the logistic factor methods of Section 5.1 at the task of estimating the toy model
σ(x)π(x) with varying Gaussian prior π(x) (see Figure 1(a)). We calculate the true mean and vari-
ance using quadrature. The quadratic bound has the largest errors for the posterior mean, and the
posterior variance is severely underestimated. In contrast, NCVMP using quadrature, while being
slightly more computationally costly, approximates the posterior much more accurately: the error
here is due only to the VB approximation. Using the tilted bound with NCVMP gives more robust
estimates of the variance than the quadratic bound as the prior mean changes. However, both the
quadratic and tilted bounds underestimate the variance as the prior variance increases.

20 15 10 5 0 5 10 15 20
prior mean

0.3

0.2

0.1

0.0

0.1

0.2

0.3

e
rr

o
r 

in
 p

o
st

e
ri

o
r 

m
e
a
n

5 10 15
prior variance

0.5

0.4

0.3

0.2

0.1

0.0

e
rr

o
r 

in
 p

o
st

e
ri

o
r 

m
e
a
n

NCVMP quad
NCVMP tilted
VMP quadratic

15 10 5 0 5 10 15
prior mean

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

e
rr

o
r 

in
 p

o
st

e
ri

o
r 

v
a
ri

a
n
ce

0 5 10 15 20
prior variance

4

3

2

1

0

e
rr

o
r 

in
 p

o
st

e
ri

o
r 

v
a
ri

a
n
ce

(a) Posterior mean and variance estimates of σ(x)π(x) with varying
prior π(x). Left: varying the prior mean with fixed prior variance
v = 10. Right: varying the prior variance with fixed prior mean
m = 0.
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Figure 1: Logistic regression experiments.

6.2 Binary logistic regression

We generated ten synthetic logistic regression datasets with N = 30 data points and P = 8 co-
variates. We evaluated the results in terms of the log likelihood of the true regression coefficients
under the approximate posterior, a measure which penalises poorly estimated posterior variances.
Figure 1(b) compares the performance of non-conjugate VMP using quadrature and VMP using
the quadratic bound. For four of the ten datasets the quadratic bound finds very poor solutions.
Non-conjugate VMP finds a better solution in seven out of the ten datasets, and there is marginal
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difference in the other three. Non-conjugate VMP (with no damping) also converges faster in gen-
eral, although some oscillation is seen for one of the datasets.

6.3 Softmax bounds

To have some idea how the various bounds for the softmax integral Eq[log
∑K
k=1 e

xk ] com-
pare empirically we calculated relative absolute error on 100 random distributions q(x) =∏
kN(xk;mk, v). We sample mk ∼ N(0, u). When not being varied, K = 10, u = 1, v = 1.

Ground truth was calculated using 105 Monte Carlo samples. We vary the number of classes, K, the
distribution variance v and spread of the means u. Results are shown in Figure 2. As expected the
tilted bound (12) dominates the log bound (10), since it is a generalisation. As K is increased the
relative error made using the quadratic bound increases, whereas both the log and the tilted bound
get tighter. In agreement with [5] we find the strength of the quadratic bound (11) is in the high
variance case, and Bohning’s bound [4] is very loose under all conditions. Both the log and tilted
bound are extremely accurate for variances v < 1. In fact, the log and tilted bounds are asymp-
totically optimal as v → 0. “Taylor” gives accurate results but is not a bound, so convergence is
not guaranteed and the global bound on the marginal likelihood is lost. The spread of the means
u does not have much of an effect on the tightness of these bounds. These results show that even
when quadrature is not an option, much tighter bounds can be found if the constraint of requiring
quadratic bounds imposed by VMP is relaxed. For the remainder of the paper we consider only the
quadratic, log and tilted bounds.
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Figure 2: Log10 of the relative absolute error approximating E log
∑

exp, averaged over 100 runs.

6.4 Multinomial softmax regression

Synthetic data. For synthetic data sampled from the generative model we know the ground truth
coefficients and can control characteristics of the data. We first investigate the performance with
sample size N , with fixed number of features P = 6, classes K = 4, and no noise (apart from
the inherent noise of the softmax function). As expected our ability to recover the ground truth
regression coefficients improves with increasing N (see Figure 3(a), left). However, we see that
the methods using the tilted bound perform best, closely followed by the log bound. Although the
quadratic bound has comparable performance for small N < 200 it performs poorly with larger
N due to its weakness at small variances. The choice of bound impacts the speed of convergence
(see Figure 3(a), right). The log bound performed almost as well as the tilted bound at recovering
coefficients it takes many more iterations to converge. The extra flexibility of the tilted bound allows
faster convergence, analogous to parameter expansion [16]. For small N the tilted bound, log bound
and adaptive method converge rapidly, but as N increases the quadratic bound starts to converge
much more slowly, as do the tilted and adaptive methods to a lesser extent. “Adaptive” converges
fastest because the quadratic bound gives good initial updates at high variance, and the tilted bound
takes over once the variance decreases. We vary the level of noise in the synthetic data, fixing
N = 200, in Figure 3(b). For all but very large noise values the tilted bound performs best.

UCI datasets. We test the multinomial regression model on three standard UCI datasets: Iris (N =
150, D = 4,K = 3), Glass (N = 214, D = 8,K = 6) and Thyroid (N = 7200, D = 21,K = 3),
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(b) Varying noise level

Figure 3: Left: root mean squared error of inferred regression coefficients. Right: iterations to
convergence. Results are shown as quartiles on 16 random synthetic datasets. All the bounds except
“quadratic” were fit using NCVMP.

Iris Quadratic Adaptive Tilted Probit
Marginal likelihood −65± 3.5 −31.2± 2 −31.2± 2 −37.3± 0.79
Predictive likelihood −0.216± 0.07 −0.201± 0.039 −0.201± 0.039 −0.215± 0.034
Predictive error 0.0892± 0.039 0.0642± 0.037 0.065± 0.038 0.0592± 0.03
Glass Quadratic Adaptive Tilted Probit
Marginal likelihood −319± 5.6 −193± 3.9 −193± 5.4 −201± 2.6
Predictive likelihood −0.58± 0.12 −0.542± 0.11 −0.531± 0.1 −0.503± 0.095
Predictive error 0.197± 0.032 0.200± 0.032 0.200± 0.032 0.195± 0.035
Thyroid Quadratic Adaptive Tilted Probit
Marginal likelihood −1814± 43 −909± 30 −916± 31 −840± 18
Predictive likelihood −0.114± 0.019 −0.0793± 0.014 −0.0753± 0.008 −0.0916± 0.010
Predictive error 0.0241± 0.0026 0.0225± 0.0024 0.0226± 0.0023 0.0276± 0.0028

Table 1: Average results and standard deviations on three UCI datasets, based on 16 random 50 : 50
training-test splits. Adaptive and tilted use NCVMP, quadratic and probit use VMP.

see Table 1. Here we have also included “Probit”, corresponding to a Bayesian multinomial probit
regression model, estimated using VMP, and similar in setup to [6], except that we use EP to approx-
imate the predictive distribution, rather than sampling. On all three datasets the marginal likelihood
calculated using the tilted or adaptive bounds is optimal out of the logistic models (“Probit” has a
different underlying model, so differences in marginal likelihood are confounded by the Bayes fac-
tor). In terms of predictive performance the quadratic bound seems to be slightly worse across the
datasets, with the performance of the other methods varying between datasets. We did not compare
to the log bound since it is dominated by the tilted bound and is considerably slower to converge.

7 Discussion

NCVMP is not guaranteed to converge. Indeed, for some models we have found convergence to be
a problem, which can be alleviated by damping: if the NCVMP message is mf→i(xi) then send
the message mf→i(xi)1−αmold

f→i(xi)
α where mold

f→i(xi) was the previous message sent to i and
0 ≤ α < 1 is a damping factor. The fixed points of the algorithm remained unchanged.

We have introduced Non-conjugate Variational Message Passing, which extends variational Bayes
to non-conjugate models while maintaining the convenient message passing framework of VMP and
allowing freedom to choose the most accurate available method to approximate required expecta-
tions. Deterministic and stochastic factors can be combined in a modular fashion, and conjugate
parts of the model can be handled with standard VMP. We have shown NCVMP to be of practical
use for fitting Bayesian binary and multinomial logistic models. We derived a new bound for the
softmax integral which is tighter than other commonly used bounds, but has variational parameters
that are still simple to optimise. Tightness of the bound is valuable both in terms of better approxi-
mating the posterior and giving a closer approximation to the marginal likelihood, which may be of
interest for model selection.
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